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We define and discuss Savage games, which are ordinal games of incomplete in-
formation set in L. J. Savage’s framework of purely subjective uncertainty. Every
Bayesian game is ordinally equivalent to a Savage game. However, Savage games
are free of priors, probabilities, and payoffs. Players’ information and subjective
attitudes toward uncertainty are encoded in the state-dependent preferences over
state contingent action profiles. In the class of games we consider, player prefer-
ences satisfy versions of Savage’s sure-thing principle and small event continuity
postulate. Savage games provide a tractable framework for studying attitudes to-
ward uncertainty in a strategic setting. The work eschews any notion of objective
randomization, convexity, monotonicity, or independence of beliefs. We provide a
number of examples illustrating the usefulness of the framework, including novel
results for a purely ordinal matching game that satisfies all of our assumptions and
for games for which the preferences of the players admit representations from a
wide class of decision-theoretic models.
Keywords. Subjective uncertainty, strategic interaction, strategically irrelevant
events, ambiguity, Bayesian games.

JEL classification. C72, D81.

1. Introduction

Harsanyi (1967–1968) introduced the class of Bayesian games to analyze games of in-
complete information. These are strategic interactions in which one or more of the par-
ticipants is uncertain about some relevant aspect of the game being played. As Harsanyi
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noted, participants might not know precisely what consequence will result from the ac-
tions chosen, or they may be unsure about what actions are actually available to the
other participants, or they may be uncertain about the other participants’ preferences.
His key insight was to assume that each participant deals with her incomplete informa-
tion by assigning a subjective probability distribution over all the variables not known
to her and chooses an action out of the set of those available to her that maximizes the
mathematical expectation of her payoff in terms of that probability distribution. In such
a formulation, however, the preferences of the participants rather than being primitives
of the model are instead constructed from the (cardinal) subjective probabilities and
payoffs. Moreover, such a subjective expected utility representation necessarily rules
out behavior that can accommodate nonneutral attitudes toward ambiguity.

In this paper, we suggest an alternative way to model the strategic interaction of
a finite number of players in the presence of purely subjective uncertainty. To do so,
we adopt the framework of Savages’s theory of decision-making under uncertainty, and
adapt it to allow for strategic interaction among the players. In the process, we introduce
a new class of games, denoted Savage games, in which the players’ objects of choice
(strategies) are identified with Savage acts (state-contingent plans), and we propose a
solution concept that captures the idea of players lacking a strict incentive to deviate
at equilibrium. The following desiderata guide our design of a choice-based theory of
strategic interaction under subjective uncertainty:

1. Expressed in terms of preferences. Equilibrium behavior seems more basic than any
particular functional form representing utilities. Therefore, we follow the decision-
theoretic tradition and write our assumptions in terms of basic preferences.

2. Consistency with the Savage framework. In the single-player setting the class of
games reduces to Savages’s framework for individual decision-making under un-
certainty. Hence we can include generalizations of subjective expected utility such
as those allowing for nonneutral attitudes toward ambiguity, thereby allowing for
the incorporation of such attitudes in multiplayer settings.

3. Consistency with Bayesian games. The class of games includes Bayesian games
as a proper subclass. Moreover, within that subclass the solution is equivalent to
Bayesian equilibrium.

4. Theoretical consistency. The framework is sufficiently rich to accommodate as-
sumptions that guarantee the existence of equilibrium. In the sequel we show that
these assumptions are closely related to the assumptions made in models of sub-
jective expected utility and its generalizations.

5. Parsimony. The framework and the assumptions imposed therein are based on the
smallest set of elements needed to specify the strategic interaction in which the
participants facing subjective uncertainty are engaged.

With all of this in mind, our purpose in this paper is to consider a wider circle of
issues than simply the characterization of a class of preferences that admit a particular
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form of representation. Similarly, our purpose is not to provide an epistemic foundation
for decision-making in the presence of subjective strategic uncertainty.

Savages’s framework provides a natural starting point for the study of strategic in-
teractions among players in the presence of subjective uncertainty. It allows us, as well
as behooves us, to model equilibrium behavior without the usual technical parapher-
nalia of convexity or monotonicity of strategies and preferences, and the related praxis
that seems to have arisen more from considerations of analytical tractability rather than
motivated by, for example, behavioral properties of the underlying preferences.

Going beyond existence of equilibrium, the Savage games framework potentially fills
a gap in both the decision-theoretic literature and game theory by providing a purely
subjective architecture for understanding attitudes toward uncertainty and risk where
the uncertainty a decision-maker faces is generated, in part, by the behavior of other
individuals. For example, it provides a way to begin to understand incentives by individ-
uals to exploit attitudes toward ambiguity of other individuals: all of this is articulated in
a purely subjective framework unlike Azrieli and Teper (2011), Bade (2011), and Riedel
and Sass (2014).

Working with such a framework, however, poses a major challenge as it precludes
the use of most of the techniques available in the extant literature on equilibrium the-
ory. First, in a setting that does not involve any notion of objective randomization, the
lack of convexity rules out classical calculus approaches as well as the geometric anal-
ysis developed over the past century in economic theory. Second, without a natural
order structure and corresponding intrinsic notion of monotonicity, it is not possible
to use the more recent order-theoretic ideas and associated results, as in Reny (2011).
Without delving into the technical details, let us just note at this juncture, that our the-
orem for the presence of an equilibrium is crafted around the standard consequential-
ist reasoning embodied in Savage’s sure-thing principle exploiting the ability to move
from one best response to another by means of the decomposable choice property of
the preferences.

At a first glance, the way our assumptions are stated prompts the comparison be-
tween our model and standard axiomatic theories of individual choice. This immedi-
ately raises the issue of revealed preferences. We have (partially) addressed the question
of observability by making assumptions only on the preferences of each player when
keeping fixed the strategy profile of the other players. As in any game-theoretic set-
ting, however, the presence of strategic interaction aggravates the problem of observ-
ability of preferences: one may always claim that only equilibrium choices are actually
observable.

But we make no claim that our framework provides a solution to the problem of
observability of preferences in a strategic setting. Indeed, our assumptions, although
related, do not play the same role as the usual axioms in utility representation results.
Rather, they are only sufficient conditions on the ordinal ranking of alternatives faced
by players to guarantee the existence of a strategy profile secure against profitable de-
viations. Our goal is to predict the outcome of a situation where there is strategic inter-
action in the presence of subjective uncertainty. And since the equilibrium concept is
ordinal in nature, by making assumptions on the players’ ordinal ranking of alternatives,
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we are able to establish existence without resorting to any notion of objective random-
ization or convexity.

Although relevant, the question of observability of preferences in a strategic setting
is outside the scope of this paper. It is an important question regarding the decision-
theoretic foundations of game theory, and we refer the reader to the following refer-
ences that have attempted to tackle this difficult problem: Fishburn (1982), Gilboa and
Schmeidler (2003), and Aumann and Dreze (2008).

The paper is organized as follows. First, by means of a simple example, we illustrate
in Section 2 the environment and the main ideas in the model. In Section 3 we describe
and study Savage games, introducing and motivating the assumptions that underpin
our main theorem on the existence of equilibrium. In Section 4 we provide an exam-
ple of a purely ordinal matching game that satisfies all the assumptions required for our
existence result, thereby illustrating the notion of ordinal equilibrium. In Section 5 we
study games with recursive payoffs. We highlight in this section how our assumptions
and the result on the existence of equilibrium translate to Bayesian games, games with
multiple priors and games in which preferences display other forms of non-expected
utility. Section 6 contains two examples with recursive payoffs, the first a Bayesian game
and the second with (recursive) multiple priors. We conclude in Section 7 with a dis-
cussion of related work, open questions, and possible extensions of this work. In par-
ticular, we highlight a possible approach to a major unresolved question regarding the
axiomatic characterization of Bayesian games within the Savage games framework.

All the proofs can be found in the Appendix.

2. The environment and an example

Our aim in this paper is to develop an ordinal class of games for analyzing strategic
interaction involving incomplete information with purely subjective uncertainty that
eschews any a priori specification of the cardinal aspects of Bayesian games such as
utilities and/or probabilities. Instead any intrinsic attitudes toward uncertainty will be
identified (to the extent that this is possible) solely from the (ordinal) preferences of the
participants that guide the choices they make in the “play” of the game. Thus every-
thing that any of the participants may be uncertain about is encoded in a state space
that comprises a collection of mutually exclusive and exhaustive states (of the world).
As in Savage (1954), each state will be taken to be “a description of the world, leaving
no relevant aspect undescribed” (Savage 1954, p. 9). Although Savage was providing a
foundation for a theory of individual choice under uncertainty, he viewed his approach
as one that could accommodate considerable generality in terms of the degree of speci-
ficity and comprehensiveness of the description of a state of the world. Indeed one of his
(motivating) examples of what such a description could conceivably entail was “. . . [t]he
exact and entire past, present, and future history of the universe, understood in any
sense, however wide” (Savage 1954, p. 8). For any particular strategic interaction, how-
ever, we concur with Savages’s advocacy for “the use of modest little worlds, tailored
to particular contexts. . . ” (Savage 1954, p. 9). Thus the formal specification of the state
space need only be as rich as is required to accommodate the universe of things that the
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participants are not sure about and that are relevant to the specific strategic interaction
being analyzed.

We define a strategy for a player to be a state-contingent choice of action. We refer to
the collection of strategies available to that player as her strategy set. A consequence will
then be anything that may happen as a result of the actions chosen by the participants
and the state of the world that obtains. One significant feature of strategic interaction
under uncertainty that is not present in Savages’s framework for individual choice un-
der uncertainty is that, in general, different participants will have different information
about which state of the world obtains. We shall interpret the information available to
a player as corresponding to those subsets of the state space over which she can “con-
dition” her choice of strategy. That is, we shall interpret any subset of the state space as
an (information) event for this player if she is able to “deviate” from any of her available
strategies on that event to any other of her available strategies.

To illustrate these ideas, consider the following strategically interactive elaboration
of Savages’s omelet example (Savage 1954, pp. 13–15). Leonard has just broken five good
eggs into a bowl when the front doorbell to his apartment sounds. Jimmie his room-
mate comes into the kitchen and volunteers to finish making the omelet and to clean
up, allowing Leonard to go and open the door, which is not visible from the kitchen and
is far enough away from the kitchen that anything said there cannot be heard by any-
one in the kitchen. They both think the caller could be either their landlord or their
neighbor, Jane, on whom, everybody knows, Leonard has a crush. Moreover, everyone
knows that the feelings he has toward Jane are reciprocated by her. Leonard is unsure,
however, about Jimmie’s attitude toward this budding romance. In particular, he does
not know whether Jimmie is envious or happy for them. If the caller turns out to be Jane,
then Leonard must decide whether or not to invite her to come in to share their omelet.1

A sixth egg, intended for the omelet, lies unbroken beside the bowl containing the five
good eggs. Jimmie must decide either to break this egg into the bowl containing the five
good eggs or to break it into a saucer affording him the opportunity to check whether it
is rotten before adding it to the other five good eggs.

For some reason Leonard and Jimmie (must) make their respective decisions simul-
taneously. To ensure that it is only Leonard and Jimmie who have a nontrivial decision
to make, let us assume that Jane will accept for sure any invitation to come in and share
their omelet.

In this description of strategic interaction under uncertainty in which Leonard and
Jimmie are the two players, there are three things that either one or both of them are
uncertain about:

(i) whether or not the egg is rotten

(ii) whether the caller at the door is their landlord or is Jane

(iii) whether Jimmie is envious of or is happy about Leonard and Jane’s romance.

1We suppose that their relationship with their landlord although proper and polite is not one that could
be said to be “familiar” to any meaningful degree and so neither would ever consider it appropriate to invite
their landlord in to share a meal.
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As these three things are at least logically distinct, it is natural to model the uncer-
tainty with a state space that has 23 elements. For example, we could specify the state
space as

� = {0�1} × {0�1} × {0�1}�
where each ω= rst ∈� is the state in which

r =
{

1 if the sixth egg is rotten
0 if the sixth egg is good

s =
{

1 if the caller at the door is the landlord
0 if the caller at the door is Jane

t =
{

1 if Jimmie is envious of Leonard and Jane’s romance
0 if Jimmie is happy about Leonard and Jane’s romance.

