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Dynamics in stochastic evolutionary models

David K. Levine
Department of Economics, Washington University in St. Louis and European University Institute

Salvatore Modica
Department of Economics, Universita di Palermo Salvatore

We characterize transitions between stochastically stable states and relative er-
godic probabilities in the theory of the evolution of conventions. We give an ap-
plication to the fall of hegemonies in the evolutionary theory of institutions and
conflict, and illustrate the theory with the fall of the Qing dynasty and the rise of
communism in China.
Keywords. Evolution, conventions, Markov chains, state power.

JEL classification. C73.

1. Introduction

The modern theory of the evolution of conventions deals with a Markov process in
which there are strong forces such as learning toward equilibrium and weaker evolu-
tionary forces such as “mutations” that disturb an equilibrium and lead from one equi-
librium to another. There is a large economics literature studying models of this type:
just to take some recent contributions, Kreindler and Young (2012, 2013) and Ellison
et al. (2014) show how convergence in these models may be very fast, and Sabourian
and Juang (2012) give a folk theorem for equilibrium selection. To prove theorems, the
limit when weak forces are small is analyzed. In the limit, equilibria appear as recurrent
communicating classes of the Markov process: sets of states all of which are accessi-
ble to each other, but are grouped into classes that are isolated from each other. Prior
to the limit—the situation of interest—the Markov process is ergodic and puts positive
weight on all states. However some states are more equal than others, and in the unique
limit of the stationary distributions weight is placed only on the recurrent communicat-
ing classes of the limit; moreover, only some of these classes have positive weight—the
stochastically stable classes. In particular, while the limiting Markov process can have
many classes, the limit of the Markov processes may place weight on only one or a few
classes. The literature, especially Foster and Young (1990), Kandori et al. (1993), Young
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(1993), Ellison (2000), Cui and Zhai (2010), and Hasker (2014), develops a set of tech-
niques for determining which of these classes get weight in the limit and gives a useful
picture of what the stochastic process looks like when the weak forces are small but not
zero. Roughly, the classes that have positive weight in the limit are seen most of the time,
but the system will occasionally move away from a class and back again or transit from
one class to another.

The focus of much of the literature has been on determining which classes get weight
in the limit, and this is important to understand, but the transitions—the movement
from one class to another—are also interesting and important for economics. For exam-
ple, in a model of evolution such as that of Levine and Modica (2013b), where different
economic and political institutions compete with each other, the recurrent communi-
cating classes correspond to hegemonies—a single society that controls all economic
resources—and the stochastically stable classes are the most powerful hegemonies.
There is considerable historical evidence for the existence of hegemonies: China, the
Roman Empire, and so forth. In the theory, as in reality, hegemonies inevitably fall and
eventually reappear. How the transitions take place, i.e., what kind of phases mark the
crucial steps in the transitions, is of some interest. Do the eventual winners of the con-
flict appear on the scene and battle back and forth with the hegemony for awhile until
they take over and establish their own hegemony (short answer, “no”) or does something
else happen, and if so what? Our results make it possible to answer these questions in
some detail, describing the rise and fall of hegemony and the warring states period that
takes place in between. It may also serve as a guide to policy, showing how different
institutions can impact transitions.

The mathematical methods used in analyzing stochastic stability contain clues for
what the transitions might look like. In particular, stochastically stable classes can be
characterized by trees of recurrent communicating classes, where the distance between
classes is measured by “resistance” and the stochastically stable classes appear as the
root of trees with least total resistance. Because of the role played by least resistant
paths in this analysis, a natural conjecture is that least resistant paths are in some sense
more likely than higher resistant paths. Here we establish in exactly what sense this is
true.

The starting point is to observe that a basic feature of resistance is that if we compare
the probability of two specific paths when evolutionary forces are very weak, the lower
resistance path is far more likely than the higher resistance path. However, if we look at
all paths from one recurrent communicating class to another—the “quasi-direct routes”
that include those that may dawdle within the class they start from before moving on—
then as a group least resistant paths are far less likely than higher resistant paths. The
reason for this is simple: it is likely to take a very long time to reach another recurrent
communicating class; in the meantime there are likely to be many failed attempts to
get there, and these attempts will typically involve some resistance. However, consider
the actual transition from one class to another, that is, the paths that leave the starting
recurrent communicating class for the final time and that do not pass through a third
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class: we call these direct routes.1 We show that the transition to the target class is likely
to happen relatively quickly, in the sense that the set of least resistance direct routes are
far more likely than other paths.

We establish the theory in two parts: we first develop a set of bounds for direct routes
and then for quasi-direct routes. As a by-product, understanding these transitions also
gives us clues about the ergodic probabilities. By examining which recurrent commu-
nicating classes are reached “next” from a given starting point, we construct a straight-
forward recursive algorithm that gives precise bounds on the ratio between the ergodic
probabilities of all states that are “reasonably close” to recurrent communicating classes.

To illustrate the theory, we apply it to a simplified version of the Levine and Modica
(2013b) evolutionary model of conflict and the emergence of hegemonies—some details
of which are motivated by the transition theory of Acemoglu and Robinson (2001)—and
provide, in particular, an account of the fall of the last Qing dynasty in China and the
ensuing rise of communism.

2. Main results through an illustrative example

We are interested in economic models that can be represented as Markov processes
where some transitions are much less likely than others. To illustrate this, we start with
an example of a “standard” evolutionary model. This simple and familiar example is
designed to illustrate the gaps in current knowledge and how the results of this paper
fill those gaps. A historical application that motivates why these gaps are interesting is
examined in Section 7. Consider the 2×2 symmetric coordination game with actions G,
B and payoff matrix

G B

G 2�2 0�0
B 0�0 1�1

This game has two pure Nash equilibria at GG and BB, and a mixed equilibrium with
probability 1/3 of G.

To put this in an evolutionary context, we assume that there are five players. Each
player receives a payoff equal to the average he gets in all matches against his four op-
ponents.2 In each period, a single player is chosen with equal probability to recon-
sider her move; the other four play as in the previous period. The state of the system
is the number of players playing G. So the state space Z has N = 6 states. We first de-
fine the behavior rule representing “rational” learning:3 the player who gets to move

1Note that “direct” is sometimes used to mean “in a single transition.” Here a direct route can pass
through many transitions, but it must not pause in an ergodic class along the way. From Ellison (2000) we
know that such paths are not necessarily the quickest way to get to the target, an issue we carefully account
for.

2As Ellison (1993) points out, this global interaction model converges much more slowly than if each
player is matched only with a neighbor. Here the model is intended for illustrative purposes.

3In some models such as Kandori et al. (1993), this rational component of the dynamic is deterministic
so can be referred to as the deterministic dynamic. Here, as in Binmore and Samuelson (1997) and Blume
(2003), the revision rule is stochastic because the player who moves is determined randomly.
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chooses a best response to the actions chosen by the opposing players. In addition,
there are independent trembles: with probability 1 − ε the behavior rule is followed,
while with probability ε the player’s choice is uniform and random over all possible ac-
tions. The presumption is that the chance of “arational” play ε is small compared to the
probability 1 − ε of “rational” play. This arational play is often called a mutation in the
literature.

This dynamic can be represented as a Markov process on the state space Z defined
above with six states representing the number of players playing G. Denoting source
states by rows and target states by columns as is standard in the theory of Markov chains,
the transition matrix can be computed as4

Pε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 1
2ε

1
2ε 0 0 0 0

( 1
5 − 1

10ε) ( 4
5 − 3

10ε)
4
10ε 0 0 0

0 ( 2
5 − 2

10ε)
1
2ε ( 3

5 − 3
10ε) 0 0

0 0 3
10ε ( 3

5 − 1
10ε) ( 2

5 − 2
10ε) 0

0 0 0 4
10ε ( 4

5 − 3
10ε) ( 1

5 − 1
10ε)

0 0 0 0 1
2ε 1 − 1

2ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

A critical concept in analyzing this system for ε small but not 0 is the notion of resis-
tance. Although we give a formal definition below, in this example the resistance is the
minimum number of transitions with probability of order ε needed to get from one state
to another. For example, the resistance of going from {1} to {0} is 0 since the transition
probability is Pε(1�0) = 1

5 − 1
10ε, while the resistance of going from {0} to {1} is 1 since the

transition probability is Pε(0�1) = 1
2ε. Transitions with probability zero independent of

ε have infinite resistance. The resistance matrix in this case is, therefore,

r =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 ∞ ∞ ∞ ∞
0 0 1 ∞ ∞ ∞
∞ 0 1 0 ∞ ∞
∞ ∞ 1 0 0 ∞
∞ ∞ ∞ 1 0 0
∞ ∞ ∞ ∞ 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
�

We can analyze this model by giving a heuristic outline of the methods we will de-
velop in the paper.

