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Partial identification of spread parameters

Jörg Stoye
Department of Economics, Cornell University

This paper analyzes partial identification of parameters that measure a distribu-
tion’s spread, for example, the variance, Gini coefficient, entropy, or interquartile
range. The core results are tight, two-dimensional identification regions for the ex-
pectation and variance, the median and interquartile ratio, and many other com-
binations of parameters. They are developed for numerous identification settings,
including but not limited to cases where one can bound either the relevant cumu-
lative distribution function or the relevant probability measure. Applications in-
clude missing data, interval data, “short” versus “long” regressions, contaminated
data, and certain forms of sensitivity analysis. The application to missing data is
worked out in some detail, including closed-form worst-case bounds on some pa-
rameters as well as improved bounds that rely on nonparametric restrictions on
selection effects. A brief empirical application to bounds on inequality measures
is provided. The bounds are very easy to compute. The ideas underlying them are
explained in detail and should be readily extended to even more settings than are
explicitly discussed.

Keywords. Partial identification, nonparametric bounds, missing data, sensitiv-
ity analysis, variance, inequality.

JEL classification. C14, C24.

1. Introduction

This paper contributes to research on partial identification. A parameter is partially
identified if the data generating process, together with assumptions a researcher is
willing to make, reveals some nontrivial information about it but does not identify
it in the conventional sense; that is, distinct parameter values may be observation-
ally equivalent. Analysis of partial identification has become an active literature; see
Manski (2003, 2007) for surveys. This paper extends its scope in two dimensions: First,
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it provides general identification results for most salient measures of a random vari-
able’s dispersion. To give a few examples, findings apply to joint bounds—that is, two-
dimensional identification regions that are typically not rectangles—for the expectation
and variance, expectation and Gini coefficient, or expectation and entropy, as well as
joint bounds for the median and interquartile range or ratio. Between them, these and
other parameters covered in the paper are of interest in applications ranging from analy-
sis of income distributions to risk assessments. Second, findings apply to a number of
rather general settings: The distribution of interest may be a mixture between an iden-
tified distribution and an unidentified one, where the mixture weight is either known
or unknown, and where partial knowledge of the unidentified distribution can be ex-
pressed as bounds on either its cumulative distribution function (c.d.f.) or its measure.
Between them, these scenarios encompass a wide range of problems, including missing
data, interval data, “short” versus “long” regressions, contaminated data, and certain
forms of sensitivity analysis.

Here is a basic intuition for how the bounds work. Assume for concreteness that
one observes interval-valued income data; that is, for every household in a sample, one
observes the income bracket to which the household belongs. Then one can generate
upper [lower] worst-case bounds on expected income or a quantile of income by as-
suming that all true data points occupy the upper [lower] end of the respective bracket;
intuitively, probability mass must be shifted to the extreme right [left] of its potential
support. Let us now try to maximize the variance. Intuitively, this must be achieved by
shifting probability mass to the edges of its potential support: indeed, the solution will
be to assume that all data points below a threshold bracket occupy the lower end of
their respective bracket and all data points above it occupy the upper end, with a possi-
bly mixed allocation in the threshold bracket itself. The problem is that there are many
configurations of incomes that fit this characterization, and it is not clear which of them
maximizes variance. However, they all induce different means. For any given, hypoth-
esized value of expected income, exactly one of these “dispersed” distributions is con-
sistent with said value, and this distribution maximizes the variance among all distrib-
utions with that same expectation. Thus, one has bounds on the variance that depend
on hypothetical values of the expectation. This leads to joint bounds on the expectation
and variance, and, by implication, on any function of them, including unconstrained
bounds on the variance. A similar statement holds true for “compressed” distributions
that shift probability mass toward the center of the support and thereby minimize vari-
ance.

The gist of this paper’s identification results is to demonstrate the level of generality
to which this idea can be pushed. The answer is that it applies to joint bounds on the
expectation and any parameter that increases in mean-preserving spreads, as well as
joint bounds on any quantile and what will be called quantile contrasts. Furthermore,
it applies in any of four general identification settings: The probability distribution of
interest is a mixture between an identified and an unidentified distribution, where one
can formulate bounds on either the unidentified c.d.f. or the corresponding measure,
and where the mixture probability may or may not be known. Moreover, once the or-
ganizing principles that underlie these bounds are in place, it is expected that they can
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readily be extended to even more identification settings. Section 4 of this paper contains
one example of this. In all cases, the bounds are easy to compute as long as it is easy to
evaluate θ for a given c.d.f. or measure.

It is a sign of the wide applicability of these results that special cases emerged in dif-
ferent literatures. Vazques Alvarez, Melenburg, and van Soest (2003) identified bounds
on the Gini coefficient and interquartile range, and Blundell, Gosling, Ichimura, and
Meghir (2007) provided bounds on differences between quantiles, when some data are
missing. Both are motivated by, and apply their results to, analysis of income or wage
distributions. Neither considers joint identification of these statistics and expectations
or quantiles nor extends the analysis to general bounds on c.d.f.’s (of which missing
data are a special case) or on measures. The present treatment applies beyond these re-
strictions and also to many other parameters. Gastwirth (1972) and Cowell (1991) found
worst-case bounds on the sample Gini coefficient under the assumption that one knows
the income bracket but not the exact income of every household. Up to minor differ-
ences caused by discreteness, these results are special cases of identification analysis
with bounds on distributions. Deriving bounds on parameters from bounds on mea-
sures, on the other hand, is formally similar to questions that arise in the literature on
robust Bayesian inference, and some of my findings there are related to those in DeR-
obertis and Hartigan (1981) and Wasserman and Kadane (1992).

The remainder of this paper is structured as follows. In Section 2, I present the for-
mal setting, define some relevant classes of parameters, and elucidate the identification
scenarios. Section 3 contains the general identification analysis for the cases of bounds
both on distributions and on measures. In Section 4, these results are employed toward
a detailed analysis of certain missing-data problems, providing worst-case bounds but
also showing how to refine them via partially identifying assumptions. The application is
illustrated by a simple empirical example. While analysis in Sections 3 and 4 conditions
on or ignores any existing covariate, Section 5 explicitly discusses the effect of covariates
on bounds. Section 6 concludes. All proofs are relegated to the Appendix.1

2. Setting the stage

Abstracting from estimation issues, the identification problem can be described as fol-
lows. Let Y ∈ R and X ∈ X be random variables on probability space (R× X �σR ×σX �P),
with Y the outcome of interest and X a covariate; here, σR is the Borel sigma algebra
on R and σX is some sigma algebra on X . The word “measurable” henceforth refers to
these algebras.

Depending on what is convenient, I use either P or the corresponding c.d.f. F as the
primitive object. The notation θ(P) (or θ(F)) will be used for generic parameters of P

1This paper does not contain new contributions to estimation or inference for the identified sets it char-
acterizes. Here are some (far from exhaustive) references. The only developed framework for estimation and
inference that would apply at this paper’s level of generality is the generalization of extremum estimators
to set-valued extrema (Chernozhukov, Hong, and Tamer (2007), Romano and Shaikh (2010)). Depending
on the specifics of the case, other frameworks like moment inequalities (Andrews and Soares (2010), Cher-
nozhukov, Hong, and Tamer (2007), Imbens and Manski (2004), Rosen (2008), Stoye (2009)) or set-valued
random variables (Beresteanu and Molinari (2008)) may apply as well.
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or F that take values on the (possibly extended) real line. Partial identification means
that only some aspects of P are observable. Specifically, assume that the marginal distri-
bution of X is known, but that the identified set H(P(Y |X = x)) for P(Y |X = x) need not
be a singleton for any x. As a result, a parameter θ of P(Y |X = x) is partially identified
and can merely be concluded to lie within its identified set

Hx(θ)= {
θ(P∗) :P∗ ∈ H(P(Y |X = x))

}
�

with point identification emerging as the special case where Hx(θ) is a singleton. In the
subsequent text, Hx(θ) will be characterized via bounds on θ, that is, identified quanti-
ties θ and θ such that (s.t.) Hx(θ) ⊆ [θ�θ]. All bounds in this paper are best possible in
the sense that they cannot be improved upon using only the assumptions made. Indeed,
most bounds are attainable, that is, {θ�θ} ⊆ Hx(θ); distributions achieving them will be
explicitly characterized, so that computation will typically be easy; and the conditions
where attainability can fail will be elaborated. An additional question is whether Hx(θ)

can be concluded to be convex, so that Hx(θ) = [θ�θ] if bounds are attainable. The an-
swer depends on θ, but is in the affirmative for many parameters because all identified
sets H(P(Y |X = x)) considered in this paper are closed under mixture. Throughout this
paper, Hx(θ) is, therefore, convex for parameters θ s.t.

[θ(P)�θ(P ′)] ⊆ {
θ(λP + (1 − λ)P ′) :λ ∈ [0�1]}

for all measures P , P ′. This condition specifically holds if θ is such that Xn
d→ X implies

θ(P(Xn)) → θ(P(X)).
Characterizations of {Hx(θ)}x∈X immediately imply that the set {θ(P(Y |X = x))}x∈X

is bounded by the Cartesian product of covariate-wise identified sets:

{
θ(P(Y |X = x))

}
x∈X ∈×

x∈X
{Hx(θ)}�

In the presence of cross-covariate restrictions, this bound may be far from tight. I will
initially analyze Hx(θ) for a wide range of scenarios and return to joint bounds on
{θ(P(Y |X = x))}x∈X in Section 5.

Some more notation is as follows: Write E(Y) and Q(α) for the expectation and
quantile function; thus, Q(α) = inf{y :F(y) ≥ α} for any α ∈ (0�1]. Define also F−(y) =
limx↑y F(x). All of these will inherit markers applied to primitive objects; thus if a c.d.f.
F1 (say) was introduced, E1(Y) is the corresponding expectation. To avoid case distinc-
tions, also define Q(α) = inf{supp(Y)} for any α ≤ 0 and Q(α) = sup{supp(Y)} for any
α > 1, where these quantities may lie on the extended real line (but will not do so any-
where where this would cause difficulties).