From the description above we can also identify four distinct actions that may be taken
in the course of “play.” So, for example, we could take the action set A to be the four-
element set {a1� a2� a3� a4}, where action

a1 is breaking the sixth egg into the bowl containing the other five good eggs

a2 is breaking the sixth egg into a saucer for inspection

a3 is inviting the caller at the door in to share the omelet

a4 is not inviting the caller at the door in to share the omelet.

A consequence can then be associated with each (feasible) action pair and state
combination. For example, the action pair and state combination (a1� a4�111) is asso-
ciated with the consequence that results when Jimmie, who is envious of Leonard and
Jane’s romance, breaks a rotten egg into the bowl containing the other five good eggs.
This saves Jimmie the bother of having to wash an extra saucer, but in this instance at
the cost of ruining the omelet. Moreover, when Leonard opens the door, he finds it is
their landlord, to whom he does not extend an invitation to come in to join them and
share their omelet.

We take the strategies available to our players, Leonard and Jimmie, to be those map-
pings from the state space � to the action set A that are consonant with the above de-
scription of their strategic interaction under uncertainty in terms of what each player
knows and does not know and consequently what actions are available to him. For ex-
ample, if fJ denotes a strategy available to Jimmie, then its range must be a nonempty
subset of {a1� a2}, since Jimmie does not go to answer the door and so cannot invite Jane
to share the omelet, should she be the one who was ringing their front doorbell. More-
over, assuming that Jimmie knows his own feelings about Leonard and Jane’s romance,
then the only aspect of the state ω= rst on which he can condition his decision whether
to select action a1 or action a2 is the t. Notice, when he is deciding between breaking the
sixth egg into the bowl with the five good eggs or breaking it into a separate saucer, he
does not know whether the egg is rotten or good; neither does he know who is the caller
at the door.
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If we denote the set of strategies available to Jimmie by FJ , it follows from the above
description of the strategic interaction that

FJ = {fJ :� → {a1� a2} | f (00t) = f (01t) = f (10t) = f (11t)� t = 0�1}�

Correspondingly, if fL denotes an available strategy for Leonard, then it follows from
the description of the situation above that, for any state ω = rst with s = 1 (that is, the
event in which the caller at the door is the landlord), fK(ω) = a4, since we have assumed,
given the nature of their relationship with their landlord they would never contemplate
inviting him in to share a meal.2 So, if we denote the set of strategies available to Leonard
by FL, then it follows from our story above that

FL = {fL :� → {a3� a4} | f (111) = a4 and f (0s0) = f (0s1) = f (1s0) = f (1s1)� s = 0�1}�

Notice that we can associate with each strategy profile (fJ� fL) in FJ ×FL the follow-
ing mapping from states to consequences:

ω �→ (fJ(ω)� fL(ω)�ω)�

Thus, from the perspective of the analyst or modeler, the ex ante uncertainty facing
the players given they collectively choose their actions according to that strategy pro-
file is embodied in this associated state-contingent consequence. It is therefore natural
to assume that each player’s choice of strategy will be guided by her underlying prefer-
ences over state-contingent consequences that will be reflected by a binary relation de-
fined over the set of strategy profiles. Hence, to complete the specification of the ordinal
normal-form game for modeling Leonard and Jimmie’s strategic interaction under un-
certainty, requires two binary relations �J��L ⊂FJ × FL corresponding to the (ex ante)
preferences of Jimmie and Leonard, respectively, that will guide their strategy choice.

An equilibrium for this ordinal normal-form game is a strategy profile (f ∗
J � f

∗
L) for

which

(f ∗
J � f

∗
L) �J (fJ� f

∗
L) for all fJ ∈ FJ and

(f ∗
J � f

∗
L) �L (f ∗

J � fL) for all fL ∈ FL�

Notice that for the purpose of finding such an equilibrium (should one exist) there is
no need for one player to be able to express a preference between two strategy profiles
that involve different strategy choices by the other player. Although such a preference
may be plausible from the description of the strategic interaction, we note that it in-
volves comparisons across pairs of strategy profiles that cannot inform us about how

2Alternatively we could consider expanding Leonard’s strategy set to include strategies that involve him
extending an invitation to the landlord and through the specification of his preferences ensure that it would
never be a best response for him to select any strategy that involved him inviting the landlord in. However,
unless we presumed a predetermined response by the landlord this would mean the landlord would be-
come a third strategic player whose behavior we would need to consider. Moreover, our purpose here is
to illustrate how the uncertainty one player may have about the actions available to another player can be
modeled within the Savage game framework.
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that player might choose her strategy in the ordinal game. For example, for any given
strategy of Leonard’s fL ∈ FL, if Leonard had the strict preference (fJ� fL) �L (f ′

J� fL)

(where �L denotes the asymmetric component of �L), then no matter what prefer-
ences Jimmie had, this strict preference could never guide Leonard’s choice of strategy
since to move from the latter strategy profile to the former can only be achieved by a
change in strategy choice by Jimmie. Although Leonard might strictly prefer the former
to the latter, which of these two strategy profiles might be played should Leonard choose
the strategy fL is a choice that would be made by Jimmie and so presumably would be
guided by his preferences, not Leonard’s. We simply note at this juncture that the as-
sumptions we impose on the preferences of players so as to establish the existence of an
equilibrium of the ordinal game do not require any player to be able to express a pref-
erence between any pair of strategy profiles that involves a different strategy choice by
any player other than himself.

3. Savage games

Following the discussion of the previous section, we now present the formal description
of a Savage game. It is specified by the ternion

(��A�(Fi��i)
N
i=1)�

The set � denotes the common state space and A is the common nonempty action
set, which we take to be a compact metric space. The tuple (Fi��i)

N
i=1 is an N-player

ordinal game whose parameters are described below.
There are N ≥ 1 players indexed by i = 1� � � � �N . We abuse notation by having N

also denote the set {1� � � � �N}. However, we employ standard notation for the indexing
of player profiles. In particular, for any N-tuple (Zi)

N
i=1 of sets we write Z for its N-

ary Cartesian product and for each player i we write Z−i for the Cartesian product of
the tuple (Zj)j 
=i. Vectors in Z are called profiles and vectors in Z−i are called profiles
of players other than i. A profile z ∈ Z is also written as (zi� z−i), where zi is the ith
coordinate of z and z−i is the projection of z into Z−i.

Player i has a nonempty set Fi of A-valued functions on the state space � called the
strategy space. A function fi :� →A in Fi is called a strategy for player i. Let F be the set
of strategy profiles and for each i let F−i be the set of strategy profiles of players other
than i.

Player i is also associated with a binary relation �i on the set of strategy profiles
F describing her weak preferences. As usual, �i and ∼i denote the asymmetric and
symmetric parts of �i, respectively.

Our first assumption, A1, requires the preferences of the players to be complete and
transitive only with respect to each player’s own choices for a given (fixed) strategy pro-
file of the other players.

A1. For any f ∈ F and any gi�hi ∈ Fi,

(i) either (fi� f−i)�i (gi� f−i) or (gi� f−i)�i (fi� f−i), and
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(ii) if (fi� f−i)�i (gi� f−i) and (gi� f−i)�i (hi� f−i), then (fi� f−i)�i (hi� f−i).

A strategy profile f ∈ F is an equilibrium if

f �i (gi� f−i)

for all gi ∈ Fi and i ∈N .
For any Savage game (��A�(Fi��i)

N
i=1), if for each i we consider a subset of strate-

gies F̄i ⊆ Fi and set �̄i to be the restriction of �i to F̄ , then notice that, by construction,
(��A�(F̄i� �̄i)

N
i=1) is itself a Savage game. By taking appropriate restrictions of the origi-

nal game, we see that A1 has testable (revealed preference) implications for the equilib-
ria of these restrictions.

Proposition 1. If A1 holds, then for any f ∈ F and any gi ∈ Fi, f �i (gi� f−i) if and only
if f is an equilibrium of the (restricted) game (��A�(F̄j� �̄j)

N
j=1) in which F̄i = {fi� gi} and

F̄−i = {f−i}.

In a Savage game the information available to a player is encoded in the specification
of the set of strategies Fi. Following standard notation, for any subset E ⊆ � and two
functions fi� gi :� → A let giEfi be the function from � to A given by

giEfi(ω) =
{
gi(ω) if ω ∈E

fi(ω) otherwise.

We refer to the function giEfi as the gi deviation from fi conditional on E.

Information events

A set of states E ⊆� is an (information) event for player i if she can condition her choice
of strategy on E, that is, giEfi ∈ Fi for all fi� gi ∈ Fi. Denote by Fi the family of events for
player i.

One way to interpret the information structure of a player is to view the Savage game
as a dynamic game. In the first stage, each player i receives partial information about
the true state of the world, encoded in Fi, the set of information events for player i. Only
after that, in the interim stage, do players make their choice of action. Then in the last
stage, all uncertainty is resolved and the final consequence is realized.

With this interpretation of the information structures of the players in mind, the next
assumption can be viewed as being motivated by the standard consequentialist reason-
ing embodied in Savages’s sure-thing principle. It is, in fact, based on the normative
rule dynamic programming solvability introduced by Gul and Lantto (1990) in the con-
text of individual choice under risk (that is, with exogenously specified probabilities).3

Gul and Lantto highlight that although dynamic programming solvability constitutes a
weakening of Savages’s postulate P2, it still allows for a simplification of the task faced
by an individual in finding an optimal “plan of action” for a two-stage decision tree by

3Grant et al. (2000) show how this property can be translated to the Savage framework.
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allowing the player to “fold back” or “roll back” the two-stage decision tree. To illustrate
the idea, Gul and Lantto give the example of a commuter having to decide how to go to
work. The options are to walk, to drive, to bike, or to take the bus. Suppose the follow-
ing two plans are optimal: (i) drive if it rains, bike if it is sunny, and (ii) take the bus if it
rains, walk if it is sunny. Then, they argue, the following plans of actions should also be
optimal: (iii) drive if it rains, walk if it is sunny, and (iv) take the bus if it rains, bike if it
is sunny. In the setting of a Savage game this translates into the requirement that piece-
wise combinations of best responses (consistent with that player’s information) remain
a best response.

In what follows, we shall omit the quantifiers from our assumptions when they are
obvious. In particular, f is understood as an arbitrary member of F , fi and gi as an
arbitrary member of Fi, and E always denotes an event in Fi.

A2. If (fi� f−i) ∼i (gi� f−i) �i (hi� f−i) for all hi ∈ Fi, then (giEfi� f−i) ∼i (fi� f−i) for all
E ∈ Fi.

The reader will see in Section 5 that in games in which the preferences are given
by payoffs, A2 holds when a wide range of assumptions that have been studied in the
literature are satisfied. In particular and as has been already foreshadowed above, the
following proposition establishes that A2 is implied by Savages’s postulate P2.

Proposition 2. The following condition implies A2:

P2: If (fi� f−i)�i (giEfi� f−i), then (fiEgi� f−i)�i (gi� f−i).

We do not assume that the game contains constant strategies or that it is nondegen-
erate in the sense of Savage. We make, however, the following “richness” assumption on
strategies. It basically states that every state-contingent plan of action that a player can
approximate by sequences of strategies must also be a feasible strategy for that player.

A3. If En ∈ Fi is an increasing sequence of events for player i, then gi(
⋃

n E
n)fi ∈ Fi for every

fi� gi ∈ Fi.

Notice that, by construction, Fi is a collection of subsets of � (events) that contains
�, and is closed under the operations of complement and finite unions, that is, Fi is an
algebra of sets. The next proposition establishes that if assumption A3 holds, then Fi is
also closed under countable unions, that is, it is a σ-algebra.

