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Many-to-many matching and price discrimination

Renato Gomes
Toulouse School of Economics, CNRS, University of Toulouse Capitole

Alessandro Pavan
Department of Economics, Northwestern University

We study centralized many-to-many matching in markets where agents have
private information about (vertical) characteristics that determine match val-
ues. Our analysis reveals how matching patterns reflect cross-subsidization be-
tween sides. Agents are endogenously partitioned into consumers and inputs.
At the optimum, the costs of procuring agents-inputs are compensated by the
gains from agents-consumers. We show how such cross-subsidization can be
achieved through matching rules that have a simple threshold structure, and de-
liver testable predictions relating the optimal price schedules to the distribution of
the agents’ characteristics. The analysis sheds light on the practice of large match-
ing intermediaries, such as media and business-to-business platforms, advertis-
ing exchanges, and commercial lobbying firms.

Keywords. Vertical matching markets, many-to-many matching, asymmetric in-
formation, mechanism design, cross-subsidization.

JEL classification. D82.

1. Introduction

Matching intermediaries, whose business is to link (or match) agents from multiple
sides of a market, have a long history. In England, for example, marriage and employ-
ment agencies exist since at least the beginning of 19th century. In the United States,
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the establishment of commercial lobbying firms, matching interest groups with policy-
makers, predates World War II.1 Over the last two decades, the Internet has permitted
the development of matching intermediaries of unprecedented scale. Notable examples
include advertising exchanges, matching publishers and advertisers with compatible
profiles; business-to-business platforms, linking firms on different levels of the supply
chain; and dating websites, connecting potential partners with similar interests.

Matching intermediation is also at the heart of novel approaches to fund web con-
tent. Recently, many media platforms started offering browsers the option to pay to
reduce their exposure to advertising.2 The platform’s problem in designing such offers
can be seen from two perspectives. The more familiar one is that of designing a menu to
offer to browsers, where each option in the menu consists of a degree of exposure to ad-
vertising and a price. The mirror image of this problem consists in designing a matching
schedule for advertisers, where prices are contingent on the browsers that each adver-
tiser is able to reach. Because matching is reciprocal, the menus offered to the browsers
determine the matching schedules faced by the advertisers, and vice versa. As a conse-
quence, when designing its price-discriminating menus on each side, platforms have to
internalize the effects on profits that each side induces on the other side.

The presence of such cross-side effects is what distinguishes price discrimination in
matching markets from price discrimination in markets for standard products. In this
paper, we present a tractable model of price discrimination in many-to-many matching
markets, and show how subsidization across sides shapes the platforms’ matching and
price schedules.

Model ingredients

The main ingredients of our model are the following. Agents on each side of the market
(e.g., browsers and advertisers) are heterogeneous in, and privately informed about, ver-
tical characteristics that determine their willingness-to-pay for matching plans. For ex-
ample, browsers differ in their tolerance for advertising, while advertisers differ in their
willingness-to-pay for browsers’ eyeballs.

In addition, agents differ in their salience (or prominence), that is, in the utility
(or disutility) they generate to their matching partners. Importantly, we consider both
the case in which willingness-to-pay and salience are positively related and the case in
which they are negatively related. For example, the ads of those advertisers with the
highest willingness-to-pay may be the least annoying for the browsers, although we also

1See Jones (1805, p. 329) and Seymour (1928) for early accounts of, respectively, marriage and employ-
ment agencies in England. See Allard (2008) for a historical account of lobbying in the United States.

2For example, Google recently launched a service, Google Contributor, that allows browsers to pay
a monthly fee to reduce the amount of advertising on affiliated sites. Some newspapers, such as the
Guardian, allow users to pay to remove advertising in their smartphone and tablet apps. Other newspa-
pers, such as the Washington Post, offer cheaper (tabloid) versions with similar content but more ads. Simi-
lar funding strategies have been adopted by many app and video game developers, offering two versions of
the same product that differ only in the amount of advertising. Online publications follow a similar trend:
Next Web, for example, charges a yearly fee of $36�30 to reduce the browsers’ exposure to advertising.
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consider the opposite case. Analogously, browsers’ tolerance for ads may be either pos-
itively or negatively related to the browsers’ purchasing habits (which determine their
value to the advertisers). More broadly, the agents’ willingness-to-pay captures their
“consumer value,” while their salience captures their “input value,” i.e., the utility or
disutility they bring to the opposite side.

Another flexible feature of the model is that it allows for either increasing or decreas-
ing marginal utility for matching. For example, the browsers’ nuisance costs may be con-
vex in the amount of advertising they are exposed to, and the advertisers’ profits may
be concave in the number of eyeballs they reach. In these cases, an agent’s marginal
(dis)utility for an extra match depends on the entire set of matches the agent receives.

We study the matching assignments that maximize either social welfare or profits
(as many matching intermediaries are privately owned). For each side of the market,
the platform chooses a pricing rule and a matching rule. Along with the usual incen-
tive compatibility constraints (imposing that, for example, each browser chooses the
ad-avoidance plan that maximizes his utility), we require only that matching mecha-
nisms satisfy a minimal feasibility constraint, which we call reciprocity. This condition
requires that if browser i from sideA is matched to advertiser j from side B, then adver-
tiser j is matched to browser i. The cases of welfare and profit maximization can then
be treated similarly, after one replaces valuations by their “virtual” counterparts (which
discount for informational rents).

Our analysis provides answers to the following questions: What matching patterns
arise when agents are privately informed about the vertical characteristics that deter-
mine match values? How does the private (profit-maximizing) provision of matching
services compare with the public (welfare-maximizing) provision? How are matching
allocations affected by shocks that alter the distribution of the agents’ characteristics?

Main results

The recurring theme of this paper is how matching patterns reflect optimal cross-
subsidization between sides. Our first main result identifies conditions on primitives
under which optimal matching rules exhibit a threshold structure. Under a thresh-
old structure, each browser with advertising tolerance vA is matched to all advertisers
with willingness-to-pay above a threshold tA(vA), and, conversely, each advertiser with
willingness-to-pay vB is matched to all browsers whose advertising tolerance is higher
than tB(vB).

Importantly, the reciprocity constraint described above implies that thresholds are
weakly decreasing in the vertical characteristic vk, k = A�B. As such, the advertisers
with the highest willingness-to-pay are matched to all browsers who are exposed to any
advertising. In turn, advertisers with lower willingness-to-pay are matched to only a
subset of all browsers (namely, those with high tolerance to advertising). Threshold
rules thus capture matching allocations exhibiting vertical separation without segmen-
tation (in the form of mutually exclusive groups). The matching allocations induced
by threshold rules are consistent with the practice followed by many media platforms
(e.g., newspapers) of exposing all readers to premium ads (displayed in all versions of
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the newspaper), but only those readers with high tolerance to advertising to discount
ads (displayed only in the tabloid or printed version). They are also consistent with the
practice followed by many commercial lobbying firms that match interest groups with
high willingness-to-pay for political access to all policymakers in their network of influ-
ence, while matching interest groups with lower willingness-to-pay to only those policy-
makers who are less sensitive to political exposure (for a more detailed discussion of the
practices of commercial lobbying firms, see Kang and You 2016, who test the predictions
of our model using data on U.S. commercial lobbying).

Our second main result provides a precise characterization of the thresholds. We use
variational techniques to obtain a Euler equation that equalizes (i) the marginal gains
from expanding the matching sets on one side to (ii) the marginal losses that, by reci-
procity, arise on the opposite side of the market. Intuitively, this equation endogenously
partitions agents from each side into two groups. The first group consists of agents play-
ing the role of consumers (e.g., advertisers with high willingness-to-pay). These agents
contribute positively to the platform’s objective by “purchasing” sets of agents from the
other side of the market. The second group consists of agents playing the role of inputs
(e.g., browsers with low tolerance for advertisement). These agents contribute nega-
tively to the platform’s objective, but are used to “feed” the matching sets of those agents
from the opposite side who play the role of consumers (cross-subsidization).

The above two results define the paper’s theoretical contribution. The fact that
matches are reciprocal, along with the fact that each agent is both a consumer and an
input in the matching production function, render the cost of extra matches endogenous
and dependent in a nontrivial way on the entire matching rule. The endogeneity of costs
is what distinguishes price discrimination in matching markets from price discrimina-
tion in commodity markets, where the cost function is exogenous (see, among others,
Mussa and Rosen 1978, and Maskin and Riley 1984).3

Our characterization results enable us to compare the matching allocations that re-
sult from the public provision of matching services (which we assume is motivated by
welfare maximization) to those that result from the private provision of such services
(which we assume is motivated by profit maximization). Interestingly, profit maximiza-
tion in vertical matching markets may result in inefficiently small matching sets for all
agents, including those “at the top” of the distribution (e.g., the advertisers with the high-
est willingness-to-pay). The reason is that the costs of cross-subsidizing such agents is
higher under profit maximization, due to the informational rents that must be given to
the agents-inputs.

Our analysis also delivers testable predictions about the effects of shocks that al-
ter the salience of the agents. In particular, we show that a shock that increases the
salience of all agents from a given side (albeit not necessarily uniformly across agents)
induces a profit-maximizing platform to offer larger matching sets to those agents with
low willingness-to-pay and smaller matching sets to those agents with high willingness-
to-pay. In terms of surplus, these shocks make low-willingness-to-pay agents better off

3This extra degree of complexity requires stochastic-order techniques and variational arguments that, to
the best of our knowledge, are novel to the literature.
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at the expense of high-willingness-to-pay agents. In terms of pricing, an increase in
attractiveness induces an anticlockwise rotation of the optimal price schedules.

Although formulated in a two-sided matching environment, all our results have im-
plications also for one-sided vertical matching markets. Indeed, the one-sided environ-
ment is mathematically equivalent to a two-sided matching market where both sides
have symmetric primitives and matching rules are constrained to be symmetric across
sides. As it turns out, in two-sided matching markets with symmetric primitives, the op-
timal matching rules are naturally symmetric, in which case the latter constraint is non-
binding. All our results thus have implications also for such problems in organization
and personnel economics that pertain to the optimal design of teams in the presence of
peer effects.

The rest of the paper is organized as follows. Below, we close the Introduction by
briefly reviewing the most pertinent literature. Section 2 describes the model. Section 3
contains all results. Section 4 discusses a few extensions, while Section 5 concludes. All
proofs appear in the Appendix.

Related literature

The paper is primarily related to the following literatures.

Matching intermediation with transfers Damiano and Li (2007) and Johnson (2013)
consider a one-to-one matching intermediary that faces asymmetric information about
the agents’ vertical characteristics that determine match values. These papers derive
conditions on primitives for a profit-maximizing intermediary to induce positive as-
sortative matching. In contrast to these papers, we study many-to-many matching in
a flexible setting where agents may differ in their consumer value (willingness-to-pay)
and input value (salience).

Group design with peer effects Rayo (2013) studies second-degree price discrimination
by a monopolist selling a menu of conspicuous goods that serve as signals of consumers’
hidden characteristics. Rayo’s model can be interpreted as a one-sided matching model
where the utility of a matching set is proportional to the average quality of its mem-
bers. Allowing for more general peer effects, Board (2009) studies the design of groups
by a profit-maximizing platform (e.g., a school) that can induce agents to self-select into
mutually exclusive groups (e.g., classes).4

Price discrimination The availability of transfers and the presence of asymmetric infor-
mation relates this paper to the literature on second-degree price discrimination (e.g.,
Mussa and Rosen 1978, Maskin and Riley 1984, Wilson 1993). Our study of price discrim-
ination in many-to-many matching markets introduces two novel features relative to
the standard monopolistic screening problem. First, the platform’s feasibility constraint

4See also Arnott and Rowse (1987), Epple and Romano (1998), Helsley and Strange (2000), and Lazear
(2001) for models of group design under complete information.



1010 Gomes and Pavan Theoretical Economics 11 (2016)

(namely, the reciprocity of the matching rule) has no equivalent in markets for com-
modities.5 Second, each agent serves as both a consumer and an input in the matching
production function. This feature implies that the cost of procuring an input is endoge-
nous and depends in a nontrivial way on the entire matching rule.

Two-sided markets Markets where agents purchase access to other agents are the fo-
cus of the literature on two-sided markets (see Rysman 2009 for a survey, and Weyl 2010,
Bedre-Defolie and Calvano 2013, and Lee 2013 for recent developments). This litera-
ture, however, restricts attention to a single network or to mutually exclusive networks.
Our contribution is in allowing for general matching rules, in distinguishing the agents’
willingness-to-pay from their salience, and in accommodating for nonlinear preferences
over matching sets.

Decentralized matching Since Becker (1973), matching models have been used to
study a variety of markets, including marriage, labor, and education, in which agents are
heterogeneous in some vertical characteristics that determine the value of the matches
(e.g., attractiveness or skill). A robust insight from this literature is that when matches
are one-to-one, the matching pattern is positive assortative provided that the match
value function satisfies appropriate supermodularity conditions, which depend on the
presence and nature of frictions, and on the possibility of transfers. See, for exam-
ple, Legros and Newman (2002, 2007) for a setting where frictions take the form of
transaction costs or moral hazard, and Shimer and Smith (2000) and Eeckhout and
Kircher (2010) for search/matching frictions. Relative to this literature, we study me-
diated matching, abstract from search frictions or market imperfections, and consider
many-to-many matching rules.

2. Model and preliminaries

Environment

A platform matches agents from two sides of a market. Each side k ∈ {A�B} is populated
by a unit-mass continuum of agents. Each agent from each side k ∈ {A�B} has a type
vk ∈ Vk ≡ [vk� vk] ⊆ R that parametrizes both the agent’s valuation for matching inten-
sity, that is, the value that the agent assigns to interacting with agents from the opposite
side, and the agent’s “salience,” which we denote by σk(vk) ∈ R+. Importantly, it is only
for simplicity that we assume that salience is a deterministic function of valuations: All
our results extend to settings in which salience varies stochastically with valuations, and
agents have private information about both their valuations and their salience, in which
case an agent’s type is given by (vk�σk) (see Appendix A for details).

Each vk is drawn from an absolutely continuous distribution Fk (with density fk),
independently across agents. As is standard in the mechanism design literature, we as-
sume that Fk is regular in the sense of Myerson (1981), meaning that the virtual valua-
tions for matching vk − [1 − Fk(vk)]/fk(vk) are continuous and nondecreasing.

5A related, but simpler, feasibility constraint is also present in the one-to-one matching models of
Damiano and Li (2007) and Johnson (2013).
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Given any (Borel measurable) set s of types from side l �= k, the payoff that an agent
from side k ∈ {A�B} with type vk obtains from being matched, at a price p, to the set s is
given by

πk(s�p;vk)≡ vk · gk(|s|l)−p� (1)

where gk(·) is a positive, strictly increasing, and continuously differentiable function
satisfying gk(0)= 0, and where

|s|l ≡
∫
vl∈s

σl(vl)dFl(vl)

is the matching intensity of the set s.
The case where an agent from side k dislikes interacting with agents from the other

side is thus captured by a negative valuation vk < 0. To avoid the uninteresting case
where no agent from either side benefits from interacting with agents from the oppo-
site side, we assume that vk > 0 for some k ∈ {A�B}. The functions gk(·), k =A�B, in
turn capture increasing (or, alternatively, decreasing) marginal utility (or, alternatively,
disutility) for matching intensity.