The challenge is to characterize Hx(θ), which specifically requires extremizing θ over
H(P(Y |X = x)). This paper’s core insight is that this problem can be solved explicitly for
many parameters and in many settings. I will first elaborate the “many parameters” and
then the “many settings” part.
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Definition 1 (Parameters). θ is a D1-parameter if it increases with first-order stochas-
tic dominance:

F(y) ≤ G(y) ∀y �⇒ θ(F) ≥ θ(G)� (1)

Examples of D1-parameters (called D-parameters in Manski (2003)) include the ex-
pectation, any quantile, and any point of the c.d.f. Bounds on them will be derived, but
mainly as a backdrop. Core interest is in spread parameters. By this, I mean two classes
of parameters which jointly include most parameters that one would think of for mea-
suring a variable’s dispersion. The first of these is the following:

Definition 2 (Parameters). θ is a D2-parameter if for distributions that have equal ex-
pectation, it increases with second-order stochastic dominance:

∫
y dF =

∫
y dG and

∫ k

−∞
F(y)dy ≤

∫ k

−∞
G(y)dy ∀k

(2)
�⇒ θ(G) ≥ θ(F)�

Second-order dominance as just defined is one of several intuitive notions of in-
creased riskiness. One could also think of G as more risky than F if it can be generated
from F by the addition of a mean-preserving spread or if

∫
u(y)dG ≤ ∫

u(y)dF for every
convex real-valued function u. These three notions are equivalent.2 When applied to
distributions with finite support, the partial ordering by second-order stochastic dom-
inance furthermore coincides with the partial orderings induced by the Pigou–Dalton
principle of transfers, Schur-convexity, or pointwise ordering of Lorenz curves.3 As a re-
sult, the class of D2-parameters is quite general: it includes the variance, any even (raw
or centered) moment, the expectation of any convex (or, upon sign reversal, concave)
utility function, and the vast majority of financial risk measures,4 as well as a host of
inequality measures, for example, the Gini coefficient, Herfindahl’s index (better known
as a measure of concentration of industries), any entropy-based index like Theil’s, social
welfare function-based indices like Atkinson’s or Dalton’s, the relative mean deviation,
the equal shares coefficient, and the minimal majority index.5 Finally, the distributions

2A good reference for this result is Shaked and Shantikumar (2007, Section 3), but its essence is much
older. See Rothschild and Stiglitz (1970) for a well known reference from within economics, although their
statement and proof apply only if Y is bounded.

3A function f : Rn → R is Schur-convex if for any bistochastic matrix Q and any y ∈ R
n, f (Qy) ≤ f (y).

A matrix with nonnegative elements is bistochastic if it is square, and all rows and columns sum to 1; in-
tuitively, Qy therefore reflects a stochastic reallocation of incomes. The Pigou–Dalton principle (Dalton
(1920)) states that if some income is redistributed from a richer to a poorer person without reversing their
relative rank positions, then an inequality measure should decrease. Equivalence of these criteria to each
other and the D2 property was established by Atkinson (1970) and Dasgupta, Sen, and Starret (1973).

4Pedersen and Satchell (1998) proposed desirable properties of financial risk measures, two of which
(their BP2 and BP4) jointly imply the D2 property. Their list of risk measures that fulfil these (Theorem 9)
includes most financial ones.

5This information is taken from Cowell (1995), who also provided definitions of all of these measures.
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that attain the bounds generate extremal Lorenz curves for partially identified distribu-
tions.

I will distinguish between constrained and unconstrained bounds. A constrained
bound applies to a partially identified distribution whose mean, E(Y), is constrained
to equal some preassigned value μ ∈ H(E(Y)). This is convenient because subject to
this constraint, all D2-parameters are extremized by the same distributions. Also, it al-
lows characterization of not just bounds on D2-parameters, but joint bounds on them
and the mean. These joint identification regions are of interest in their own right be-
cause they imply bounds on any joint function of the mean and a D2-parameter; for
example, one could perform partially identified mean-variance analysis. Unconstrained
bounds can be computed by extremizing constrained bounds over feasible candidate
values of the expectation and will, in general, be achieved by different distributions for
different D2-parameters.

The most salient measures of spread that are not D2-parameters are what will be
called quantile contrasts:

Definition 3 (Quantile Contrasts). θ is a quantile contrast if one can write θ(F) =
f (Q(α)�Q(β)), where α ≤ β, and the known, continuous function f is nonincreasing
in the first argument and nondecreasing in the second argument.

Obvious examples of quantile contrasts are interquantile ranges and (for nonnega-
tive variables) ratios.6 Bounds on quantile contrasts will be derived too. The major dif-
ference is that they constrain some (user specified) quantile rather than the mean; hence
one gets joint identification regions for the median and interquartile ratio, say. This pa-
per does not provide joint bounds on D2-parameters and quantiles, or on quantile con-
trasts and the expected value.

Next, the analysis covers all settings that fall under one of two scenarios. The la-
bel “bounds on c.d.f.’s” will refer to the case where one knows a collection of c.d.f.’s
{Fx

1 �F
x
L�F

x
U }x∈X with finite expectations s.t.

H(F(Y |X = x))
(3)

= {F∗ :pxFx
1 + (1 −px)Fx

U �FSD F∗ �FSD pxFx
1 + (1 −px)Fx

L}�

where �FSD denotes first-order dominance as defined in (1). Thus, the true conditional
distributions are px-contaminations of known distributions by distributions whose
c.d.f.’s can be bounded. The mixture probabilities {px}x∈X may be known or unknown.
By setting them equal to zero, this nests the case where one just knows bounds on condi-
tional c.d.f.’s; it is strictly more general, however, because knowledge of {Fx

1 }x∈X implies
some (relevant, as it turns out) information about densities.

6To see that these are not D2, let F(y) ≡ 1/2 + 1/2 · 1{y ≥ 1/2} and G(y) ≡ 3/4 + 1/4 · 1{y = 1} be differ-
ent distributions for a random variable Y ∈ [0�1]. Then G is a mean-preserving spread of F , yet F has an
interquartile range of 1/2 and G has an interquartile range of 0.
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The label “bounds on measures” will refer to the case where one knows a collection
of measures {Px

1 �P
x
L�P

x
U }x∈X s.t.

H(P(Y |X = x)) = {P∗ :pxPx
1 + (1 −px)Px

L ≤ P∗ ≤ pxPx
1 + (1 −px)Px

U } (4)

for all x, where ≤ indicates dominance of measures. To make the problem well de-
fined and ensure existence of expectations, I impose that, for all x ∈ X , (i) Px

L and
Px
U are measurable, (ii) Px

U ≥ Px
L, (iii) Px

L(R) ≤ 1 ≤ Px
U(R), (iv)

∫ |y|dPx
U(y) < ∞, and

(v)
∫ |y|dPx

1 (y) < ∞. Again, {px}x∈X may or may not be known and could be zero. Note
that Px

L and Px
U are not, in general, probability measures; the problem actually becomes

trivial if either inequality in (iii) binds.
Between them, (3) and (4) cover a wide range of applications. Here are some exam-

ples:

• Missing Data. Say one observes not (Y�X), but (YZ�Z�X), where Z ∈ {0�1} and Y

is observable only if Z = 1. Assuming that the distribution function of missing data can
be bounded by c.d.f.’s (Fx

L�F
x
U), this maps onto (3) with Fx

1 = F(Y |Z = 1�X = x) and
px = Pr(Z = 1|X = x). If the corresponding measure can be bounded, scenario (4) ap-
plies. Both cases will be encountered in Section 4.

An important special case of missing data occurs in treatment evaluation settings,
namely when one is interested in the distribution of a potential outcome Yt but only
sees realizations of Yt for subjects that receive treatment T = t. It is well known that
worst-case bounds can be very wide here. They may be much tighter, however, if instru-
ments are available, for example, because there is random assignment into treatment
but nonrandom attrition. Recent work by Kitagawa (2009) extended results by Balke and
Pearl (1997) to derive identified regions for P(Yt) for different instrumental variable as-
sumptions. Many of these regions are defined by sandwich densities and, therefore, are
special cases of (4). Separately, one may be willing to narrow bounds on P(Yt) by par-
tially identifying assumptions. This is discussed in Section 4, where it leads to an appli-
cation of (3).

• Interval Data. Say one observes random variables (Y�Y) s.t. Y ∈ [Y�Y ] a.s. (almost
surely). This leads to bounds on distributions by setting p = 1, identifying FU with the
distribution of Y , and identifying FL with the distribution of Y . The bounds will be
tight whenever the observable intervals are ordered by strong set order; thus realiza-
tions (y

i
� yi� yj� yj) are characterized by (y

i
− y

j
)(yi − yj) ≥ 0 a.s., ensuring that (FL�FU)

exhaust the partially identifying information. This holds if the observed intervals corre-
spond to a preassigned partition of R (as with income data) or if one can bound mea-
surement error by a number δ but is agnostic about its distribution; thus each measure-
ment y∗ implies that the corresponding realization of Y lies in [y∗ −δ� y∗ +δ]. This latter
approach is common in the interval probabilities literature. The case of interval data
that fail the ordering condition will be discussed later.

• Estimating Games. Haile and Tamer (2003) showed how moderate rationality re-
strictions on bidders’ behavior yield quite narrow bounds (FU�FL) on the distribution
functions of valuations. One can then conduct mean-variance (etc.) analysis subject to
what is identified in their setting.



330 Jörg Stoye Quantitative Economics 1 (2010)

• P-Boxes. In computer science and related literatures, p-boxes, that is upper and
lower bounds on c.d.f.’s, are a popular tool to model imprecise knowledge; see Ferson,
Kreinovich, Ginzburg, Myers, and Sentz (2003) for a survey.

• Contaminated and Corrupted Sampling. Horowitz and Manski (1995) analyzed
identification of D1-parameters under contaminated and corrupted sampling. To ex-
tend their analysis, say one is interested in the measure P∗ of (Y |X = x), but only ob-
serves a contamination, that is, a mixture P = λP∗ + (1 − λ)P̃ , where P̃ is the contami-
nating measure. If one knows or imposes bounds on λ, one can learn about P∗ because
P∗ = (P − (1 − λ)P̃)/λ ≤ P/λ; thus (4) applies with px = 0, Px

L = 0, and Px
U = P/λ. The

analysis can be extended to the case of corrupted data, where data errors may arbitrar-
ily depend on the true value of (Y�X). In this case, the object of interest is not P∗, but
yet another measure P∗∗ = λP∗ + (1 − λ)P . This leads to (looser) bounds of the form
(4) on P∗∗ if one can bound P . Essentially the same bounds occur if one is interested
in the measure of (Y |X = x), the discrete regressor X is subject to misclassification,
and one makes no assumptions other than bounding the probability of misclassification
from above (Molinari (2008, Proposition 3)). More generally, however, misclassification
of regressors will induce bounds on conditional distributions that do not fit this paper’s
framework.