Proposition 3. The collection of events for player i, Fi, is an algebra over �. If A3 holds,
then Fi is a σ-algebra.

When the structure of a Bayesian game is available, we have the following corollary,
which shows that Fi is precisely the smallest σ-algebra for which all player i’s strategies,
as usually defined, are measurable.
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Corollary 1. Let �i be a σ-algebra over � and let A be a compact metric space with
|A| ≥ 2. If Fi is the set of all �i-measurable functions to A, then A3 holds and Fi = �i.

We extend the concept of a Savage null event to our setting of interdependent pref-
erences. To do so, first, it is useful to define what it means for a pair of strategy profiles
to be strategically equivalent for a player.

Strategic equivalence

The strategy profiles f�g ∈ F are strategically equivalent for player i, denoted f ≈i g, if
for all hi� ĥi ∈ Fi,

(hi� f−i)�i (ĥi� f−i) ⇐⇒ (hi� g−i)�i (ĥi� g−i)�

That is, if f ≈i g, then player i’s preferences over her own strategies in Fi are the same
given the other players are choosing the profile f−i as they are given the other players
are choosing the profile g−i.

The following properties readily follow from the definition of strategic equivalence.

Corollary 2. The binary relation ≈i is an equivalence relation (that is, it is reflexive,
symmetric, and transitive).

Corollary 3. For any f ∈ F and any gi ∈ Fi, (fi� f−i) ≈i (gi� f−i) if and only if (fi� f−i) ∼i

(gi� f−i).

We shall refer to the strategic analog of a null event as a strategically irrelevant event.
An event will be deemed strategically irrelevant for a player if any deviation that player
can make conditional on that event from any strategy profile leaves that player indiffer-
ent and does not affect any other player’s preferences over her own strategies. That is,
the original strategy profile and the strategy profile resulting from that player’s deviation
are strategically equivalent for every player.

Strategically irrelevant events

An event E ∈ Fi is strategically irrelevant for player i if, for all f ∈ F and all gi ∈ Fi, we
have (giEfi� f−i) ≈j (fi� f−i) for every player j ∈N . Denote by Ni the set of all events that
are irrelevant for player i. Let Ri = Fi \ Ni be the set of strategically relevant events for
player i.

Notice that two players i� j ∈ N may share an event E ∈ Fi ∩ Fj that is strategically
irrelevant for player i but relevant for player j. We do not view this as anomalous or
inconsistent. It simply means that when conditioning on this event, no deviation by
player i has any strategic relevance for any of the players. However, there exists at least
one deviation by player j that is strategically relevant either for that player or for at least
one of the other players. Even in the context of individual choice under uncertainty,
Karni et al. (1983) note that if preferences are state-dependent, then interpreting null
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events as events that are necessarily viewed by the decision-maker as having zero prob-
ability of occurring is problematic. For example, if one of the events involves loss of life,
then its nullity could reflect the decision-maker having no strict preference about which
outcome obtains in the event she is dead, rather than her believing she has no chance
of dying.

Turning to continuity, we require the preferences of the players to be continuous
with respect to statewise converging sequences of strategy profiles. Notice that condi-
tion A4 is satisfied in continuous Bayesian games in which the payoff of the players is
computed by means of an integral.

A4. If f ni ∈ Fi, gni ∈ Fi, and f n−i ∈ F−i are sequences converging statewise to fi ∈ Fi, gi ∈ Fi,
and f−i ∈ F−i, respectively, and (gni � f

n
−i)�i (f

n
i � f

n
−i) for all n, then (gi� f−i)�i (fi� f−i).

By construction, the set of strategically irrelevant events for player i is closed with re-
spect to subsets and finite unions, that is, it is an ideal. The next proposition establishes
that, if assumption A4 holds, then Ni is also closed under countable unions, that is, it is
a σ-ideal.

Proposition 4. The collection of irrelevant events for player i, Ni, is an ideal in Fi. If A3
and A4 hold for all players, then Ni is a σ-ideal.

The next assumption is a “fullness” assumption on strategically relevant events.
A family of events S ⊆ Fi is closed if for any increasing sequence of events En in S whose
union E is an event, we have E ∈ S .

A5. There is a sequence of closed families Sm
i of events satisfying the following state-

ments:

(i) If E ∈ ⋂
m Sm

i , then E is strategically irrelevant for player i.

(ii) If En is a sequence of strategically relevant events for player i and

lim inf
n→∞ max

ω∈�
1
n

|{1 ≤ k≤ n :ω ∈Ek}| = 0�

then for each m there is n such that En ∈ Sm
i .

Assumption A5 can be interpreted as follows. Condition (i) indicates that the se-
quence Sm

i comprises families of small events forming a neighborhood base for the sub-
family of irrelevant events. The expression (1/n)|{1 ≤ k≤ n :ω ∈Ek}| is the average inci-
dence of state ω arising from the sequence of events En. Keeping that in mind, condi-
tion (ii) then implies that players understand irrelevant events to be limits of decreasing
sequences of relevant events.

Assumption A5 adapts a condition of Ryll-Nardzewski and Kelley that is sufficient
for the existence of a measure on a σ-algebra (see the addendum to Kelley 1959). An
alternative to assumption A5 would be to follow the approach taken by Arrow (1971),
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Fishburn (1970), and Villegas (1964), and construct a probability measure over a given
σ-algebra based on a qualitative probability.4 The reason we do not follow that approach
is that it entails monotonicity assumptions, which in turn imply state-independent pref-
erences. In the context of a Bayesian game, that implies that each player’s ex post pay-
off cannot depend on the players’ types, thus ruling out an important class of Bayesian
games.

The following proposition establishes the equivalence between A5 and existence of
a measure on player i’s collection of events Fi.

Proposition 5. If A3 and A4 hold for all players, then the following statements are
equivalent:

(i) Assumption A5 holds for player i.

(ii) The set Fi admits a measure πi such that πi(E)= 0 if and only if E ∈ Ni.

As an example, suppose � = [0�1]. Suppose also that for a particular player i the
set Fi is the Lebesgue subsets of �, and Ni is the collection of subsets of zero Lebesgue
measure, λ. In this case, one possibility is for the family of events Sm

i to be given by
Sm
i = {E ∈ Fi :λ(E) ≤ 1/m}. Then one example of a sequence of strategically relevant

events satisfying A5(ii) is given by {Enm}, in which Enm = [(m − 1)/n�m/n), n ≥ 1, and
m = 1� � � � � n. In this example, the measure πi whose existence is guaranteed by Propo-
sition 5 could be any measure whose collection of zero measure sets coincides with the
collection of zero Lebesgue measure sets, Ni.

The next assumption is an interdependent version of Savages’s postulate P6, which
is usually interpreted as a small event continuity property.

A6. If (fi� f−i) 
≈j (gi� f−i) for some j ∈ N , then for each hi ∈ Fi there exist events
{E1� � � � �En} such that

⋃
k E

k =� and (fi� f−i) 
≈j (hiEkgi� f−i) for all k.

As with P6, this assumption ensures that each relevant event can be split into two
disjoint relevant events. Therefore, A6 implies that the measure πi over Fi from Propo-
sition 5 is atomless.

Proposition 6. If A6 holds, then every E ∈Ri contains two disjoint events in Ri.

The following proposition asserts that, in fact, under A3 and A4, assumptions A5 and
A6 are equivalent to measure πi being atomless.

4A binary relation ≥ is a qualitative probability if

(i) ≥ is a weak order (reflexive, complete and transitive)

(ii) E ≥∅ for every event E, and

(iii) E′ ∩E = E′′ ∩E = ∅ implies [E′ ≥E′′ ⇐⇒ E′ ∪E ≥E′′ ∪E].
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Proposition 7. If A3 and A4 hold for all players, then the following statements are
equivalent:

(i) Assumptions A5 and A6 hold for player i.

(ii) The set Fi admits an atomless measure πi such that πi(E) = 0 implies E ∈ Ni.

Notice that in condition (ii) some strategically irrelevant events of a player may be
given a positive measure. The only requirement is that all events assigned zero measure
are strategically irrelevant for that player. As we shall see in the proof, since we are deal-
ing with countably additive measures, however, there exists a corresponding measure
that is positive on strategically relevant events and zero on all strategically irrelevant
events.

Our final assumption imposes a restriction on the best responses of players that is
essential for existence of equilibrium in the Savage game. It plays the role of a compact-
ness assumption in more standard equilibrium existence proofs. To be more specific,
assumption A7 requires players to be able to find best responses that are not too erratic.

Regularity of best responses

A subset of strategies Xi ⊆ Fi is said to be countably distinguished if there exists a count-
able set of states W ⊆ � such that for any distinct fi� gi ∈ Xi we have fi(ω) 
= gi(ω) for
some ω ∈W.

A7. For each i there is a set Xi ⊆ Fi of strategies satisfying the following statements:

(1) For each f ∈ F , there is gi ∈Xi satisfying (gi� f−i)�i (fi� f−i).

(2) Strategy Xi is countably distinguished and every sequence in Xi has a subsequence
converging statewise to a strategy in Xi.

The significance of A7 can be seen in some well known examples of Bayesian games
that fail to have pure-strategy equilibrium. The following example is taken from Radner
and Rosenthal (1982).5

Example 1. There are two players, 1 and 2. Each player has two actions, thus A1 =A2 =
{0�1}. Payoffs are zero sum, according to the following payoff matrix:

Player 2

Player 1

0 1
0 (1�−1) (−1�1)
1 (−1�1) (1�−1)

5Another particularly striking example is presented in Khan et al. (1999). An argument similar to the one
presented for Example 1 shows that A7 fails to hold.
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The players’ type space is the unit square [0�1]2. The players’ types are distributed
uniformly on the triangle of the unit square given by {(t1� t2) : 0 ≤ t1 ≤ t2 ≤ 1}. Radner and
Rosenthal show that this game has no pure-strategy equilibrium. At any equilibrium, for
each player i, conditional on his type being t, the probability of the other player choosing
action 0 has to be 1/2. That is, for a pair of pure strategies (f1� f2) to be an equilibrium
in this game, it is necessary and sufficient that

λ([t1�1] ∩ f−1
2 (0))

(1 − t1)
= λ([0� t2] ∩ f−1

1 (0))
t2

= 1
2

for almost every t1 and almost every t2, with λ denoting the Lebesgue measure. There-
fore, if it existed, at a pure-strategy equilibrium, the strategies played would be very er-
ratic. In fact, it is possible to construct a sequence of strategies of player 2 to which
player 1’s (essentially unique) best responses become increasingly erratic, and thus can-
not be contained in a subset of strategies of player 1 that satisfies A7. To illustrate that
statement, we provide the first few elements of one possible such erratic sequence of
strategy profiles. Consider the following sequence of strategies of player 2:

f 1
2 (t2) = 0

f 2
2 (t2) =

{
0 if t2 ∈ [0� 2

3)

1 if t2 ∈ [ 2
3 �1]

f 3
2 (t2) =

{
0 if t2 ∈ [0� 1

3)∪ ( 3
4 �1]

1 if t2 ∈ [ 1
3 �

3
4 ]

· · ·
The unique (up to a zero Lebesgue measure set) best responses of player 1 would then be

f 1
1 (t1) = 0

f 2
1 (t1) =

{
0 if t1 ∈ [0� 1

3)

1 if t1 ∈ [ 1
3 �1]

f 3
1 (t1) =

{
0 if t1 ∈ [0� 1

6)∪ ( 1
2 �1]

1 if t1 ∈ [ 1
6 �

1
2 ]

· · ·
It is possible to continue the sequence of strategy profiles {(f 1

1 � f
1
2 )� (f

2
1 � f

2
2 )� (f

3
1 � f

3
2 )� � � �}

such that each element (f n1 � f
n
2 ) has exactly n − 1 discontinuity points. Moreover, be-

cause each f n1 is the (essentially) unique best response to player 2’s strategy f n2 , for A7 to
be satisfied the entire sequence {f n1 } must be contained in X1. However, this sequence
has no convergent subsequence. ♦

Assumption A7(ii) is equivalent to saying that Xi is metrizable and compact in the
sequential topology. For clarity, we provide some examples of such spaces.