The payoff formulation in (1) is fairly flexible and accommodates the following ex-
amples as special cases.

Example 1 (Advertising avoidance). The platform is an online intermediary matching
browsers from side A to advertisers from side B. Browsers dislike advertising and their
tolerance is indexed by the parameter vA ∈ VA ⊂ R−. The nuisance generated by an
advertiser with willingness-to-pay vB ∈ VB ⊂ R+ to a browser with tolerance vA is given
by

vA · σB(vB) · (|s|B)β�
where s is the set of ads displayed to the browser, and where β ≥ 0 is the nuisance pa-
rameter.6 The browser’s total payoff is then given by

πA(s�p;vA)=
∫
vB∈s

vA · σB(vB) · (|s|)β dF(vB)−p= vA · gA(|s|B)−p�

where p is the price the browser pays to the intermediary (to avoid further advertising),
and where the function gA(x)= x1+β (which is strictly convex for β> 0) captures the in-
creasing “marginal” nuisance of advertising. An increasing salience function σB(·) then
captures the idea that advertisers with a higher willingness-to-pay display, on average,
ads that are more annoying to browsers, whereas a decreasing σB(·) captures the oppo-
site case. For simplicity, advertisers are assumed to have preferences that are linear in
the number of browsers reached by their ads,

πB(s� p̂;vB)= vB ·
∫
vA∈s

dF(vA)− p̂�

where p̂ is the price paid to the platform. ♦
6See Kaiser and Wright (2006) and Kaiser and Song (2009) for an empirical assessment of the preferences

of browsers vis-à-vis advertisers.
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The next example considers a market in which the matching values are supermodu-
lar, as in the literature on positive assortative one-to-one matching (e.g., Damiano and
Li 2007).

Example 2 (Business-to-business platform). A business-to-business platform matches
firms on two levels of the supply chain (identified with sides A and B).7 The match
between a firm of productivity vA in level A and a firm of productivity vB in level B
yields a total surplus vAvB, which is split according to a generalized Nash bargaining
protocol. In this specification, the salience of each firm coincides with her productivity
(i.e., σk(vk) = vk for all vk ∈ Vk, with Vk ⊂ R+ and gk(x) = x, k =A�B). The payoff of a
level-A firm is then equal to

πA(s�p;vA)= α · vA ·
∫
vB∈s

vB dFB(vB)−p�

whereas the payoff of a level-B firm is

πB(s�p;vA)= (1 − α) · vB ·
∫
vA∈s

vA dFA(vA)−p�

where the prices here denote the commissions paid to the platform, and where α is the
bargaining weight of level-A firms. ♦

Another special case of our model (where the functions gk are linear and the func-
tions σk are weakly increasing) is developed in Kang and You (2016). This paper brings
to data the empirical implications of our model in the context of commercial lobbying
firms (matching interest groups and policymakers).

Matching mechanisms

A matching mechanismM ≡ {sk(·)�pk(·)}k=A�B consists of two pairs (indexed by side) of
matching and payment rules. For each type vk ∈ Vk, the rule pk(·) specifies the payment
asked to an agent from side k ∈ {A�B} with type vk, while the rule sk(·)⊆ Vl specifies the
set of types from side l �= k included in type vk’s matching set. Note that pk(·) maps Vk
into R (both positive and negative payments are allowed), while sk(·) maps Vk into the
Borel sigma algebra over Vl. With some abuse of notation, hereafter we will denote by
|sk(vk)|l the matching intensity of type vk’s matching set.8

A matching rule {sk(·)}k=A�B is feasible if and only if it satisfies the reciprocity condi-
tion

vl ∈ sk(vk) ⇒ vk ∈ sl(vl)� (2)

7Lucking-Reiley and Spulber (2001) and Jullien (2012) survey the literature on business-to-business
platforms.

8Restricting attention to deterministic mechanisms is without loss of optimality under the assumptions
in the model (the proof is based on arguments similar to those in Strausz 2006). It is easy to see that restrict-
ing attention to anonymous mechanisms is also without loss of optimality given that there is no aggregate
uncertainty and that individual identities are irrelevant for payoffs.
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which requires that if an agent from side l with type vl is included in the matching set of
an agent from side kwith type vk, then any agent from side kwith type vk is included in
the matching set of any agent from side l with type vl.

Next, denote by �̂k(vk� v̂k;M) ≡ vk · gk(|sk(v̂k)|l) − pk(v̂k) the payoff that type vk
obtains when reporting type v̂k, and denote by �k(vk;M) ≡ �̂k(vk� vk;M) the payoff
that type vk obtains by reporting truthfully. A mechanismM is individually rational (IR)
if �k(vk;M)≥ 0 for all vk ∈ Vk, k=A�B, and is incentive compatible (IC) if �k(vk;M)≥
�̂k(vk� v̂k;M) for all vk� v̂k ∈ Vk, k=A�B.

A matching rule is implementable if there exists a payment rule {pk(·)}k=A�B such
that the mechanism M = {sk(·)�pk(·)}k=A�B is individually rational and incentive
compatible.9

Welfare and profit maximization

The welfare generated by the mechanismM is given by

	W (M)=
∑

k=A�B

∫
Vk

vk · gk(|sk(vk)|l) dFk(vk)�

whereas the profits generated by the mechanismM are given by

	P(M)=
∑

k=A�B

∫
Vk

pk(vk)dFk(vk)�

A mechanism is efficient (alternatively, profit-maximizing) if it maximizes 	W (M) (al-
ternatively, 	P(M)) among all mechanisms that are individually rational, incentive-
compatible, and satisfy the reciprocity condition (2). Note that the reciprocity con-
dition implies that the matching rule {sk(·)}k=A�B can be fully described by its side-k
correspondence sk(·).

It is standard to verify that a mechanism M is individually rational and incentive-
compatible if and only if the following conditions jointly hold for each side k=A�B:

(i) The matching intensity of the set sk(vk) is nondecreasing in the valuation vk.

(ii) The equilibrium payoffs �k(vk;M) of the agents with the lowest valuation are
nonnegative.

(iii) The pricing rule satisfies the envelope formula

pk(vk)= vk · gk(|sk(vk)|l)−
∫ vk

vk

gk(|sk(x)|l) dx−�k(vk;M)� (3)

9Implicit in the aforementioned specification is the assumption that the platform must charge the agents
before they observe their payoffs. This seems a reasonable assumption in most applications of interest.
Without such an assumption, the platform could extract the entire surplus by using payments similar to
those in Crémer and McLean (1988); see also Mezzetti (2007).
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It is also easy to see that in any mechanism that maximizes the platform’s profits,
the IR constraints of those agents with the lowest valuations bind, i.e., �k(vk;MP)= 0,
k =A�B. Using the expression for payments (3), it is then standard practice to rewrite
the platform’s profit maximization problem in a manner analogous to the welfare max-
imization problem. One simply needs to replace the true valuations with their virtual
analogs (i.e., with the valuations discounted for informational rents). Formally, for any
k=A�B and any vk ∈ Vk, let ϕWk (vk)≡ vk and ϕPk(vk)≡ vk − [1 − Fk(vk)]/fk(vk). Using
the superscript h=W (or, alternatively, h= P) to denote welfare (or, alternatively, prof-
its), the platform’s problem then consists in finding a matching rule {sk(·)}k=A�B that
maximizes

	h(M)=
∑

k=A�B

∫
Vk

ϕhk(vk) · gk(|sk(vk)|l) dFk(vk) (4)

among all rules that satisfy the monotonicity constraint (i) and the reciprocity condi-
tion (2). Bearing these observations in mind, hereafter, we will say that a matching
rule {shk(·)}k=A�B is h-optimal if it solves the above h problem. For future reference, for
both h = W�P , we also define the reservation value rhk ≡ inf{vk ∈ Vk : ϕhk(vk) ≥ 0} when
{vk ∈ Vk : ϕhk(vk)≥ 0} �=∅.

3. Optimal matching rules

We start by introducing an important class of matching rules and by identifying natural
conditions under which restricting attention to such rules entails no loss of optimality.
We then proceed by studying properties of optimal rules and conclude with comparative
statics.

3.1 Threshold rules

Consider the following class of matching rules.

Definition 1 (Threshold rules). A matching rule is a threshold rule if, for any vk ∈ Vk,
k=A�B,

sk(vk)=
{ [tk(vk)� vl] if vk ≥ωk
∅ otherwise,

where the exclusion type ωk ∈ Vk is the valuation below which types are excluded. In
this case, we say that the matching rule exhibits the threshold structure {tk(·)�ωk}k=A�B.

Matching rules with a threshold structure are remarkably simple. Any type below
ωk is excluded, while a type vk > ωk is matched to any agent from the other side whose
type is above the threshold tk(vk). To satisfy the reciprocity condition (2), the threshold
functions {tk(·)}k=A�B have to satisfy the constraints identified in the next lemma.

Lemma 1 (Feasible threshold rules). Consider a matching rule exhibiting the threshold
structure {tk(·)�ωk}k=A�B. This rule is feasible if and only if the following conditions
jointly hold:
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(i) For all vk ∈ [ωk�vk], k� l=A�B, l �= k,

tk(vk)= min{vl : tl(vl)≤ vk}� (5)

(ii) For all k=A�B, tk(·) is a weakly decreasing function.

Condition (i) requires that each threshold function tk(·), k=A�B, coincide with the
generalized inverse of the threshold function on the other side of the market. In turn,
condition (ii) requires that threshold functions be weakly decreasing in the agents’ val-
uation for matching intensity. The formal proof that these two conditions are jointly
equivalent to feasibility is given in the Appendix. The sufficiency claim is proved by di-
rectly verifying that any threshold rule satisfying the above two conditions is reciprocal
in the sense of (2). The necessity claim is proved by contradiction.

Lemma 1 also implies that matching rules with a threshold structure exhibit a form
of negative assortativeness at the margin: Those agents with low valuations are matched
only to those agents from the opposite side whose valuation is sufficiently high. Fur-
thermore, the matching sets are ordered across types, in the weak (inclusion) set-order
sense, i.e., if vk < v̂k, then sk(vk)⊆ sk(v̂k).

Remark 1 (Implementability). Lemma 1 implies that feasible threshold rules are always
implementable (they generate matching sets whose matching intensity is nondecreas-
ing in vk). Yet, many implementable matching rules do not exhibit a threshold struc-
ture. Incentive compatibility simply requires the matching intensity to be nondecreas-
ing in valuations, but imposes no restrictions on the composition of the matching sets.
To see this, suppose, for example, that vk is drawn uniformly from Vk = [0�1] and that
σk(vk)= 1 for all vk ∈ Vk, k=A�B. Then partitional rules of the type

sk(vk)=
{ [ 1

2 �1] if vk ∈ [ 1
2 �1]

[0� 1
2 ] if vk ∈ [0� 1

2 ],
are clearly implementable but do not exhibit a threshold structure. In fact, the matching
sets induced by incentive-compatible rules need not be nested or connected.10

We proceed by identifying weak conditions on payoffs that, along with incentive
compatibility, make threshold rules optimal.

Condition TP (Threshold primitives). One of the following two sets of conditions
holds:

10For example, continue to assume that valuations are drawn uniformly from Vk = [0�1] but now let
σk(vk) = 1 − vk for all vk ∈ Vk, k =A�B. The following matching rule, described by its side-k correspon-
dence, is implementable:

sk(vk)=
{

[0� 1
3 ] ∪ [ 2

3 �1] if vk ∈ [1 −
√

2
2 �1]

[ 1
3 �

2
3 ] if vk ∈ [0�1 −

√
2

2 ].
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(a) The functions gk(·) are weakly concave and the functions σk(·) are weakly increas-
ing for both k=A and k= B.

(b) The functions gk(·) are weakly convex and the functionsσk(·) are weakly decreasing
for both k=A and k= B.

Condition TP covers two alternative scenarios. The first scenario is one where,
on both sides, agents have (weakly) concave preferences for matching intensity. In
this case, Condition TP also requires that, on both sides, salience increases (weakly)
with valuations. The second scenario covers a symmetrically opposite situation, where
agents have (weakly) convex preferences for matching intensity and salience decreases
(weakly) with valuations. To illustrate, note that the preferences in Example 1 (adver-
tising avoidance) satisfy Condition TP as long as salience on side B is nonincreasing in
valuations, meaning that the ads of those advertisers with the highest willingness-to-
pay are seen, on average, as being the least annoying. The preferences in Example 2
(business-to-business platform) also satisfy Condition TP, for in this case preferences
are linear and salience is increasing in valuations on both sides.

Proposition 1 (Optimality of threshold rules). Assume Condition TP holds. Then both
the profit-maximizing and the welfare-maximizing rules have a threshold structure.

Below, we illustrate heuristically the logic behind the arguments that lead to the re-
sult in Proposition 1 (the formal proof in the Appendix is significantly more complex
and uses results from the theory of stochastic orders to verify the heuristics described
below).

Sketch of the proof of Proposition 1. Consider an agent for whom ϕhk(vk)≥ 0. In
case of welfare maximization (h=W ), this is an agent who values positively interacting
with agents from the other side. In case of profit maximization (h= P), this is an agent
who contributes positively to profits, even when accounting for informational rents. Ig-
noring for a moment the monotonicity constraints, it is easy to see that it is always op-
timal to assign to this agent a matching set sk(vk) ⊃ {vl : ϕhl (vl) ≥ 0} that includes all
agents from the other side whose ϕhl value is nonnegative. This is because (i) these latter
agents contribute positively to type vk’s payoff and (ii) these latter agents have nonneg-
ative ϕhl values, which implies that adding type vk to these latter agents’ matching sets
(as required by reciprocity) never reduces the platform’s payoff.

Next, consider an agent for whom ϕhk(vk) < 0. It is also easy to see that it is never
optimal to assign to this agent a matching set that contains agents from the opposite
side whose ϕhl values are also negative. The reason is that matching two agents with
negative valuations (or, alternatively, virtual valuations) can only decrease the platform’s
payoff.

These general observations do not hinge on Condition TP. Moreover, they say noth-
ing about how to optimally match agents with a positive (virtual) valuation to agents
from the opposite side with a negative (virtual) valuation (cross-subsidization). This is
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where Condition TP, along with the fact that valuations are private information, plays a
role.