4Take, for example, the first diagonal entry Pε(0�0) = 1 − 1
2ε: if the current state is 0, then whoever is

picked next period faces four opponents playing B, so the best response is B. With probability 1 − ε, the
player is rational and plays B; with probability ε, the player is arational and plays B with probability 1

2 . So
with probability 1 − ε + 1

2ε = 1 − 1
2ε, the move is B and the next state will be 0. As another example, take

the second row: the only G player is drawn with probability 1
5 , while with probability 4

5 , it is one of the B

players; the best response is still B in any case, so play probability is again 1 − 1
2ε for B and 1

2ε for G; hence
the state remains at one G player if either the G player is chosen and plays G (probability ( 1

5 ) · ( 1
2ε)) or a B

player is chosen and plays B (probability ( 4
5 ) · (1 − 1

2ε)); the sum of these two terms is the 4
5 − 3

10ε appearing
at the second diagonal entry Pε(1�1) in the matrix.
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1. Recurrent communicating classes for ε= 0.5

The two recurrent communicating classes consist of the singleton sets {0}� {5}.
These sets are each absorbing and here they correspond to the pure Nash equi-
libria of the game. We denote the set of recurrent communicating classes by
� = {�0��5} = {{0}� {5}}.

2. Relation between the classes for ε > 0.
Starting in one recurrent communicating class, which comes next, how long will

it take and relatively how much time is spent at each recurrent communicating
class?

Here there is only one other recurrent communicating class, so the next one is
always the other one. In the general case, Corollary 3 tells us that the “next one” is
one that can be reached with least resistance. This least resistance is known as the
radius. In this example, it takes two mutations to get from {0} to {5} and three to get
back, so the radius of {0} is 2 and the radius of {5} is 3.

How long it will take to get from one class to another is known from Ellison
(2000)—the main existing result concerning transitions—and is covered here in
Theorem 4: it is ε−1 raised to the power of the radius: for {0}, the waiting time
to {5} is of order ε−2; for {5}, the waiting time to {0} is of order ε−3. Relatively ε−1

times as long is spent at {5} as at {0}. When there are many recurrent communicat-
ing classes, computing the relative amount of time at each is complicated: we give
a constructive algorithm for finding it in Section 6.3.

3. Basins.
The basin of a recurrent communicating class is the set of states for which the

probability of eventually reaching that class when ε = 0 is 1. The basin of {0} con-
sists of the points {0}� {1}. The basin of {5} is {3}� {4}� {5}. The state {2} is in the “outer
range” of both {0} and {5}, but the basin of neither: it has positive probability of
reaching either of the two recurrent communicating classes.

4. Relation between basins and classes.
The basin consists of states that are “close” to the corresponding recurrent com-

municating class.6 By Theorem 4, during the time before reaching a new class most
of the time will be spent in the current recurrent communicating class, but there
will be a large number of periods during which the system will move to these close
points and back. From Theorem 8, the relative amount of time spent at these states
compared to the time spent in the recurrent communicating class is of the order
of the difference between the resistance of reaching the point and the radius. For
example, starting at {5}, the radius is 3 and the resistance of getting to {3} from {5} is
2 so that the system will spend roughly ε−1 times as much time at {5} as at {3}. From

5A closed or recurrent communicating class of a Markov process is a set with the property that there is a
positive probability of reaching any point in the set from any other and the probability of leaving the set is
zero. The literature also sometimes refers to these as limit sets.

6Strictly speaking, this is true not of the basin, but only of the inner basin from Definition 5. However, in
this example, the inner basin and the basin coincide.
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the result above, that also means that the system spends roughly the same amount
of time at {3} as at {0}, but the nature of the time is quite different. The system will
remain at {0} for long contiguous periods of time with only occasional departures,
while the system will remain at {3} for very short periods of time, but go there very
frequently.

5. Transitions
How do we get from one recurrent communicating class to another? This is cov-

ered in Theorem 3. It says that with very high probability, the path will have least
“peak resistance”: such a path may leave the recurrent communicating class and
return any number of times, but during each departure from the recurrent commu-
nicating class, the resistance encountered can be no more than the radius. When
the recurrent communicating class is left for the final time, the path followed to the
new recurrent communicating class must have least resistance and the transition
is “very quick.” In the example, going from {5} to {0}, the path can leave {5} and re-
turn many times, but the resistance encountered during these departures cannot
be greater than 3. So, for example, (5�4�3�2�3�4�5) can occur since it has resistance
3, but (5�4�3�4�3�4�3�4�5) cannot occur because it has resistance 4. The final
transition must have resistance 3, which in this case means it must be monotone:
{4}� {3}� {2}� {1}� {0} must occur in that order. However, any of these states can recur
except {2}, since remaining adds no resistance. So, for example, (5�4�4�3�2�1�1�0)
is a possible transition, but (5�4�3�2�2�1�0) is not. Despite the fact that the tran-
sition paths can have loops of zero resistance in them, the expected length of the
path is bounded independent of ε. This is shown in Theorem 1.

3. The model

In the general case, we are given a finite state space Z with N elements and a family
Pε of Markov chains7 on Z indexed by 0 ≤ ε < 1. This family satisfies two regularity
conditions:

1. We have limε→0 Pε = P0.

2. For all x�z ∈Z, there is a resistance function 0 ≤ r(x� z) ≤ ∞ and constants 0 <C <

1 <D< ∞ such that Cεr(x�z) ≤ Pε(z|x)≤Dεr(x�z).

Notice that zero resistance is equivalent to positive probability with respect to P0—a fact
we will use all the time—and infinite resistance is zero probability in all Pε’s. If f (ε)
and g(ε) are nonnegative functions, a useful notation concerning resistances is to de-
fine f (ε) ∼ g(ε) if lim infε→0 f (ε)/g(ε) > 0 and lim supε→0 f (ε)/g(ε) <∞ with the obvious

7In the literature it is often assumed that for ε > 0 the chain is ergodic: in our analysis of the limit ergodic
distribution in the later part of the paper we make such an assumption. However, for the analysis of transi-
tions the assumption is not needed and it can be useful to apply the analysis to interim dynamics at states
that will never be reached again. Moreover, the assumption that the state space is finite is not needed for
the analysis of transitions, and the bounds given in Appendix A hold for countable state spaces as well as
finite state space; in this case, when ε > 0, there may be no long-run limit at all.
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convention that 0 ∼ 0. With this notation, we can then write Pε(z|x) ∼ εr(x�z). For read-
ability we will state results in the text using this order notation; we restate (and prove)
the results with exact bounds in the Appendices.

As in the example of the previous section, we let � be the set of the recurrent com-
municating classes of P0. We write �x for the recurrent communicating class containing
x, where �x = ∅ if x is not part of a recurrent communicating class. A path a is a fi-
nite sequence (z0� z1� � � � � zt) of at least two not necessarily distinct states in Z and we
write t(a) = t: this is the number of transitions (zs−1� zs). The resistance of the path is
r(a) ≡ r(z0� z1)+ r(z1� z2)+ · · · + r(zt−1� zt).

We summarize some well known properties of P0 and �. Nonempty recurrent com-
municating classes �x 	= ∅ are characterized by the property that from any point y ∈�x,
there is a positive probability path to any other point z ∈�x and that every positive prob-
ability path starting at y must lie entirely within �x. Since positive probability in P0 is the
same as zero resistance, we may equally say that from any point y ∈ �x there is a zero-
resistance path to any other point z ∈ �x and that every zero-resistance path starting at
y ∈�x must lie entirely within �x. An additional useful notion is defined as follows.