(a) Strategy Xi is a finite set.
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(b) Strategy Xi contains a countable set and its countable accumulation points.

(c) If � and A are compact metric spaces, then any closed collection of equicontinu-
ous strategies satisfies this assumption. In particular, Xi is the set of all Lipschitz-
continuous functions with common constant.6

(d) Suppose that � is the set of all continuous functions from [0�1] to R, and A is the
set of Radon measures on [0�1]. Then the set of all Radon probability measures
with the weak∗ topology has the required property.7

(e) Suppose that � = [0�1] and A = R
d . For any compact set of functions Y in L∞,

there is a selection from the equivalence classes of these functions that is compact
and metrizable in the sequential topology.8

(f) Suppose that � is a measure space with σ-algebra F , and that A is a Banach space.
This assumption is satisfied whenever Xi is a sequentially compact set of bounded
measurable functions for the topology of statewise convergence, and there is a
probability measure π on F such that if fi and gi are distinct functions in Xi, then
they differ on a set of positive π measure.

We are now ready to state the main result.

Theorem 1. If A1–A7 hold for all players, then an equilibrium exists.

The proof of Theorem 1 is in the Appendix, but we conclude this section with a brief
overview of the relevance of each assumption. We prove the theorem by showing that
the product correspondence of the players’ best responses has a fixed point. Assump-
tions A1 and A3–A5 guarantee that each player’s best response correspondence is well
defined and has a closed graph.9 Assumptions A2 and A6 guarantee that the values of
each player’s best response correspondence is path connected, which plays the role of
convexity in standard fixed point proofs.10 Finally, assumption A7 is used to show that

6A family of functions F between metric spaces is called equicontinuous if for every ε > 0 there exists
δ > 0 such that d1(x� y) < δ implies d2(f (x)� f (y)) < ε for every f ∈ F . A function f between metric spaces
is Lipschitz continuous if there exists a constant K, called Lipschitz constant, such that d2(f (x)� f (y)) <

Kd1(x� y).
7A Radon measure μ is a measure on the σ-algebra of Borel sets of a Hausdorff topological space X that

is both locally finite (every point of X has a neighborhood U for which μ(U) is finite) and inner regular
(for any Borel subset B of X , μ(B) is the supremum of μ(K) over all compact subsets K of B). The weak∗
topology on a set M of measures on a measurable space (��F) is the weakest topology such that all the
linear functionals Lf :μ �→ ∫

� f dμ for f :� →R F-measurable and bounded, are continuous.
8Let (��F�μ) be a measure space, and let A be a Banach space. Then L∞(��F;μ) is the set of (equiva-

lence classes of) essentially bounded functions from � to A endowed with the essential supremum norm:

‖f‖∞ = inf
{
c > 0 : |f (ω)| ≤ c for μ-a.e. ω

}
�

9A correspondence B :X � Y between topological spaces is said to have a closed graph if the set {(x� y) ∈
X ×Y : y ∈ B(x)} is a closed subset of X ×Y .

10A topological space X is path connected if any two given elements of it can be joined by a path, that is,
given x� y ∈X , there exists a continuous map f : [0�1] →X such that f (0) = x and f (1) = y .
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the product correspondence of best responses has a subcorrespondence whose image is
contained in a compact subset of the strategy space. Moreover, this subcorrespondence
inherits the path-connectedness and closed-graph properties of the larger best response
correspondence. Therefore, this allows us to apply the Eilenberg and Montgomery fixed
point theorem to this subcorrespondence.

4. Matching with incomplete information

To illustrate the main concepts, definitions, and structures of the framework developed
in the previous section, we present a fully specified example of a purely ordinal match-
ing process that satisfies all of our assumptions, hence establishing the existence of an
equilibrium match. This model can be viewed as an abstraction of the academic job
market or the system of academic admissions. As far as we know, there are no other
examples in the literature of incomplete information matching games without values,
beliefs, and a specification of a utility representation for the preferences of the players.

There is a finite set of firms, N = {1� � � � �N}; we denote an individual firm by i ∈ N .
There is also a finite set of workers, W = {1� � � � �W }; we denote an individual worker by
j ∈ W . The end result of the matching process in this job market for worker j is de-
noted by a pair (i� b). The first element i ∈ N ∪ {0} is the firm to which this worker is
allocated, with the interpretation that 0 corresponds to the worker not being employed
by any of the firms in the market. The second element b specifies for each worker j, the
remuneration bundle that firm i pays worker j.

To avoid dealing with measurability issues and for ease of exposition, we identify the
space B of feasible remuneration bundles with a finite subset of some Euclidean space
R
�, with � ≥ 1. As an example, one dimension could represent the salary offer toward

which workers have strictly monotone preferences. Other dimensions could be the lev-
els of health and retirement benefits. Still other dimensions could represent nonmon-
etary compensations, such as the city in which the job is to be performed. We assume
0 ∈ B and take this to be the “default bundle” offered to any worker that is allocated to
“firm” 0, as well as the default bundle offered by any firm to a worker with whom the firm
does not want to be matched.

Hence formally, an outcome of this matching game can be taken to be a mapping

θ : W �→ (N ×B)∪ {(0�0)}�

where for each worker j, θ1(j) is the firm at which worker j ends up employed and θ2(j)

is her remuneration bundle. Let � denote the (by construction, finite) set of all possible
outcomes of the matching process.

So that workers need not consider any strategic interactions when making their
choices, we assume that each worker only cares about the specifics of her own match.
That is, worker j is indifferent between any pair of outcomes θ and θ′ for which θ(j) =
θ′(j). In particular, each worker j in W is characterized by a binary relation Pj defined
on (N × B) ∪ {(0�0)} that is complete, transitive, and (so that best responses will be
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unique) asymmetric. That is, Pj is a (complete) strict preference relation. In addition,
we suppose

(0�0) Pj (i�0) for every i ∈N and every j ∈W �

Asymmetry of Pj precludes (i�0) Pj (0�0) from holding for any firm i and any worker j.
It follows in the market game described below that an “offer” of the (default) bundle 0
by a firm to a worker guarantees that this worker will not be employed by that firm. The
preference relation Pj of each worker j is taken to be common knowledge among the
market participants.

The preferences of the firms, however, are not commonly known. The uncertainty
they face at different stages of their market interactions requires us to define their pref-
erences at three different levels of information. In reverse chronological order we have
the ex post level, the interim level, and the ex ante level.

Firm i’s private information is encoded in a (measurable) signal space (�i��i), such
that each �i is a separable and complete metric space, and �i is the Borel σ-algebra.
Each (�i��i) is assumed to be rich enough to admit an atomless measure. Let � = ×i�i

denote the product of the �i’s, and let � denote the (product) Borel σ-algebra.
Let R denote the (finite) set of complete and transitive binary relations defined on �.

Given the profile of signals ω in �, each firm i’s ex post preferences over outcomes � is
given by Rω

i ∈ R. We assume that the realization of the signal ωi fully parametrizes (or
reveals) the ex post preferences of firm i, that is, Rω

i = Rω′
i whenever ωi = ω′

i. We also
assume that these preferences are measurable, that is, for each R ∈ R, the set Ti(R) =
{ωi ∈�i :R = Rω

i � for some ω−i ∈�−i} is in �i.
Let π be a probability measure on �. In this setting, this probability measure π need

not be interpreted as a (common) prior belief; rather each of its marginals πi over �i sim-
ply identifies the sets of signal realizations for firm i that are strategically irrelevant. We
further assume that each marginal πi is atomless. Notice, however, that the assumptions
we impose on this probability measure do not rule out the possibility of some correla-
tion among the realization of preferences of the firms. At the interim level, on receipt of
its signal realization ωi, firm i has a conditional preference R

ωi
i over the set Y−i of �−i-

measurable functions from �−i into �. Finally, at the beginning of the game, each firm
i aggregates these conditional preferences in the form of an ex ante preference Ri over
the set Y of �-measurable functions from � into �. Let Pωi

i (respectively, Pi) denote the
strict preference relation derived from R

ωi
i (respectively, Ri). We make two consistency

assumptions on the preferences of the firms. The first is a consistency assumption be-
tween the ex post and the interim preferences. It essentially requires that if there are
two signals of firm i, ωi and ω′

i, that reveal the same ex post preferences, then the corre-

sponding interim preferences, Rωi
i and R

ω′
i

i , cannot differ. The second assumption is a
monotonicity requirement between the interim and the ex ante preferences. Formally,
we assume that the preferences of the firms satisfy the following conditions:

(i) If Rω
i =Rω′

i , then R
ωi
i = R

ω′
i

i .
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(ii) For any y� y ′ ∈ Y , if y(ωi� ·) Rωi
i y ′(ωi� ·) for πi-almost every ωi, then y Ri y

′. More-
over, if additionally y(ωi� · ) Pωi

i y ′(ωi� · ) for every ωi ∈ T with πi(T) > 0, then
y Pi y

′.

Finally, we assume that the firms’ preferences are continuous with respect to se-
quences of strategy profiles that converge in measure. More specifically, we assume that
the following continuity condition holds:

(iii) Fix a firm i, and let yn and zn be two sequences in Y that converge in π measure
to y and z, respectively. If yn Ri z

n for every n, then y Ri z.

The matching game is played as follows. After each firm i observes ωi, both
sides of the market meet, and each firm i sends an offer of a remuneration bundle to
each worker j ∈ W . Thus the action space of firm i is BW , where for each ai ∈ BW ,
the bundle ai(j) is the one offered by firm i to worker j. For each worker j, given
the action profile a ∈ (BW )N , define her set of available actions as Aj(a) = {(0�0)} ∪
{(1� a1(j))� � � � � (N�aN(j))}. Worker j simply chooses the (unique) most preferred op-
tion from that set according to her strict preference relation Pj , regardless of what other
workers are doing. The resulting outcome is the one corresponding to the accepted
offers.

Unlike the interaction among workers, the interaction among the firms is strategic,
and can be modeled as a Savage game described by (��A�(Fi��i)i∈N) as follows. In the
game played by the firms, the common state space of the firms is �, the product space
of signal realizations of the firms. The action space of each firm is A = BW . The set of
strategies Fi available to firm i is the set of �-measurable functions from � to A, with
the (informational) restriction that fi(ωi�ω−i)= fi(ωi�ω

′
−i) for every ω−i�ω

′
−i ∈�−i.

Let φ :AN → � denote the function that maps a given profile of offers from the firms
to an outcome, determined by the decisions of the workers. That is,

φ(a) = θ ∈��

such that for each worker j in W , θ(j) ∈Aj(a) and

θ(j) Pj θ
′ for all θ′ ∈Aj(a) \ {θ(j)}�

In this Savage game, given f�g ∈ F = ×N
i=1Fi, firm i’s preferences are given by

f �i g ⇐⇒ φ ◦ f Ri φ ◦ g�

To show that the Savage game played by the firms has an equilibrium it is enough to
show it satisfies all of the assumptions A1–A7.