Consider first the scenario of Condition TP(a), where gk(·) is weakly concave and
σk(·) is weakly increasing. Pick an agent from side k with ϕhk(vk) > 0 and suppose that
the platform wants to assign to this agent a matching set whose intensity

q= |s|l >
∫

[rhl �vl]
σl(vl)dFl(vl)

exceeds the matching intensity of those agents from side l with nonnegative ϕhl values
(i.e., for whom vl ≥ rhl ). The combination of the assumptions that (i) salience is weakly
increasing in valuations, (ii) gl are weakly concave, and (iii) valuations are private in-
formation implies that the least costly way to deliver intensity q to such an agent is to
match him to all agents from side l whose ϕhl (vl) is the least negative. This is because
(a) these latter agents are the most attractive and (b) by virtue of gl being concave, using
the same agents from side l with a negative ϕhl valuation intensively is less costly than
using different agents with negative ϕhl valuations. This, in turn, means that type vk’s
matching set takes the form [tk(vk)� vl], where the threshold tk(vk) is computed so that∫

[tk(vk)�vl]
σl(vl)dFl(vl)= q�

Building on the above ideas, the formal proof in the Appendix uses results from the
monotone concave order to verify that when Condition TP(a) holds, starting from any
incentive-compatible matching rule, one can construct a threshold rule that weakly im-
proves upon the original. The idea is that threshold rules minimize the costs of cross-
subsidization by delivering to those agents who play the role of consumers (i.e., whose
ϕhk valuation is nonnegative) matching sets of high quality in the most economical way.
Note that the threshold rule constructed above is implementable provided that the orig-
inal matching rule is implementable. In particular, under the new rule, among those
agents with negative ϕhl valuations, those with higher valuations may receive larger
matching sets.

Next, consider the scenario of Condition TP(b), where gk(·) is weakly convex on
both sides and where σk(·) is weakly decreasing. Then pick a type vk from side k with
ϕhk(vk) < 0. Recall that using such an agent is costly for the platform. Now imagine that
the platform wanted to assign to this type a matching set of strictly positive intensity,
|sk(vk)|l > 0. The combination of the assumptions that (i) salience decreases with val-
uations, (ii) gl(·) are weakly convex, and (iii) types are private information then implies
that the most profitable way to use type vk as an input is to match him to those agents
from side l with the highest positive ϕhl valuations. This is because (a) these latter types
are the ones that benefit the most from interacting with type vk (indeed, as required by
incentive compatibility, these types have the matching sets with the highest intensity
and, hence, by the convexity of gl(·), the highest marginal utility for meeting additional
agents) and (b) these latter types are the least salient ones and, hence, exert the lowest
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negative externalities on type vk (recall thatϕhk(vk) < 0). In the scenario covered by Con-
dition TP(b), the reason why a threshold structure is thus optimal is that it maximizes the
welfare benefits (or profits) of cross-subsidization. �

Discussion

Before moving to the characterization of optimal threshold rules, we discuss the role of
Condition TP and of private information for the result in Proposition 1. Considered in
isolation, neither Condition TP nor incentive compatibility is itself sufficient for the op-
timality of threshold rules. It is the combination of the cross-subsidization logic outlined
in the proof sketch of Proposition 1 with the monotonicity requirements of incentive
compatibility that leads to the optimality of threshold rules. To illustrate this point, we
exhibit two examples. The first one shows that threshold rules may not be optimal when
information is incomplete but Condition TP fails. The second one shows that threshold
rules may not be optimal when Condition TP holds but information is complete. The
logic behind these examples clarifies what can “go wrong” once we dispense with either
one of these conditions.

Example 3 (Sub-optimality of threshold rules I). Agents from sides A and B have their
valuations drawn uniformly from VA = [0�1] and VB = [−1�0], respectively. The salience
of the side-B agents is constant and normalized to 1, i.e., σB(vB)≡ 1 for all vB ∈ VB, while
the salience of the side-A agents is given by

σA(vA)=
{

10 if vA ∈ [ 9
10 �1]

10
9 if vA ∈ [0� 9

10 ].
Preferences for matching intensity are linear on side A (that is, gA is the identity func-
tion), whereas preferences on side B are given by the convex function11

gB(x)=
{
x if x≤ 1
+∞ if x > 1.

In this environment, the welfare-maximizing threshold rule is described by the
threshold function tA(v)= −v/10, with exclusion typesωA = 9

10 andωB = − 1
10 , as can be

easily verified from Proposition 2 below. Total welfare under such a rule is 4
103 . Now con-

sider the following non-threshold rule, which we describe by its side-A correspondence:

sA(vA)=
{ [− 1

10 �0] if vA ∈ [ 9
10 �1]

[− 2
10 �− 1

10 ] if vA ∈ [0� 9
10 ].

It is easy to check that this matching rule is implementable. Total welfare under this rule
equals 3

102 >
4

103 . ♦

11That the function gB jumps at infinity at x= 1 simplifies the exposition but is not important for the re-
sult; the sub-optimality of threshold rules clearly extends to an environment identical to that in the example
but where the function gB is replaced by a sufficiently close smooth convex approximation.
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Figure 1. The welfare-maximizing rule among those with a threshold structure (left) and the
welfare-improving nonthreshold rule (right) from Example 3.

The matching rules in this example are illustrated in Figure 1. To understand the
logic of the example, let agents from side A be advertisers and agents from side B be
browsers. The advertisers with the highest willingness-to-pay for eyeballs, vA ∈ [ 9

10 �1],
are the most salient (i.e., their ads are perceived as the most annoying by the browsers).
Browsers have convex nuisance costs, as described by the function gB (in particular, the
disutility from advertising becomes arbitrarily large once the salience-adjusted mass of
advertising exceeds 1). In this example, the optimal threshold rule matches advertis-
ers with a high willingness-to-pay with those browsers whose tolerance for advertis-
ing is sufficiently high, and assigns empty matching sets to all other advertisers and
browsers. Because of the convexity of nuisance costs, few advertisers are matched to
browsers under such a rule. The alternative rule proposed in the example better dis-
tributes advertisers to browsers. Under the proposed rule, advertisers with willingness-
to-pay vA ∈ [0� 9

10 ] (whose ads are not particularly annoying) are matched to browsers
with moderate tolerance for advertising (i.e., vB ∈ [− 2

10 �− 1
10 ]), while advertisers with a

high willingness-to-pay (whose ads are the most annoying) are matched with browsers
whose tolerance for advertising is the highest (i.e., the matching allocation exhibits seg-
mentation). Welfare under the proposed rule is almost 10 times higher than under the
optimal threshold rule.

The example above violates Condition TP by exhibiting a salience function that is
nondecreasing in valuations and preferences that are strictly convex in matching inten-
sity. Similarly, one can show that threshold rules may fail to be optimal when salience is
nonincreasing but preferences are strictly concave (see Appendix B for an example with
this structure). The next example illustrates the role of private information for the result
in Proposition 1.

Example 4 (Sub-optimality of threshold rules II). Agents from sides A and B have val-
uations drawn uniformly from VA = [0�1] and VB = [−2�0], respectively. Preferences are
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linear on both sides, that is, gk(x) = x, k = A�B. The salience function on side A is
constant, σA(vA)= 1 for all vA ∈ VA, whereas the salience function on side B is given by

σB(vB)=
{

1 if vB ∈ [−1�0]
8 if vB ∈ [−2�−1].

These preferences clearly satisfy Condition TP(b). Now suppose that valuations are
publicly observable on both sides and that the platform maximizes welfare. The optimal
matching rule is then given by

tA(vA)=

⎧⎪⎨
⎪⎩

[−2�−1] ∪ [−vA�0] if vA ≥ 1
4

[−8vA�−1] ∪ [−vA�0] if 1
8 ≤ vA < 1

4
[−vA�0] if 0 ≤ vA < 1

8 .

Furthermore, no threshold rule yields the same welfare as the above rule. ♦

The key ingredient of the above example is that salience is decreasing in valuations
on side B (which is the “input” side, as vB ≤ 0). As such, some of the most “expen-
sive” agents from side B are the most attractive ones to the side-A agents. The welfare-
maximizing rule (under complete information) then proceeds by evaluating separately
each possible match between agents from the two sides (note that this follows from the
fact that, in this example, g is linear on both sides, which implies that preferences are
separable in the matches). It is then welfare-enhancing to include in the matching sets
of side-A agents (whose valuation is positive) a disjoint collection of types from side B.
The matching rule in the example, however, fails the monotonicity condition required by
incentive compatibility (that is, the total salience of the matching sets is nonmonotone
in valuations). As such, it is not implementable when types are private information.

Interestingly, threshold rules are more likely to be optimal when information is in-
complete. This is discussed in the next remark.

Remark 2 (Threshold rules: complete and incomplete information). Consider a wel-
fare-maximizing platform. By virtue of Lemma 1, whenever a threshold rule is optimal
under complete information, it is also optimal under incomplete information; the rea-
son is that feasible threshold rules are always implementable (see Remark 1). The con-
verse is, however, false, as demonstrated by Example 4.

Further assume that preferences are linear on both sides, that is, gk(x)= x, k=A�B.
In this case, the welfare-maximizing rule is obtained by evaluating separately each pos-
sible match between agents from the two sides. That is, agents with valuations vA and
vB are matched if and only if

vAσB(vB)+ vBσA(vA)≥ 0 ⇐⇒ vA
σA(vA)

+ vB
σB(vB)

≥ 0�

Together with Lemma 1, the last inequality implies that a threshold rule is welfare-
maximizing under complete information if and only if vk/σk(vk) is weakly increas-
ing, k = A�B. As discussed below, a similar condition determines whether welfare-
maximizing matching rules under incomplete information exhibit bunching (see
Remark 6 below).
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Remark 3 (One-to-one matching). The optimality of threshold rules hinges on the as-
sumption that the attractiveness of any set of agents is determined by the intensity of
the set. When, instead, the attractiveness of a set is determined either by the aver-
age, or by the maximal salience, of its members, optimal rules are typically one-to-one
and exhibit positive assortativeness (i.e., sk(vk)= F−1

l (Fk(vk)) for all vk ∈ Vk, k=A�B)
when salience is increasing in values on both sides and negative assortativeness (i.e.,
sk(vk) = F−1

l (1 − Fk(vk)) for all vk ∈ Vk, k = A�B) when salience is decreasing in val-
ues on both sides.12 Interestingly, when preferences are linear on both sides, that is,
when gk(x)= x, k=A�B, one can also reinterpret our results as describing the optimal
matching rule between the types of a given pair of agents. As in Myerson and Satterth-
waite (1983), in this case, the matching rule specifies whether matching between any
pair of types of the two agents should occur.13

3.2 Properties of optimal threshold rules

Assuming throughout the rest of the paper that Condition TP holds, we then proceed by
further investigating the properties of optimal threshold rules. To conveniently describe
the agents’ payoffs, we introduce the function ĝk : Vl → R+ defined by

ĝk(vl)≡ gk
(∫ vl

vl

σl(x)dFl(x)

)
�

k� l = A�B, l �= k. The utility that an agent with type vk obtains from a matching set
[tk(vk)� vl] can then be written concisely as vk · ĝk(tk(vk)). Note that ĝk(tk(vk)) in de-
creasing in tk(vk), as increasing the threshold tk(vk) reduces the intensity of the match-
ing set.

Equipped with this notation, we can then recast the platform’s problem as choos-
ing a pair of threshold functions (thk(·))k∈{A�B} along with two scalars (ωA�ωB) so as to
maximize the platform’s objective subject to the conditions of Lemma 1. Note that the
reciprocity constraint (5) renders the platform’s problem a nonstandard control problem
(as each of the two controls tk(·), k ∈ {A�B}, is required to coincide with the generalized
inverse of the other).

The next definition extends to our two-sided matching setting the notion of separat-
ing schedules, as it appears, for example, in Maskin and Riley (1984).

Definition 2 (Separation). The h-optimal matching rule entails the following
qualities:

(i) It exhibits separation if there exists a (positive measure) set V̂k ⊂ Vk such that, for
any vk� v′

k ∈ V̂k, thk(vk) �= thk(v′
k).

(ii) It exhibits exclusion at the bottom on side k if ωhk > vk.

12The result follows from arguments similar to those in Damiano and Li (2007).
13The same is true when g is nonlinear, but in this case our preference representation is no longer con-

sistent with expected utility.
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(iii) It exhibits bunching at the top on side k if thl (ω
h
l ) < vk.

The rule is maximally separating if thk(·) is strictly decreasing over the interval
[ωhk� thl (ωhl )], which, hereafter, we refer to as the separating range.

Accordingly, separation occurs when some agents on the same side receive differ-
ent matching sets. Exclusion at the bottom occurs when all agents in a neighborhood
of vk are assigned empty matching sets. Bunching at the top occurs when all agents
in a neighborhood of vk receive identical matching sets. In turn, maximal separation
requires that, as valuations increase, matching sets strictly expand whenever they are
“interior” (in the sense that thk(vk) ∈ (ωhl � thk(ωhk))).

The following regularity condition guarantees that the optimal rules are maximally
separating.

Condition MR (Match regularity). The functions ψhk : Vk →R defined by

ψhk(vk)≡ fk(vk) ·ϕhk(vk)
−ĝ′

l(vk)
= ϕhk(vk)

g′
l(|[vk� vk]|k) · σk(vk)

are strictly increasing, k=A�B, h=W�P .

As will be clear shortly, the optimal matching rules entail maximal separation if and
only if Condition MR holds for every valuation in the separating range. Accordingly, this
condition is the analog of Myerson’s standard regularity condition in two-sided match-
ing problems.

To understand the condition, take the case of profit maximization, h = P . The nu-
merator inψhk(vk) accounts for the effect on the platform’s revenue of an agent from side
k with valuation vk as a consumer (as his virtual valuation ϕhk(vk) is proportional to the
marginal revenue produced by the agent). In turn, the denominator accounts for the ef-
fect on the platform’s revenue of this agent as an input (as −ĝ′

l(vk) is proportional to the
marginal utility brought by this agent to every agent from side l who is already matched
to any other agent from side k with valuation above vk). Therefore, the above regularity
condition requires that, under a threshold rule, the contribution of an agent as a con-
sumer (as captured by his virtual valuation) increases faster than his contribution as an
input.

Remark 4 (Conditions MR and TP). Note that, except in the uninteresting case in which
ϕhk(vk) < 0 (alternatively, ϕhk(vk) ≥ 0) for all vk ∈ Vk, k = A�B and h = W�P , Con-
dition MR is not implied by, nor implies, Condition TP. In particular, Condition MR
requires that ϕhk(vk) increases faster than g′

l(|[vk� vk]|k)σk(vk) over [rhk� vk] (that is,
over the subset of Vk in which ϕhk(vk) > 0) and that |ϕhk(vk)| decreases slower than
g′
l(|[vk� vk]|k)σk(vk) over [vk� rhk ] (that is, over the subset of Vk in which ϕhk(vk) < 0) for
k=A�B and h=W�P .
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To better appreciate the platform’s trade-offs at the optimum, it is convenient to in-
troduce the marginal surplus function hk : Vk × Vl → R defined by

hk(vk� vl)≡ −ĝ′
k(vl) ·ϕhk(vk) · fk(vk)− ĝ′

l(vk) ·ϕhl (vl) · fl(vl)
for k� l ∈ {A�B}, l �= k. Note that hA(vA�vB) = hB(vB�vA) represents the marginal ef-
fect on the platform’s objective of decreasing the threshold thA(vA) below vB, while, by
reciprocity, also reducing the threshold thB(vB) below vA.

Proposition 2 (Optimal rules). Assume Conditions TP and MR hold. Then, for both
h=W and h= P , the h-optimal matching rules are such that shk(vk)= Vl for all vk ∈ Vk,
k=A�B, if hk(vk� vl)≥ 0.14

When, instead, hk(vk� vl) < 0, the h-optimal matching rule is maximally separating
and entails the following components:

(i) It has bunching at the top on side k and no exclusion at the bottom on side l if
hk(vk� vl) > 0.