Definition 1. A set W is comprehensive if for any point z ∈Z there is a zero-resistance
path a= (z� � � � �w) to some point w ∈W . In particular, the set � is comprehensive.

We can give the following characterization of a comprehensive set.

Proposition 1. A set W is comprehensive if and only if it contains at least one point
from every nonempty recurrent communicating class, that is, for all �x ∈ � there exists
w ∈ W with w ∈�x.

Proof. Sufficiency: For any point z ∈ Z, there is a zero-resistance path to some point y
in some recurrent communicating class �y , and from there a zero-resistance continua-
tion to the point in �y ∩W that is assumed to exist. Necessity: If there is a set �y 	= ∅ with
�y ∩ W = ∅, then the zero-resistance path to W assumption fails: any zero-resistance
path originating in �y must remain entirely within �y and, hence, does not reach W . �

Notice that there are a great many comprehensive sets and our analysis is condi-
tional on a particular choice of a comprehensive set. Different comprehensive sets may
serve different useful purposes.

4. Direct routes

In P0, a path that hits a point in a recurrent communicating class is then trapped in that
class, so cannot reach a target outside of that class. When ε > 0, this need not be the case.
However, if a point in a recurrent communicating class is hit, then it is very likely that
the path will then linger in that recurrent communicating class, passing through every
point in the class many times and, in particular, through states in any comprehensive
set. Hence, there is a sense in which paths that do not hit a comprehensive set must be
“quick”: they cannot linger in a recurrent communicating class. We will call such paths
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direct routes. Now any path that leaves a class �x contains a direct route—the route to
its first point in � \�x. So we start by studying direct routes. They are a bit like the hare
in the story of the tortoise and the hare. Direct routes get to the destination quickly;
they must if they are not to fall into the forbidden comprehensive set. Because of this,
as Ellison (2000) points out, they are not very reliable: routes that linger in a recurrent
communicating class may be far more likely than direct routes to reach their destination.
We will study such quasi-direct routes in Section 5.

Formally, define a forbidden set W ⊆ Z for a path a = (z0� z1� � � � � zt) to be a set
that the path does not touch except possibly at the beginning and end, that is, z1� � � � �

zt−1 /∈W .

Definition 2 (Direct routes). Given an initial point x ∈ Z and sets B ⊆ W , we call a
nontrivial path a from x to B with forbidden set W a direct route if W is comprehensive
and the path has finite resistance r(a) < ∞ (equivalently, positive probability for ε > 0).

For each x, B and comprehensive W , there is a set of direct routes from x to B with
forbidden set W , which we denote by AxBW .8

We are interested in the following questions: How likely is the set of direct routes
AxBW , which paths in AxBW are most likely, what are these paths like, and how long are
they?

Results on direct routes

The intuition behind the results we present next is simple. Direct routes must hit the
target without falling into a comprehensive set. This is hard, hence these routes have
to be quick, and the quickest way is to make least resistance steps. This will be made
precise in the following discussion.

First, to avoid triviality, we assume that AxBW 	= ∅. An important observation is that
there are typically many direct routes. Specifically, if there is a path (z0� z1� � � � � zt) ∈
AxBW that contains a loop, that is, zτ = zτ′ /∈ W for τ 	= τ′, then AxBW is countably infinite
since the loop can be repeated an arbitrary number of times. Notice also that if this loop
has zero resistance, then the length of paths in AxBW is without bound. Nevertheless,
we shall see the expected length of such paths is quite short. For nonempty A ⊆ AxBW ,
the first important fact proven in Appendix A is that r(A) = mina∈A r(a) is well defined
(and finite); it is the least resistance of any path in the set A.

The main result on direct paths characterizes their probability and length. The proof
along with detailed bounds is given in Appendix A.

Theorem 1. If A⊆ AxBW is nonempty, then Pε(A|x) ∼ εr(A) and Eε[t(a)|x�A] ∼ 1.

In particular, positive resistance direct routes are not very likely to occur as ε gets
small, yet they are unlikely to be terribly long in the sense that the expected length is

8The assumption that B ⊆ W is without loss of generality. We can always define a forbidden set W ′ =
W ∪B without changing the set of direct routes. Note that for given x, B, W , the set of direct routes may be
empty: it may be impossible to get to B without first hitting W \B.
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bounded independent of ε. Despite the fact that they are unlikely, these paths are im-
portant because they are needed to get from one recurrent communicating class to an-
other. Intuitively, the reason these paths are short is that at each point along a direct
route there is a zero-resistance path that leads to the forbidden set W . The more time
that is spent along the route, the greater is the risk of falling into the forbidden set and
failing to reach its destination. By contrast, we will see subsequently that the expected
time spent in a recurrent communicating class goes to infinity as ε→ 0.

The order of Pε(A|x) established in Theorem 1 directly implies the other facts char-
acterizing direct routes.

Corollary 1. Let A = {a | r(a) = r(AxBW )} denote the least resistance paths in
AxBW 	= ∅. Then limε→0(Pε(A|x)/Pε(AxBW \A|x)) = ∞.

In other words, least resistance direct paths are far more likely than other direct
paths. It is also the case that all least resistance direct paths have a probability similar to
each other.

Corollary 2. Let A= {a | r(a) = r(AxBW )} and a ∈A. Then Pε(a|x)/Pε(A|x) ∼ 1.

This completes the discussion of the basic results on direct routes.

5. Transitions between recurrent communicating classes

We next study how the system is most likely to leave a recurrent communicating class
and to which other class it is most likely to transit; then also how long it takes and where
these paths spend their time along the way.

5.1 Quasi-direct routes

Ellison (2000) observes that being able to pass through every point in a recurrent com-
municating class may have a profound impact on the nature of the paths. The results of
this section make this precise by characterizing quasi-direct routes that spend most of
the time moving about without resistance within an initial class �x.

We start again with an initial point x ∈ Z in the recurrent communicating class
�x, a forbidden set W ⊆ Z, and a target set B ⊆ W . Notice that the definition in Sec-
tion 3 implies that direct routes from x to B with forbidden set W are not allowed to
pass through all states in �x, since the forbidden set W was assumed to be compre-
hensive. We now wish to relax that restriction and consider routes that are allowed to
linger freely inside �x.9 So we exclude �x from the forbidden set, that is, we assume
W ∩ �x = ∅. Thus W cannot be comprehensive. However, we assume that W contains
at least one point from every recurrent communicating class except for �x. We then call
W quasi-comprehensive.

9Notice that for the case of singleton �x, this means the path may remain at x for some time or leave and
return a number of times before hitting the target.
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Definition 3 (Quasi-direct routes). A nontrivial path a from x ∈Z to B ⊆W is a quasi-
direct route if W is quasi-comprehensive and the path has finite resistance.

We denote the set of such paths by QxBW . As in the direct case, we assume the set
QxBW is nonempty. Again we are interested in the structure of the paths in QxBW , in
particular, which paths in QxBW are most likely, what do these paths look like, and how
long are they?

Consider a path a in QxBW . The path originates at x and eventually hits B for the
first time without first hitting W . The path may return to the start point x a number of
times before finally departing and reaching the destination B. Consequently, it can be
decomposed into a series of loops starting from x and returning to x, followed by a final
departure or exit path to B. The loops start at x and return to x without hitting x or W
in between; hence they are routes from x to x with forbidden set W ∪ {x}. Since W is
quasi-comprehensive, W ∪ {x} is comprehensive and we abbreviate these direct routes
as AxxW ≡Axx(W ∪{x}); this should not lead to confusion since W is quasi-comprehensive
and so AxxW has no other meaning. Following the loops, the exit path is a route from
x to B that does not hit either x or W , that is, the forbidden set is again W ∪ {x} and so
these are again direct routes that we abbreviate as AxBW ≡AxB(W ∪{x}). For a ∈QxBW , we
write n(a) for the number of loops in a (it may be that n(a) = 0). Then if n(a) > 0, we can
uniquely decompose a ∈QxBW as a1� a2� � � � � an(a)� a

+, where the ai ∈AxxW are the loops
and a+ ∈AxBW is the exit path; if n(a)= 0 then a= a+.10

Next we want a measure of the resistance of a quasi-direct path a ∈ QxBW . As we
shall see, for such a path it is not the total resistance r(a) that matters. What matters
is the peak resistance ρ(a) = max{r(ai)|n(a)i=1 � r(a+)}, the greatest resistance of any of the
loops or the exit path.