Clearly, assumption A1 is satisfied. To see that the assumption A2 holds, sup-
pose that (fi� f−i) ∼i (gi� f−i) �i (hi� f−i) for all hi ∈ Fi. Consistency condition (ii) im-
plies that φ ◦ (gi(ωi)� f−i) R

ωi
i φ ◦ (fi(ωi)� f−i) for πi-almost every ωi. Thus for any

event E ∈ �i, φ ◦ (giEfi(ωi)� f−i) R
ωi
i φ ◦ (fi(ωi)� f−i) for πi-almost every ωi. Apply-

ing again the consistency condition (ii) yields that φ ◦ (giEfi� f−i) Ri φ ◦ (fi� f−i), thus
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(giEfi� f−i) �i (fi� f−i), as required. By construction of the strategy sets Fi, assump-
tion A3 also holds. The continuity assumption A4 is implied by the continuity require-
ment (iii). To see that assumption A5 is satisfied, take for each firm i the collection of
events Sm

i = {E ∈ �i :πi(E) ≤ 1/m}.
To check A6, suppose that (fi� f−i) 
≈j (gi� f−i) and take any hi ∈ Fi. For each m =

1�2� � � � take a partition Em of �i such that πi(E) = 1/2m for every E ∈ Em. We claim
that there exists an n such that (fi� f−i) 
≈j (hiEgi� f−i) for every E ∈ En. Suppose not,
that is, suppose that for each m there exists Em ∈ Em such that (fi� f−i) ≈j (hiEmgi� f−i).
The sequence of strategy profiles (hiEmgi� f−i) converges in measure to (gi� f−i). By the
continuity assumption (iii), it follows that (fi� f−i) ≈j (gi� f−i), a contradiction. Finally, it
is easy to see that A7 holds by defining for each firm i the set Xi to be the set of strategies
that can be written as

fi(ωi)=
∑
R∈R

aRχTi(R)(ωi)�

with aR ∈ A. That is, Xi is the set of strategies of firm i that are constant on each subset
Ti(R) of �i. Since R, the set of ex post preferences defined on �, is a finite set, it follows
that Xi is a finitely distinguished subset of the set of strategies of firm i. Moreover, since
firm i’s interim preferences are constant on each subset Ti(R) of �i, it follows that for
each f ∈ F , there exists gi ∈Xi satisfying (gi� f−i)�i (fi� f−i). Thus A7 is satisfied.

5. Sufficient conditions on recursive payoffs

The purpose of this section is to use the Savage game framework to study a class of
games in which a player’s ex ante evaluation of strategy profiles can be expressed as a
function of her interim utility or payoff. To do this analysis, we introduce the concept
of recursive payoffs, which is a decomposition of players’ payoffs into interim utilities
and ex ante utilities. Interim utilities capture the payoff a player of fixed type gets from
her actions, given the strategy profile of other players. The ex ante utility of each player
is calculated by means of an aggregator function, which captures only attributes of in-
dividual preferences, and is independent of the strategic environment. That is, interim
utilities translate strategy profiles of other players into type-dependent utility payoffs,
whereas the aggregator function evaluates these type-dependent utility payoffs accord-
ing to each individual’s risk preferences. The canonical example is Bayesian games,
where it is always possible to express the players ex ante motivations in terms of own-
type-wise maximization of an integral function over other players’ types.

Because A7 is a game-specific assumption without an analog in the literature of indi-
vidual decision-making under uncertainty, this section focuses on assumptions A1–A6.
It is worth noting that it is easier in practice to establish assumptions A1–A6 indepen-
dently of assumption A7.

Consider a game in interim utility form specified as

((�i��i)�Ai�Vi�Wi)
N
i=1�
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where (�i��i) is the measurable space of player i’s types and Ai is a compact metric
space of player i’s actions. The space of type profiles � = ×N

i=1�i has the product algebra

�= ⊗N
i=1 �i.

Let Fi be the set of all �i-measurable strategies fi :�i → Ai. Player i is associated
with an interim utility function Vi :Ai ×F−i ×�i →R, where Vi(ai� f−i|ωi) is the interim
utility for player i whose type is ωi if she chooses action ai when the other players are
choosing their actions according to the strategy profile f−i. For any strategy profile f ∈ F

we write Vi(f ) for the real-valued function ωi �→ Vi(fi(ωi)� f−i|ωi), which we assume is
always bounded and �i-measurable.

We call a bounded and �i-measurable real-valued function αi :�i → R an interim
payoff for player i. Player i has ex ante preferences over interim payoffs expressed by
the utility function Wi that associates with each αi an ex ante utility Wi(αi) in R. The
ex ante utility Ui(f ) of player i for the strategy profile f ∈ F is given by means of the
recursive form

Ui(f ) = Wi ◦ Vi(f )�

An equilibrium is a Nash equilibrium of the normal form game (Fi�Ui)
N
i=1.

We make the following decomposition assumption on payoffs, which is essentially
the translation of A2 to this setting.

B1. For every f−i ∈ F−i and fi� gi ∈ Fi, if Ui(fi� f−i) = Ui(gi� f−i) ≥ Ui(hi� f−i) for every
hi ∈ Fi, then Ui(fiEgi� f−i) = Ui(fi� f−i) for every E ∈ Fi.

We also require that ex ante utility over strategy profiles be continuous with respect
to an atomless measure.

B2. There exists a probability distribution μ :� → [0�1] such that the following state-
ments hold:

(i) All the marginal distributions μi :�i → [0�1] of μ are atomless.

(ii) If f n is a sequence of strategy profiles that converges μ-almost everywhere to f , then
Ui(f

n) converges to Ui(f ) for all i.

Let Ā be the disjoint union of the sets Ai endowed with a consistent metric for which
it is compact. For each fi ∈ Fi let f̄i be the Ā-valued function on � given by f̄i(ω) =
fi(ωi). Define F̄i = {f̄i : fi ∈ Fi}, which yields the Savage game

(�� Ā� (F̄i��i)
N
i=1)�

where �i is given by f̄ �i ḡ if and only if Ui(f ) ≥ Ui(g) for any f̄ � ḡ ∈ F̄ .

Proposition 8. If B1 and B2 hold, then the associated Savage game satisfies A1–A6.

We now explore properties of players’ ex ante attitudes toward interim payoffs as
embodied in Wi, which guarantee that B1 is satisfied, in the presence of B2. Of course,
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Wi only depends on a player i’s own type, so behaviorally the properties that we discuss
are purely decision-theoretic, embodying the player’s attitudes toward nonstrategic un-
certainty. In this regard, these properties can be compared to the generalizations of
expected utility in the literature.

Example 2 (Dynamically consistent intertemporal payoffs). We say that the payoff Ui

is dynamically consistent if

Ui(fi� f−i)≥ Ui(gi� f−i) for every gi ∈ Fi

implies that

Vi(fi(ωi)� f−i|ωi)≥ Vi(gi(ωi)� f−i|ωi) for μi-almost every ωi and every gi ∈ Fi�

That is, after player i receives partial information about the true state of the world, she
will not want to revise a choice she made based on her ex ante payoff. We show that
dynamically consistent payoffs satisfy B1.

For a given f−i ∈ F−i, take any fi� gi ∈ Fi such that

Ui(fi� f−i) = Ui(gi� f−i)≥ Ui(hi� f−i) for every hi ∈ Fi�

Dynamic consistency implies that

Vi(fi(ωi)� f−i|ωi)= Vi(gi(ωi)� f−i|ωi) for μi-almost every ωi�

Let E = {ωi : Vi(fi(ωi)� f−i|ωi) 
= Vi(gi(ωi)� f−i|ωi)} and take any E′ ∈ �i. Then

Ui(fiE′gi� f−i) = Wi(Vi(fiE′gi� f−i)) = Wi(Vi(fi(E′∩E)gi� f−i)) = Ui(fi(E′∩E)gi� f−i)�

Since μi(E) = 0, assumption B2(ii) implies that

Ui(fi(E′∩E)gi� f−i)= Ui(gi� f−i)�

which implies the required result. ♦

Example 3 (Strictly monotone utility). Some form of monotonicity is present in nearly
all generalizations of expected utility. Using the measure from B2, if Wi is strictly mono-
tone for the marginal μi-pointwise ordering of interim payoffs, then B1 holds.

Let μ be the measure from B2. For any interim payoffs write αi ≥ βi if αi(ωi) ≥ βi(ωi)

for μi-almost all ωi. Write αi > βi if αi ≥ βi and αi(ωi) > βi(ωi) over a set of positive μi

measure. Suppose that Wi is strictly monotone, that is, Wi(αi) ≥ Wi(βi) holds whenever
αi ≥ βi and Wi(αi) > Wi(βi) holds whenever αi > βi. We show that B1 holds.

Take fi� gi ∈ Fi such that Ui(fi� f−i) = Ui(gi� f−i) ≥ Ui(hi� f−i) for every hi ∈ Fi, and
E ∈ �i. For interim payoffs αi and βi denote by αi ∨ βi and αi ∧ βi the statewise supre-
mum and infimum payoffs, and notice that strict monotonicity implies that Vi(fi� f−i)∧
Vi(gi� f−i) = Vi(f ) μi-almost everywhere. (Otherwise, for E′ = {ωi : Vi(fi(ωi)� f−i|ωi) >
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Vi(gi(ωi)� f−i|ωi)}, Vi(fiE′gi� f−i) = Vi(fi� f−i) ∨ Vi(gi� f−i) > Vi(f ) ∧ Vi(gi� f−i), which
implies that Ui(fiE′gi� f−i) > Ui(f )∧ Ui(gi� f−i).) Therefore,

Ui(f ) ≥ Ui(fiEgi� f−i) = Wi(Vi(fiEgi� f−i)) ≥ Wi(Vi(fi� f−i)∧ Vi(gi� f−i))

= Wi(Vi(f )) = Ui(f )�

which implies the required result. ♦

Example 4 (Supermodular utilities). In the presence of ambiguity aversion, preferences
over interim payoffs need not be strictly monotonic though weak monotonicity can usu-
ally be guaranteed (see, for example, Gilboa 1987). However, if Wi can be represented
by a Choquet integral and exhibits Schmeidler’s (1989) notion of uncertainty aversion,
then Wi will be supermodular (Denneberg 1994, Corollary 13.4, p. 161). In fact, weak
monotonicity and supermodularity together imply that condition B1 holds.

For any interim payoffs αi and βi denote by αi ∨ βi and αi ∧ βi the statewise
supremum and infimum payoffs. Assume that Wi is nondecreasing in the sense that
if αi(ωi) ≥ βi(ωi) for all ωi, then Wi(αi) ≥ Wi(βi). Now suppose that Wi satisfies
supermodularity:

Wi(αi ∨βi)+ Wi(αi ∧βi) ≥ Wi(αi)+ Wi(βi)�

We show that B1 holds.
Take fi� gi ∈ Fi such that Ui(fi� f−i) = Ui(gi� f−i) ≥ Ui(hi� f−i) for every hi ∈ Fi,

and E ∈ �i. Notice that supermodularity implies that Wi(Vi(fi� f−i) ∧ Vi(gi� f−i)) =
Wi(Vi(f )). Therefore,

Ui(f ) ≥ Ui(fiEgi� f−i) = Wi(Vi(fiEgi� f−i)) ≥ Wi(Vi(fi� f−i)∧ Vi(gi� f−i))

= Wi(Vi(f )) = Ui(f )�

as required. ♦

Example 5 (Decomposable choice). Moving away from explicit monotonicity, we give
a “betweenness” condition on preferences over interim payoffs that generalizes Sav-
ages’s P2 postulate and that also satisfies the property B1 above. Consider the decompos-
able choice property of Grant et al. (2000), which in this setting translates to the following
condition:

GKP: For any interim payoffs αi, βi and events E ∈ �i if Wi(αi) > Wi(βiEαi) and
Wi(αi)≥ Wi(αiEβi), then Wi(αi) > Wi(βi).

To see that this condition satisfies B1, take fi� gi ∈ Fi such that Ui(fi� f−i) = Ui(gi� f−i) ≥
Ui(hi� f−i) for every hi ∈ Fi. Notice that if Wi(Vi(f ))= Wi(Vi(gi� f−i))≥ Wi(Vi(fiEgi� f−i))

for all E ∈ �i, then it cannot be the case that Wi(Vi(f )) > Wi(Vi(giEfi� f−i)) for E ∈ �i. ♦

Example 6 (Recursive payoffs with multiple priors). Suppose that player i has a
bounded measurable payoff function

ui :A×� →R�
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where the set of action profiles A is endowed with the product Borel algebra and A×�

also has the product algebra. Suppose further that for each i, we are given a set Di of
probability measures on �. For each πi ∈ Di we write π̂i for its marginal distribution on
�i and for the distribution conditional on own types we write πi( · | · ) :�−i ×�i → [0�1],
whereby πi( · |ωi) is a probability distribution on �−i interpreted as the conditional prob-
ability distribution on ωi ∈ �i realizing.11 Player i’s ex ante utilities are of the multiple
prior form of Gilboa and Schmeidler (1989) and that Di satisfies the rectangularity prop-
erty of Epstein and Schneider (2003):

Ui(f ) = inf
πi∈Di

∫
�
ui(f (ω)�ω)dπi(ω)

= inf
πi∈Di

∫
�i

inf
νi∈Di

∫
�−i

ui(f (ω)�ω)dνi(ω−i|ωi)dπ̂i(ωi)�

With this separation we let

Vi(ai� f−i|ωi) = inf
νi∈Di

∫
�−i

ui(ai� f−i(ω−i)�ω)dνi(ω−i|ωi)

for each ai ∈Ai, f−i ∈ F−i, and ωi ∈ �i. For any interim payoff αi we let

Wi(αi)= inf
πi∈Di

∫
�i

αi(ωi)dπ̂i(ωi)�

We make three assumptions.