(ii) It has exclusion at the bottom on side l and no bunching at the top on of side k if
hk(vk� vl) < 0.15

Finally, the threshold function thk(·) is implicitly defined by the Euler equation

hk(vk� t
h
k(vk))= 0 (6)

for any vk in the separating range [ωhk� thl (ωhl )].

The optimal matching rule thus entails separation whenever the marginal surplus
function evaluated at the lowest valuations on both sides of the market is negative:
hk(vk� vl) < 0. When, instead, this condition fails, each agent from each side is matched
to any other agent from the opposite side: shk(vk)= Vl for all vk ∈ Vk, k=A�B.

When separation occurs, Proposition 2 sheds light on the optimal cross-subsidi-
zation strategy employed by the platform. To illustrate, consider the case of profit max-
imization (the arguments for welfare maximization are analogous), and let vk < 0 for
k =A�B. An important feature of the profit-maximizing rule is that tPk (vk) ≤ rPl if and
only if vk ≥ rPk , where the reservation type rPk is the lowest type for whom ϕPk(vk) ≥ 0.
This implies that agents from each side of the market are endogenously partitioned into
two groups. Those agents with positive virtual valuations (equivalently, with valuations
vk ≥ rPk ) play the role of consumers, “purchasing” sets of agents from the other side of the
market (these agents contribute positively to the platform’s profits). In turn, those agents
with negative virtual valuations (equivalently, with valuation vk < rPk ) play the role of in-
puts in the matching process, providing utility to those agents from the opposite side

14The statement above holds true even when Condition MR is violated, provided that either ϕhk(vk) < 0
for k=A�B or ϕhk(vk) > 0 for k=A�B. Condition MR is only needed in the case where ϕhk(vk) > 0>ϕhl (vl)
for k� l ∈ {A�B}.

15In the knife-edge case where hk(vk� vl)= 0, the h-optimal rule entails neither bunching at the top on
side k nor exclusion at the bottom on side l.
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they are matched to (these agents contribute negatively to the platform’s profits). At the
optimum, the platform recovers the “costs” of procuring agents-inputs from the gains
obtained by agents-consumers.

The Euler equation (6) in the proposition then describes the optimal level of cross-
subsidization for each type. In particular this equation can be rewritten as

−ĝ′
k(t

P
k (vk)) ·ϕPk(vk) · fk(vk)︸ ︷︷ ︸

marginal gains

= ĝ′
l(vk) ·ϕPl (tPk (vk)) · fl(tPk (vk))︸ ︷︷ ︸

marginal losses

� (7)

At the optimum, the platform equalizes the marginal gains and the marginal losses of ex-
panding the matching set of each agent in the separating range. When vk corresponds to
an agent-consumer (i.e., when ϕPk(vk) > 0), the left-hand side of (7) is the marginal rev-
enue of expanding the agent’s matching set, starting from a situation in which the agent
is matched already to all agents from the other side whose valuation is above tPk (vk).
In turn, the right-hand side of (7) is the marginal cost associated with procuring extra
agents-inputs from the opposite side; under a threshold rule, this cost is the loss that
the platform incurs by expanding the matching set of an agent from side l whose valua-
tion is vl = tPk (vk), starting from a situation where such an agent is already matched to all
agents from side k whose valuation exceeds vk = tPl (vl), as required by reciprocity (re-
call that tPl (t

P
k (vk)) = vk). The terms ĝ′

k(t
P
k (vk)) and ĝ′

l(vk) adjust the marginal utilities
to account for the effect of the new matches on the supramarginal matches (i.e., those
matches above the profit-maximizing thresholds).

Note that optimality also implies that there is bunching at the top on side k if and
only if there is no exclusion at the bottom on side l. In other words, bunching can only
occur at the top due to binding capacity constraints, that is, when the “stock” of agents
from side l �= k has been exhausted.

Remark 5. Condition MR is necessary and sufficient for the marginal surplus function
hk(vk� vl) to satisfy the following single-crossing property: wheneverhk(vk� vl)≥ 0, then

hk(vk� v̂l) > 0 for all v̂l > vl and hk(v̂k� vl) > 0 for all v̂k > vk. As can be seen from the
Euler equation (6), this single-crossing property is equivalent to the threshold function
thk(·) being strictly decreasing over the separating range. Therefore, Condition MR is the
“weakest” regularity condition that rules out nonmonotonicities (or bunching) in the
matching rule.

Remark 6. Consider a welfare-maximizing platform and assume that preferences are
linear on both sides, that is, gk(x) = x, k = A�B. Then the following statements are
equivalent: (i) Condition MR holds; (ii) the optimal matching rule under complete infor-
mation exhibits a threshold structure; (iii) the optimal matching rule under incomplete
information is maximally separating.

Consider the environment described in Example 4. It follows from the above re-
mark that, under incomplete information, the welfare-maximizing matching rule is not
maximally separating (therefore exhibiting some interior bunching interval). Accord-
ingly, threshold rules are welfare-maximizing under incomplete information, but not
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under complete information, exactly when the monotonicity constraint associated with
incentive compatibility is binding at the optimum. The presence of this constraint ex-
plains why incomplete information is more conductive to threshold rules than complete
information.

The next example illustrates the characterization of Proposition 2.

Example 5 (Advertising avoidance). Consider an online intermediary matching adver-
tisers to browsers with convex nuisance costs, as in Example 1. Assume that browsers
and advertisers have valuations drawn from a uniform distribution over VA = (−1�0)
and VB = (0�1), respectively. The advertisers’ salience function is σB(vB) = 1/vB. It
is easy to check that Conditions TP(b) and MR are satisfied. From Proposition 2, the
welfare-maximizing rule is described by the threshold function

tWB (vB)= − v2
B

(1 +β)[− logvB]β
for any vB in the separating range. Moreover, there is bunching at the top of side B,
i.e., all advertisers with high enough valuation are matched to all browsers. As the nui-
sance cost β increases, all advertisers obtain weakly smaller matching sets (strictly so
for advertisers in the separating range). ♦

3.3 Welfare-maximizing versus profit-maximizing rules

We now turn to the distortions brought in by profit maximization relative to the welfare-
maximizing matching rule. Consider the following example.

Example 6 (Business-to-business platform). Let the environment be as in Example 2
and assume that all vk are drawn from a uniform distribution over [v� v], with v > 0 and
2v < v, k=A�B. Because linking any two firms generates positive surplus, the welfare-
maximizing rule matches all firms on each level of the supply chain. Next consider the
profit-maximizing rule. It is easy to check that Conditions TP(a) and MR are satisfied.
BecausePk(v� v)= v(2v−v) < 0, it follows from Proposition 2 that the profit-maximizing
rule entails separation and is described by the threshold function

tPA(vA)= v(1 − α)vA
2vA − αv

defined over (ωPk� v) = (αv/(1 + α)�v). Under profit maximization, there is exclusion
at the bottom on both levels and each firm that is not excluded from the platform is
matched to a strict subset of its efficient matching set. ♦

The matching rules in this example are illustrated in Figure 2. As indicated in
the next proposition, the distortions in this example are general properties of profit-
maximizing rules (the proof follows directly from Proposition 2).

Proposition 3 (Distortions). Assume Conditions TP and MR hold. Relative to the
welfare-maximizing rule, the profit-maximizing rule has the following qualities:
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Figure 2. The welfare-maximizing matching rule (left) and the profit-maximizing matching
rule (right) from Example 6 when α= 1

2 .

(i) It completely excludes a larger group of agents ( exclusion effect), i.e., ωPk ≥ ωWk ,
k=A�B.

(ii) It matches each agent who is not excluded to a subset of his efficient matching set
( isolation effect), i.e., sPk(vk)⊆ sWk (vk) for all vk ≥ωPk , k=A�B.

The intuition for both effects can be seen by comparing Pk(vk� vl) with Wk (vk� vl):
under profit maximization, the platform only internalizes the cross-effects on marginal
revenues (which are proportional to the virtual valuations), rather than the cross-effects
on welfare (which are proportional to the true valuations). Contrary to other mechanism
design problems, inefficiencies do not necessarily vanish as agents’ types approach the
“top” of the distribution (i.e., the highest valuation for matching intensity). The rea-
son is that although virtual valuations converge to the true valuations as agents’ types
approach the top of the distribution, the cost of cross-subsidizing these types remains
strictly higher under profit maximization than under welfare maximization, due to the
inframarginal losses implied by reciprocity on the opposite side.

3.4 Comparative statics: The detrimental effects of becoming more attractive

Shocks that alter the cross-side effects of matches are common in vertical matching
markets. Changes in productivity, for example, affect the pricing strategies of business-
to-business platforms, for they affect the attractiveness of business connections for the
same population of firms.

The next definition formalizes the notion of a change in attractiveness. We restrict
the attention here to a platform maximizing profits in a market where all agents from
each side value positively interacting with agents from the opposite side (i.e., vk ≥ 0 for
k=A�B). For simplicity, we also restrict attention to markets in which preferences for
matching intensity are linear (i.e., gA(x)= gB(x)= x for all x ∈R+).
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Definition 3 (Higher attractiveness). Consider a market in which all agents value pos-
itively interacting with agents from the opposite side, i.e., vk ≥ 0 for k=A�B. Side k is
more attractive under σ̂k(·) than under σk(·) if σ̂k(vk) ≥ σk(vk) for all vk ∈ Vk, with the
inequality strict for a positive-measure subset of Vk.

The definition above does not impose that the attractiveness of side-k agents in-
creases uniformly across agents. For instance, it allows that only the attractiveness of
agents with high valuations increases, while that of other agents remains the same. The
next proposition describes how the profit-maximizing matching rule changes as side k
becomes more attractive.

Proposition 4 (Increase in attractiveness). Consider a market in which (a) Conditions
TP and MR hold, (b) all agents value positively interacting with agents from the opposite
side (i.e., vk ≥ 0 for k ∈ {A�B}), and (c) preferences for matching intensity are linear (i.e.,
gA(x)= gB(x)= x for all x ∈R+). Suppose side k becomes more attractive. Then a profit-
maximizing platform switches from a matching rule sPk(·) to a matching rule ŝPk(·) such
that the following statements hold:

(i) The matching sets on side k increase for those agents with a low valuation and
decrease for those agents with a high valuation, i.e., ŝPk(vk) ⊇ sPk(vk) if and only if
vk ≤ rPk .

(ii) Low-valuation agents from side k are better off, whereas the opposite is true
for high-valuation agents, i.e., there exists ν̂k ∈ (rPk � vk] such that �k(vk;M̂P) ≥
�k(vk;MP) if and only if vk ≤ ν̂k.

Intuitively, an increase in the attractiveness of side-k agents alters the costs of cross-
subsidization between the two sides. Recall that agents with vk ≥ rPk are valued by the
platform mainly as consumers. As these agents become more attractive, the costs of
cross-subsidizing their “consumption” using agents from side lwith negative virtual val-
uation increases, whereas the revenue gains on side k are unaltered. As a consequence,
the matching sets of these agents shrink. The opposite is true for those agents with valu-
ation vk ≤ rPk . These agents are valued by the platform mainly as inputs; as they become
better inputs, their matching sets expand.

Perhaps surprisingly, an agent from side k can suffer from a positive shock to his own
attractiveness (holding constant the attractiveness of all other agents). To understand
why, consider the case where salience σk(vk) is strictly increasing and take an agent
from side k with the highest possible valuation, i.e., for whom vk = vk. Assume that
σk(vk) increases by δ > 0 while σk(vk) for all vk < vk remains constant. Because the
revenues collected from any agent with valuation vk are unaltered, at the optimum, the
matching set of any agent with valuation vk must shrink. At the same time, because the
size of the matching sets must be monotone in types, the matching sets of all agents
whose valuation is close to vk must also shrink. As a result, an agent with valuation vk
is negatively affected by an increase in his own attractiveness, even if all other agents’
attractiveness does not change.
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This result has interesting implications in terms of payoffs. For all vk ≤ rPk , we can
evaluate payoffs according to

�k(vk;MP)=
∫ vk

vk

|sk(x)|l dx≤
∫ vk

vk

|ŝk(x)|l dx=�k(vk;M̂P)�

meaning that all agents from side k with valuation vk ≤ rhk are necessarily better off.
Alternatively, since |ŝk(vk)|l ≤ |sk(vk)|l for all vk ≥ rhk , then either payoffs increase for
all agents from side k or there exists a threshold ν̂k > rhk such that the payoff of each
agent from side k is higher under the new rule than under the original one if and only if
vk ≤ v̂k.

In many applications, the agents’ payoffs and matching sets are not observable,
whereas the prices charged by the platform are publicly available (e.g., business-to-
business platforms do not offer precise descriptions of how the matching sets assigned
to firms are determined, yet, the prices charged are clear). To derive a testable implica-
tion of Proposition 4, the next corollary studies the impact of the agents’ attractiveness
on the platform’s pricing policy.

For any matching intensity qk, let ρPk(qk) denote the total price that each agent from
side k has to pay for any matching set of intensity qk under the profit-maximizing mech-
anismMP . By optimality, the tariff ρPk(·) has to satisfy

ρPk(qk)= pPk(vk) for all vk such that |sPk(vk)|l = qk�

We then have the following result.

Corollary 1 (Effect of an increase in attractiveness on prices). Under the assumptions
of Proposition 4, if the attractiveness of side k increases (in the sense of Definition 3), the
platform’s price schedule rotates anticlockwise. That is, the platform switches from a price
schedule ρPk(·) to a price schedule ρ̂Pk(·) such that ρ̂Pk(qk)≤ ρPk(qk) for any matching set of

intensity qk ≤ q̂k, where q̂k > |sPk(rPk )|l = |ŝPk(rPk )|l.

An increase in the attractiveness of side k thus triggers a reduction in the price that
the platform charges on side k for matching sets of low intensity, possibly along with an
increase in the price it charges for matching sets of high intensity.

4. Extensions

The analysis developed above can accommodate a few simple enrichments, which we
discuss hereafter.

Imperfect correlation between salience and valuation

To simplify the exposition, the baseline model assumes that salience is a deterministic
function of the valuations. As mentioned above, all our results extend to environments
in which the two dimensions are imperfectly correlated and in which agents have private
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information about both dimensions. We formally establish this result in the Appendix
by first relaxing Condition TP to require that salience and valuation be positively (or,
alternatively, negatively) affiliated. This is the natural generalization of the assumption
that σk be increasing (or, alternatively, decreasing) in vk, as required by Condition TP.
Under this condition, we then show that the optimal matching rules have a threshold
structure, with the thresholds depending on valuations but not on salience. Note that
the result is not a mere consequence of the fact that individual preferences are invariant
in the agents’ own salience. Combined with incentive compatibility, the latter property
only implies that the matching intensity is invariant in the agent’s own salience, thus
permitting the composition of the matching sets to depend on salience. Once this result
is established, it is then immediate that all other results in the paper extend to this richer
environment.