Definition 4. The least peak resistance of a set Q ⊆QxBW is ρ(Q) = mina∈Q ρ(a).

The next result shows that quasi-direct routes with least peak resistance consist of a
least resistance exit path preceded by loops of weakly lower resistance.

Theorem 2. If a ∈ QxBW has least peak resistance so that ρ(a) = ρ(QxBW ), then it has
peak resistance equal to least exit resistance: ρ(a) = r(a+) = r(AxBW ).

Proof. Suppose ρ(a) = ρ(QxBW ). From the definition ρ(a) ≥ r(AxBW ), so the lemma
can fail only if there is a path ã ∈ AxBW for which r(ã) < ρ(a). But ã ∈ QxBW , so this
contradicts a having least peak resistance. �

10Note that both AxxW and AxBW can contain loops from a point y 	= x in �x back to y provided we
do not touch x in between. One can imagine alternative decompositions without this property, but this
decomposition is just a tool for understanding how we get from x to B and technically our decomposition
works well.
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5.2 Leaving a recurrent communicating class

The following result (proved in Appendix B) plays a role in the theory of quasi-direct
routes similar to that played by least resistance in the theory of direct routes in
Corollary 1.

Theorem 3. Let A = {a | ρ(a) = ρ(QxBW )} denote the least peak resistance paths in
QxBW 	= ∅. Then limε→0(Pε(A|x)/Pε(QxBW \A|x))= ∞.

Theorem 3 not only tells us the most likely routes from �x to �\�x, by implication it
also tells us where we are likely to leave �x from and where we are likely to end up. First,
since all states in �x can be reached from x with no resistance, the path must leave �x

through a point z ∈ �x from which the path to B is of least resistance among the direct
routes from �x to B with forbidden set W ∪�x, since leaving �x through any other point
would incur higher resistance. We call such z an express exit.

Next we consider where we end up. In case B = W = � \ �x, which recurrent com-
municating class in � \ �x are we likely to move to? Let �LP−x be the collection of �y in
� \�x for which there is a quasi-direct route from x to y of least peak resistance and let
�GP−x be the remainder of � \�x. Let Pε(�

j
−x|x) denote the probability that starting at x,

the first arrival at � \�x is in �
j
−x for j = LP�GP. Then we have the following immediate

corollary of Theorem 3.

Corollary 3. We have limε→0(Pε(�
LP−x|x)/Pε(�

GP−x|x)) = ∞.

To better understand what these results say about the actual dynamics of the system,
recall that Ellison (2000) defines the basin of �x as the set of states in Z for which there
is a zero-resistance path to �x and no zero-resistance paths to � \�x. Said otherwise, it
is the set of states for which there is probability 1 in P0 of reaching �x. He also defines
the radius as the least resistance of paths from �x out of the basin. Focus on the case
B = W = � \ �x. Theorem 2, together with the fact that there are zero-resistance paths
from x to any other point z ∈�x and from outside the basin to �\�x shows that the least
peak resistance ρ(QxBW ) is the same as the radius. Theorem 3 shows that what matters
for leaving the basin are the least peak resistance paths in the sense that paths from �x

to � \�x, which have peak resistance higher than the radius, are very unlikely. That in-
cludes both paths with a higher exit resistance than the radius and paths that have loops
with higher resistance than the radius. Corollary 3 shows that the recurrent communi-
cating classes �y that will be reached from �x are very likely to be those for which the
peak resistance is the same as the radius, which is to say that when we leave the basin
on a direct route with resistance equal to the radius, there is then a zero-resistance path
to �y .

5.3 Expected length and visits of quasi-direct routes

We know from Theorem 1 that transition paths in the direct route case are short. For
paths that are allowed to remain in �x we have the opposite result: these paths are quite
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long. At this point it is convenient to focus on the case where B is reached with proba-
bility 1, that is, Pε(QxBW |x) = 1. We assure this by assuming that B = W .11 Our goal is to
show that QxBW has paths of expected length ε−r(AxBW ), that the fraction of time spent
in �x goes to 1, and that the absolute time spent outside of �x goes to infinity. We will
also show which kind of loops are likely to recur many times. The proofs of the results in
this section may be found in Appendix B.

The first result concerns the amount of time it takes to leave �x and how much of
that time is spent in �x.

Theorem 4. Suppose that B = W . For a = (a1� a2� � � � � an(a)� a
+) ∈ QxBW , we let a− =

(a1� a2� � � � � an(a)) denote its loops and define t−(a) to be the amount of time along a−
spent outside of �x.12 Then

Eε[t(a)|x�QxBW ] ∼Eε[t(a−)|x�QxBW ] ∼ ε−r(AxBW )

and

lim
ε→0

Eε

[
t−(a)
t(a−)

∣∣∣x�QxBW

]
= 0�

This says that quasi-direct paths including or excluding the exit path are long and
spend most of their time in �(x).

The second result characterizes more exactly what happens while the system spends
time outside of �x during a quasi-direct route.

Theorem 5. Suppose that B = W . For A ⊆ AxxW , let M(a�A) be the number of loops of
a that lie in A. For A ⊆AxxW

Eε[M(a�A)|x�QxBW ] ∼ εr(A)−r(AxBW )

if in addition r(A) < r(AxBW ) and k ≥ 0

lim
ε→0

Pε[M(a�A) > k|x�QxBW ] = 1�

Also let AxxW [t] be the set of loops that spend at least t consecutive periods outside of
�x. If there is a path a0 ∈AxxW that contains a zero-resistance loop not touching �x with
0 < r(a0) < r(AxBW ), then for any k> 0,

lim
ε→0

Pε
(
M(a�AxxW (kt(a+))) > k|x�QxBW

) = 1�

11Recall that the paths in QxBW by definition have positive probability of reaching B without touching W

along the way; when B = W , there is no other way to reach B, so this probability becomes 1.
12This first result is an extension of Ellison’s (2000) result that the waiting time for leaving �x is of or-

der ε−r , where r is the radius. Ellison mentions both an upper and lower bound in the text, but we have
been unable to locate his proof of the lower bound. The extension here is that W can be a general quasi-
comprehensive set, for example, it might include states in the basin of �x.
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The first two statements say that if there is some a0 ∈ AxxW with 0 < r(a0) < r(AxBW ),
then this loop will occur many times even though the fraction of the time spent outside
�x in such loops must be small. Alternatively, we can say it this way: as ε → 0, loops in
AxxW that have resistance strictly less than the radius occur an arbitrarily large number
of times before we leave the basin of x and those that have a resistance strictly greater
than the radius have a vanishing small probability of occurring before we exit the basin.
The third result says that it will often be the case that a will spend more than k times as
long outside of �(x) as it takes to get to the final destination following the exit path.

On a more technical note, the first result describes the expected number of occur-
rences, while the second result describes the realized number of occurrences of loops
in A. The difference between the two is that the amount of time before leaving the basin
is random. It could be that with very high probability, the number of occurrences is
small (less than k say), and in those rare cases where the length of time before leaving
the basin is very large, the number of occurrences is very large. In this case the expected
number of occurrences may grow as ε gets smaller, while the probability of seeing more
than k occurrences remains unchanged or even falls. The second part of Theorem 5
shows that this cannot happen.

6. The big picture

Reconsider the dynamics of Pε. Starting at any point x, by Theorem 1, we move quickly
to one of the recurrent communicating sets �y . Once there, by Theorem 4, it is a long
time before we reach a different �z , and most of that time is spent in �y . One question
we now address is what the dynamics look like during the long period when we are in �y .
When we do finally leave �y , by Theorem 2 we move quickly to the next �z , and it is most
likely the recurrent communicating set that has least exit resistance from �y . The second
question we will address is, over the longer run, how much time do we spend in the
different recurrent communicating sets in �? To this end, we assume in this section that
Pε is ergodic for ε > 0 and denote by με the unique ergodic distribution of the process.