• Ecological Inference. Suppose that X is discrete and that the marginal distributions
of X and Y are identified, but that interest is in (elements of) {P(Y |X = x)}x∈X . Typical
applications are “ecological inference” and “short” versus “long” regressions in the social
sciences; see Manski (2007) for a discussion. The law of total probability,

P(Y) =
∑
x∈X

P(Y |X = x)Pr(X = x)� (5)

implies (by reasoning very similar to the preceding bullet point) that P(Y |X = x) ≤
P(Y)/Pr(X = x).7 The implied bounds on E(Y |X = x) were studied in detail by Cross
and Manski (2002); Manski (2003) pointed out that they extend to D1-parameters. A spe-
cial feature of this setting is that the identified set for H({P(Y |X = x)}x∈X ) will be a
small subset of ×x∈X {H(P(Y |X = x))} because (5) generates rich cross-covariate re-
strictions. This will be elaborated in Section 5.

3. General identification results

In this and the next section, the covariate X will be dropped from notation. The resulting
analysis applies both to unconditional bounds and to bounds that condition on X . Thus,
in the case of bounds on c.d.f.’s, the identified set for F is

H(F)= {F∗ :pF1 + (1 −p)FU �FSD F∗ �FSD pF1 + (1 −p)FL}� (6)

7Manski (2007) distinguished between a mixing covariate W and a conditioning covariate X . For sim-
plicity and notational consistency, I relabel his W into X here and drop his X . (To reintroduce a covariate
that plays the role of his X , simply condition every single expression in (5) on it.)
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where (F1�FL�FU) fulfil the regularity conditions listed before (3). In the case of bounds
on measures, the identified set for P is

H(P) = {P∗ :pP1 + (1 −p)PL ≤ P∗ ≤ pP1 + (1 −p)PU } (7)

with the regularity conditions listed after (4).
In either case, p may or may not be known.8 The subsequent analysis presumes

that it is. The correct adaptation to the case of unknown p depends on (F1�FL�FU),
respectively, (P1�PL�PU). If FU �FSD F1 �FSD FL, then H(F) expands as p shrinks, and p

should simply be set to its lowest possible value. If F1 is not sandwiched in this way, then
identified sets corresponding to different p need not be nested. One must then compute
the union of the following bounds over all feasible p. Similarly, p should just be set to its
lowest value if PU ≥ P1 ≥ PL, and the analogous union must be formed otherwise.

Bounds on D1-parameters in either setting are attained by shifting probability mass
as far to the right or left as possible.

Lemma 1 (Bounds on D1-Parameters). Let θ be a D1-parameter.

(i) Let H(F) be as in (6) with p known. Then

θ(pF1 + (1 −p)FL)≤ θ(F) ≤ θ(pF1 + (1 −p)FU)�

(ii) Let H(P) be as in (7) with p known. Define the c.d.f.’s (F�F) by

F(y) = min
{
PU((−∞� y])�1 − PL((y�∞))

}
�

F(y) = max
{
PL((−∞� y])�1 − PU((y�∞))

}
�

Then

θ(pF1 + (1 −p)F) ≤ θ(F) ≤ θ(pF1 + (1 −p)F)�

All of these bounds are attainable.

The lemma is new in the form stated, but its intuition was anticipated in numerous
special cases (DeRobertis and Hartigan (1981), Wasserman and Kadane (1992), Horowitz
and Manski (1995), Manski (2003)). It mostly serves as a backdrop to the next and main
finding, namely bounds on spread parameters. The intuition behind these is to push
probability mass as far as possible to the edges of the support of Y . To formalize this,
define the following.

Definition 4 (Compressed and Dispersed Distribution Functions). A c.d.f. F is com-
pressed (relative to sandwich c.d.f.’s FL, FU ) if there exists a ∈ R ∪ {−∞�∞} s.t.

F(y) =
{
FU(y)� y < a,

FL(y)� y ≥ a.

8If p is known, the definition of H(P) may appear inefficient because one could simply drop p and P1,
and replace PL with pP1 + (1 −p)PL and similarly for PU . I use the above setup for notational unification,
because p and P1 may have substantive meaning (as in the next section), and to emphasize the possibility
that p is unknown.
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It is dispersed if there exists a ∈ [0�1] s.t.

F(y) =

⎧⎪⎨
⎪⎩
FL(y)� y <QL(a)�

a� QL(a) ≤ y <QU(a)�

FU(y)� QU(a) ≤ y�

Definition 5 (Compressed and Dispersed Measures). A measure P is compressed (rel-
ative to sandwich measures PL, PU ) if there exist a�b ∈ R ∪ {−∞�∞}, a≤ b,9 s.t.

P(A) =
{
PU(A)� A ⊆ (a�b)�

PL(A)� A ⊆ R − [a�b]�
It is dispersed if there exist a�b ∈ R ∪ {−∞�∞}, a≤ b, s.t.

P(A) =
{
PU(A)� A ⊆ R − [a�b]�
PL(A)� A ⊆ (a�b)�

Compressed and dispersed objects are illustrated in Figures 1 (for distribution func-
tions) and 2 (for measures). Many of the figures’ simplifying features (e.g., that Y ∈ [0�1]
and that all sandwich objects are continuous with full support) are not essential for the
definitions. Note also that each of the above four collections of compressed or dispersed
objects is ordered by first-order dominance. That is, all measures which are compressed
relative to (PL�PU), say, are ordered in this way. The terms “higher” and “lower,” when
applied to compressed or dispersed objects, henceforth refer to this ordering. The c.d.f.’s
and measures that attain the bounds in Lemma 1 are simultaneously dispersed and
compressed, and are the lowest and highest objects of their kind. This section’s core

Figure 1. Compressed and dispersed c.d.f.’s.

9If a = b (this can happen in examples involving large mass points), use the conventions (a�b) = ∅ and
[a�b] = {a}.
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Figure 2. Compressed and dispersed measures.

insight is that intermediate compressed and dispersed objects trace out intermediate
values of the expectation or any quantile of Y in a way that minimizes, respectively max-
imizes, spread. For bounds on D2-parameters, a succinct statement obtains because
each possible value of E(Y) corresponds to exactly one compressed and dispersed ob-
ject.

Theorem 2 (Bounds on D2-Parameters). Let θ be a D2-parameter and let E(Y) = μ for
some preassigned μ ∈H(E(Y)).

(i) Let H(F) be as in (6) with p known. Then

θ(pF1 + (1 −p)Fμ) ≤ θ(F) ≤ θ(pF1 + (1 −p)Fμ)�

where the compressed c.d.f. Fμ and the dispersed c.d.f. Fμ are uniquely characterized by

the condition that Eμ(Y) = Eμ(Y) = (μ−pE1(Y))/(1 −p).

(ii) Let H(P) be as in (7) with p known. Then

θ(pP1 + (1 −p)Pμ) ≤ θ ≤ θ(pP1 + (1 −p)Pμ)�

where the compressed measure Pμ and the dispersed measure Pμ are uniquely character-

ized by the condition that Eμ(Y) =Eμ(Y) = (μ−pE1(Y))/(1 −p).

All of these bounds are attainable.

The corresponding result for quantile contrasts is more involved. I first give a precise
statement and then explain the complications.

Theorem 3 (Bounds on Quantile Contrasts). Let θ = f (Q(α)�Q(β)) be a quantile con-
trast, and let Q(γ)= m for some preassigned γ ∈ (α�β) and m ∈H(Q(γ)).
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(i) Let H(F) be as in (6) with p known. Then

θ(pF1 + (1 −p)Fm)≤ θ

≤ sup
a∈[(γ−pF1(m))/(1−p)�(γ−pF−

1 (m))/(1−p)]∩[0�1]
θ(pF1 + (1 −p)Fa)�

where Fm is the compressed c.d.f. with threshold value a =m and Fa is the dispersed c.d.f.
with threshold value a. The lower bound is always attainable. If p > 0 and F1 has full
support, the upper bound and all intermediate values are attainable as well. If F1 is con-
tinuous, closed-form expressions for the bounds are

f

(
min

{
Q1

(
α

p

)
�m

}
�max

{
Q1

(
1 − 1 −β

p

)
�m

})
≤ θ

≤ f

(
max

{
Q1

(
F1(m)− γ − α

p

)
�Q(α)

}
�min

{
Q1

(
F1(m)+ β− γ

p

)
�Q(β)

})
�

where Q(α) = inf{y :pF1(y) + (1 − p)FL(y) ≥ α} and Q(β) = inf{y :pF1(y) + (1 − p) ×
FU(y) ≥ β} are worst-case bounds on the respective quantiles.

(ii) Let H(P) be as in (7) with p known. Let Pu and Pu be the highest compressed and
dispersed measures with

Pu((−∞�m]) = Pu((−∞�m])

= max
{
γ −pP1((−∞�m])

1 −p
�PL((−∞�m])�1 − PU((m�∞))

}
�

and let Pl and Pl be the lowest compressed and dispersed measures with

Pl((−∞�m)) = Pl((−∞�m))

= min
{
γ −pP1((−∞�m))

1 −p
�PU((−∞�m))�1 − PL([m�∞))

}
�

Then

inf
{P : P compressed� Pu�FSDP�FSDPl}

θ(pP1 + (1 −p)P)

≤ θ ≤ sup
{P : P dispersed� Pu�FSDP�FSDPl}

θ(pP1 + (1 −p)P)�

If the measure (pP1 + (1 − p)PL) has full support, these bounds and all intermedi-
ate values are attainable. If (pP1 + (1 − p)PU) is continuous, the compressed and dis-
persed measures generating the bounds are uniquely characterized by P((−∞�m]) =
(γ −pP1((−∞�m])/(1 −p).

The added complications in this theorem arise as follows. Compressed and dis-
persed objects directly provide bounds on quantile contrasts subject to the constraint
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that F(m) = γ. But if distributions can have mass points and/or support gaps, then
F(m) = γ and Q(γ) = m are nonnested conditions, and the above bounds are gener-
ated by evaluating all compressed or dispersed objects that ensure F(m) ≥ γ ≥ F−(m).
In the presence of mass points, this may not pin down a unique compressed or dispersed
object, necessitating the inf and sup operators. In the presence of support gaps, bounds
may furthermore fail to be attainable for two reasons. First, θ may change discontinu-
ously as one traces out compressed or dispersed objects; hence the sup and inf may not
be attained, although the bound then remains best possible up to replacement of the
weak with a strict inequality. Second, if m lies in a support gap, then F(m) ≥ γ = F−(m)

is consistent with Q(γ) <m; thus the object attaining the bound may induce a too low γ

quantile. This second issue is entirely due to conventions about quantiles and disap-
pears if one accepts a notion of set-valued quantiles. Furthermore, both problems dis-
appear if Y is known to have full support; the sufficient conditions for attainability given
in the theorem insure just that.