C1. For each ω ∈�, the function a �→ ui(a�ω) is continuous.

C2. There is a probability measure μ :� → [0�1] such that the following statements hold:

(1) Each π ∈ ⋃
i Di is absolutely continuous with respect to μ.

(2) The marginal distributions of μ over each �i are all atomless.

(3) For each i the set Di is weak∗ compact in the dual of L∞(����μ), the space of real-
valued μ-essential bounded (equivalence classes) functions on �.

C3. The marginal densities {π̂i :πi ∈Di} are mutually absolutely continuous.

Epstein and Marinacci (2007) characterize this last condition for the maxmin ex-
pected utility form in terms of a condition of Kreps (1979).

Proposition 9. If the game with multiple priors satisfies C1, C2, and C3, then the asso-
ciated game in interim utility form satisfies B1 and B2. ♦

11The existence of such a conditional distribution is always guaranteed when the underlying probability
space is a Radon space. We note that when each Di is a singleton and we are in a Bayesian game setting,
the existence of an equilibrium result in this section does not require the decomposability of priors into
marginals and conditionals.



Theoretical Economics 11 (2016) Savage games 665

6. Location games with recursive payoffs

We now use this convenient recursive structure to investigate two examples of location
games on the sphere. The first is a Bayesian game with payoffs and individual priors that
depend on the full profile of types. In the second game, players have recursive payoffs
with multiple priors as in Example 6.

Bayesian location game

Consider the N-player Bayesian game

((�i��i)�Ai�ui� νi)
N
i=1�

where (�i��i), the measurable space of player i’s types, is the unit interval [0�1]. The
action space Ai of each player is the unit sphere S

n in R
n+1. Player i’s prior νi is a proba-

bility density function νi :� →R+, which has full support and is Lipschitz continuous.
Let Bn+1 denote the unit ball of Rn+1. The payoff function ui :A×� → R of player i

is given by

ui(a�ω) = γi‖Pi(ai�ωi)−Ri(a−i�ω)‖2 + (1 − γi)‖Pi(ai�ωi)−Qi(ωi)‖2�

with Lipschitz-continuous functions Pi :Ai × �i → S
n, Qi :�i → S

n, and Ri :A−i × � →
B
n+1, and 0 ≤ γi <

1
2 . We interpret Ri(a−i�ω) as player i’s idiosyncratic way of calculat-

ing the (generalized) average of the other players’ locations, Qi(ωi) as her most preferred
location given her type ωi, and interpret Pi(ai�ωi) as a (possible, but not required) dis-
tortion induced by her type ωi on the degree of her desire to be close to the other players’
expected location and her own preferred location. In particular, we allow that player i

may be “social” for some types, for example, Pi(ai�ωi) = −ai, but may be “antisocial”
for other types, for example, Pi(ai�ωi)= ai. We assume that the inverse correspondence
P−1
i :Ai ×�i →Ai defined by

P−1
i (ai�ωi)= {a′

i ∈Ai :ai = Pi(a
′
i�ωi)}�

is nonempty valued and Lipschitz continuous with constant K. That is, for all x� y ∈
Ai ×�i we have

δ(P−1
i (x)�P−1

i (y)) ≤K‖x− y‖�
where δ is the Hausdorff distance between sets in R

n+1.
We shall show that this game has a Bayesian Nash equilibrium (in pure strategies).

Clearly, B1 and B2 hold. By Proposition 8 we need only show that A7 is satisfied. Fix
player i, a strategy profile f−i of other players, and a type ωi ∈ �i. For each action ai, let
Vi(ai� f−i|ωi) be the interim expected utility

Vi(ai� f−i|ωi) =
∫
�−i

ui(ai� f−i(ω)�ω)νi(ω−i|ωi)dλ(ω−i)�
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where λ is the Lebesgue probability measure on [0�1]N−1 and

νi(ω−i|ωi)= νi(ω)∫
�−i

νi(ω)dλ(ω−i)

is the conditional probability density of νi on �−i.
Let

Mi(a−i�ω) = γiRi(a−i�ω)+ (1 − γi)Qi(ωi)

and

mi(f−i|ωi) =
∫
�−i

Mi(f−i(ω−i)�ω)νi(ω−i|ωi)dλ(ω−i)�

We see that

ui(a�ω) = ‖Pi(ai�ωi)‖2 − 2〈Pi(ai�ωi)�Mi(a−i�ω)〉
+ γi‖Ri(a−i�ω)‖2 + (1 − γi)‖Qi(ωi)‖2�

where for any x� y ∈ R
n+1, 〈x� y〉 ∈ R is the inner product. Thus

Vi(ai� f−i|ωi) = ‖Pi(ai�ωi)−mi(f−i|ωi)‖2 + ‖mi(f−i|ωi)‖2

+
∫
�−i

γi
∥∥Ri(f−i(ω−i)�ω)

∥∥2
νi(ω−i|ωi)dλ(ω−i)+ (1 − γi)‖Qi(ωi)‖2�

Noting that ‖mi(f−i|ωi)‖ ≥ 1 − 2γi > 0, define the point

qi(f−i|ωi) = −mi(f−i|ωi)

‖mi(f−i|ωi)‖ �

which is the point on the sphere that is farthest away from mi(f−i|ωi).
Any ai ∈ Ai satisfying qi(f−i|ωi) = Pi(ai�ωi), equivalently, ai ∈ P−1

i (qi(f−i|ωi)�ωi),
maximizes Vi(·� f−i|ω−i). In particular, any strategy f ∗

i satisfying

Pi(f
∗
i (ωi)�ωi) = qi(f−i|ωi) equivalently f ∗

i (ωi) ∈ P−1
i (qi(f−i|ωi)�ωi)

for all ωi is a best response for player i to f−i.
Now ω �→ νi(ω−i|ωi) is a Lipschitz-continuous function because the prior νi is

a Lipschitz-continuous function that is bounded away from zero. Therefore, ωi �→
mi(f−i|ωi) is also a Lipschitz-continuous function with Lipschitz constant K′ that is in-
dependent of the choice of f−i because of the Lipschitz continuity of Qi and Ri. This in
turn implies that ωi �→ qi(f−i|ωi) is a Lipschitz-continuous function with Lipschitz con-
stant K′′, independent of the choice of f−i, because γi <

1
2 . Finally, we conclude that the

closed nonempty-valued correspondence ωi �→ P−1
i (qi(f−i|ωi)�ωi) is Lipschitz contin-

uous with some constant K∗ that is the same for all f−i. By the theorem of Kupka (2005),
this correspondence with one dimensional domain has a K∗-Lipschitz continuous se-
lection f̂i, which is a best response to f−i. Let Xi be the family of K∗-Lipschitz continu-
ous strategies for player i. By the Arzelà–Ascoli compactness theorem assumption A7 is
satisfied.
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Location game with multiple priors

Consider another N-player location game in which once again player i’s type space �i is
[0�1] and her action space Ai is the unit sphere S

n. The player’s payoff function ui :A×
� →R is

ui(a�ω) =
{‖ai −Mi(a−i�ω)‖2 if minj 
=i ωj ≤ 1

2
1 otherwise,

where Mi :A−i ×� → S
n is a Lipschitz-continuous function. If the type of at least one of

the players other than i is less than or equal to one-half, that is low, then player i wishes
to locate on the circle as far away as possible from Mi(a−i�ω), and may get a payoff
greater than 1. However, if the type of every player aside from i is greater than a half,
that is high, then player i has a guaranteed payoff 1.

We assume the preferences of player i over strategy profiles take the maxmin ex-
pected utility or “multiple priors” form of Gilboa and Schmeidler (1989). For each i, let
λi be the Lebesgue distribution on �i, and let λ be the product distribution on �. Let D̂i

be a weakly compact set of probability density functions on �i in which each ν̂i in D̂i is
mutually absolutely continuous with λi. Let μ−i :�−i ×�i →R+ and ν−i :�−i ×�i →R+
be functions for which ωi �→ μ−i( · |ωi) and ωi �→ ν−i( · |ωi) are mappings to conditional
probability densities on �−i. We assume that for each fixed ω−i the function μ−i is Lips-
chitz continuous in ωi. We also assume that if ω−i is in the support of μ−i( · |ωi), then at
least one player is of low type. We also assume that for each ωi, the support of ν−i( · |ωi)

is a subset of ( 1
2 �1]N−1 ⊆ �−i.

Now take Di to be the following set of probability densities defined on �:

Di =
{
ω �→ πi(ωi)(αμ−i(ω−i|ωi)+ (1 − α)ν−i(ω−i|ωi)) :πi ∈ D̄i�0 ≤ α ≤ 1

}
�

The ex ante utility of player i for the strategy profile f ∈ F is

Ui(f ) = min
π∈Di

∫
�
ui(f (ω)�ω)π(ω)dλ(ω)�

We show that this game has an equilibrium. Since Di satisfies the rectangularity prop-
erty this is a game in interim form satisfying C1, C2, and C3. By Proposition 9 we need
only show that A7 is satisfied.

Since Di satisfies the rectangularity property it follows that if ωi is realized for
player i, then the player wants to maximize the interim utility, which in this case is given
by

Vi(ai� f−i|ωi) = min
π−i∈{μi(·|ωi)�νi(·|ωi)}

∫
�−i

ui(ai� f−i(ω−i)�ω)π−i(ω−i)dλ−i(ω−i)�

For each ωi and f−i let mi(f−i|ωi) be the point

mi(f−i|ωi)=
∫
�−i

Mi(f−i(ω−i)�ω)μi(ω−i|ωi)dλ(ω−i)�

There is a K that is independent of f−i such that ωi �→ mi(f−i|ωi) is K-Lipschitz
continuous.
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Fixing ωi and f−i we notice that for any ai we have∫
�−i

ui(ai� f−i(ω−i)μi(ω−i|ωi))dλ(ω−i)

=
∫
�−i

‖ai −Mi(f−i(ω−i)�ω)‖2μi(ω−i|ωi)dλ(ω−i)

≥ 1 =
∫
�−i

ui(ai� f−i(ω−i)νi(ω−i|ωi))dλ(ω−i)

if and only if

‖ai −mi(f−i|ωi)‖2 ≥ ‖mi(f−i|ωi)‖2�

But there is always a point in S
n satisfying ‖ai − mi(f−i|ωi)‖ ≥ ‖mi(f−i|ωi)‖. Therefore,

the value Vi(ai� f−i|ωi) of such a point ai is 1. But the maximum of Vi(ai� f−i|ωi) is also 1.
From this we conclude that ai maximizes Vi(ai� f−i|ωi) if and only if ‖ai −mi(f−i|ωi)‖ ≥
‖mi(f−i|ωi)‖. In particular, the maximizers of Vi have the form

Bi(f−i|ωi) = arg max
ai∈Ai

Vi(ai� f−i|ωi) =
{
ai ∈Ai : 〈ai�mi(f−i|ωi)〉 ≤ 1

2

}
for each ωi and f−i.