The big picture that we will break down over the next subsections can be visualized
by thinking of astronomy. At the bottom level are planets, which correspond to recur-
rent communicating classes. Movements within recurrent communicating classes can
be thought of as moving around on the planetary surface, that is, relatively quick. Re-
current communicating classes are surrounded by states in their “inner basin” that are
tightly bound to them like moons around a planet. There are also a few states that are
either far from recurrent communicating classes or bound to several of them. For these
only we cannot give precise bounds on the ergodic probabilities; we may think of them
as comets. Recurrent communicating classes in turn are grouped into “circuits”—think
of those as solar systems: movement within a solar system being much more rapid than
movement between solar systems. These circuits—solar systems—are grouped into
higher order circuits—galaxies—and the “galaxies” in turn are grouped to even higher
level circuits and so forth. We give tight bounds for the relative ergodic probabilities for
elements within a circuit: planets within a solar system, solar systems within a galaxy,
and so forth. In the end, all these circuits are contained in a single universe, and this will
give us the relative ergodic probabilities of all recurrent communicating classes.
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We should emphasize that while the method of circuits can be turned loose on ar-
bitrary models to determine the structure and relative probability of recurrent commu-
nicating classes, it can also be useful in building models. Some structures are easier to
analyze than others. For example, in the hegemony model of Levine and Modica (2013a)
all recurrent communicating classes are in the same circuit, so it is trivial to analyze their
relative resistances: it is given by the differences of least resistances to leaving, or more
simply in that context, hegemonies can be ranked by their state power in their worst
state, and hegemonies with higher state power are relatively much more likely in the
ergodic distribution than those with lesser state power. At the next level, if we can estab-
lish assumptions that bind recurrent communicating classes into groups where all the
groups lie in a single circuit, then within each group relative resistances are determined
by exit resistances, and the relative resistances between groups is determined by the exit
resistances from group to group. More broadly, our intuition may tell us what the struc-
ture of circuits “ought” to look like so that it would be natural to focus on assumptions
that lead to that type of structure.

6.1 Inside recurrent communicating classes: On the surface of the planet

When ε = 0 we cannot move between recurrent communicating classes, but we have
well defined and ergodic dynamics within each class. Moreover, these dynamics are fast
in the sense that they are independent of ε. Hence if we are interested in the approxi-
mate probability of events within a class, we should consider paths of bounded length.
For such events, the probabilities in P0 are much the same as for Pε for ε small. Specifi-
cally, we state the following theorem.

Theorem 6. Let A1 and A2 be any collections of paths of bounded length starting at
x ∈�x and for which P0(A2|x) > 0. Then

lim
ε→0

Pε(A1|x)
Pε(A2|x) = P0(A1|x)

P0(A2|x) �

Proof. Since the probabilities are defined by finite sums of finite products of the
transition probabilities Pε(z|y), and the length of the sums and the products are
bounded independent of ε, the result follows immediately from the assumption that
limε→0 Pε(z|y)= P0(z|y). �

In particular, since paths that lie entirely within �x have probability 1 in P0 given x,
the probability of sets of paths of finite length within �x is roughly the same in Pε as in
P0 when ε is small.

The other important characteristic of �x is the amount of time spent at different
states. Notice that if we restrict the state space to �x, then P0 is an ergodic Markov pro-
cess on that space, and so has a unique and strictly positive ergodic distribution μ0(y),
where

∑
y∈�x

μ0(y) = 1. Notice in particular that if y ∈ �x, the ratio μ0(x)/μ0(y) is well
defined and finite. We can relate this to the ratio of stationary probabilities με(x)/με(y)

for the process when ε > 0. In Appendix C we show that the following theorem holds.
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Theorem 7. If y ∈�x, then

lim
ε→0

με(x)

με(y)
= μ0(x)

μ0(y)
�

6.2 Basins and ranges: Moons and comets

Recall that the basin of �x consists of the states for which there is probability 1 in P0 of
reaching �x. For the purpose of relating states to recurrent communicating classes, it is
useful to define three variations on the basin. First observe that from any point outside
the basin there is positive P0 probability of reaching � \ �x, that is, from outside the
basin there is a zero-resistance path to �\�x. Therefore, the radius—the least resistance
of leaving the basin—is also the least resistance to get to � \�x.

Definition 5. The outer range of �x is the set of states for which there is a zero-
resistance path to �x. The inner range of �x is the set of states y in the outer range
that can also be reached from x with resistance not larger than the radius of �x.13 If
we further require that the resistance of being reached is strictly less than the radius, we
have the inner basin.

The outer range is the largest set of states affiliated with �x in the sense that any
states outside the outer range will never get to �x when ε = 0. The outer range con-
tains the basin, but unlike the basin, the outer range does not require reaching �x with
probability 1 when ε = 0, and a point can be in the outer range of different recurrent
communicating classes.14 By contrast, the basins of different recurrent communicating
classes must be disjoint.

The inner basin is a subset of the inner range by definition. It is also a subset of the
basin, since if a point in the inner basin were not in the basin, we could go from x to
� \ �x with resistance strictly less than the radius, which is impossible by definition.
The states in the inner basin are the states most tightly affiliated with �x: this is shown
by Theorem 4, which says that these states will be hit many times before moving on to
the next recurrent communicating class.

There is no firm relationship between the basin and the inner range. The basin may
contain states further from �x than the radius, so states not in the inner range. The
inner range contains states at a distance equal to the radius, and some of these states
must have zero-resistance paths to other recurrent communicating classes so that they
cannot be part of the basin. Nevertheless, states in the inner range are still “close” to �x:
they are part of least peak resistance paths to other recurrent communicating classes,
and Theorem 4 says the expected number of times they will be hit before moving on is
positive. By contrast, the states that are in the basin but not the inner range are “far”
from �x and this can be seen precisely in Theorem 3, which shows that these states

13If this is true, then there is also a direct route with forbidden set W = (� \ �x) ∪ {x} ∪ {y} with this
property. Basically, within the basin it does not matter whether least resistance is measured along direct
routes or all routes since it is not possible to pass through � \�x while remaining in the basin.

14In the introductory example, the state {2} is in the outer range of both �0 and �5.
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are unlikely to be reached from �x prior to reaching another recurrent communicating
class.

States in the inner basin are like “moons” tightly bound to the recurrent commu-
nicating class, while states in the outer range but not the inner basin are more like
“comets” that are not tightly bound to any recurrent communicating class.

Let rD(x� y) be the least resistance of any direct path from x ∈ �x to y that does
not pass through any recurrent communicating class other than �x, that is, we define
rD(x� y) ≡ r(AxyW ) with W = (�\�x)∪{x}∪{y}. Take W =�\�x and define the radius15

of �x to be r0(�x) = r(QxWW ). The following theorem is shown in Appendix C.

Theorem 8. If x ∈�x and rD(y�x) = 0, then

με(y)

με(x)
∼ εr�

where min{rD(x� y)� r0(�x)} ≤ r ≤ rD(x� y).

For the comets—states that are not in the inner range of any recurrent communicat-
ing class, that is, states that are in the outer range of one or more recurrent communicat-
ing class, but are “hard” to reach—Theorem 8 gives bounds for the ergodic probabilities:
they cannot be too likely. For the moons—states in the inner range—the bound is tight,
and says that their relative probability of occurring is inversely proportional to the least
resistance of getting to them from �x.

Corollary 4. If y is in the inner range of x ∈�x, then

με(y)

με(x)
∼ εr

D(x�y)�

6.3 Recurrent communicating classes: Solar systems, galaxies and beyond

Consider again the overview of the dynamics of Pε: starting at any point x, we move
quickly to one of the recurrent communicating sets �y ; once there it is a long time before
we reach a different �z and most of that time is spent in �y . When we do finally leave
�y , we move quickly—and directly, in our sense—to the next �z and it is most likely the
recurrent communicating set that has least exit resistance from �y . Proceeding in this
way, we get a sequence of recurrent communicating sets �i connected by least exit re-
sistances.16 Since the set � of recurrent communicating classes in P0 is finite, eventually
this sequence must have a cycle.