The group design problem

Consider now the problem of how to assign agents to different “teams” in the presence
of peer effects, which is central to the theory of organizations and to personnel eco-
nomics. As anticipated in the Introduction, such a one-sided matching problem is a
special case of the two-sided matching problems studied in this paper. To see this, note
that the problem of designing nonexclusive groups in a one-sided matching setting is
mathematically equivalent to the problem of designing an optimal matching rule in a
two-sided matching setting where (i) the preferences and type distributions of the two
sides coincide, and (ii) the matching rule is required to be symmetric across sides, i.e.,
sA(v)= sB(v) for all v ∈ VA = VB.

Under the new constraint that matching rules be symmetric across the two sides,
maximizing (4) is equivalent to maximizing twice the objective function associated with
the one-sided matching problem. As it turns out, the symmetry constraint is never bind-
ing in a two-sided matching market in which the two sides are symmetric (in which
case ψhl (·) = ψhk(·)). Indeed, the characterization from Proposition 2 reveals that, at
any point where the threshold rule thk(·) is strictly decreasing, thk(v)= (ψhl )−1(−ψhk(v))=
(ψhk)

−1(−ψhl (v)) = thl (v). It is also easy to see that the symmetry condition is satisfied
when the optimal rule entails bunching at the top.

Coarse matching

In reality, platforms typically offer menus with finitely many alternatives. As pointed out
by McAfee (2002) and Hoppe et al. (2011), the reason for such coarse matching is that
platforms may face costs for adding more alternatives to their menus.16 It is easy to see
that the analysis developed above extends to a setting where the platform can include
no more than N plans in the menus offered to each side. Furthermore, as the number
of plans increases (e.g., because menu costs decrease), the solution to the platform’s
problem uniformly converges to the h-optimal rule identified in the paper.17 In other

16See also Wilson (1989).
17This follows from the fact that any weakly decreasing threshold function tk(·) can be approximated

arbitrarily well by a step function in the sup-norm, i.e., in the norm of uniform convergence.
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words, the maximally separating matching rules of Proposition 2 are the limit asN grows
large of those rules offered when the number of plans is finite.

Quasi-fixed costs

Permitting an agent to interact with agents from the other side of the market typically
involves a quasi-fixed cost. From the perspective of the platform, these costs are quasi-
fixed, in the sense that they depend on whether an agent is completely excluded, but not
on the composition of the agent’s matching set.

The analysis developed above can easily accommodate such costs. Let ck denote the
quasi-fixed cost that the platform must incur for each agent from side kwhose matching
set is nonempty. The h-optimal mechanism can then be obtained through the following
two-step procedure:

Step 1. Ignore quasi-fixed costs and maximize (4) among all weakly decreasing
threshold functions thk(·).

Step 2. Given the optimal threshold function thk(·) from Step 1, choose the h-optimal
exclusion types ωhA, ωhB by solving the problem

max
ωA�ωB

∑
k=A�B

∫ vk

ωk

(
ĝk(max{thk(vk)�ωl}) ·ϕhk(vk)− ck

) · dFk(vk)�

As the quasi-fixed costs increase, so do the exclusion types ωhk(cA� cB), k=A�B. For ck
sufficiently high, the exclusion types reach the reservation values rhk , in which case the
platform switches from offering a menu of matching plans to offering a unique plan.
Therefore, another testable prediction that the model delivers is that, ceteris paribus,
discrimination should be more prevalent in matching markets with low quasi-fixed
costs.

Robust implementation

In the direct revelation version of the matching game, each agent from each side is asked
to submit a report vk, which leads to a payment phk(vk) as defined in (3), and grants
access to all agents from the other side of the market who reported a valuation above
thk(vk). This game admits one Bayes–Nash equilibrium implementing the h-optimal
matching rule shk(·), along with other equilibria implementing different rules.18

As pointed out by Weyl (2010) in the context of a monopolistic platform offering a
single plan, equilibrium uniqueness can, however, be guaranteed when network effects
depend only on quantities (i.e., when σk(·) ≡ 1 for k = A�B).19 In the context of our

18In the implementation literature, this problem is referred to as partial implementation, whereas in the
two-sided market literature, it is referred to as the chicken and egg problem (e.g., Caillaud and Jullien 2001,
2003) or the failure to launch problem (e.g., Evans and Schmalensee 2010). See also Ellison and Fudenberg
(2003) and Ambrus and Argenziano (2009).

19See also White and Weyl (2015).
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model, it suffices to replace the payment rule (phk(·))k=A�B given by (3) with the payment
rule

�hk(vk� (v
j
l )
j∈[0�1])= vk · gk

(∣∣{j ∈ [0�1] : vjl ≥ tk(vk)}
∣∣
l

)
(8)

−
∫ vk

vk

gk
(∣∣{j ∈ [0�1] : vjl ≥ tk(x)}

∣∣
l

)
dx�

where |{j ∈ [0�1] : vjl ≥ tk(vk)}|k ≡ ∫
{j:vjl≥tk(vk)}

dλ(j) denotes the Lebesgue measure of

agents from side l �= k reporting a valuation above tk(vk). Given the above payment
rule, it is weakly dominant for each agent to report truthfully. This follows from the fact
that, given any profile of reports (vjl )

j∈[0�1] by agents from the opposite side, the intensity
of the matching set for each agent from side k is increasing in his report, along with
the fact that the payment rule �hk(·; (vjl )j∈[0�1]) satisfies the familiar envelope formula
with respect to vk. In the spirit of the Wilson doctrine, this also means that the optimal
allocation rule can be robustly fully implemented in weakly undominated strategies.20

5. Concluding remarks

The analysis reveals how matching patterns reflect optimal cross-subsidization between
sides in centralized markets. We deliver two main results. First, we identify conditions
on primitives under which the optimal matching rules have a simple threshold struc-
ture, according to which agents with a low valuation for matching are included only in
the matching sets of those agents from the opposite side whose valuation is sufficiently
high. While these conditions are arguably weak, they cannot be dispensed with. We
demonstrate this fact by means of counterexamples highlighting the complementary
role that incentive compatibility and the monotonicity requirements on salience and
marginal utility play in the optimality of threshold rules.

Second, we show that the optimal matching rules are determined by a simple for-
mula that equalizes the marginal gains in welfare (or, alternatively, in profits) with the
cross-subsidization losses that the platform must incur on the opposite side of the mar-
ket. We show that the optimal rules endogenously separate agents into consumers and
inputs. At the margin, the “costs” of procuring agents-inputs are recovered from the
gains from agents-consumers (cross-subsidization).

The model is flexible enough to permit interesting comparative statics. For example,
we show that when the attractiveness of one side increases, a profit-maximizing plat-
form responds by reducing the intensity of the matching sets offered to those agents
whose valuation is high, and by increasing the intensity of the matching sets offered to
those agents whose valuation is low. This leads to lower (respectively, higher) payoffs to

20With more general preferences, it is still possible to robustly fully implement any monotone matching

rule in weakly undominated strategies by replacing the definition of |{j ∈ [0�1] : vjl ≥ tk(vk)}|l in (8) with

|{j ∈ [0�1] : vjl ≥ tk(vk)}|l ≡ ∫
{j:vjl≥tk(vk)}

σl dλ(j), where σl ≡ min{σl(vl) : vl ∈ Vl}. However, these payments

generate less revenue than those given in (3), implying that, in general, there is a genuine trade-off between
robust full implementation and profit maximization.
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those agents at the top (respectively, bottom) of the valuation distribution, and induces
an anticlockwise rotation of the price schedule.

The above analysis is worth extending in a few important directions. For example,
all the results are established assuming that the utility/profit that each agent derives
from any given matching set is independent of who else from the same side has access
to the same set. This is a reasonable starting point but is definitely inappropriate for
certain markets. In advertising, for example, reaching a certain set of consumers is more
profitable when competitors are blocked from reaching the same set. Extending the
analysis to accommodate for “congestion effects” and other “same-side externalities” is
challenging but worth exploring.

Likewise, the analysis focuses on a market with a single platform. Many matching
markets are populated by competing platforms. Understanding to what extent the dis-
tortions identified in the present paper are affected by the degree of market competition,
and studying policy interventions aimed at inducing platforms “to get more agents on
board” (for example, through subsidies, and in some cases the imposition of universal
service obligations) are other important venues for future research (see Damiano and
Li 2008, Lee 2014, and Jullien and Pavan 2014 for models of platform competition in
settings with a limited degree of price discrimination).

Appendix A

This appendix collects all proofs omitted in the text.

Proof of Lemma 1. Necessity. We first show that tk(·) must be weakly decreasing,
k = A�B. Toward a contradiction, assume that tk(·) is strictly increasing in an open
neighborhood of vk ∈ Vk. This means that there exists ε > 0 such that tk(vk+ε) > tk(vk).
Let v̂l ≡ 1

2 tk(vk + ε) + 1
2 tk(vk), and note that v̂l ∈ sk(vk) and that tl(v̂l) ≤ vk (else, reci-

procity is violated). Therefore, vk+ε ∈ sl(v̂l) and yet v̂l /∈ sk(vk+ε), violating reciprocity.
Hence, condition (ii) in Lemma 1 must hold.

Next, we show that condition (i) in Lemma 1 must also hold. To this end, let ṽl(vk)≡
inf{vl : tl(vl) ≤ vk}. We first show that tk(vk) = ṽl(vk) and then prove that ṽl(vk) =
min{vl : tl(vl)≤ vk} (that is, a minimum exists).

We proceed again by contradiction and assume that there exists some vk ∈ Vk such
that tk(vk) �= ṽl(vk). If tk(vk) > ṽl(vk), there exists vl ≥ ṽl(vk) such that tl(vl) ≤ vk and
tk(vk) > vl. This implies that vk ∈ sl(vl) and yet vl /∈ sk(vk), violating reciprocity.

Therefore, it must be that tk(vk) < ṽl(vk). Let v̌l ≡ 1
2 ṽl(vk)+ 1

2 tk(vk) ∈ (tk(vk)� ṽl(vk))
and notice that tl(v̌l) > vk. But then v̌l ∈ sk(vk) and yet vk /∈ sl(v̌l), again violating reci-
procity. We conclude that tk(vk)= ṽl(vk).

Finally, suppose that min{vl : tl(vl) ≤ vk} does not exist. Because tk(vk) = ṽl(vk), it
follows that tl(ṽl(vk)) > vk, a violation of reciprocity. We conclude that condition (i) in
Lemma 1 is also necessary.

Sufficiency. Take any vl ∈ sk(vk). By definition of a threshold rule, vl ≥ tk(vk). Fur-
thermore, by condition (ii) in the lemma, tl(vl) ≤ tl(tk(vk)). In turn, by condition (i),
tl(tk(vk)) ≤ vk. This means that tl(vl) ≤ vk and hence vk ∈ sl(vl). This concludes the
proof. �
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Proof of Proposition 1. Below we prove a stronger result that supports both the
claim in the proposition as well as the claim in Section 4 about the optimality of thresh-
old rules in environments where salience is imperfectly correlated with the valuation
and where agents have private information about both dimensions.

To this purpose, we enrich the model as follows. For each vk ∈ VK , let�k(·|vk) denote
the conditional distribution of σk, given vk, k =A�B, and denote by �k = Fk ·�k the
measure defined by the product of Fk and�k. Now assume that agents observe both vk
and σk at the time they interact with the platform. Each agent’s type is then given by the
bi-dimensional vector θk ≡ (vk�σk) ∈�k ≡ Vk ×�k, with �k ⊂ R+. In this environment,
a matching mechanism M = {sk(·)�pk(·)}k=A�B continues to be described by a pair of
matching rules and a pair of payment rules, with the only difference thatpk(·) now maps
�k into R, whereas sk(·)maps�k into the Borel sigma algebra over�l, k� l=A�B, l �= k.
With some abuse of notation, hereafter we will denote by |sk(θk)|l =

∫
(vl�σl)∈sk(θk)

σl d�l
the matching intensity of the set sk(θk).

Now consider the following extension of Condition TP in the main text.

Condition TP-extended. One of the following two sets of conditions holds for both
k=A and k= B:

(i.a) The function gk(·) is weakly concave, and (i.b) the random variables σ̃k and ṽk
are weakly positively affiliated.

(ii.a) The function gk(·) is weakly convex, and (ii.b) the random variables σ̃k and ṽk
are weakly negatively affiliated.21

Below we will prove the following claim.

Claim 1. Assume Condition TP-extended holds. Then both the profit-maximizing
(h= P) and the welfare-maximizing (h = W ) rules discriminate only along the valua-
tion dimension (that is, shk(vk�σk) = shk(vk�σ

′
k) for any k = A�B, vk ∈ Vk, σk�σ ′

k ∈ �k,
h=W�P) and are threshold rules. That is, there exists a scalar ωhk ∈ [vk� vk] and a nonin-
creasing function thk : Vk → Vl such that, for any θk = (vk�σk) ∈�k, k=A�B,

shk(vk�σk)=
{ [thk(vk)� vl] ×�l if vk ∈ [ωhk�vk]
∅ otherwise.

(9)

The case where salience is a deterministic monotone function of the valuation is
clearly a special case of affiliation. It is then immediate that the above claim implies the
result in Proposition 1.

To establish the claim, we start by observing that if ϕhk(vk) ≥ 0 for k = A�B, then
it is immediate from (4) that h-optimality requires that each agent from each side be
matched to all agents from the other side, in which case shk(θk)=�l for all θk ∈�k. This
is obviously a threshold rule.

Thus consider the situation where ϕhk(vk) < 0 for some k ∈ {A�B}. Define �h+
k ≡

{θk = (vk�σk) : ϕhk(vk)≥ 0} as the set of types θk whose ϕhk value is nonnegative, and de-

fine�h−
k ≡ {θk = (vk�σk) : ϕhk(vk) < 0} as the set of types with strictly negative ϕhk values.

21See Milgrom and Weber (1982) for a formal definition of affiliation.
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Let s′
k(·) be any implementable matching rule. We will show that when Condi-

tion TP-extended holds, starting from s′
k(·), one can construct another implementable

matching rule ŝk(·) that satisfies the threshold structure described in (9) and that weakly
improves upon the original in terms of the platform’s objective.

The proof proceeds as follows. First, we establish a couple of lemmas that will be
used throughout the rest of the proof. We then consider separately the two sets of prim-
itive conditions covered by Condition TP-extended.

Lemma 2. A mechanismM is incentive compatible only if, with the exception of a count-
able subset of Vk, |sk(vk�σk)|l = |sk(vk�σ ′

k)|l for all σk�σ ′
k ∈ �k, k=A�B.

Proof. To see this, note that incentive compatibility requires that |sk(vk�σk)|l ≥
|sk(v′

k�σ
′
k)|l for any (vk�σk) and (v′

k�σ
′
k) such that vk ≥ v′

k. This in turn implies that
E[|sk(vk� σ̃k)|l] must be nondecreasing in vk, where the expectation is with respect to σ̃k
given vk. Now at any point vk ∈ Vk at which |sk(σk�vk)|l depends on σk, the expectation
E[|sk(σ̃k� vk)|l] is necessarily discontinuous in vk. Because monotone functions can be
discontinuous at most over a countable set of points, this means that the intensity of the
matching set may vary with σk only over a countable subset of Vk. �

The next lemma introduces a property for arbitrary random variables that will turn
out to be useful to establish the results.