With the same exception of bounds on quantile contrasts in the presence of mass
points and support gaps, joint identification regions are easily traced out by evaluat-
ing parameters on a one-dimensional grid of compressed and dispersed distributions.
Constructing this grid by direct implementation of Definitions 4 and 5 is typically very
fast, and repeated evaluation of parameters given c.d.f.’s or measures is trivial for many
parameters.10

Of course, the tightness statements in Theorem 2 apply only if the information en-
coded in H(P), respectively, H(F), exhausts the available knowledge. Two examples
where this fails are as follows:

• A randomized experiment identifies distributions of treatment outcomes Y1 and
control outcomes Y0, but interest is in � = Y1 − Y0. Fan and Park (forthcoming) im-
ported results from the mathematical literature to provide bounds on the c.d.f. of �.
Given that E(�) is identified, one can invoke Theorem 2 to bound D2-parameters, but
these bounds will not be tight because the relevant compressed and dispersed mea-
sures are not feasible for �. As Fan and Park (forthcoming, Lemma 2.2) pointed out,
tight bounds are rather generated by assuming that Y0 and Y1 are perfectly positively
(for minimal spread) or negatively (for maximal spread) dependent. Bounding quantile
contrasts in this scenario appears harder. One can easily generate non-tight bounds by
forming the set-valued difference of Fan and Park’s (forthcoming) bounds for individ-
ual quantiles. Firpo and Ridder (2009) improved on this, but tight bounds are an open
question.

• One observes intervals [y� y] s.t. y∗ ∈ [y� y] a.s., but these need not be ordered, that is,
some intervals may contain others. This problem has received attention in the interval
probabilities literature. A formally equivalent problem that may be of interest to decision
theorists is to bound parameters of distributions whose known features correspond to
Dempster–Shafer structures. In this scenario, the problem of finding tight bounds be-
comes much harder. For the case of the variance, it was analyzed by Ferson, Ginzburg,

10MATLAB code implementing this paper’s theorems is available from the author.
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Kreinovich, Longpré, and Aviles (2005) and Kreinovich, Xiang, and Ferson (2006), who
showed NP-completeness and provided algorithms.11

4. Application: Analysis of missing-data problems

This section illustrates the practical applicability of Theorems 2 and 3 (or, in one case,
the adaptability of the underlying idea) by analyzing a missing-data problem. Thus,
identify F1 with the distribution of observable realizations of Y , identify F0 with the dis-
tribution of unobservable ones, and identify p = Pr(Z = 1) ∈ (0�1) with the fraction of
observable data. The observability score p may or may not be identified. It is unidenti-
fied if Y is truncated, that is, missing data are not even recorded as missing. It is iden-
tified otherwise, a typical example being item nonresponse in surveys. This section’s re-
sults apply directly if p is identified; remarks for the case of unknown p are as before.

The previous section’s results do not apply if the unobserved distribution of Y is
entirely unrestricted. I resolve this by assuming that (Y |Z = 0) and (Y |Z = 1) share a
known, bounded support. While vacuous or extremely credible in many cases, this is
a significant restriction in others. Its effect on (otherwise) worst-case bounds will be
briefly discussed. Without further loss of generality, one can then project this support
onto [0�1], and identify FL and FU with FL(y) = 1{y ≥ 0} and FU(y) = 1{y ≥ 1}, where
1{·} denotes the indicator function. This yields

H(F)= {F∗ :pF1 + (1 −p)FU �FSD F∗ �FSD pF1 + (1 −p)FL}

with (FL�FU) as just defined; thus Lemma 1(i), Theorem 2(i), and Theorem 3(i) yield
bounds on D1-parameters and spread parameters. The simple shape of H(F) frequently
allows for closed-form expressions, and for specific parameters, one may also be able
to conclude that H(θ) = [θ�θ]. Recalling the conventions that Q(α) = 0 for α ≤ 0 and
Q(α)= 1 for α> 1, one can state the following Corollary.

Corollary 4 (Exact Identification Regions for Some Parameters). Consider the missing-
data scenario with Y ∈ [0�1] and p known.

(i) The identification regions for the expectation E(Y) and α quantile Q(α) are

H(E(Y)) = [pE1(Y)�pE1(Y)+ 1 −p]�

H(Q(α))=
[
Q1

(
1 − 1 − α

p

)
�Q1

(
α

p

)]
�

(ii) If E(Y) = μ for some μ ∈ H(E(Y)), the identification region for the variance V (Y)

is

H(V (Y)) = [pE1(Y
2)+ (1 −p)μ2

0 −μ2�pV1(Y)+μ−μ2]
11It seems clear that their algorithm would also apply to the parameters considered here. Conversely, this

paper’s analysis shows that their problem much simplifies in some settings of interest to them.
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and the identification region for the Gini coefficient G(Y) is

H(G(Y)) =
[
p2G1(Y)+ 1

μ
p(1 −p)E1(|Y −μ0|)�

p2G1(Y)+ 1
μ

{
p(1 −p)

[
(1 −μ0)E1(Y)+μ0(1 −E1(Y))

]

+ (1 −p)2μ0(1 −μ0)
}]

�

where μ0 = (μ−pE1(Y))/(1 −p).

(iii) Assume furthermore that F1 is continuous with full support. If Q(γ) = m for some
preassigned γ ∈ (α�β) and m ∈H(Q(γ)), then the identification region for a quantile con-
trast θ = f (Q(α)�Q(β)) is

H(θ) =
[
f

(
min

{
Q1

(
α

p

)
�m

}
�max

{
Q1

(
1 − 1 −β

p

)
�m

})
�

f

(
Q1

(
F1(m)− γ − α

p

)
�Q1

(
F1(m)+ β− γ

p

))]
�

The imputations of missing data that generate these bounds are very intuitive:
Spread parameters are maximized by identifying F0 with point masses at 0 and 1, and
are minimized by identifying it with a single, appropriately placed point mass.

While Y is here assumed to be bounded, the same or other (larger, but still non-
trivial) bounds may apply when this fails. For example, say that Y denotes income and
one is willing to bound it from below (by zero) but not from above. Then upper bounds
on the expectation and unconstrained upper bounds on variance and Gini coefficient
are vacuous, but constrained lower bounds on spread parameters are unchanged. Fur-
thermore, while there is no constrained upper bound on the variance, weaker but still
informative constrained upper bounds on the Gini coefficient can be computed.12 What
is more, they increase in μ, which is helpful if one is willing to trade off some increase
in inequality for an increase in the average; see the empirical illustration for more on
this. Things look different yet for quantile contrasts, bounds on which are independent
of any assumptions about supp(Y) if p is large enough.

These observations compare to the finding that inequality rankings which agree with
second-order dominance are nonrobust in the classical sense, that is, their influence
functions are not uniformly bounded (Cowell and Victoria-Feser (1996, 2002)), whereas
interior quantiles, and hence quantile contrasts, are robust. Bounds analysis leads to a
more differentiated picture: both variance and Gini coefficient are nonrobust, yet some-
thing can be said about upper bounds on the latter, and lower bounds are less affected
anyway. Nonetheless, robustness and partial identification analyses are complementary
in highlighting that popular measures of spread are highly sensitive to data quality prob-
lems.

12The closed-form expression is G≤ [p2E1(|Yi −Yj |)+ 2p(1 −p)(μ1 +μ0)+ 2(1 −p)2μ0]/2μ.
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4.1 Refining missing-data bounds with monotonicity assumptions

Worst-case bounds are instructive but can be too wide to be of much use for a practi-

tioner. At the same time, they are often generated by implausible imputations of miss-

ing data. One might, therefore, want to introduce partially identifying restrictions that

reduce identified sets (although not necessarily to singletons) at the price of additional

assumptions (but possibly quite weak ones).

I now analyze two such assumptions that capture positive [negative] selection into

observation. The measurement of income distributions is an obvious application; con-

sequently, assumptions in this spirit were investigated by authors interested in income

inequality (Vazques Alvarez, Melenburg, and van Soest (1999), Blundell et al. (2007)). For

example, the distribution of potential wages in the labor force might plausibly dominate

its distribution in the population. Another salient example is analysis of potential out-

comes when treatment (say, schooling) is selective along an unobserved covariate (say,

ability) that influences Y (say, income). In such cases, one might be willing to impose

the following assumptions.

Assumption 1 (Dominant Selection).

F1 �FSD F0�

Assumption 2 (Monotone Selection).

Pr(Z = 1|Y = y) is nondecreasing in y�

Both assumptions impose some kind of positive selection into observation; negative

selection can be modelled by reversing them. Under dominant selection, the observed

and unobserved distributions are ordered by first-order dominance. Monotone selec-

tion contrasts in several ways: First, it is easily seen to be stronger. In fact, it is equivalent

to positive likelihood ratio dependence (in the language of copula theory), respectively,

affiliation (in the language of auction theory), between Y and Z; in both contexts, that

would be the most restrictive among numerous widely used notions of positive depen-

dence (de Castro (2009), Nelsen (2006)). At the same time, monotone selection may be

almost as plausible as dominant selection in many missing-data applications. It is di-

rectly expressed as an intuitive restriction on response probabilities, and it is easy to

write out models of nonresponse that imply it. A symptom of this is that, as will be seen,

imputations of missing data that are consistent with dominant but not monotone selec-

tion do not seem to capture positive selection.13

13Blundell et al. (2007) used dominant selection to refine unconditional bounds on the interquantile
range, an analysis that is generalized here.
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The implications of dominant selection follow from Lemma 1(i), Theorem 2(i), and
Theorem 3(i) upon writing the new identified set for F as

H(F)= {F∗ :F1 �FSD F∗ �FSD pF1 + (1 −p)FL}�

This leads to closed-form results along the lines of Corollary 4, which are here omitted
for brevity but are available from the author.

The upper and lower bounds on D1-parameters are generated by identifying F0

with FL, respectively, F1. Both of these imputations are consistent with monotone se-
lection, and, hence, monotone selection does not lead to narrower upper and lower
bounds on D1-parameters.14 Things change, however, when one looks at spread para-
meters. The implications of monotone selection for these do not follow from Theorems 2
and 3 because monotone selection introduces information that does not neatly fit either
(6) or (7). The organizing principles advertised in this paper are still useful, however.
Bounds on spread parameters will again be traced out by compressed and dispersed
distribution functions; the challenge is to identify these. The solution is as follows.

Definition 6 (Compressed and Dispersed Distribution Functions With Monotone Se-
lection). A c.d.f. F is compressed (relative to monotone selection) if

F(y) = min
{

1
a
F1(y)�1

}

for some a ∈ [0�1], where a = 0 is understood to represent F = 1{y ≥ 0}.
It is dispersed (relative to monotone selection) if

F(y) = a+ (1 − a)F1(y)

for some a ∈ [0�1].