More general than the notion of a cycle, we introduce the notion of a circuit. The
defining property of a circuit is that between any two of its states there is a path within
the circuit with least resistance transitions. We start by defining circuits in �. For
�x��y ∈ �, define transition resistance r0(�x��y) = min{rD(x� y) | y ∈ �y} that is the
least resistance of any direct path from x to �y not touching � \�x; least resistance out
of �x is then defined as r0(�x) = min�y∈�\�x r

0(�x��y)—Ellison’s (2000) radius of �x.

15As noted above, this is different from Ellison’s (2000) definition but is equivalent.
16We could equally well say radius.
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Definition 6 (Circuits). A set �1
x ⊆ � is a circuit if for any pair �1��y ∈ �1

x, there is a
path (�1��2� � � � ��n) in �1

x with �n = �y and r0(�τ−1��τ)= r0(�τ−1) for τ = 2�3� � � � � n.

Our basic observation is that once we reach a circuit, we remain within the circuit
for a long time before going to another circuit. We first compare states within a circuit.
Since the probability of leaving �x is of order εr

0(�x), the expected length of any visit to

�x is 1/εr
0(�x). We might then expect that the amount of time we spend at �x is roughly

εr
0(�y)−r0(�x) as long as the amount of time we spend at �y . In Appendix S.D, avail-

able in a supplementary file on the journal website, http://econtheory.org/supp/1978/
supplement.pdf, we show that this is indeed true.

Theorem 9. If the recurrent communicating classes �x and �y are in the same circuit,
then

με(x)

με(y)
∼ εr

0(�y)−r0(�x)�

We next ask how long do we actually spend in a circuit over �? We stay in �x

roughly ε−r0(�x) periods; and the probability of going to a fixed �y 	= �x out of the

circuit is of order εr
0(�x��y). Hence the probability of going to �y during a visit to

�x is of order (1/εr
0(�x))εr

0(�x��y). For this to occur with very high probability, the
number of visits to �x must be roughly kx, where kx(1/εr

0(�x))εr
0(�x��y) = 1; that is,

kx = 1/εr
0(�x��y)−r0(�x). Following Ellison (2000), we define the modified resistance from

�x to �y as R0(�x��y) = r0(�x��y) − r0(�x). Then the number of visits is least for the
element �z in the circuit that has minimum R0(�z��y) over �y /∈ �1

x. This is the most
likely (actually least modified resistant) exit from the circuit. Also, it will exit to a cir-
cuit that is easiest to reach. This in turn suggests that we can form circuits of circuits
using modified resistances as the measure of resistance in going from one circuit to an-
other. The system moves between circuits of circuits in a longer time horizon. Moreover,
as we have seen, the crossings between circuits are direct routes; hence we will define
resistance in terms of such paths. We spell out these ideas next.

The procedure we will describe is essentially the same as that employed by Cui and
Zhai (2010) to compute the stochastically stable state.17 Here we employ the procedure
to determine the relative probabilities of recurrent communicating classes.

We build circuits recursively starting from �0 ≡ �. Assuming � has N� ≥ 2 ele-
ments, we observe in Appendix S.D that there is at least one circuit that is nontrivial in
the sense of having at least two elements, and that every singleton element is trivially a
circuit. Hence we can form a nontrivial partition of �0 into circuits, and we denote by �1

the collection of elements of this partition—so an element of �1 is a circuit on � = �0.
Given two distinct elements �1

x��
1
y ∈ �1, define transition resistance r1(�1

x��
1
y) =

17There are a number of known algorithms for computing the stochastically stable state related to that
of Cui and Zhai (2010). Hasker (2014) has a good review of the literature. Cui and Zhai (2010) in fact use the
terminology “cycle,” but as that seems misleading, we prefer the term “circuit,” since movement within a
circuit will not necessarily be a cycle.

http://econtheory.org/supp/1978/supplement.pdf
http://econtheory.org/supp/1978/supplement.pdf
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min{R0(�x��y) | �x ∈ �1
x��y ∈ �1

y}, least outgoing resistance r1(�1
x) = min{r1(�1

x��
1
y) |

�1
y ∈ �1 \ �1

x}, and modified resistance R1(�1
x��

1
y) = r1(�1

x��
1
y) − r1(�1

x). A set in �1 is
a circuit if, as before, between any two of its states there is a path where each transition
has least outgoing resistance (according to r1 of course). Continuing, as long as �k−1

has more than one element we partition it into circuits, call �k the resulting collection of
elements, and for �k

x��
k
y ∈ �k define rk(�k

x��
k
y ) = min{Rk−1(�k−1

x ��k−1
y ) | �k−1

x ∈ �k
x�

�k−1
y ∈ �k

y }, rk(�1
x) = min{rk(�k

x��
k
y ) | �k

y ∈ �k \ �k
x}, and modified resistance

Rk(�k
x��

k
y ) = rk(�k

x��
k
y ) − rk(�k

x). Note that since each partition is nontrivial, this
construction has at most N� layers before the partition has a single element and the
construction stops: k≤N�.

The crucial function at each layer k turns out to be the modified radius of x ∈ �x of
order k, defined by

R
k
(x) =

k∑
κ=0

rκ(�κ
x)�

where �0
x = �x and for each κ > 0, the element �κ

x ��κ−1
x . It is a measure of the difficulty

of traveling far from x and has an intuition similar to that of Ellison’s (2000) modified
co-radius. We show in Appendix S.D that the following theorem holds.

Theorem 10. Let k be such that �k
x = �k

y , that is, x and y are in the same circuit in �k.
Then

με(x)

με(y)
∼ εR

k−1
(y)−R

k−1
(x)�

It is useful to define the difference between the modified radii R
k−1

(y)−R
k−1

(x) as
the relative ergodic resistance of x over y. The theorem says that the relative probabilities
within a circuit are proportional to ε to the power of the relative ergodic resistance. Note
here the implication: if x and y are in the same circuit in �k, then of course they have

to be in the same circuit in any �κ for κ > k. Hence in this case R
κ−1

(y) − R
κ−1

(x) =
R
k−1

(y)−R
k−1

(x).
Traditionally, interest has focused on the states x that have ergodic probabilities that

are bounded away from zero—the stochastically stable states. We can see from Theo-
rem 10 that in any circuit these states must have nonpositive relative ergodic resistance
over any other state and strictly negative over any state that is not also stochastically
stable. Since this must be true in any circuit, it must be true in the top level circuit that
contains all recurrent communicating classes, that is to say, the �k where k is the high-
est level of the filtration where the partition is a singleton. We thus have the following
corollary.

Corollary 5. The stochastically stable states are exactly those with the highest values of

R
k−1

(x), where k is the level at which the partition into circuits is a singleton.
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6.4 An example

To illustrate the application of Theorem 10, let us give a complete analysis of the case
where � has three elements.18 Note that there are nine trees on three states, so the
analysis by means of trees is already difficult. For simplicity let us make the generic
assumption that no two resistances or sums or differences of resistances are equal.

There are two cases: either there is a single circuit or there is one circuit consisting
of two states and an isolated point. The case of a single circuit is trivial: in this case, in

Theorem 10, k = 1, and since R
0
(x) = r0(�x), the relative ergodic resistances are given

simply by the differences in least outgoing resistances between the three states, and the
stochastically stable state is the point with least outgoing resistance.

Take then, the case of � with one two-point circuit and an isolated point. Denote
by �x and �y the two states on the circuit and denote by �z the remaining point.
Then k = 2 in the theorem. Assume without loss of generality that r0(�x) > r0(�y) so
that, within the circuit, �x is relatively more likely. Notice that r0(�x��y) < r0(�x��z)

and r0(�y��x) < r0(�y��z) since �x and �y are on the same circuit; this also implies
r0(�x) = r0(�x��y) and r0(�y) = r0(�y��x). Turning to the recursion, we need to work
out the least modified resistances. Let �1

x = {�x��y} be the circuit and let �1
z = �z be

the isolated point. Then r1(�1
z��

1
x) = min{r0(�z��x)− r0(�z)� r

0(�z��y)− r0(�z)} = 0,

while r1(�1
x��

1
z)= min{r0(�x��z)− r0(�x)� r

0(�y��z)− r0(�y)}. Hence R
1
(z) = r0(�z),

which is just the radius of �z , while

R
1
(x) = r0(�x)+ min{r0(�x��z)− r0(�x)� r

0(�y��z)− r0(�y)}
= min{r0(�x��z)� r

0(�x)+ r0(�y��z)− r0(�y)}�

which is to say exactly what Ellison (2000) defines as the modified co-radius of �z .19

The relative ergodic resistance of x over y is therefore r0(�z) − R
1
(x), while the relative

ergodic resistance of y can be recovered from the relative ergodic resistance of y over
x, which is just r0(�x) − r0(�y). With respect to stochastic stability, we see that �z is

stochastically stable if and only if its radius r0(�z) is greater than its co-radius R
1
(x),

which is Ellison’s (2000) sufficient condition, and otherwise �x is not stochastically sta-
ble. In short, the entire ergodic picture comes down to computing three numbers: the
radius and co-radius of �z and the difference between the radii of �x and �y .