Definition 4 (Monotone concave/convex order). Let F be a probability measure on
the interval [a�b] and let z1� z2 : [a�b] → R be two random variables defined over [a�b].
We say that z2 is smaller than z1 in the monotone concave order if E[g(z2(ω̃))] ≤
E[g(z1(ω̃))] for any weakly increasing and weakly concave function g : R → R. We say
that z2 is smaller than z1 in the monotone convex order if E[g(z2(ω̃))] ≤ E[g(z1(ω̃))] for
any weakly increasing and weakly convex function g : R→R.

Lemma 3. (i) Suppose that z1� z2 : [a�b] → R+ are nondecreasing and that z2 is smaller
than z1 in the monotone concave order. Then for any weakly increasing and weakly
concave function g : R → R and any weakly increasing and weakly negative func-
tion h : [a�b] →R−, E[h(ω̃) · g(z1(ω̃))] ≤ E[h(ω̃) · g(z2(ω̃))].

(ii) Suppose that z1� z2 : [a�b] → R+ are nondecreasing and that z2 is smaller than z1

in the monotone convex order. Then for any weakly increasing and weakly con-
vex function g : R → R and any weakly increasing and weakly positive function
h : [a�b] → R+, E[h(ω̃) · g(z1(ω̃))] ≥ E[h(ω̃) · g(z2(ω̃))].

Proof. Consider first the case where z2 is smaller than z1 in the monotone concave or-
der, g is weakly increasing and weakly concave, and h is weakly increasing and weakly
negative. Let (hn)n∈N be the family of weakly increasing and weakly negative step func-
tions hn : [a�b] → R, where n is the number of steps. Because z2 is smaller than z1 in the
monotone concave order, the inequality in the lemma is obviously true for any one-step
negative function h1. Induction then implies that it is also true for any n-step negative
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function hn, any n ∈ N. Because the set of weakly increasing and weakly negative step
functions is dense (in the topology of uniform convergence) in the set of weakly increas-
ing and weakly negative functions, the result follows. Similar arguments establish part
(ii) in the lemma. �

The rest of the proof considers separately the two sets of primitive conditions cov-
ered by Condition TP-extended.

Case 1. Consider markets in which the following primitive conditions jointly hold for
k=A�B: (a) the functions gk(·) are weakly concave; (b) the random variables σ̃k and ṽk
are weakly positively affiliated.

Let s′
k(·) be the original rule and for any θk ∈�h+

k , let t̂k(vk) be the threshold defined
as follows:

(i) If |s′
k(θk)|l ≥ |�h+

l |l, then let t̂k(vk) be such that

∣∣[t̂k(vk)� vl] ×�l
∣∣
l
= |s′

k(θk)|l�

(ii) If |s′
k(θk)|l ≤ |�h+

l |l = |�l|l, then t̂k(vk)= vl.
(iii) If 0 < |s′

k(θk)|l ≤ |�h+
l |l < |�l|l, then let t̂k(vk) = rhl (note that in this case rhl ∈

(vl� vl)).

Now apply the construction above to k=A�B and consider the matching rule ŝk(·) such
that

ŝk(θk)=
{

[t̂k(vk)� vl] ×�l ⇔ θk ∈�h+
k

{(vl�σl) ∈�+
l : t̂l(vl)≤ vk} ⇔ θk ∈�h−

k �

By construction, ŝk(·)k is implementable. Moreover, gk(|ŝk(θk)|l) ≥ gk(|s′
k(θk)|l) for all

θk ∈�h+
k , implying that for k=A�B,

∫
�h+
k

ϕhk(vk) · gk(|ŝk(vk�σk)|l) d�k ≥
∫
�h+
k

ϕhk(vk) · gk(|s′
k(σk�vk)|l) d�k� (10)

Below, we show that the matching rule ŝk(·) also reduces the costs of cross-subsidization,
relative to the original matching rule s′

k(·). That is,

∫
�h−
k

ϕhk(vk) · gk(|s′
k(vk�σk)|l) d�k ≤

∫
�h−
k

ϕhk(vk) · gk(|ŝk(vk�σk)|l) d�k� (11)

We start with the following result.

Lemma 4. Consider the two random variables z1� z2 : [vk� rhk ] → R+ given by z1(vk) ≡
Eσ̃k [|s′

k(vk� σ̃k)|l|vk] and z2(vk) ≡ Eσ̃k [|ŝk(vk� σ̃k)|l|vk], where the distribution over
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[vk� rhk ] is given by Fk(vk)/Fk(rhk). Then z2 is smaller than z1 in the monotone concave
order.

Proof. From (i) the construction of ŝk(·), (ii) the assumption of positive affiliation be-
tween valuations and salience, (iii) the fact that the measure Fk(vk) is absolute con-
tinuous with respect to the Lebesgue measure, and (iv) Lemma 2, we have that for all
x ∈ [vk� rhk ], ∫ x

vk

∫
�k

|s′
k(vk�σk)|l d�k ≥

∫ x

vk

∫
�k

|ŝk(vk�σk)|l d�k

or, equivalently, ∫ x

vk

z1(vk)dFk(vk)≥
∫ x

vk

z2(vk)dFk(vk)�

The result in the lemma clearly holds if for all vk ∈ [vk� rhk ], z1(vk) ≥ z2(vk). Thus

consider the case where z1(vk) < z2(vk) for some vk ∈ [vk� rhk ], and denote by [v̇1
k� v̇

2
k],

[v̇3
k� v̇

4
k], [v̇5

k� v̇
6
k], . . . the collection of T (where T ∈ N ∪ {∞}) subintervals of [vk� rhk ] in

which z1(vk) < z2(vk). Because
∫ rhk
vk
z1(vk)dFk(vk) ≥ ∫ rhk

vk
z2(vk)dFk(vk), it is clear that

T ≡ ⋃T−1
t=0 [v̇2t+1

k � v̇2t+2
k ] is a proper subset of [vk� rhk ]. Now construct ż2(·) on the domain

[vk� rhk ] so that

(a) ż2(vk)= z1(vk) < z2(vk) for all vk ∈ T

(b) z2(vk) ≤ ż2(vk) = αz1(vk) + (1 − α)z2(vk) ≤ z1(vk), where α ∈ [0�1] for all vk ∈
[vk� rhk ] \ T ,

(c)
∫
[vk�rhk ]\T {ż2(vk)− z2(vk)}dFk(vk)= ∫

T {z2(vk)− z1(vk)}dFk(vk).

Because
∫ rhk
vk
z1(vk)dFk(vk)≥ ∫ rhk

vk
z2(vk)dFk(vk), there always exists some α ∈ [0�1] such

that (b) and (c) hold. From the construction above, ż2(·) is weakly increasing and

∫ rhk

vk

ż2(vk)dFk(vk)/Fk(r
h
k)=

∫ rhk

vk

z2(vk)dFk(vk)/Fk(r
h
k)� (12)

This implies that for all weakly concave and weakly increasing functions g :R→ R,

∫ rhk

vk

g(z2(vk))dFk(vk)/Fk(r
h
k) ≤

∫ rhk

vk

g(ż2(vk))dFk(vk)/Fk(r
h
k)

≤
∫ rhk

vk

g(z1(vk))dFk(vk)/Fk(r
h
k)�

where the first inequality follows from the weak concavity of g(·) along with (12), while
the second inequality follows from the fact that ż2(vk) ≤ z1(vk) for all vk ∈ [vk� rhk ] and
g(·) is weakly increasing. �
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We are now ready to prove inequality (11). The results above imply that

∫
�h−
k

ϕhk(vk) · gk(|s′
k(vk�σk)|l) d�k =

∫ rhk

vk

ϕhk(vk) ·Eσ̃k[gk(|s′
k(vk� σ̃k)|l)|vk]dFk(vk)

=
∫ rhk

vk

ϕhk(vk) · gk(z1(vk))dFk(vk)

= Fk(r
h
k) ·E[

ϕhk(vk) · gk(z1(vk))|vk ≤ rhk
]

≤ Fk(r
h
k) ·E[

ϕhk(vk) · gk(z2(vk))|vk ≤ rhk
]

=
∫ rhk

vk

ϕhk(vk) · gk(Eσ̃k [|ŝk(vk� σ̃k)|l|vk])dFk(vk)

=
∫
�h−
k

ϕhk(vk) · gk(|ŝk(vk�σk)|l) d�k�

The first equality follows from changing the order of integration. The second equality
follows from the fact that, since s′

k(·) is implementable, gk(|s′
k(vk�σk)|l) is invariant in

σk except over a countable subset of [vk� rhk ], as shown in Lemma 2. The first inequality
follows from part (i) of Lemma 3. The equality in the fifth line follows again from the fact
that, by construction, ŝk(·) is implementable, and hence invariant in σk except over a
countable subset of [vk� rhk ]. The series of equalities and inequalities above establishes
(11), as we wanted to show.

Combining (10) with (11) establishes the result that the threshold rule ŝk(·) improves
upon the original rule s′

k(·) in terms of the platform’s objective, thus proving the result
in Claim 1 for the case of markets that satisfy conditions (i.a) and (i.b) in Condition TP-
extended.

Next, consider markets satisfying conditions (ii.a) and (ii.b) in Condition TP-
extended.

Case 2. Consider markets in which the following primitive conditions jointly hold for
k =A�B: (a) the functions gk(·) are weakly convex; (b) the random variables σ̃k and ṽk
are weakly negatively affiliated.

Again, let s′
k(·) be any (implementable) rule and for any θk ∈ �h−

k , let t̂k(vk) be the
threshold defined as follows:

(i) If |�l|l > |s′
k(θk)|l ≥ |�h+

l |l > 0, then let t̂k(vk) = rhl (note that in this case rhl ∈
(vl� vl)).

(ii) If |s′
k(θk)|l ≥ |�h+

l |l = 0, then let t̂k(vk)= vl.
(iii) If |s′

k(θk)|l = |�h+
l |l = |�l|l, then t̂k(vk)= vl.

(iv) If 0 ≤ |s′
k(θk)|l < |�h+

l |l, then let t̂k(vk) be such that∣∣[t̂k(vk)� vl] ×�l
∣∣
l
= |s′

k(θk)|l�
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Now apply the construction above to k=A�B and consider the matching rule ŝk(·) such
that

ŝk(θk)=
{
�h+
l ∪ {(vl�σl) ∈�h−

l : t̂l(vl)≤ vk} ⇔ θk ∈�h+
k

[t̂k(vk)� vl] ×�l ⇔ θk ∈�h−
k �

By construction, ŝk(·)k is monotone and invariant in σk and hence implementable.
Moreover, we have that |ŝk(θk)|l ≤ |s′

k(θk)|l for all θk ∈ �h−
k . This implies that, for

k=A�B, ∫
�h−
k

ϕhk(vk) · |ŝk(vk�σk)|l d�k ≥
∫
�h−
k

ϕhk(vk) · |s′
k(vk�σk)|l d�k� (13)

The arguments below show that the new matching rule ŝk(·), relative to s′
k(·), also

increases the surplus from the positive ϕhk(vk) agents, k=A�B (recall that, by assump-
tion, there exists at least one side k ∈ {A�B} for which ϕhk(vk) > 0 for vk high enough,

h= P�W ). That is, for any side k ∈ {A�B} for which �h+
k �=∅,∫

�h+
k

ϕhk(vk) · |ŝk(vk�σk)|l d�k ≥
∫
�h+
k

ϕhk(vk) · |s′
k(vk�σk)|l d�k� (14)

We start with the following result.

Lemma 5. Consider the two random variables z1� z2 : [rhk� vk] → R+ given by z1(vk) ≡
Eσ̃k [|ŝk(vk� σ̃k)|l|vk] and z2(vk) ≡ Eσ̃k [|s′

k(vk� σ̃k)|l|vk], where the distribution over
[rhk� vk] is given by (Fvk(vk)−Fvk(rhk))/(1−Fvk(rhk)). Then z2 is smaller than z1 in the mono-
tone convex order.

Proof. From (i) the construction of ŝk(·), (ii) the assumption of negative affiliation be-
tween valuations and salience, (iii) the fact that the measure Fk(vk) is absolute con-
tinuous with respect to the Lebesgue measure, and (iv) Lemma 2, we have that for all
x ∈ [rhk� vk], ∫ vk

x

∫
�k

|ŝk(vk�σk� )|l d�k ≥
∫ vk

x

∫
�k

|s′
k(vk�σk)|l d�k�

or, equivalently, ∫ vk

x
z1(vk)dFk(vk)≥

∫ vk

x
z2(vk)dFk(vk)�

The result in the lemma clearly holds if for all vk ∈ [rhk� vk], z1(vk) ≥ z2(vk). Thus
consider the case where z1(vk) < z2(vk) for some vk ∈ [rhk� vk] and denote by [v̇1

k� v̇
2
k],

[v̇3
k� v̇

4
k], [v̇5

k� v̇
6
k], . . . the collection of T (where T ∈ N ∪ {∞}) subintervals of [rhk� vk] in

which z1(vk) < z2(vk). Because
∫ vk
rhk
z1(vk)dFk(vk) ≥ ∫ vk

rhk
z2(vk)dFk(vk), it is clear that

T ≡ ⋃T−1
t=0 [v̇2t+1

k � v̇2t+2
k ] is a proper subset of [rhk� vk]. Now construct ż2(·) on [rhk� vk] so

that

(a) ż2(vk)= αz1(vk)+ (1 − α)z2(vk) < z1(vk) for all vk ∈ [rhk� vk] \ T ,
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(b) ż2(vk)= z2(vk) for all vk ∈ T ,

(c)
∫
[rhk�vk]\T {ż2(vk)− z2(vk)}dFk(vk)= ∫

T {z2(vk)− z1(vk)}dFk(vk).

Because
∫ vk
rhk
z1(vk)dFk(vk)≥ ∫ vk

rhk
z2(vk)dFk(vk), there always exists some α ∈ [0�1] such

that (b) and (c) hold. From the construction above, ż2(·) is weakly increasing and∫ vk

rhk

ż2(vk)dFk(vk)=
∫ vk

rhk

z1(vk)dFk(vk)�

This implies that for all weakly increasing and weakly convex functions g : R→R,∫ vk

vk

g(z2(vk))dFk(vk)≤
∫ vk

vk

g(ż2(vk))dFk(vk)≤
∫ vk

vk

g(z1(vk))dFk(vk)�

where the first inequality follows the fact that z2(vk)≤ ż2(vk) for all vk ∈ [rhk� vk] and g(·)
is weakly increasing, while the second inequality follows from the construction of ż2(vk)

and the weak convexity of g(·). �

We are now ready to prove inequality (14). The results above imply that∫
�h+
k

ϕhk(vk) · gk(|s′
k(vk�σk)|l) d�k =

∫ vk

rhk

ϕhk(vk) ·Eσ̃k [gk(|s′
k(vk� σ̃k)|l)|vk]dFk(vk)

=
∫ vk

rhk

ϕhk(vk) · gk(z2(vk))dFk(vk)

= (1 − Fk(rhk)) ·E[
ϕhk(ṽk) · gk(z2(ṽk))|vk ≥ rhk

]
≤ (1 − Fk(rhk)) ·E[

ϕhk(vk) · gk(z1(vk))|vk ≥ rhk
]

=
∫ vk

rhk

ϕhk(vk) · gk(z1(vk))dFk(vk)

=
∫ vk

rhk

ϕhk(vk) · gk(Eσ̃k [|ŝk(vk� σ̃k)|l|vk])dFk(vk)

=
∫
�h+
k

ϕhk(vk) · gk(|ŝk(σk�vk)|l) d�k�

The first equality follows from changing the order of integration. The second equality
follows from the fact that, since s′

k(·) is implementable, gk(|s′
k(vk�σk)|l) is invariant in

σk except over a countable subset of [rhk� vk], as shown in Lemma 2. The first inequality
follows from part (ii) of Lemma 3. The equality in the last line follows again from the fact
that, by construction, ŝk(·) is implementable, and hence invariant over σk, except over
a countable subset of [rhk� vk]. The series of equalities and inequalities above establishes
(14), as we wanted to show.