Then one can state the following theorem:

Theorem 5 (Bounds on Spread Parameters With Monotone Selection). Consider the
missing-data scenario with Y ∈ [0�1] and p known. Assume monotone selection. Let com-
pressed and dispersed c.d.f.’s be understood as just defined.

(i) Let E(Y) = μ for some preassigned μ ∈H(E(Y)) and let θ be a D2-parameter. Then

θ(pF1 + (1 −p)Fμ) ≤ θ(F) ≤ θ(pF1 + (1 −p)Fμ)�

where the compressed c.d.f. Fμ and the dispersed c.d.f. Fμ are uniquely characterized by

the condition that Eμ(Y) =Eμ(Y) = (μ−pE1(Y))/(1 −p). These bounds are attainable.

14Monotone selection may lead to bounds that are smaller in the sense of excluding intermediate values.
This is because it implies that P0 is absolutely continuous with respect to P1 except possibly on {0}. For
example, only a point y > 0 that is some quantile of (Y |Z = 1) can be any quantile of Y .
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(ii) Let θ = f (Q(α)�Q(β)) be a quantile contrast, and let Q(γ) = m for some preas-
signed γ ∈ (α�β) and m ∈H(Q(γ)). Then

inf
a∈[(1−p)F−

1 (m)/(γ−pF−
1 (m))�

((1−p)F1(m))/(γ−pF1(m))]∩[0�1]

f

(
Q1

(
aα

ap+ 1 −p

)
�

max
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Q1

(
aβ
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)
�Q1

(
1 − 1 −β

p

)})

≤ θ ≤ sup
π∈[(γ−F1(m))/(1−F1(m))�

(γ−F−
1 (m))/(1−F−

1 (m))]∩[0�1]

f

(
Q1

(
α−π

1 −π

)
�Q1

(
β−π

1 −π
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�

If F1 is continuous, closed-form expressions for the bounds are

f

(
Q1

(
αF1(m)

γ

)
�max

{
Q1

(
βF1(m)

γ

)
�Q1

(
1 − 1 −β

p

)})

≤ θ ≤ f

(
Q1

(
(1 − α)F1(m)+ α− γ

1 − γ

)
�Q1

(
(1 −β)F1(m)+β− γ

1 − γ

))

and they are attainable. If F1 has full support, the bounds as well as all intermediate val-
ues are attainable.

It is instructive to consider the selection models that correspond to compressed and
dispersed c.d.f.’s. If F0 is compressed, then Pr(Z = 1|Y = y) equals some constant less
than 1 for y < Q1(a) and equals 1 for y > Q1(a). If F0 is dispersed, then Pr(Z = 1|Y = y)

is low (potentially zero) for y = 0 and equal to a larger constant for all y > 0. If one is
committed to the general idea of positive selection but not to any parametric model,
then these selection models might be hard to reject (give or take some smoothing).
In contrast, compressed and dispersed c.d.f.’s under dominant selection correspond to
“hump-shaped” selection models, where Pr(Z = 1|Y = y) is low for high as well as low y

and high for intermediate y or vice versa. This might not be what a researcher has in
mind when specifying positive selection. Thus, the added power of monotone selection
might come at a low cost in terms of plausibility.

4.2 Refining missing-data bounds with sensitivity assumptions

In this section, bounds will be refined using sensitivity assumptions, leading to an ap-
plication of Theorems 2(ii) and 3(ii). Specifically, say a researcher is willing to bound a
selection model’s potential to distort the true probability measure P .

Assumption 3 (Limited Selectivity (LS(k))).

Pr(Z = 1|Y = y)

Pr(Z = 1)
≥ 1

k
�
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This assumption bounds from below the volatility of Pr(Z = 1|Y = y) as a function
of y; thus, it restricts the potential of selection effects to distort odds ratios between
events.15 For a slightly more “structural” way to assert it, one could formulate the as-
sumption in terms of selection on unobservables. To do so, let there be a covariate W

with values w and assume (i) limited selectivity on W , that is, Pr(Z = 1|W = w)/Pr(Z =
1) ≥ 1/k, and (ii) that W does not affect Y except through Z, that is, P(Y |W = w�Z =
1) = P(Y |W = w�Z = 0). It is easy to show that these conditions imply LS(k).

The restrictiveness of LS(k) is parameterized by k. For k → ∞, the assumption be-
comes very weak and frequently vacuous.16 For k → 1, it imposes vanishing selectivity
of observations. The exact interpretation of this limit depends on the treatment of X : If
the analysis conditions on X , then LS(1) is equivalent to assuming that data are miss-
ing at random given X , that is, assumption MAR. If the analysis ignores X , then LS(1) is
equivalent to assuming that data are missing completely at random, that is, assumption
MCAR. In either case, small choices of k amount to local sensitivity analysis, whereas
large choices turn it substantively into a partially identifying assumption. Note also that
any statement of the form θ ∈ Θ0 that is true of θ(P1) will be true for every θ ∈ H(θ) if
LS(k) is imposed with k small enough (possibly k= 1). For any such statement, one can
therefore define a breakdown point k∗ as the largest value of k s.t. LS(k) suffices to con-
clude H(θ) ⊆ Θ0. Statements about θ can then be ranked by robustness to selectivity of
observations.

Sensitivity assumptions that can be scaled from highly identifying to highly credible
and notions of breakdown points have been entertained before. The best known prece-
dent may be Rosenbaum’s (2002) sensitivity analysis for propensity score methods; see
Imbens (2003) for an application to economics. The bound λ on contamination proba-
bilities in Horowitz and Manski (1995) can be interpreted in a similar fashion; see Kreider
and Pepper (2007) for an application.

The implications of LS(k) for bounds on D1 and spread parameters follow from
Lemma 1(ii), Theorem 2(ii), and Theorem 3(ii) upon the following observation.

Lemma 6. Assumption LS(k) implies that scenario (7) applies with PL = 0 and PU = P1 ·
(k−p)/(1 −p), implying that H(P) simplifies to

H(P) = {P∗ :pP1 ≤ P∗ ≤ kP1}�

The simple form of H(P) allows statement of bounds on numerous salient parame-
ters in (tedious) closed form. These results are omitted here for brevity but are available
from the author.

15Intuitively, one might be tempted to restrict Pr(Z = 1|Y = y) independently from Pr(Z = 1), that is,
write Pr(Z = 1|Y = y) ≥ 1/k. But this assumption’s strength depends on p and, counterintuitively, eventu-
ally leads to stronger identification as p decreases. Indeed, as p ↓ 1/k, the restriction that Pr(Z = 1|Y = y) ≥
1/k becomes point identifying.

16More precisely, LS(k) with k → ∞ approaches the claim that the supp(P0) ⊆ supp(P1): For any mea-
surable A, P(A) > 0 ⇔ P1(A) = (Pr(Z = 1|A)P(A))/Pr(Z = 1) ≥ P(A)/k > 0 for any finite k. Any other
implication depends on limiting k. In many cases, LS(∞) is, therefore, either vacuous (if the observed sup-
port of P1 exhausts the logical range of Y ) or was imposed for tractability anyway.
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Table 1. Descriptive statistics for data used.

Data Set CPS ACS

Sample size 30,343 433,388
Percent allocated 1.28 4.65
Mean 55,874 61,453
Median 46,096 47,323
Gini coefficient 0.35 0.40
Interquartile ratio 2.48 3.04

4.3 Numerical illustration with income data

Here is a brief illustration of this section’s analysis using real data. The substantial quest
is to investigate what can be learned about income distributions from survey data if one
is agnostic about missing data generated by item nonresponse. Imputations of income
data typically rely on assumption MAR as the identifying restriction, yet one might easily
imagine that even after conditioning on covariates, high income respondents are more
likely to not respond to income items. Sensitivity to this will now be assessed through
this section’s bounds, demonstrating how the bounds work and revealing that some (not
all) statistics are more tightly identified than one might have thought.

Bounds were computed for two different data sets, both of which collect the 2007
wage income of U.S. men aged 30–60 who were working for an employer (not self-
employed, unemployed, or in the military) at the time. The first data set is from the 2007
March supplement of the Current Population Survey (CPS); the second set is from the
2007 American Community Survey (ACS). The first of these is the classic source for U.S.
income data; the second one is relatively new and part of a new data generation pro-
gram by the U.S. Census Bureau.17 They are of very different size, with the CPS sample
containing n = 30,343 observations and the ACS sample containing n = 433,388 obser-
vations. At the same time, the ACS has a larger fraction of allocated wage income data
(4�65% allocated) than the CPS (1�28% allocated). Table 1 collects some simple descrip-
tive statistics for both data sets.

Figures 3–6 display joint identification regions for the median and interquartile ratio,
as well as the mean and Gini coefficient, if one takes allocated income data to be missing.
All figures were extremely easy to compute. The outer bounds are worst-case bounds,
which are then successively refined. The idea behind the refinements is twofold: For one
thing, it is commonly believed that high income earners may be less likely to respond
to income questions because these questions are more sensitive for them. This idea is
captured by imposing first dominant and then monotone selection. Note that these are
imposed in the sense of the unobserved distribution being higher than the observed
one, the opposite of the definitions used in Section 4.1. Joint bounds on mean and Gini
coefficient are refined using LS(10), LS(2), and LS(1�1). The first of these appears to be
a very weak assumption that illustrates partial identification analysis; the last one may
border on local sensitivity analysis with respect to LS(1), that is, assumption MCAR. The

17Both data sets were acquired via IPUMS, see King et al. (2009), respectively, Ruggles et al. (2009).
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Figure 3. Joint identification of median and interquartile ratio (CPS data)

Figure 4. Joint identification of mean and Gini coefficient (CPS data).

implications of assumption MCAR are also displayed in each figure; they are simply the
relevant parameters of F1 (i.e., computed after discarding allocated data points).

Worst-case bounds on median and interquartile ratio (IQR) are reasonably informa-
tive, illustrating the comparative robustness of these statistics. Dominant and monotone
selection obviously imply that the median of F must exceed the median of F1, but
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Figure 5. Joint identification of median and interquartile ratio (ACS data).