7. The fall of hegemonies

We now discuss how our results can be used to interpret historical facts concerning se-
quences of long-run social events of small probability. This is the natural field of appli-
cation of our theory, which concerns transitions along paths whose steps are each quite

18See also Hasker (2014).
19In fact, the modified co-radius is defined as the larger of R

1
(x) and R

1
(y) = min{r0(�y��z)�

r0(�y��x) + r0(�x��z) − r0(�x��y)}. However, r0(�x��z) > r0(�y��x) + r0(�x��z) − r0(�x��z) and

r0(�x��y)+ r0(�y��z)− r0(�y��x) > r0(�y��z) imply R
1
(x) ≥R

1
(y).
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unlikely to occur. We will focus in particular on the fall of the Qing dynasty in twentieth
century China. We use a variation of the model of Levine and Modica (2013a) and Levine
and Modica (2013b), identifying the fall of a hegemonic society with its progressive loss
of land to a different society.20 We emphasize that this application is limited in scope:
the goal is to illustrate how results on transitions lead to interesting predictions. The
sensitivity of the predictions to assumptions and the validity of those predictions across
a broad range of data are of independent interest but are beyond the scope of this paper
and are discussed in Levine and Modica (2013b).

There are a finite number J of societies. In each period t, each society j has one of a
finite number of internal states ξjt ∈
j . These states evolve according to a fixed Markov
process �j(ξjt |ξj�t−1) > 0 independent of ε so that all transitions are possible. External
forces such as disease, climate, other real shocks to productivity, the interference of out-
siders who are protected themselves by geographical barriers, or superior technology
can lead to changes in the internal state; the state may also represent changes in the
internal structure of institutions. A good example of the �j process within a given soci-
ety can be found in Acemoglu and Robinson (2001): there external shocks in the form of
recessions drive changes in institutions whereby the voting franchise is extended or con-
tracted. The ability of a society to resist and influence other societies is indexed by “state
power” γj(ξjt). Societies may or may not satisfy incentive constraints: we represent this
by a stability index bj ∈ {0�1} with 1 indicating stability, where societies violating in-
centive constraints are thought to be unstable. We assume that the strongest unstable
society with the most favorable value of ξj is stronger than the strongest stable society in
its least favorable value of ξj , that is, maxj|bj=0�ξjt∈
j

γj(ξjt) > maxj|bj=1 minξjt∈
j
γj(ξjt).

This reflects the idea that unstable societies face weaker incentive constraints.
Societies compete over a single resource called land. Each society j holds an integral

number of units of land Lj , where there are L units of land in total. A state z is a list
of landholding and real shocks of the different societies, z = (L1� ξ1�L2� ξ2� � � � �LJ�ξJ).
Land changes ownership between societies due to conflict. We assume that at most 1
unit of land changes hands each period. The probability that society j loses a unit of
land is given by a conflict resolution function with resistance rj(z) < ∞ to j losing 1 unit
of land; that is, the resistance of a transition from z to a state where j has one less unit of
land. If j looses land, the probability the land goes to society k has land gain resistance
λjk(z), where λjj = ∞, but if k 	= j, then λjk <∞.

Conceptually, in this model there are two distinct types of societies: active societies
that have positive landholdings and inactive societies that do not. Inactive societies rep-
resent templates for societies that might exist but do not exist currently: an inactive
society may become active because when an active society loses land, the land may be
lost to an inactive society, that is, the loss of land may represent experimentation with
new institutions.

20Levine and Modica (2013a, 2013b) use a model in which the conflict is distinct from learning. The
model here simplifies that model by having learning take place on a single unit of land at a time when a so-
ciety is “unstable.” This greatly simplifies presentation of the model without any important consequences
for the results. The model here otherwise weakens the assumptions in those papers.
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We make several specific assumptions about the conflict resolution and land gain
resistance. We assume that r and λ depend only on the landholdings, state power, and
stability of the different societies. Since they are just templates for societies, we assume
that the state power of inactive societies does not matter. We assume that conflict res-
olution resistance is monotone, so that the probability of j losing land decreases with
its own state power and land, and increases with that of other societies. In particular,
we assume that unstable societies always have zero resistance to losing a unit of land: if
incentive constraints are not satisfied, individuals experiment with different actions and
societies experiment with different institutions (albeit just on a single unit of land at a
time). For stable societies, we assume the resistance is strictly monotone when nonzero
and that the weakest society with positive landholding has zero resistance to losing a
unit of land. Finally, we assume for given landholding that resistance is greater when fac-
ing more than one opponent who has positive landholding than when all enemy land is
in the hands of the strongest landholding opponent—also that this is strict if resistance
is positive. With respect to land gain resistance, we assume that if k 	= j and Lk > 0 then
λjk(z) = 0, that is, active societies all have zero resistance to gaining land.

7.1 The rise, the fall, and warring states

We apply the same outline of analysis to this model as we did to the simple example
of Section 2: we look first for the recurrent communicating classes, then for the rela-
tionship between them, then the basins, then the relationship between the basins and
recurrent communicating classes, and finally examine the transitions.

1. Recurrent communicating classes for ε = 0 A hegemony is a single society that con-
trols all the land. The assumption that the weakest society with positive landholding
has zero resistance to losing a unit of land plays a key role in determining the recurrent
communicating classes. It implies that there is a zero-resistance path from every non-
hegemonic state to a hegemonic state: monotonicity implies that losing land cannot
increase resistance, so the weakest society keeps losing land until hegemony is estab-
lished. Second, there is a zero-resistance path from any unstable hegemony to a stable
hegemony: by assumption, the unstable hegemony has zero resistance to losing land
and by symmetry, the first unit of land lost has zero resistance to being “taken” by a sta-
ble society, which once it becomes active continues to have zero resistance to taking
over the next unit of land and so forth.

There are three cases, depending on what the stable hegemonies are like. It may be
that the stable hegemony has so little state power that it also has zero resistance to losing
land. In this case, there is a zero-resistance path from a hegemony to any state in which
there are no more than two active societies (and, in particular, from any hegemony to
any other), and from there to other states without a hegemonic society, so that there is
only one recurrent communicating class and it is “large” in the sense that it includes
within it unstable as well as stable societies and societies with all levels of state power.
Second, it may be that there is a single stable hegemony that has the greatest state power
and that only this hegemony is strong enough to resist losing land. In this case, that



110 Levine and Modica Theoretical Economics 11 (2016)

single hegemony �x is the only recurrent communicating class. If y ∈ �x, then j(x)

can denote the single stable society j(x) that controls all the land, while the different
states y ∈ �x correspond to different shocks ξj(x). Finally, it may be that two or more
stable societies are strong enough to have resistance when hegemonic. These different
societies may have the same or different state power. Regardless, these societies each
constitute a recurrent communicating class. Our interest here is in the third case—about
how hegemonies fall—that is, how we move from a hegemony �x to B =� \�x, W = B.

2. Relation between the classes for ε > 0 Again we ask, starting in one recurrent com-
municating class, which comes next, how long will it take, and relatively how much time
is spent at each recurrent communicating class?