Combining (13) with (14) establishes that the threshold rule ŝk(·) improves upon the
original rule s′

k(·) in terms of the platform’s objective, thus proving the result in Claim 1
under the conditions in part (ii) of Condition TP-extended. �
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Proof of Proposition 2. We start with the following lemma, which establishes the
first part of the proposition.

Lemma 6. Assume Conditions TP and MR hold. For h = W�P , the h-optimal match-
ing rule is such that thk(vk) = vl for all vk ∈ Vk if hk(vk� vl) ≥ 0 and entails separation
otherwise.

Proof. The proof considers separately the following three different cases.

• First, consider the case whereϕhk(vk)≥ 0 for k=A�B, implying thathk(vk� vl)≥ 0.
Because valuations (virtual valuations) are all nonnegative, welfare (profits) is
(are) maximized by matching each agent from each side to all agents from the
other side, meaning that the optimal matching rule employs a single complete
network.

• Next consider the case where ϕhk(vk) < 0 for k =A�B, so that hk(vk� vl) < 0. We
then show that, starting from any nonseparating rule, the platform can strictly
increase its payoff by switching to a separating rule. To this purpose, let ω̂hk denote
the threshold type corresponding to the nonseparating rule so that agents from
side k are excluded if vk < ω̂hk and are otherwise matched to all agents from side l
whose valuation is above ω̂hl otherwise.

First suppose that, for some k ∈ {A�B}, ω̂hk > rhk , where we recall that rhk ≡
inf{vk ∈ Vk : ϕhk(vk)≥ 0}. The platform could then increase its payoff by switching
to a separating rule that assigns to each agent from side k with valuation vk ≥ ω̂hk
the same matching set as the original matching rule while it assigns to each agent
with valuation vk ∈ [rhk� ω̂hk] the matching set [v̂#

l � vl], where v̂#
l ≡ max{rhl � ω̂hl }.

Next, suppose that ω̂hk < r
h
k for both k=A�B. Starting from this nonseparating

rule, the platform could then increase its payoff by switching to a separating rule
s♦
k (·) such that, for some k ∈ {A�B},22

s♦
k (vk)=

⎧⎪⎨
⎪⎩

[ω̂hl � vl] ⇔ vk ∈ [rhk� vk]
[rhl � vl] ⇔ vk ∈ [ω̂hk� rhk ]
∅ ⇔ vk ∈ [vk� ω̂hk]�

The new matching rule improves on the original one because it eliminates all
matches between agents whose valuations (virtual valuations) are both negative.

Finally, suppose that ω̂hk = rhk for some k ∈ {A�B}, whereas ω̂hl ≤ rhl for l �= k. The
platform could then do better by switching to the separating rule

s#
k (vk)=

⎧⎪⎨
⎪⎩

[ω̂hl � vl] ⇔ vk ∈ [rhk� vk]
[rhl � vl] ⇔ vk ∈ [ω̂#

k � r
h
k ]

∅ ⇔ vk ∈ [vk� ω̂#
k ]�

By setting the new exclusion threshold ω̂#
k sufficiently close to (but strictly below)

rhk , the platform increases its payoff. In fact, the marginal benefit of increasing

22The behavior of the rule on side l is then pinned down by reciprocity.



Theoretical Economics 11 (2016) Many-to-many matching and price discrimination 1041

the quality of the matching sets of those agents from side l whose ϕhl value is pos-
itive more than offsets the marginal cost of getting on board a few more agents
from side k whose ϕhk value is negative, but sufficiently small.23 Note that for this
network expansion to be profitable, it is essential that the new agents from side k
that are brought “on board” be matched only to those agents from side l whose ϕhl
value is positive, which requires employing a separating rule.

• Finally, suppose that ϕhl (vl) < 0 ≤ ϕhk(vk). First suppose that hk(vk� vl) ≥ 0 and
that the matching rule is different from a single complete network (i.e., thk(vk) > vl
for some vk ∈ Vk). Take an arbitrary point vk ∈ [vk� vk] at which the function thk(·) is
strictly decreasing in a right neighborhood of vk. Consider the effect of a marginal
reduction in the threshold thk(vk) around the point vl = thk(vk). This is given by
hk(vk� vl). Next note that, given any interval [v′

k� v
′′
k] over which the function thk(·)

is constant and equal to vl, the marginal effect of decreasing the threshold be-

low vl for any type vk ∈ [v′
k� v

′′
k] is given by

∫ v′′k
v′k

[hk(vk� vl)]dvk. Last, note that

sign{hk(vk� vl)} = sign{ψhk(vk) + ψhl (vl)}. Under Condition MR, this means that
hk(vk� vl) > 0 for all (vk� vl). The results above then imply that the platform can in-
crease its objective by decreasing the threshold for any type for which thk(vk) > vl,
proving that a single complete network is optimal.

Next suppose that hk(vk� vl) < 0 and that the platform employs a nonseparating
rule. First suppose that such a rule entails full participation (that is, ω̂hl = vl or,
equivalently, thk(vk) = vl). The fact that hk(vk� vl) < 0 implies that the marginal
effect of raising the threshold thk(vk) for the lowest type on side k, while leaving the
threshold untouched for all other types, is positive. By continuity of the marginal
effects, the platform can then improve its objective by switching to a separating
rule that is obtained by increasing thk(·) in a right neighborhood of vk while leaving
thk(·) untouched elsewhere.

Next consider the case where the original rule excludes some agents (but assigns
the same matching set to each agent whose valuation is above ω̂hk). From the same
arguments as above, for such a rule to be optimal, it must be that ω̂hl < r

h
l and

ω̂hk = vk, with ω̂hl satisfying the first-order condition

ĝl(vk) ·ϕhl (ω̂hl )− ĝ′
k(ω̂

h
l ) ·

∫ vk

vk

ϕhk(vk)dF
v
k(vk)= 0�

This condition requires that the total effect of a marginal increase of the size
of the network on side l (obtained by reducing the threshold thk(vk) below ω̂hl
for all types vk) be zero. This rewrites as

∫ vk
vk

[hk(vk� ω̂hl )]dvk = 0. Because

sign{hk(vk� ω̂hl )} = sign{ψhk(vk) + ψhl (ω̂
h
l )}, under Condition MR this means that

there exists a v#
k ∈ (vk� vk) such that

∫ vk
v#
k

hk(vk� ω̂
h
l )dvk > 0. This means that there

23To see this, note that, starting from ω̂#
k = rhk , the marginal benefit of decreasing the threshold ω̂#

k

is −ĝ′
l(r

h
k)

∫ vl
rhl
ϕhl (vl)dF

v
l (vl) > 0, whereas the marginal cost is given by −ĝk(rhl ) · ϕhk(rhk)f vk(rhk) = 0 since

ϕhk(r
h
k)= 0.
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exists a ω#
l < ω̂

h
l such that the platform could increase its payoff by switching to

the separating rule

shk(vk)=
{

[ω#
l � vl] ⇔ vk ∈ [v#

k � vk]
[ω̂hl � vl] ⇔ vk ∈ [vk� v#

k ]�
We conclude that a separating rule is optimal when hk(vk� vl) < 0. �

The rest of the proof shows that when, in addition to Conditions TP and MR,
hk(vk� vl) < 0, then the optimal separating rule satisfies properties (i) and (ii) in the
proposition.

To see this, note that the h-optimal matching rule solves the program (which we call
the full program (PF ))

PF : max{ωk�tk(·)}k=A�B

∑
k=A�B

∫ vk

ωk

ĝk(tk(vk)) ·ϕhk(vk) · dFvk(vk)

subject to the following constraints for k� l ∈ {A�B}, l �= k,

tk(vk)= inf{vl : tl(vl)≤ vk} (15)

tk(·) weakly decreasing (16)

and tk(·) : [ωk�vk] → [ωl�vl] (17)

with ωk ∈ [vk� vk] and ωl ∈ [vl� vl]. Constraint (15) is the reciprocity condition, rewritten
using the result in Proposition 1. Constraint (16) is the monotonicity constraint required
by incentive compatibility. Finally, constraint (17) is a domain–codomain restriction
that requires the function tk(·) to map each type on side k that is included in the network
into the set of types on side l that is also included in the network.

Because hk(vk� vl) < 0, it must be that rhk > vk for some k ∈ {A�B}. Furthermore,
from the arguments in the proof of Lemma 6 above, at the optimum, ωhk ∈ [vk� rhk ]. In
addition, whenever rhl > vl, then ωhl ∈ [vl� rhl ] and thk(r

h
k)= rhl . Hereafter, we will assume

that rhl > vl. When this is not the case, then ωhl = vl and thk(vk)= vl for all vk ≥ rhk , while
the optimal ωhk and thk(vk) for vk < rhk are obtained from the solution to program PFk
below by replacing rhl with vl.

Thus assume ϕhk(vk) < 0 for k=A�B. Program PF can then be decomposed into the
two independent programs PFk , k=A�B:

PFk : max
ωk�tk(·)�tl(·)

∫ rhk

ωk

ĝk(tk(vk)) ·ϕhk(vk) · dFvk(vk)+
∫ vl

rhl

ĝl(tl(vl)) ·ϕhl (vl) · dFvl (vl) (18)

subject to tk(·) and tl(·) satisfying the reciprocity and monotonicity constraints (15) and
(16), along with the constraints

tk(·) : [ωk� rhk ] → [rhl � vl]� tl(·) : [rhl � vl] → [ωk� rhk ]� (19)
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Program PFk is not a standard calculus of variations problem. As an intermediate
step, we will thus consider the auxiliary program (PAuk ), which strengthens constraint
(16) and fixes ωk = vk and ωl = vl:

PAuk : max
tk(·)�tl(·)

∫ rhk

vk

ĝk(tk(vk)) ·ϕhk(vk) · dFvk(vk)+
∫ vl

rhl

ĝl(tl(vl)) ·ϕhl (vl) · dFvl (vl) (20)

subject to (15),

tk(·)� tl(·) strictly decreasing (21)

and tk(·) : [vk� rhk ] → [rhl � vl]� tl(·) : [rhl � vl] → [vk� rhk ] are bijections� (22)

By virtue of (21), (15) can be rewritten as tk(vk) = t−1
l (vk). Plugging this into the

objective function (20) yields

∫ rhk

vk

ĝk(tk(vk)) ·ϕhk(vk) · f vk(vk)dvk +
∫ vl

rhl

ĝl(t
−1
k (vl)) ·ϕhl (vl) · f vl (vl)dvl� (23)

Changing the variable of integration in the second integral in (23) to ṽl ≡ t−1
k (vl), using

the fact that tk(·) is strictly decreasing and hence differentiable almost everywhere, and
using the fact that t−1

k (rhl )= rhk and t−1
k (vl)= vk, the auxiliary program can be rewritten

as

PAuk : max
tk(·)

∫ rhk

vk

{
ĝk(tk(vk)) ·ϕhk(vk) · f vk(vk)− ĝl(vk) ·ϕhl (tk(vk)) · f vl (tk(vk)) · t ′k(vk)

}
dvk

(24)
subject to tk(·) being continuous, strictly decreasing, and satisfying the boundary con-
ditions

tk(vk)= vl and tk(r
h
k)= rhl � (25)

Consider now the relaxed auxiliary program (PRk ) that is obtained from PAuk by dis-
pensing with the condition that tk(·) be continuous and strictly decreasing, and instead
allowing for any measurable control tk(·) : [vk� rhk ] → [rhl � vl] with bounded subdifferen-
tial that satisfies the boundary condition (25).

Lemma 7. The program PRk admits a piecewise absolutely continuous maximizer t̃k(·).

Proof. Program PRk is equivalent to the optimal control problem

PRk : max
y(·)

∫ rhk

vk

{
ĝk(x(vk)) ·ϕhk(vk) · f vk(vk)− ĝl(vk) ·ϕhl (x(vk)) · f vl (x(vk)) · y(vk)

}
dvk

subject to

x′(vk) = y(vk) a.e.� x(vk)= vl� x(rhk)= rhl
y(vk) ∈ [−K�+K] and x(vk) ∈ [rhl � vl]�
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where K is a large number. Program PRk satisfies all the conditions of the Filipov–Cesari
theorem (see Cesari 1983). By that theorem, we know that there exists a measurable
function y(·) that solves PRk . By the equivalence of PRk and PRk , it then follows that PRk
admits a piecewise absolutely continuous maximizer t̃k(·). �

Lemma 8. Consider the function η(·) implicitly defined by

hk(vk�η(vk))= 0� (26)

Let ṽk ≡ inf{vk ∈ [vk� rhk ] : (26) admits a solution}. The solution to PRk is given by

t̃k(vk)=
{
vl if vk ∈ [vk� ṽk]
η(vk) if vk ∈ (ṽk� rhk ]. (27)

Proof. From Lemma 7, we know that PRk admits a piecewise absolutely continuous
solution. Standard results from calculus of variations then imply that such a solution
t̃k(·) must satisfy the Euler equation at any interval I ⊂ [vk� rhk ] where its image t̃k(vk) ∈
(rhl � vl). The Euler equation associated with program PRk is given by (26). Condition MR
ensures that (i) there exists a ṽk ∈ [vk� rhk) such that (26) admits a solution if and only
if vk ∈ [ṽk� rhk ], (ii) that at any point vk ∈ [ṽk� rhk ] such solution is unique and given by
η(vk) = (ψhl )

−1(−ψhk(vk)), and (iii) that η(·) is continuous and strictly decreasing over
[ṽk� rhk ].

When ṽk > vk, (26) admits no solution at any point vk ∈ [vk� ṽk], in which case
t̃k(vk) ∈ {rhl � vl}. Becauseϕhk(vk) < 0 for all vk ∈ [vk� ṽk] and because ĝk(·) is decreasing, it
is then immediate from inspecting the objective (24) that t̃k(vk)= vl for all vk ∈ [vk� ṽk].