Figure 6. Joint identification of mean and Gini coefficient (ACS data).

they also substantially refine bounds on the interquartile ratio. Also, monotone selec-
tion, though perhaps only marginally less credible than dominant selection, has sub-
stantially more identifying power. Unconstrained bounds on the mean and Gini coef-
ficient are discouraging (and include values that could be excluded through other data
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sources), reflecting the robustness issues discussed in Section 3. However, joint bounds
on mean and Gini coefficient are a small subset of the Cartesian product of uncon-
strained bounds. This illustrates that joint bounds can add much information. In the
particular case, high feasible values of the mean correspond to high values of the Gini
coefficient, which is interesting because one would presumably be willing to trade off
increases in one versus increases in the other at some rate (Klasen (1994), Sen (1976)).
Furthermore, LS(k) has a large effect even with rather conservative choices of k. An in-
tuition for this is that dispersed measures push probability mass into the tails, but if
those tails are very thin in the observable distributions, then limited selectivity drasti-
cally limits the unobserved probability mass that can reside in them. This observation is
expected to generalize, that is, limited selectivity can be a powerful refinement if bounds
are driven by what is going on in a distribution’s tails.

Two caveats to this exercise should be kept in mind. First, the displayed combi-
nations of assumptions and parameters are selected for “what works.” Dominant and
monotone selection do not much affect the mean–Gini bounds because they fail to ex-
clude the distributions that generate the top right region of those bounds. At the same
time, limited selectivity does not much affect the median–IQR bounds because these are
insensitive to the thickness of a distribution’s tails.

Second, the figures display empirical analogs of identified sets. As this paper is about
identification and because the example is meant to be merely illustrative, samples were
taken to be the populations of interest. Insofar as one thinks of the displayed objects as
plug-in estimators of identified sets, the impact of sampling uncertainty is not shown.18

In particular, the highest observed income in either data set is taken to be the highest
possible income. The shape of the top right “spikes” of bounds of mean and Gini coeffi-
cient is sensitive to this choice. It was made here to isolate the precise effect of limiting
likelihood ratio distortions, but it means that the top right regions of the mean–Gini
bounds are dubious as estimators of the corresponding regions of population bounds.
(Estimating these regions with reasonable accuracy would require a high income over-
sample.) These considerations less affect the median–IQR bounds, which are insensitive
to changes in the tails of the underlying distributions. More generally, ignoring estima-
tion penalties favors the CPS, which delivers tighter bounds because of the smaller pro-
portion of allocations, but would deliver larger standard errors due to its smaller sample
size. Indeed, the figures quantitatively illustrate how, while the ACS has a much larger
sample size, its larger fraction of imputations implies that conclusions drawn from it
will be more dependent on identifying assumptions.

5. Using cross-covariate restrictions

The preceding results restrict parameters conditionally on (or absent) X , using only ob-
servable features of the corresponding conditional distributions. They immediately im-

18The mean–Gini bounds literally use the sample distributions. For the median–IQR bounds, these dis-
tributions were kernel smoothed to remove uninstructive wiggliness in the identified sets’ boundaries and
to render constrained bounds convex. Confidence regions could, in principle, be constructed using the
methodology of Chernozhukov, Hong, and Tamer (2007), but carrying this out is beyond the scope of this
paper.
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ply that the identified set for {θ(P(Y |X = x))}x∈X is constrained as

H
({
θ(P(Y |X = x))

}
x∈X

) ⊆×
x∈X

{Hx(θ)}�

If there are no cross-covariate restrictions, this set inclusion will be weak. In many other
cases, it will be strict. In particular, strict inclusion would mean that set-valued differ-
ences between this paper’s bounds on θ(P(Y |X = x)) and θ(P(Y |X = x′)) need not be
tight for the contrast θ(P(Y |X = x)) − θ(P(Y |X = x′)) or other functions of the two. A
good example is partial identification of treatment effects with random assignment but
selective noncompliance, where the set-valued difference between worst case bounds
for E(Y0) and E(Y1) is not, in general, tight for E(Y1 −Y0) (Balke and Pearl (1997)). An-
other important example is given by short versus long regressions, where the law of total
probability yields intricate adding-up constraints on {P(Y |X = x)}x∈X . In this case, nu-
merical characterization of H({θ(P(Y |X = x))}x∈X ) poses no conceptual problems. Let-
ting X = {x1� � � � � xJ}, one first identifies H(θ(P(Y |X = x1))), then H(θ(P(Y |X = x2)))

as a function of θ(P(Y |X = x1), and so on. However, the computational cost of this
procedure may be high. Also, one may wonder if there is a useful characterization of
H({θ(P(Y |X = x))}x∈X ) that goes beyond stating this procedure. The answer is affirma-
tive for some well behaved statistics, for example, expectations of convex functions, that
are subject to the findings in Molinari and Peski (2005), but I am not aware of an inter-
esting characterization of H({θ(P(Y |X = x))}x∈X ) that would apply at this paper’s level
of generality.

In addition to cross-covariate restrictions that are logically implied by the identifica-
tion problem, one may want to exploit the presence of covariates to refine bounds. Most
interestingly, cross-covariate restrictions may refine conditional bounds, that is, they
may shrink H({θ(P(Y |X = x))}x∈X ) to the point that implied bounds on θ(P(Y |X = x))

are smaller than Hx(θ). Two examples are as follows. First, assume that P(Y |X = x)

does not depend on x; thus X is an instrumental variable in the sense of Manski (1990).
This easily implies that H({θ(P(Y |X = x))}x∈X ) = {{θ}x∈X :θ ∈ ⋂

x∈X Hx(θ)}; thus con-
ditional identified sets can be tightened to

Hx(θ)=
⋂
x∈X

Hx(θ)�

The assumption is testable in the sense of being potentially inconsistent with observable
aspects of P because

⋂
x∈X Hx(θ) could be the empty set. It can also be weakened, for

example, by assuming that θ(P(Y |X = x)) weakly increases in x. (This requires the set X
to be ordered.) Then one has

H
({
θ(P(Y |X = x))

}
x∈X

)
=

{{
θ(P(Y |X = x))

}
x∈X ∈×

x∈X
Hx(θ) :

θ(P(Y |X = x)) is nondecreasing in x

}
;
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thus nonmonotonicities in the conditional bounds can be “ironed out.” For bounds on
expectations, this was pointed out by Manski and Pepper (2000). The assumption is
again testable; furthermore, one can easily think of extensions like monotone concave
instrumental variables and so on.

This paper’s findings can also be combined with cross-covariate restrictions in more
intricate ways. Consider a treatment evaluation scenario; thus the covariate is a (binary,
for simplicity) treatment T ∈ {0�1}. Identification of potential outcome distributions
is subject to a missing-data problem because all counterfactual realizations are miss-
ing. But one could refine worst-case bounds by adapting assumptions like monotone
treatment response (Manski (1997)) and monotone treatment selection (Manski and
Pepper (2000)). An easy adaptation would be along the lines of the preceding para-
graph, defining monotone treatment response as θ(P(Y1|T = t)) ≥ θ(P(Y0|T = t)) and
monotone treatment selection as θ(P(Yt |T = 1)) ≥ θ(P(Yt |T = 0)), where these ex-
pressions are understood to hold for all t. Refinements of bounds would follow eas-
ily. These assumptions might not be well motivated, however; why would one impose
that treatment increases the spread of a variable, say? For a more plausible adapta-
tion that also relates more interestingly to this paper’s results, define monotone treat-
ment response as F(Y1|T = t) �FSD F(Y0|T = t) and monotone treatment selection as
F(Yt |T = 1) �FSD F(Yt |T = 0). Alternatively, one might want to assume that subjects se-
lect into the treatment that is better for them; thus F(Yt |T = t) �FSD F(Yt |T = 1 − t).
The implied refinements of bounds on spread parameters of P(Y0) and P(Y1) would
follow from Theorem 2 because these assumptions’ content is exhausted by the implied
upper and/or lower bounds on F(Y1|T = 0) and F(Y0|T = 1). Indeed, the “Roy model”
assumption of selection into the individually better treatment would recover dominant
selection. In the absence of instrumental variables or additional restrictions, the implied
bounds on parameter contrasts would be tight as well.

6. Conclusion

This paper investigated problems of partial identification, which occur whenever a pa-
rameter of interest is not fully determined by a data generating process and the as-
sumptions a researcher is willing to make. The main contribution was to show how a
few general ideas can be used to much extend the scope of this literature by providing
“off-the-shelf” and closed-form or easily computed bounds for many parameters. The
“recipe” for these bounds can be summarized in three steps: First, recognize that mean-
preserving spreads and quantile contrasts are powerful organizing principles. Second,
combine these principles with appropriate constraints. For mean-preserving spreads,
this entails fixing a distribution’s mean; for quantile contrasts, it entails fixing some
quantile. Third, it may now be possible to discover compressed and dispersed distrib-
utions that extremize the parameters of interest. The general results in Section 3 charac-
terized these objects for two rather general settings. The result on monotone selection
suggests that it may be feasible to do so in other, trickier scenarios as well.

Special emphasis was placed on missing-data problems as a potential application.
I provided worst-case bounds for such problems if a random variable is bounded and
refined the bounds by restricting the direction (dominant selection, monotone selec-
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tion) or the extent (limited selectivity) of selection into observation. The findings were
illustrated in a brief empirical example. It is hoped that they further enhance the appeal
of partial identification analysis.

Appendix: Proofs

Proof of Lemma 1. (i) Straightforward.
(ii) To see validity of the bounds, note that

PL((−∞� y]) ≤ P0((−∞� y]) ≤ PU((−∞� y])�
1 − PU((y�∞])≤ 1 − P0((y�∞]) ≤ 1 − PL((y�∞])�

Thus F �FSD F0 �FSD F . The bounds are attainable because the implied measures P

and P are sandwiched between PL and PU . �

Proof of Theorem 2. A word on notation: For any measures P and P ′ and event E, the
phrase “P ≥ P ′ on E” means that P(A) ≥ P ′(A) for any event A ⊆ E. The following fact
will be used in this and subsequent proofs.

Lemma 7. Suppose that X and Y are random variables with E(X) = E(Y), c.d.f.’s FX

and FY , and measures PX and PY s.t. one of the following statements holds:

(i) There exists a ∈ R s.t.

FX(x) ≤ FY (x) ∀x < a�

FX(x) ≥ FY (x) ∀x > a�

(ii) There exist a�b ∈ R s.t.

PY ≤ PX on (a�b)�

PY ≥ PX on R − [a�b]�
Then FX �SSD FY , where �SSD denotes second-order dominance as defined in (2).

For the proof see Shaked and Shantikumar (2007, Theorem 3.A.44).
(i) FL and FU are simultaneously compressed and dispersed, and uniquely attain the

lower and upper bounds on E(Y); thus the claim is immediate if μ equals one of these
bounds. Now let μ assume an intermediate value. To see that Fμ is well defined, let Fa

be the compressed c.d.f. with threshold value a ∈ R. Recall that if Y is nonnegative, then
E(Y) = ∫ ∞

0 (1 − F(y))dy (e.g., Billingsley (1995)). Defining Y+ = max{Y�0} and Y− =
min{Y�0}, one, therefore, has E(Y+) = ∫ ∞

0 (1 − F(y))dy and E(Y−) = − ∫ 0
−∞ F(y)dy.