This is an upper hemicontinuous correspondence from [0�1] to S
n. That is, there is

a K∗ independently of f−i such that

δ(Bi(f−i|ωi)�Bi(f−i|ω′
i)) ≤K∗|ωi −ω′

i|

for all ωi, ω′
i, where δ is the Hausdorff distance between sets. By the theorem of Kupka

(2005), this correspondence has a K∗-Lipschitz continuous selection f̂i. Once again ap-
plying the Arzelà–Ascoli theorem yields the desired result.

7. Concluding remarks and related work

We conclude with a discussion of some related models as well as issues arising from the
results we have derived in the framework of Savage games.

Strategic interaction between non-expected utility maximizers

The literature on modeling strategic interactions between individuals whose prefer-
ences may not conform to expected utility theory has mostly focused on normal-form
games of complete information. Hence the only uncertainty the players face is with re-
gard to the strategy choices of their opponents. Azrieli and Teper (2011) provide a very
nice summary of this literature, comparing and contrasting the different approaches
that have been taken.12

12Rather than reproduce their discussion here we refer the interested reader to Section 1.2 on p. 311 of
their paper.
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In their paper, however, Azrieli and Teper consider a class of games with incomplete
information where the payoff of a player can depend on the state of nature as well as the
profile of actions chosen by the players.13 Each player can choose any state-contingent
randomization over her set of available actions that is measurable with respect to her
information, which in turn is characterized by a partition of a finite state space. They al-
low for players whose ex ante preferences over strategy profiles are generated by (fairly)
arbitrary functionals defined on the state-contingent payoffs associated with each strat-
egy profile. Assuming these functionals satisfy standard continuity and monotonicity
properties, their main result is that an ex ante equilibrium exists in every game if and
only if these functionals are quasi-concave.

Enriching the strategy space so that players can choose (consistent with their re-
spective information) state-contingent randomizations over their actions allows Azrieli
and Teper to establish the existence of an ex ante equilibrium in an incomplete infor-
mation game with a finite state space, just as Anscombe and Aumann (1963) were able
to characterize the class of preferences that admit a subjective expected utility represen-
tation in a setting with a finite state space. We note, however, that this is achieved at the
cost of assuming that players have access to objective randomizing devices, a significant
departure from the Savage approach in which all uncertainty is subjective.

Azrieli and Teper also note that the quasi-concavity of the functionals that gener-
ate the players’ ex ante preferences over strategy profiles can readily be related to the
property of ambiguity aversion in the Anscombe and Aumann two-stage setting where
the subjective uncertainty is resolved first followed by an objective randomization over
the final consequences. However, as Eichberger and Kelsey (1996) argue, there is no
natural counterpart interpretation in Savages’s setting of purely subjective uncertainty.
Hence we do not find it surprising that for any Savage game with which there is associ-
ated a game in interim utility form, properties B1 and B2 neither imply nor require the
quasi-concavity of the ex ante utility Wi from Section 5 above.

Universal state space

One question that we do not attempt to answer in this paper is whether it is possible to
construct a state space that is a comprehensive representation of the uncertainty faced
by players, in the sense of Mertens and Zamir (1985) and Brandenburger and Dekel
(1993). We note that Epstein and Wang (1996) do provide such foundations for a set-
ting with purely subjective uncertainty and where the preferences of players need not
conform to subjective expected utility theory and so may exhibit nonneutral attitudes
toward ambiguity. However, Epstein and Wang’s setting does not allow for interdepen-
dent preferences. Bergemann et al. (2014) construct a universal type space for players
with interdependent preferences, but as their framework explicitly involves objective
randomization, it is not clear to us how their analysis could be conducted in a Savage
setting of purely subjective uncertainty. Finally, Di Tillio (2008) allows for more general
preferences, albeit in a setting in which there is only a finite number of outcomes.

13Kajii and Ui (2005) also model a class of games with incomplete information for the particular class of
preferences that admit a multiple prior representation.
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Rationalizability

It is also not clear to us what is the appropriate notion of rationalizability in the frame-
work of Savage games. There is an extensive literature that provides foundations for
equilibrium in terms of rationalizable behavior; see, for example, Brandenburger and
Dekel (1987) in the context of subjective uncertainty, and Tan and da Costa Werlang
(1988) and Börgers (1993). However, in many of these papers, rationality is expressed in
terms of “state-independent expected utility.”14

To allow for state-dependent ordinal preferences, an alternative notion of rational-
izability is needed. As noted by Morris and Takahashi (2012), rationalizability defined
in terms of ordinal preferences is invariant to the choice of state space, unlike rational-
izability defined in terms of expected utility. However, Morris and Takahashi’s notion
of rationalizability requires explicit randomization of the kind implied by Anscombe–
Aumann acts, which is not available in our setting. Epstein (1997) investigates rational-
izability in a setting where strategies are analogs of Savage style acts; nevertheless he
rules out state-dependent preferences and restricts the analysis to finite normal-form
games.

Purification of mixed strategies

We have entirely avoided any assumption on the independence or near independence
of player information, types, or payoffs. Indeed, in our Bayesian game example, types
are statistically dependent via arbitrary Lipschitz-continuous probability density func-
tions. This is in stark contrast with the purification results that follow the classical work
of Dvoretzky et al. (1950), Radner and Rosenthal (1982), and Milgrom and Weber (1985),
and related literature.15 One interpretation of this difference is that while decompos-
ability arguments are also at the heart of purification techniques, those require purifi-
cation of objectively randomized equilibria. The present paper highlights how our use
of the decomposition property can be interpreted as purification of a purely subjective
kind.

An important open question is whether it is possible to obtain our results even for
standard Bayesian games with interdependent priors using the purification techniques
of the extant literature. That literature has focused on the existence of pure-strategy
equilibrium in Bayesian games in which information is diffuse. The usual approach is
to identify conditions on the information structure of the game that allows us to find a
profile of pure strategies that is payoff equivalent to any given equilibrium (randomized)
strategy profile. To the best of our knowledge, the techniques that have been developed
so far rule out interdependent payoffs and require independent distributions of types.

14An exception is Tan and da Costa Werlang (1988), who start with a Bayesian game in which players
have a state-dependent subjective expected utility function.

15Other results include Balder (1988), Khan and Sun (1995), Khan et al. (2006), Loeb and Sun (2006, 2009),
Fu et al. (2007), Fu (2008), Podczeck (2009), Khan and Rath (2009), Wang and Zhang (2012), and Greinecker
and Podczeck (2013). Using the same techniques, it is possible to show the existence of pure equilibrium
when there is a continuum of agents; see Schmeidler (1973) and Mas-Colell (1984).
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Games with a separable structure

In general, a Savage game cannot be represented as a Bayesian game. This remains the
case, even if there exists an associated game in interim utility form that not only satisfies
B1 and B2, but that the ex ante utilities of the players are additively separable across
states. The difficulty stems from the state dependence of the players’ preferences, which
prevents a meaningful separation of beliefs from payoffs (see Karni 1985, Wakker and
Zank 1999, and Debreu 1960 for the single decision-maker case). Thus it remains an
open question as to when can we meaningfully disentangle preferences from beliefs in
a Savage game. We outline one approach as our final remark.

Aumann (1974) proposed a class of games with a separable structure to study equi-
librium under objective and subjective uncertainty.16 In this setting, we are able to dis-
entangle subjective beliefs from preferences and thus represent these games as Bayesian
games with individual priors. We describe a generalization of the class of games studied
by Aumann.17

Adapting the notion in Section 5, a game with a separable structure is an N-player
game given by the tuple

((�i��i)�Oi��i�Ai� ζi)
N
i=1�

Player i is associated with a set of states, �i, and a σ-algebra �i of subsets of �i. She
also has an outcome space Oi, which we take to be a metric space. The space � = ×N

i=1�i

has the product algebra � = ⊗N
i=1 �i. An act for player i is a �-measurable function

y :� → Oi. Let Yi denote the set of player i’s acts. Player i has a preference ordering �i

on the family of acts Yi. Player i has an action set Ai, which is a compact metric space
and a measurable outcome function ζi :A×� → Oi, which associates action profiles and
state profiles with outcomes. An important difference between this framework and that
of Aumann (1974) is that Aumann’s outcome function is state independent, that is, it is
simply a function from A to Oi.

A strategy for player i is a �i-measurable function fi :�i → Ai. Let Fi denote the set
of player i’s strategies. Each strategy profile f ∈ F is a �-measurable function from � to
A so there is an induced preference relation �∗

i on F given by

f �∗
i g iff ζi ◦ f �i ζi ◦ g�

The Savage game induced from this game with a separable structure is thus

(�� Ā� (F̄i��∗
i )

N
i=1)�

where Ā is the disjoint union of the sets Ai, F̄i = {f̄i : fi ∈ Fi} for each i, and f̄ �∗
i ḡ if and

only if f �∗
i g.

16Aumann and Dreze (2009) develop a related idea in which subjective risk in a game uses available
strategies. See also Section 8 of Hammond (2004).

17Incidentally, a by-product of such an extension is that, in addition to the standard Bayesian equilibrium
notion, Savage games can also be seen to constitute a suitable framework to investigate the existence of
(subjectively) correlated equilibrium.
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Returning to the game with a separable structure, assume now that for each i there
is a probability measure πi :� → [0�1] and a function vi :Oi → R such that

Vi(y) =
∫
�
vi ◦ y(ω)dπi(ω)

represents �i over acts for every i. This is the case for example when �i satisfies all
of Savages’s postulates and the “monotone continuity” assumption (Arrow 1971 and
Villegas 1964) that guarantees that πi is countably additive. Setting ui(a�ω) := vi ◦
ζi(a�ω) and letting

Ui(f ) =
∫
�
ui(f (ω)�ω)dπi(ω)

for each f ∈ F we see that Ui is a utility representation of �∗
i . We have thus obtained the

N-player Bayesian game

((�i��i)�Ai�ui�πi)
N
i=1�

Appendix: Proofs

Proof of Proposition 2

Suppose that f ∼i (gi� f−i) �i (hi� f−i) for every hi ∈ Fi. In particular, f ∼i (gi� f−i) �i

(giEfi� f−i) for every E ∈ Fi. For any E ∈ Fi we have f �i (gi�\Efi� f−i); thus, by P2,
fi�\Egi� f−i �i (gi� f−i)∼i f .

Proof of Proposition 3

It is immediate that Fi contains ∅ and �. The other two conditions are obtained by
noting that

giE\E′fi = fiE′(giEfi)

and

giE∪E′fi = giE(giE′fi)�

With this, A3 guarantees that the countable union of events is an event.

Proof of Corollary 1

Let σ(Fi) be the smallest σ-algebra of subsets of � for which each strategy fi ∈ Fi is
measurable. Clearly, σ(Fi) ⊆ �i ⊆ Fi. Pick E ∈ Fi. Because |A| ≥ 2, there are fi� gi ∈ Fi

such that E = {ω :giEfi(ω) 
= fi(ω)}, which is in σ(Fi). Thus, �i = Fi and A3 holds.

Proof of Proposition 4

Clearly, the empty set is in Ni. Let E ∈ Ni and E′ ∈ Fi such that E′ ⊆ E. If E′ /∈ Ni, then
there are f ∈ F , gi ∈ Fi, and j ∈ N satisfying

(giE′fi� f−i) 
≈j f�
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But then

((giE′fi)Efi� f−i)= (giE′fi� f−i) 
≈j f�

which is a contradiction, because E is strategically irrelevant for player i.
Furthermore, if E�E′ ∈ Ni, then for any gi ∈ Fi, by transitivity of ≈j , we have

(giE∪E′fi� f−i)= (giE′(giEfi)� f−i)≈j (giEfi� f−i) ≈j f�

which tells us that E ∪ E′ ∈ Ni. Finally, by A3 and A4, for any increasing sequence of
strategically irrelevant events En, the union E is an event, and it must be strategically
irrelevant for player i.