It remains to show that t̃k(vk)= η(vk) for all vk ∈ [ṽk� rhk ]. Because the objective func-
tion in PRk is not concave in (tk� t ′k) for all vk, we cannot appeal to standard sufficiency
arguments. Instead, using the fact that the Euler equation is a necessary optimality con-
dition for interior points, we will prove that t̃k(vk) = η(vk) by arguing that there is no
function t̂k(·) that improves on t̃k(·) and such that t̂k(·) coincides with t̃k(·) except on an
interval (v1

k� v
2
k)⊆ [ṽk� rhk ] over which t̂hk(vk) ∈ {rhl � vl}.

To see that this is true, fix an arbitrary (v1
k� v

2
k) ⊆ [ṽk� rhk ] and consider the problem

that consists in choosing optimally a step function t̂k(·) : (v1
k� v

2
k) → {rhl � vl}. Because

step functions are such that t̂ ′k(vk)= 0 at all points of continuity and because ϕhk(vk) < 0
for all vk ∈ (v1

k� v
2
k), it follows that the optimal step function is given by t̂k(vk)= vl for all

vk ∈ (v1
k� v

2
k). Notice that the value attained by the objective (24) over the interval (v1

k� v
2
k)

under such a step function is zero. Instead, an interior control tk(·) : (v1
k� v

2
k)→ (rhl � vl)

over the same interval with derivative

t ′k(vk) <
ĝk(tk(vk)) ·ϕhk(vk) · f vk(vk)
ĝl(vk) ·ϕhl (tk(vk)) · f vl (tk(vk))

for all vk ∈ (v1
k� v

2
k) yields a strictly positive value. This proves that the solution to

PRk must indeed satisfy the Euler equation (26) for all vk ∈ [ṽk� rhk ]. Together with the
property established above that t̃k(vk) = vl for all vk ∈ [vk� ṽk], this establishes that the



Theoretical Economics 11 (2016) Many-to-many matching and price discrimination 1045

unique piecewise absolutely continuous function that solves PRk is the control t̃k(·) that
satisfies (27). �

Denote by max{PRk } the value of program PRk (i.e., the value of the objective (24)
evaluated under the control t̃hk(·) defined in Lemma 8). Then denote by sup{PAuk } and
sup{PFk } the supremum of programs PAuk and PFk , respectively. Note that we write sup
rather than max as, a priori, a solution to these problems might not exist.

Lemma 9. We have sup{PFk } = sup{PAuk } = max{PRk }.

Proof. Clearly, sup{PFk } ≥ sup{PAuk } for PAuk is more constrained than PFk . Next note

that sup{PFk } = sup{P̂Fk }, where P̂Fk coincides with PFk except that ωk is constrained to
be equal to vk and tk(vk) is constrained to be equal to vl. This follows from the fact
that excluding types below a threshold ω′

k gives the same value as setting tk(vk) = vl

for all vk ∈ [vk�ω′
k). That sup{P̂Fk } = sup{PAuk } then follows from the fact that any pair

of measurable functions tk(·), tl(·) satisfying conditions (15), (16), and (19) with ωk = vk
and tk(vk)= vl can be approximated arbitrarily well in theL2 norm by a pair of functions
satisfying conditions (15), (21), and (22). That max{PRk } ≥ sup{PAuk } follows from the fact
that PRk is a relaxed version of PAuk . That max{PRk } = sup{PAuk } in turn follows from the
fact that the solution t̃hk(·) to PRk can be approximated arbitrarily well in the L2 norm by
a function tk(·) that is continuous and strictly decreasing. �

From the results above, we are now in a position to exhibit the solution to PkF . Let
ωhk = ṽk, where ṽk is the threshold defined in Lemma 8. Next for any vk ∈ [ṽk� rhk ],
let thk(vk) = t̃k(vk), where t̃k(·) is the function defined in Lemma 8. Finally, given
thk(·) : [ωhk� rhk ] → [rhl � vl], let tkl (·) : [rhl � vl] → [ωhk� rhk ] be the unique function that satisfies
(15). It is clear that the triple ωhk� t

h
k(·)� thl (·) constructed in this way satisfies conditions

(15), (16), and (19), and is therefore a feasible candidate for program PFk . It is also imme-

diate that the value of the objective (18) in PFk evaluated at ωhk� t
h
k(·)� thl (·) is the same as

max{PRk }. From Lemma 9, we then conclude that ωhk� t
h
k(·)� thl (·) is a solution to PFk .

Applying the construction above to k = A�B and combining the solution to pro-
gram PFA with the solution to program PFB then gives the solution {ωhk� thk(·)}k∈{A�B} to
program PF .

By inspection, it is easy to see that the corresponding rule is maximally separating.
Furthermore, from the arguments in Lemma 8, one can easily verify that there is exclu-
sion at the bottom on side k (and no bunching at the top on side l) if ṽk > vk and bunch-
ing at the top on side l (and no exclusion at the bottom on side k) if ṽk = vk. By the
definition of ṽk, in the first case, there exists a v′

k > vk such that hk(v
′
k� vl)= 0 or, equiv-

alently, ψhk(v
′
k) + ψhl (vl) = 0. Condition MR along with the fact that sign{hk(vk� vl)} =

sign{ψhk(vk) + ψhl (vl)} then implies that hk(vk� vl) = hl (vl� vk) < 0. Hence, whenever
hk(vk� vl) = hl (vl� vk) < 0, there is exclusion at the bottom on side k and no bunching
at the top on side l. Symmetrically, hl (vl� vk) = hk(vk� vl) < 0 implies that there is ex-
clusion at the bottom on side l and no bunching at the top on side k, as stated in the
proposition.
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Next, consider the case where ṽk = vk. In this case there exists a η(vk) ∈ [rhl � vl]
such that hk(vk�η(vk)) = 0 or, equivalently, ψhk(vk)+ ψhl (η(vk)) = 0. Assume first that
η(vk) < vl. By Condition MR, it then follows that ψhk(vk) + ψhl (vl) > 0 or, equivalently,
that hk(vk� vl)= hl (vl� vk) > 0. Hence, whenever hk(vk� vl)= hl (vl� vk) > 0, there is no
exclusion at the bottom on side k and bunching at the top on side l. Symmetrically,
hl (vl� vk) = hk(vk� vl) > 0 implies that there is bunching at the top on side k and no
exclusion at the bottom on side l, as stated in the proposition.

Next, consider the case where η(vk)= vl. In this caseωhk = vk and thk(vk)= vl. This is
the knife-edge case where hk(vk� vl)= hl (vl� vk)= 0 in which there is neither bunching
at the top on side l nor exclusion at the bottom on side k. �

Proof of Proposition 4. Hereafter, we use the caret (ˆ) notation for all variables in
the mechanism M̂P corresponding to the new salience function σ̂k(vk) and continue
to denote the variables in the mechanism MP corresponding to the original function
σk(vk) without annotation. By definition, we have that ψ̂Pk(vk) ≥ ψPk(vk) for all vk ≤ rPk
while ψ̂Pk(vk)≤ψPk(vk) for all vk ≥ rPk . Recall, from the arguments in the proof of Propo-
sition 2, that for any vk < ωPk , Pk(vk� vl) < 0 or, equivalently, ψPk(vk) + ψPl (vl) < 0,
whereas for any vk ∈ (ωk� rPk ], tPk (vk) satisfies ψPk(vk)+ψPl (tPk (vk))= 0. The ranking be-
tween ψ̂Pk(·) and ψPk(·), along with the strict monotonicity of these functions then im-
plies that ω̂Pk ≤ ωPk and, for any vk ∈ [ωPk� rPk ], t̂Pk (vk) ≤ tPk (vk). Symmetrically, because
ψ̂Pk(vk)+ψPl (vl) < ψPk(vk)+ψPl (vl) for all vk > rPk , all vl, we have that t̂Pk (vk)≥ tPk (vk) for
all vk > rPk . This completes the proof of part (i) in the proposition.

Next consider part (ii). The result in part (i) implies that |ŝk(vk)|l ≥ |sk(vk)|l if and
only if vk ≤ rPk . Using (3), note that for all types with valuation vk ≤ rPk ,

�k(vk;M̂P)=
∫ vk

vk

|ŝk(x)|l dx≥�k(vk;MP)=
∫ vk

vk

|sk(x)|l dx�

Furthermore, since |ŝk(vk)|l ≤ |sk(vk)|l for all vk ≥ rPk , there exists a threshold type ν̂k >

rPk (possibly equal to vk) such that�k(vk;M̂P)≥�k(vk;MP) if and only if vk ≤ ν̂k, which
establishes part (ii) in the proposition. �

Proof of Corollary 1. Let yk(vk) ≡ |sPk(vk)|l denote the quality of the matching
set that each agent with valuation vk obtains under the original mechanism, and let
ŷk(vk) ≡ |ŝPk(vk)|l denote the corresponding quality under the new mechanism. Using

(3), for any q ∈ yk(Vk)∩ ŷk(Vk), i.e., for any q offered both underMP and M̂P ,

ρPk(q) = y−1
k (q)q−

∫ y−1
k (q)

vk

yk(v)dv and

ρ̂Pk(q) = ŷ−1
k (q)q−

∫ ŷ−1
k (q)

vk

ŷk(v)dv�
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where y−1
k (q) ≡ inf{vk : yk(vk) = q} is the generalized inverse of yk(·) and ŷ−1

k (q) =
inf{vk : ŷk(vk)= q} is the corresponding inverse for ŷk(·). We thus have that

ρPk(q)− ρ̂Pk(q)=
∫ y−1

k (q)

vk

[ŷk(v)− yk(v)]dv+
∫ ŷ−1

k (q)

y−1
k (q)

[ŷk(v)− q]dv�

From the results in Proposition 4, we know that [yk(vk)− ŷk(vk)][vk − rPk ] ≥ 0 with
yk(r

P
k )= ŷk(rPk ). Therefore, for all q ∈ yk(Vk)∩ ŷk(Vk), with q≤ yk(rPk )= ŷk(rPk ),

ρPk(q)− ρ̂Pk(q) =
∫ y−1

k (q)

vk

[ŷk(v)− yk(v)]dv−
∫ y−1

k (q)

ŷ−1
k (q)

[ŷk(v)− q]dv

=
∫ ŷ−1

k (q)

vk

[ŷk(v)− yk(v)]dv+
∫ y−1

k (q)

ŷ−1
k (q)

[q− yk(v)]dv

≥ 0�

whereas for q≥ yk(rPk )= ŷk(rPk ),

ρPk(q)− ρ̂Pk(q)=
∫ rPk

vk

[ŷk(v)− yk(v)]dv+
∫ y−1

k (q)

rPk

[ŷk(v)− yk(v)]dv

+
∫ ŷ−1

k (q)

y−1
k (q)

[ŷk(v)− q]dv

= ρPk(yk(rPk ))− ρ̂Pk(yk(rPk ))+
∫ y−1

k (q)

rPk

[ŷk(v)− yk(v)]dv

+
∫ ŷ−1

k (q)

y−1
k (q)

[ŷk(v)− q]dv

= ρPk(yk(rPk ))− ρ̂Pk(yk(rPk ))+
(∫ ŷ−1

k (q)

rPk

ŷk(v)dv− ŷ−1
k (q)q

)

−
(∫ y−1

k (q)

rPk

yk(v)dv− y−1
k (q)q

)
�

Integrating by parts, using the fact that yk(rPk )= ŷk(rPk ), and changing variables, we have
that(∫ ŷ−1

k (q)

rPk

ŷk(v)dv− ŷ−1
k (q)q

)
−

(∫ y−1
k (q)

rPk

yk(v)dv− y−1
k (q)q

)

=
(
rPk ŷk(r

P
k )−

∫ ŷ−1
k (q)

rPk

v
dŷk(v)

dv
dv

)
−

(
rPk yk(r

P
k )−

∫ y−1
k (q)

rPk

v
dyk(v)

dv
dv

)

= −
∫ q

yk(r
P
k )
(ŷ−1
k (z)− y−1

k (z))dz�
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Because ŷ−1
k (z) ≥ y−1

k (z) for z > yk(rPk ), we then conclude that the price differential

ρPk(q)− ρ̂Pk(q), which is positive at q= yk(rPk )= ŷk(rPk ), declines as q grows above yk(rPk ).

Going back to the original notation, it follows that there exists q̂k > |sPk(rPk )|l = |ŝPk(rPk )|l
(possibly equal to |ŝPk(vk)|l) such that ρ̂Pk(q)≤ ρPk(q) if and only if q≤ q̂k. This establishes
the result. �

Appendix B

This appendix complements the discussion in Section 3.1 by exhibiting an example
where threshold rules fail to be optimal when salience is nonincreasing and preferences
are strictly concave.

Example 7 (Sub-optimality of threshold rules III). Agents from sidesA andB have their
valuations drawn uniformly from VA = [0�1] and VB = [−2�0], respectively. The salience
of side-A agents is constant and normalized to 1, i.e., σA(vA)≡ 1 for all vA ∈ VA, while
the salience of the side-B agents is given by

σB(vB)=
{

1 if vB ∈ [−1�0]
8 if vB ∈ [−2�−1].

Preferences for matching intensity are linear on side B (that is, gB is the identity func-
tion), whereas preferences on sideA are given by the concave function24

gA(x)= min
{
x� 1

2

}
�

In this environment, the welfare-maximizing threshold rule is described by thresh-
old function tA(v) = tB(v) = −v, with exclusion types ωA = 0 and ωB = −1, as can
be easily verified from Proposition 2. Total welfare under the optimal threshold rule
is 1

12 . Now consider the following nonthreshold rule, which we describe by its side-A
correspondence:

sA(vA)=

⎧⎪⎨
⎪⎩

[− 9
8 �−1] if vA ∈ [ 3

4 �1]
[−1�0] if vA ∈ [ 1

2 �
3
4 ]

[−vA�0] if vA ∈ [0� 1
2 ].

It is easy to check that this rule is implementable. Total welfare under this rule equals
3

32 >
1
12 . ♦

The matching rules in this example are illustrated in Figure 3.
Intuitively, the reason why threshold rules fail to be optimal (and segmentation oc-

curs) is that they fail to maximize the benefits of cross-subsidization. Agents from side
B with valuation vB ∈ [−2�−1] are more expensive but significantly more attractive than

24That the function gA has a kink simplifies the computations but is not important for the result; the
sub-optimality of threshold rules clearly extends to an environment identical to the one in the example but
where the function gA is replaced by a sufficiently close smooth concave approximation.
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Figure 3. The welfare-maximizing rule among those with a threshold structure (left) and the
welfare-improving nonthreshold rule (right) from Example 7.

agents with valuation vB ∈ [−1�0]. That salience is decreasing in valuations (weakly on
side A, strictly on side B) per se does not make threshold rules suboptimal. Indeed, as
established in Proposition 1, were preferences for matching intensity weakly convex on
both sides, threshold rules would maximize welfare. Under concavity, however, once the
high-valuation agents from side A interact with the high-valuation agents from side B
(those with vB > −1), they no longer benefit from interacting with agents from side B
whose valuation is low (those with vB ≤ −1). This is inefficient, for those side-B agents
with a low valuation are in fact the most attractive ones from the eyes of the side-A
agents. More efficient cross-subsidization (and hence higher welfare) can be achieved
by matching high-valuations agents from sideA only to low-valuations agents from side
B (segmented matching).
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