Thus,

Ea(Y) = −
∫ min{a�0}

−∞
FU(y)dy −

∫ 0

min{a�0}
FL(y)dy

+
∫ max{a�0}

0
(1 − FU(y))dy +

∫ ∞

max{a�0}
(1 − FL(y))dy�
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which is finite by assumptions on FL and FU , and is easily seen to be continuous and
nondecreasing in a as well as to converge to EL(Y) [EU(Y)] as a → −∞ [a → ∞]. Ex-
istence of Fμ follows immediately; uniqueness obtains because any two different com-
pressed c.d.f.’s are ordered by first-order stochastic dominance and, therefore, have dif-
ferent expectations. (The threshold a characterizing Fμ may not be unique, namely if
FL = FU over some interval.)

Fμ attains the lower bound on θ; it remains to show that the bound is valid. Thus,
compare pF1 + (1 − p)Fμ to some other distribution pF1 + (1 − p)F0 ∈ H(F). Then
pF1(y)+ (1 −p)Fμ(y) ≤ pF1(y)+ (1 −p)F0(y) for all y < a and pF1(y)+ (1 −p)Fμ(y) ≥
pF1(y) + (1 − p)F0(y) for all y > a, where a is the threshold characterizing Fμ. If fur-
thermore E0(Y) = (μ−pE1(Y))/(1−p), then pF1(y)+ (1−p)Fμ(y) �SSD pF1(y)+ (1−
p)F0(y) by Lemma 7(i). The argument for the upper bound is similar.

(ii) P and P as defined in Lemma 1(ii) are simultaneously compressed and dispersed,
and uniquely attain the bounds on E(Y); thus the claim is immediate if μ equals one
of these bounds. Now let μ assume an intermediate value. Any compressed measure P

induces a c.d.f. F , where

F(y) = PL

(
(−∞�min{a� y})) + P({a}) · 1{y ≥ a} + PL

(
(a�min{b� y})) · 1{y > a}

+ P({b}) · 1{y ≥ b} + PL((b� y]) · 1{y > b}
with slight abuse of notation (some intervals in the display may be ill defined, but only
if the corresponding indicator is 0). An argument very similar to the one in part (i)
now reveals that there exists exactly one compressed measure Pμ with expectation
Eμ = (μ − pE1(Y))/(1 − p). This establishes attainability of the lower bound; it re-
mains to show validity. Let (a�b) be the thresholds that partially characterize Pμ and
let P0 be an arbitrary probability measure s.t. PU ≥ P0 ≥ PL. Then Pμ ≥ P0 on (a�b) and
P0 ≥ Pμ on R − [a�b]. If also E0(Y) = (μ − pE1(Y))/(1 − p), then pP1 + (1 − p)P0 �SSD

pP1 + (1 − p)Pμ follows by Lemma 7(ii). The argument for the upper bound is simi-
lar. �

Proof of Theorem 3. (i) Regarding the lower bound, observe first that Q(α) ≤ Q(γ) =
m; hence Q(α) is bounded from above by the minimum between m and the worst-case
upper bound on Q(α). Similarly, Q(β) is bounded from below by the maximum between
its worst-case lower bound and m.

Fm achieves these bounds and furthermore induces Q(γ) = m. To see this, observe
first that pF1(y)+ (1 −p)Fm(y) = pF1(y)+ (1 −p)FL(y) for every y ≥ m; hence every α

quantile of pF1 + (1 − p)Fm for α ≥ pF1(m) + (1 − p)FL(m) achieves its lower bound.
On the other hand, pF1(y) + (1 − p)Fm(y) = pF1(y) + (1 − p)FU(y) for every y < m;
hence every α quantile of pF1 + (1 −p)Fm for α < pF−

1 (m)+ (1 −p)F−
U (m) achieves its

upper bound. Every other quantile of pF1 +(1−p)Fm equals m. This establishes that the
bounds are attained. Furthermore, m ∈H(Q(γ)) implies that pF1(y)+ (1 −p)FU(y) < γ

for every y < m and that pF1(m) + (1 − p)FL(m) ≥ γ; thus the γ quantile of pF1 + (1 −
p)Fm equals m.

Regarding the upper bound, fix any feasible F0 s.t. pF1 + (1 −p)F0 has γ quantile m;

note in particular that this implies F0(m) ≥ γ−pF1(m)
1−p and F−

0 (m) ≤ γ−pF−
1 (m)

1−p . Let F be
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the dispersed c.d.f. with parameter a= min{F0(m)�
γ−pF−

1 (m)

1−p }. Then it follows that F is in
the set that the upper bound maximizes over. Note also that (i) F0(y) ≤ a for every y <m

because otherwise, one would have F−
0 (m) >

γ−pF−
1 (m)

1−p , and (ii) F0(y) ≥ F0(m) ≥ a for

every y ≥ m. Thus, F(y) = min{FL(y)�a} ≥ F0(y) for all y <m and F(y) = max{FU(y)�a} ≤
F0(y) for all y > m. It follows that pF1 + (1 − p)F has a lower α quantile and higher β

quantile than pF1 + (1 −p)F0.
If F1 is continuous, then a as used in the preceding paragraph is uniquely given

by a = γ−pF1(m)
1−p and the theorem’s closed-form expression can be computed by sub-

stituting closed-form expressions for (Fm�Fa) into the definition of quantile contrasts.
Finally, pF1(m) + (1 − p)Fm(m) ≥ γ ≥ pF−

1 (m) + (1 − p)F−
m(m) as well as pF1(m) +

(1 − p)Fa(m) ≥ γ ≥ pF−
1 (m) + (1 − p)F

−
a (m) for any a that can emerge from the pro-

cedure in the preceding paragraph. This property is inherited by any mixture of Fm

and Fa. If F1 has full support and p > 0, it is sufficient for Q(γ) = m. Furthermore, as
θ(pF1 + (1 −p)(λFm + (1 − λ)Fa)) is continuous in both λ and a in this case, the supre-
mum in the upper bound and all intermediate values are attainable by mixing com-
pressed and dispersed distribution functions.

(ii) Fix any feasible P0 s.t. pP1 + (1 − p)P0 has γ quantile m. Let P be the com-
pressed measure s.t. P((−∞�m]) = P0((−∞�m]). This measure may not be unique if
P0((−∞�m]) = PL((−∞�m]) or P0((m�∞)) = PL((m�∞)). In the former case, take the
lowest candidate measure; in the latter case, take the highest one. Let (a�b) be the
thresholds that partially characterize P . Then the construction implies that m ∈ [a�b],
and also that P = PL on (−∞� a) and P = PU on (a�m] if the latter interval exists. For
future use, note the implication that P((−∞�m)) ≤ P0((−∞�m)). Also write

P((−∞� y]) = PL((−∞� y]) ≤ P0((−∞� y])

if y < a and

P((−∞� y]) = P((−∞�m])− P((y�m])
= P0((−∞�m])− PU((y�m]) ≤ P0((−∞� y])

if a ≤ y <m; thus P((−∞� y]) ≤ P0((−∞� y]) for any y ≤ m. It follows that pP1 + (1 −p)P

has a weakly higher α quantile than pP1 + (1 −p)P0. By a similar argument, pP1 + (1 −
p)P has a weakly lower β quantile than pP1 +(1−p)P0; thus θ(pP1 +(1−p)P) ≤ θ(pP1 +
(1 −p)P0).

It remains to show that P is in the set that the lower bound extremizes over. If
pP1 + (1−p)P0 has γ quantile m, then P0((−∞�m]) ≥ γ−pP1((−∞�m])

1−p and P0((−∞�m)) ≤
γ−pP1((−∞�m))

1−p . Also recalling that P((−∞�m]) = P0((−∞�m]) by construction and

P((−∞�m)) ≤ P0((−∞�m)) as shown above, one finds P((−∞�m]) ≥ γ−pP1((−∞�m])
1−p

and P((−∞�m)) ≤ γ−pP1((−∞�m))
1−p . Finally, P is sandwiched between PL and PU ; thus

P((−∞�m]) ≥ max{PL((−∞�m])�1 − PU((m�∞))} and P((−∞�m)) ≤ min{PU((−∞�
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m))�1 − PL([m�∞))} in analogy to Lemma 1(ii). All in all,

P((−∞�m]) ≥ max
{
γ −pP1((−∞�m])

1 −p
�PL((−∞�m])�1 − PU((m�∞))

}
�

P((−∞�m)) ≤ min
{
γ −pP1((−∞�m))

1 −p
�PU((−∞�m))�1 − PL([m�∞))

}
�

as required.
For the upper bound, fix any feasible P0 s.t. pP1 + (1 − p)P0 has γ quantile m

and let P be the dispersed measure s.t. P((−∞�m]) = P0((−∞�m]) or P((−∞�m)) =
γ−pP1((−∞�m))

1−p , whichever is the higher measure in terms of first-order dominance.
This measure may not be unique if P0((−∞�m]) = PU((−∞�m]) or P0((m�∞)) =
PU((m�∞)). In the former case, take the highest candidate measure; in the latter case,
take the lowest one. Then the proof that θ(pP1 + (1 −p)P) ≥ θ(pP1 + (1 −p)P0) is much
as before. To see that P is in the set that the upper bound extremizes over, note (in addi-
tion to observations from the preceding paragraph) that if P((−∞�m]) = P0((−∞�m]),

then one can write P((−∞�m]) = P0((−∞�m]) ≥ γ−pP1((−∞�m])
1−p , whereas P((−∞�m)) ≤

γ−pP1((−∞�m))
1−p will then hold by construction of P . If P((−∞�m)) = γ−pP1((−∞�m))

1−p ,

then P((−∞�m)) ≤ γ−pP1((−∞�m))
1−p holds trivially and one can also write P((−∞�m]) ≥

P((−∞�m)) = γ−pP1((−∞�m))
1−p ≥ γ−pP1((−∞�m])

1−p . The statement about attainability follows
much as before. �

Proof of Theorem 5. (i) To see that (Fμ�Fμ) are well defined, let μ0 = (μ−pE1(Y))/

(1 − p) as before. Then Fμ must induce Eμ = ∫ 1
0 max{1 − F1(y)/a�0}dy = μ0. The in-

tegral’s value continuously increases from 0 to E1(Y) as a increases from 0 to 1; thus
it equals μ0 for some a. Any two different compressed distributions have different
expectations; thus Fμ is unique (although, as before, there may be a range of para-

meter values a characterizing the same Fμ). Fμ is characterized by parameter value
a = (E1(Y)−μ)/((1 −p)E1(Y)).