Proof of Proposition 5

We can assume without loss of generality that each Sm
i also has the property that if

E′�E ∈ F and E′ ⊂E ∈ Sm
i , then E′ ∈ Sm

i .
Fix Sm

i . Denote by E �E′ the symmetric difference of any two sets E�E′ ⊆�. Let

Rm
i = {E ∈ Ri :E �E′ /∈ Ni for all E′ ∈ Sm

i }�

Proposition 10. The following statements hold true:

(i) If E ∈ Rm
i , then E /∈ Sm

i .

(ii) We have
⋃

mRm
i = Ri.

(iii) If En is an increasing sequence of events whose union E is in Rm
i , then eventually

En is in Rm
i .

Proof. (i) is obvious because the empty set is in Ni.
Turning to (ii), suppose that E ∈ Ri. Suppose by way of contradiction that E /∈ Rm

i for
all m. Event E is associated with Em ∈ Sm

i such that Dm = E �Em ∈ Ni. Let D = ⋃
mDm,

which is in Ni and we see that E \ D ⊆ Em for all m. Thus, E \ D ∈ Sm
i for all m. This

implies that E \D is in Ni. Thus, E ∈ Ni, which is a contradiction.
For (iii) because Ni is a σ-ideal, eventually En is in Ri. Now if En /∈ Rm

i then there
exists a null event D such that En ∩D is in Sm

i for all m. By the closedness of Sm
i , E ∩D ∈

Sm
i , which is impossible. �

If all Rm
i are empty, then all events are null and the proposition is true trivially. So we

can assume that Rm
i in not empty for all m.

Proposition 11. For each m there is c > 0 such that

inf
E∈Ni

max
ω∈�

(
χ�\E

n∑
k=1

αkχEk(ω)

)
≥ c

for any α1� � � � �αK ≥ 0 and
∑K

k=1 α
k = 1.
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Proof. There exists a constant c > 0 such that for any finite sequence E1�E2� � � � �En in
Rm

i we have

max
ω∈�

1
n

|{1 ≤ k ≤ n :ω ∈Ek}| > c�

This implies that

max
ω∈�

1
n

n∑
k=1

χEk(ω) > c�

where χE is the characteristic function of E. This in turn implies that

max
ω∈�

n∑
k=1

rk∑n
k=1 r

k
χEk(ω) = max

ω∈�
1∑n

k=1 r
k

n∑
k=1

rkχEk(ω) > c

for every rk ∈N, k= 1� � � � � n, satisfying rk > 0 for some k. We conclude that

max
ω∈�

n∑
k=1

αkχEk(ω) ≥ c

for any convex combination α1�α2� � � � �αn ≥ 0,
∑n

k=1 α
k = 1. Therefore,

inf
E∈Ni

max
ω∈�

(
χ�\E

n∑
k=1

αkχEk(ω)

)
= inf

E∈Ni

max
ω∈�

n∑
k=1

αkχEk\E(ω) ≥ c

for any convex combination. �

Let L∞(Fi|Ni) be the ordered vector space of all Ni-equivalence classes of Fi-
measurable bounded functions from � to R. That is, fi :� → R is in L∞(Fi|Ni) if
it is Fi-measurable and bounded, and gi :� → R is in the equivalence class [fi] if
{ω : fi(ω) 
= gi(ω)} is in Ni.

For each fi ∈L∞(Fi|Ni), let

‖fi‖∞ = inf
E∈Ni

sup
ω∈�

|χ�\Efi(ω)|�

By Proposition 4, Ni is a σ-ideal of Fi. Thus ‖ · ‖∞ is a norm on L∞(Fi|Ni), and with this
norm the space is a Banach space. Furthermore, L∞(Fi|Ni) has a canonical ordering
whereby fi ≥ gi if {ω :gi(ω) > fi(ω)} is null. With this vector ordering the Banach space
L∞(Fi|Ni) is a Banach lattice with a positive cone L+∞(Fi|Ni) that contains any constant
function c = cχ�, c > 0, in its interior.

We list the following result for convenience.

Proposition 12. There exists c > 0 such that the for any f convex hull Cm in L∞(Fi|Ni)

of {χE :E ∈ Rm
i } we have ‖f‖∞ ≥ c. In particular, Cm is disjoint from c/2 −L+∞(Fi|Ni).
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A separating hyperplane argument now tells us that there is a continuous linear
functional πm

i on L∞(Fi|Ni) separating the two sets. Because zero is an interior point
of one set we see that it is nonnegative on L+∞(Fi|Ni) and that for some dm > 0 we have
πm
i (fi) > dm for all fi ∈ Cm.

We can therefore consider πm
i as a finitely additive measure on Fi. It gives a value

of zero to each E ∈ Ni and greater than dm for each E ∈ Rm
i . By the Hewitt–Yosida de-

composition there is a countably additive measure πmc
i and a purely finitely additive

measure π
mf
i such that

πm
i = πmc

i +π
mf
i �

Pick E ∈ Rm
i . Because π

mf
i is purely finitely additive, for dm > α> 0 there is an increasing

sequence En ∈ Fi,
⋃

n E
n =E, and

lim
n

π
mf
i (En) ≤ α�

But En ∈ Rm
i eventually for n large enough. From this we conclude that for such n,

πmc
i (E) ≥ πmc

i (En)= πm
i (En)−π

mf
i (En) ≥ γm − α> 0�

Normalize each πmc
i making it a probability measure and consider the probability

measure

πi = 1
2m

∞∑
m=1

πmc
i (E)�

We see that πi(E) > 0 for each E ∈ R = ⋃
mRm

i . That is, πi is the required measure.

Proof of Proposition 6

Suppose that E ∈ Ri. For some player j ∈ N , some strategy profile f ∈ F , and some
strategy gi ∈ Fi we have (giEfi� f−i) 
≈j f . Thus, there exists a sequence {E1� � � � �Ek} ⊆ Fi,⋃

k E
k =�, satisfying (fiEk(giEfi)� f−i) 
≈j f for all k. But fiEk(giEfi) = giE\Ekfi. Thus, for

all k the event E \ Ek is in Ri. Also, because Ni is an ideal there must be some k∗ such
that Ek∗ ∩E is relevant for player i. The relevant events E \Ek∗

and Ek∗ ∩E are disjoint
and their union is E.

Proof of Proposition 7

We need only show that (ii) implies (i). Let πi be from condition (ii). If πi(�) = 0, then
we are done, since there are no relevant events. Otherwise, without loss of generality we
can assume πi(�) = 1.

For each m, define the set

Sm
i = {E ∈ Fi : πi(E)≤ 1/m}�

Notice that each Sm
i is closed and note that

⋂
m Sm

i ⊆ Ni.
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Now let E1�E2� � � � �En be a finite sequence in Fi not in Sm
i . We have

max
ω∈�

1
n

|{1 ≤ k :ωi ∈ Ek}| = 1
n

max
ω∈�

n∑
k=1

χEk

≥ 1
n

∫
�

n∑
k=1

χEk(ω)dπi(ω)

= 1
n

n∑
k=1

πi(E
k)

≥ 1
n

(
n

1
m

)
= 1

m
�

This shows that A5 holds.
We show that A6 also holds. Suppose that (gi� f−i) 
≈j f . Suppose by way of contra-

diction that for each m there is Em satisfying πi(E
m) ≤ 1/m such that (hiEmgi� f−i) ≈j f .

Noting that χEm converges to zero in πi measure we can move to a subsequence such
that χEm converges πi-almost surely to zero. But zeros of πi are all null for player i. Thus,
by A4, (gi� f−i) ≈j f , which is a contradiction.

A fixed point theorem

We begin with a statement of a fixed point theorem and apply it to prove Theorem 1.
For a complete proof of the fixed point theorem used in this subsection, please refer to
Meneghel and Tourky (2013).

Let (S���μ) be an atomless probability space and let T be a topological space. Let
L(S�T) be the set of all functions, not necessarily measurable, from S to T . Endow
L(S�T) with the topology of pointwise convergence.

A set-valued (possibly empty-valued) mapping B :F � F is a decomposable mapping
if its domain F and values B(f ), for all f ∈ F , are decomposable sets. A decomposable
mapping B is μ-sequentially closed graphed if the following statements hold:

(i) If μ(E)= 0 and g ∈ B(f ), then hEg ∈ B(f ) and g ∈ B(hEf) for all h ∈ F .

(ii) Domain F is sequentially closed in L(S�T).

(iii) Mapping B has a sequentially closed graph in F × F .

A fixed point of B is a function f ∈ F satisfying f ∈ B(f ).

Theorem 2 (Corollary 2.3, Meneghel and Tourky 2013). Let B :F � F be a decomposable
μ-sequentially closed-graphed mapping. If for a compact and metrizable X ⊆ F we have
X ∩B(f ) 
=∅ for each f ∈ F , then B has a fixed point.
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Proof of Theorem 1

Assume that A7 holds.
For each i let Si = � and Ti = A. Each f ∈ F can be considered a function from S to

T whereby

f (s1� � � � � sN) = (f1(s1)� � � � � fN(sN))�

For each i consider the atomless measure space (Si�Fi�πi) from Proposition 7. We
will assume that at least one player has a relevant event and that all nonzero πi are prob-
ability measures. Let F = ⊗N

i=1 Fi be the tensor product. Each E in F that is not the
empty set is of the form

(E1�E2� � � � �EN)�

where Ei ∈ Fi for each i. Now if f�g ∈ F , then

gEf (s1� � � � � sN) = (g1E1f1(s1)� � � � � gNEN fN(sn))�

which is in F .
Let μ :F → [0�1] be the probability measure given by

μ(E)= 1
N

N∑
i=1

πi(Ei)�

This is an atomless measure and if μ(E) = 0, then each Ei is null for player i. For each
f ∈ F , let

B(f ) = {g ∈ F :gi is a best response to f−i for all i}�
Notice that if μ(E)= 0 and g ∈ B(f ) we have hEg ∈ B(f ) and g ∈ B(hEf).

Now our sets Xi are compact and metrizable in the topology of pointwise conver-
gence. Therefore, their product X ⊆ F is compact and metrizable in the same topology.
Assume first that there is only one player. Clearly, an equilibrium exists because the
player maximizes her preferences in the compact and metrizable set X . Now suppose
that there are two or more players. By assumption A7, the sequentially closed, decom-
posable set X̃i is a subset of Fi for each i. Let X̃ be the product of Xi, which is sequen-
tially closed and decomposable once again. Let B̃ : X̃ → X̃ be the restriction of B to X̃ .
We see that B is a decomposable mapping that is also μ-sequentially closed graphed.
Applying Theorem 2 gives us the required equilibrium.

Proof of Proposition 8

Suppose that f ∈ F and gi ∈ Fi satisfy

Ui(f ) = Ui(g) ≥ Ui(hi� f−i)

for all hi ∈ Fi. By B1 this means that

Ui(giEfi� f−i)= Ui(f )
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for every E ∈ �i. Thus, A2 holds. That A3 is satisfied is a consequence of Corollary 1.
Now Ui is continuous for pointwise convergent sequences of strategy profiles by B2. So
A4 holds.

If A has less than two points, then all events are null and A5 and A6 hold trivially.
If they have two or more points, then by Corollary 1, �̄i = Fi. Now the restriction of μi

to �̄i is atomless and if μ(E) = 0, then E is strategically null for player i by (ii) of B2. By
Proposition 7 assumptions A5 and A6 hold.

Proof of Proposition 9

Consider the associated game in interim form. Clearly, B2 holds. For B1 let αi, βi be the
two interim payoffs. Choose μ∗

i ∈Di in

arg min
μi∈Di

∫
�i

αi ∨βi dμ̂i(ωi)�

We see that

Ui(αi)≥ Ui(αi ∨βi) ≥
∫
�i

αi(ωi)dμ̂∗
i (ωi) ≥ Ui(αi)�

Thus, it must be the case that αi and αi ∨ βi agree μ∗
i -almost surely. Similarly, βi and

αi ∨ βi agree μ∗
i -almost surely. This implies that αi and βi agree almost surely for all

μi ∈ Di. This implies that Ui(βiEαi)= Ui(αi) for all Ei ∈ �i, as required.
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