The measure P0 must induce E0(Y) = μ0 as well. Furthermore, simple probability
calculus yields

P0(A) = p

1 −p

1 − Pr(Z = 1|Y ∈A)

Pr(Z = 1|Y ∈A)
P1(A) (8)

for any event A ⊆ [0�1] with Pr(Z = 1|Y ∈A)> 0. The proof will show that together with
Pr(Z = 1|Y = y) being nondecreasing, this implies Pμ �SSD P0 �SSD Pμ. As second-order
dominance is preserved under mixture with P1, this establishes validity of the bounds,
which are furthermore attainable because Pμ and Pμ are consistent with monotone se-
lection. The proof will freely use the following, simple fact: If two probability measures P
and P ′ are s.t. there exists y with P ≤ P ′ on (−∞� y) and P ≥ P ′ on (y�∞), then P �FSD P ′.

To show P0 �SSD Pμ, note that

Pμ = p

1 −p

1 − q

q
P1 (9)
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on (0�1], where q is some constant.19 Suppose by contradiction that Pr(Z = 1|Y = y)≤ q

for all y ∈ (0�1]. By comparison of (8) and (9), it would follow that P0 ≥ Pμ on (0�1].
As both P0 and Pμ integrate to 1, this would imply P0({0}) ≤ Pμ({0}); thus P0 �FSD Pμ,
which is consistent with E0(Y) = Eμ(Y) only if P0 = Pμ. A similar argument excludes
the possibility that Pr(Z = 1|Y = y)≥ q for all y ∈ (0�1]. Recalling that Pr(Z = 1|Y = y) is
nondecreasing, it now follows that there exists y∗ ∈ (0�1] s.t. Pr(Z = 1|Y = y) ≤ q for all
y ∈ (0� y∗) and Pr(Z = 1|Y = y) ≥ q for all y ∈ (y∗�1] (with ill defined intervals understood
to be empty). Again comparing (8) and (9), one finds Pμ ≤ P0 on (0� y∗) and Pμ ≥ P0 on
(y∗�1]. If also Pμ({0}) < P0({0}), it would follow that Pμ �FSD P0 and the measures are not
equal, contradicting E0(Y) = Eμ(Y). Hence, Pμ({0}) ≥ P0({0}). P0 �SSD Pμ now follows
from Lemma 7(ii), applied with threshold values (0� y∗).

To show Pμ �SSD P0, let a be the parameter value characterizing Pμ, and observe that

Pμ = p

1 −p

1 − r

r
P1 (10)

on [0�Q1(a)), where r = p/(p + (1 − p)a), and also that Pμ((Q1(a)�1]) = 0. Suppose
that Pr(Z = 1|Y = 0) ≥ r. As Pr(Z = 1|Y = y) is nondecreasing, it follows that Pr(Z =
1|Y = y) ≥ r everywhere and, therefore, by comparison of (8) and (10), that P0 ≤ Pμ on
[0�Q1(a)). As also trivially P0 ≥ Pμ on (Q1(a)�1], one finds P0 �FSD Pμ, which is consis-
tent with E0(Y) = Eμ(Y) only if P0 = Pμ. Now suppose that Pr(Z = 1|Y = 0) < r; hence
there exists y∗ ≤ Q1(a) s.t. Pr(Z = 1|Y = y) ≤ r for y ∈ [0� y∗) and Pr(Z = 1|Y = y) ≥ r

for y ∈ (y∗�Q1(a)) (with ill defined intervals understood to be empty). Again compar-
ing (8) and (10), it follows that P0 ≥ Pμ on [0� y∗) and that P0 ≤ Pμ on (y∗�Q1(a)). Recall-
ing again that P0 ≥ Pμ on (Q1(a)�1], Pμ �SSD P0 follows from Lemma 7(ii), applied with
threshold values (y∗�Q1(a)).

(ii) Consider any distribution F0, consistent with monotone selection, s.t. pF1 + (1 −
p)F0 has γ quantile m. Let g = F0(m). Equation (8) implies

F1(y)

F0(y)
= 1 −p

p

Pr(Z = 1|Y ≤ y)

1 − Pr(Z = 1|Y ≤ y)

for any y. Nondecreasingness in y of Pr(Z = 1|Y = y) easily implies nondecreasingness
in y of Pr(Z = 1|Y ≤ y). This first yields Pr(Z = 1|Y ≤ y) ≤ p for all y; thus the denomi-
nator in the above display cannot vanish. More importantly, it means that F1(y)/F0(y) is
nondecreasing, in particular,

F0(y) ≥ g · F1(y)

F1(m)
(11)

for all y ≤ m and

F0(y) ≤ min
{
g · F1(y)

F1(m)
�1

}

19Specifically, q = p(1 −p)μ/(μ−p2E1(Y)), but this value is not important.
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for all y ≥ m. These lower [upper] bounds on F0 for y ≤ m [y ≥ m] imply upper [lower]
bounds on Q(α) for any α ≤ γ [α ≥ γ]. The bounds are attained by the compressed dis-
tribution with parameter a = F1(m)/g, and some algebra yields the closed-form expres-
sions for implied quantiles (in terms of a) provided in the theorem.

Thus, a lower bound on θ is given by its minimum value over the set of all com-
pressed distributions F that can emerge from the preceding paragraph’s procedure. To
see that this is just the set indicated in the theorem, note that if pF1 + (1 − p)F0 has γ

quantile m, then

pF1(m)+ (1 −p)F0(m) ≥ γ ⇒ g ≥ γ −pF1(m)

1 −p
(12)

⇒ a≤ (1 −p)F1(m)

γ −pF1(m)
�

assuming that F1(m) ≤ γ and, therefore, γ−pF1(m) > 0; else, the definitional constraint
a ≤ 1 binds. Similarly,

pF−
1 (m)+ (1 −p)F−

0 (m) ≤ γ

and simultaneously

F−
0 (m) ≥ g · F

−
1 (m)

F1(m)

in analogy to (11); thus substituting in yields

g ≤ γ −pF−
1 (m)

1 −p
· F1(m)

F−
1 (m)

⇒ a ≥ (1 −p)F−
1 (m)

γ −pF−
1 (m)

� (13)

Regarding the upper bound, (8) implies

1 − F−
0 (y)

1 − F−
1 (y)

= p

1 −p

1 − Pr(Z = 1|Y ≥ y)

Pr(Z = 1|Y ≥ y)
�

Nondecreasingness in y of Pr(Z = 1|Y = y) easily implies nondecreasingness in y of
Pr(Z = 1|Y ≥ y). As also Pr(Z = 1|Y ≥ 0) = p, the above denominator cannot vanish.

More importantly,
1−F−

0 (y)

1−F−
1 (y)

and, by an analogous argument, 1−F0(y)
1−F1(y)

, are nonincreasing

in y. Let F be the dispersed distribution s.t. F(m) = F0(m) or F
−
(m) = (γ−pF−

1 (m))/(1−
p), whichever is the higher (in terms of first-order dominance) measure. For any y ≥ m,
one can then write

1 − F(y)

1 − F1(y)
= 1 − F(m)

1 − F1(m)
≥ 1 − F0(m)

1 − F1(m)
≥ 1 − F0(y)

1 − F1(y)
�

where the equality follows from (9), the first inequality uses that F(m) ≤ F0(m) by con-
struction, and the last step uses that 1−F0(y)

1−F1(y)
is nonincreasing. Hence, F0(y) ≥ F(y) for

any y ≥ m, which implies that pF1 + (1 − p)F has a higher β quantile than pF1 + (1 −
p)F0. Now consider any y <m. If F

−
(m) = (γ −pF−

1 (m))/(1 −p), then use the implica-
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tion that F
−
(m)≥ F−

0 (m) to write

1 − F
−
(y)

1 − F−
1 (y)

= 1 − F
−
(m)

1 − F−
1 (m)

≤ 1 − F−
0 (m)

1 − F−
1 (m)

≤ 1 − F−
0 (y)

1 − F−
1 (y)

in exact analogy to the previous display. If F(m) = F0(m), rather write

1 − F(y)

1 − F1(y)
= 1 − F(m)

1 − F1(m)
= 1 − F0(m)

1 − F1(m)
≤ 1 − F0(y)

1 − F1(y)
�

In either case, it follows that pF1 + (1 −p)F has a lower α quantile than pF1 + (1 −p)F0.
Finally, Q(γ)= m implies pF1(m)+ (1−p)F0(m) ≥ γ ≥ pF−

1 (m)+ (1−p)F−
0 (m), and the

construction of F then implies pF1(m)+ (1 −p)F(m) ≥ γ ≥ pF−
1 (m)+ (1 −p)F

−
(m).

To see the theorem’s closed-form expression, it is easiest to circumvent the parame-
terization of dispersed distributions by a and rather observe that the implied distribu-
tion of Y is described by F(y) = π + (1 − π)F1(y), where π = (1 − p)a. The constraints
on π given in the theorem obtain through π + (1 −π)F1(y) ≥ γ ≥ π + (1 −π)F−

1 (y), and
the closed-form expressions in the objective function obtain through

Q(α) = inf{y :π + (1 −π)F1(y) ≥ α}

= inf
{
y :F1(y) ≥ α−π

1 −π

}
=Q1

(
α−π

1 −π

)

and similarly for Q(β).
Monotone selection and 0 ∈ supp(Y |Z = 1) imply that P is absolutely continuous

with respect to P1 except possibly at 0. Thus, m ∈ H(Q(γ)) implies that m is not in a
support gap of P1. If F1 is continuous, one can then write Q(γ) = m ⇔ F(m) = F−(m) =
γ, which uniquely characterizes the relevant compressed and dispersed c.d.f.’s and also
ensures that they induce the targeted γ quantile. Thus, the bounds are attainable and
can be computed in closed form. Remarks for the case of full support are as before. �

Proof of Lemma 6. P0 ≥ 0 is obvious. To see that P0 ≤ P1 · (k−p)/(1 −p), write

P0

P1
= P(Y |Z = 0)

P(Y |Z = 1)
= P(Z = 0|Y)P(Y)/P(Z = 0)

P(Z = 1|Y)P(Y)/P(Z = 1)

= 1 − P(Z = 1|Y)

P(Z = 1|Y)

P(Z = 1)
1 − P(Z = 1)

≤ 1 −p/k

p/k

p

1 −p
= k−p

1 −p
�

where the inequality arises from using twice that P(Z = 1|Y) ≤ p/k. �
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