The first step is the standard one of understanding the radius and least resistance
paths out of the basin that by Corollary 3 we know are the most likely ways of leaving
the basin. Because of monotonicity, a single invader with the greatest state power in
the most favorable state always has the least resistance to gaining a unit of land from
the hegemon. Hence a path in which such an invader repeatedly takes land from the
hegemon is a least resistance direct route out of the basin. There is a threshold level of
land such that once the hegemon loses this amount of land, it loses resistance: because
this “optimal” invader is necessarily at least as strong as the hegemon and because the
weaker of the two societies always has zero resistance to losing land, this threshold is no
more than 50% of the land.

Next we observe that we have assumed that unstable societies can generate more
state power than any stable society. This means that the optimal invader must be unsta-
ble. We refer to the unstable society that generates the greatest state power as zealots.
These are the optimal invaders.

Notice that once the basin has been exited, zealots can continue to gain land with
zero resistance until there is a hegemony of zealots. At this point, since zealots are un-
stable and have zero resistance to losing land themselves, their hegemony is transient,
and any stable society can enter and take all the land away from the zealots until they
themselves form a hegemony. Hence, from any �x ∈ �, there is a least resistance path
to any other �y ∈ �. That means that all the recurrent communicating classes are in
the same circuit and so by Theorem 9 their relative probabilities simply depend on the
differences in their radii. Since the radius is determined entirely by state power and is
strictly increasing in state power, this means that hegemonies with greater state power
are far more likely in the long run than societies with less state power. Notice how the
(very reasonable) assumption that greater power is generated by ignoring incentive con-
straints than by satisfying them leads to this very simple long-run dynamic.

By the earlier work of Ellison (2000) and Theorem 4, we know that the waiting time
for a hegemony to fail is determined by the radius and, hence by the state power. Hege-
monies with greater state power are more durable.

3. Basins The states in the basin of a hegemony �x are simply those states in which the
society has positive resistance to losing land for all internal states ξj(x). Since this means
that j(x) is not the weakest society, it follows that there is zero resistance to some other
society losing land, and since j(x) has zero resistance to gaining that land and continues
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to have positive resistance to losing land when it increases its landholding, this means a
probability 1 path to the hegemony when ε= 0. The inner basin is just that subset of the
basin that can be hit with less resistance than the radius: this is typically a much smaller
set than the basin.21

The outer range consists of states that are in the basin but have resistance strictly
greater than the radius, plus a large collection of states that have zero resistance both to
returning to the hegemony and to some other recurrent communicating class. This is
true of any state in which an unstable society is the strongest (in its strongest internal
state), such as those states reached after invasion by zealots.22 The inner range just adds
those states in the outer range that have resistance equal to the radius.

4. Relation between basins and classes By Theorem 4, during the time before reach-
ing a new class most of the time will be spent in the current recurrent communicating
class, but there will be a large number of periods during which the system will move to
states in the inner basin and back. From Theorem 8, the relative amount of time spent
at these states compared to the time spent in the recurrent communicating class is an
exponential function of the difference between the resistance of reaching the point and
the radius; further states are less likely.

5. Transitions How we get from one recurrent communicating class to another is cov-
ered in Theorem 3. This says that when ε is small, it is nearly certain that this transition
will take place along a least peak resistance path, and we want to describe such paths
in the model at hand: such a path may leave the recurrent communicating class and
return any number of times, but during each departure from the recurrent communi-
cating class the resistance encountered can be no more than the radius.

Notice that from an empirical point of view we probably do not know what the inner
basin looks like, but we may have a pretty good idea of a bound on the amount of land
that the hegemon needs to be in the inner basin. For example, we may think that if the
hegemon loses 30% or less of its land it remains “safe” in the sense that it still has resis-
tance. This shows some of the strength of using arbitrary quasi-comprehensive sets W .
We can simply take the forbidden set and the target set B = W to be the set of states
in which the hegemon controls at least 70% of the land: all the theorems about least
peak resistance apply equally well to this W , except that instead of radius, we simply say
“resistance to losing 30% of land,” which has more empirical content.

21A point is in the basin but not the inner basin if the hegemony is reached with probability 1 when ε = 0
but the resistance to reaching the point is greater than the radius. So, for example, if a sufficiently weak
opponent occupies a large fraction of the land, then it will be overcome by the hegemony when ε = 0 with
probability 1, yet starting at the hegemony, the resistance to such a weak opponent grabbing so much land
can be much greater than the resistance to determined zealots taking enough land to put an end to the
hegemony.

22As we remarked above, because the unstable society is strongest, there is zero resistance to the unstable
society taking over. However, once the unstable society has taken over, it has zero resistance to losing all its
land to any hegemony. In other words, from such a state there is a zero-resistance path to every recurrent
communicating class. Consequently these states are in the outer range, yet they are certainly not in the
basin.
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Prior to the fall of the hegemony, by Theorem 4, the theory predicts that there should
be a small fraction but large number of periods where there are failed rebellions: lands
that are lost to other societies but quickly regained. These failed rebellions may or may
not involve zealots and need not take place when ξj is at its nadir. However, prior to the
actual exit, ξj must be such that state power is at a nadir, and this means that resistance
to rebellions is lower, so there should be more frequent and larger rebellions prior to the
final fall of the society.

The exit path must have least resistance to leaving the basin. We know one such
path in which the zealots simply grab one unit of land after another. This implies that
the hegemon can lose land only to the zealots—since any other loss would incur greater
resistance—and that it can never regain land—since then the zealots would have to re-
gain it. This is exactly as in the discussion of transitions in the example of Section 2.

Once the inner basin is breached we enter the outer range. We call this the fall of the
hegemony. Once the hegemony loses resistance there will be several societies compet-
ing, each with an appreciable chance of success. We refer to this turbulent period before
the basin of another hegemony is reached as the period of warring states. During this
period, there will be many societies that may rise and fall, and swap land back and forth:
it is a chaotic and turbulent phase. The exit path to another recurrent communicating
class will then be concluded with a rise of a new hegemony. The rise of the new hege-
mony is in some respects opposite of the fall. Once a stable society has enough land that
it has positive resistance to any opponents (implied if they have positive resistance to
an opponent consisting entirely of zealots), least resistance implies it can only gain land
and not lose it.

The entire period of transition we know (Theorem 4) to be short relative to the length
of the hegemony and, of course, that must be true individually for each of the three
phases. We would like to say something about the relative length of the three phases.
The fall and the rise are both monotone: during the fall the hegemony only loses land;
during the rise, the new hegemony only gains land. Hence we expect these phases to
be relatively fast. By contrast, during the warring states land may swap back and forth
many times before a victor is established. This leads us to suspect that the warring states
period should last considerably longer than the fall and the rise. However, if we simply
fix the number of units of land, no such result is possible: the warring states period may
involve only a few units of land, while the fall and the rise could involve many units of
land. In this case—since just a few units of land are involved—the back and forth during
the warring states period does not much matter, since there is a good chance one society
quickly gains the small number of units of land needed to establish a new hegemony.

Warring states with many units of land It is natural to think in terms of relatively small
units of land, for example, the Alsace–Lorraine region, a relatively small area swapped
back and forth between France and Germany four times in less than a century. To cap-
ture “small units” of land, we model the idea that the number of units of land L is large.
In this case, we might expect that the length of the rise and fall—being monotone—will
last an amount of time roughly proportional to L, while the warring state, which is more
like a random walk, would last an amount of time more nearly proportional to L2.
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To make this precise, define the share of land held by society j as θj = Lj/L, and
suppose that the conflict resolution and land gain resistance functions are continuous
functions of these shares. We also suppose that there is a threshold θ > 1

2 such that if
no society has this fraction of land, then the land gain resistance of all active societies
must be zero. Notice that this implies that any path from one hegemony to another must
enter the warring states phase, since at some point the original hegemon falls below θL

units of land for the first time and at this point the warring state phase is entered, since
certainly no other society has that much land.23

As we increase L, the number of states, which consists of all ways of dividing L units
of land among a fixed number J of societies, grows very rapidly. Hence bounds on the
expected length of direct routes that depend on the number of states are not going to be
particularly useful. In Appendix A, specific bounds for least resistance paths are given
that do not depend on the number of states and a stronger version of this is given in
Appendix S.A. These bounds show that the least resistance paths corresponding to the
rise and fall have an expected length proportional to L.

We also want to argue that the warring state phase lasts much longer than the fall or
the rise. To do this we need an additional assumption: we need to know not just resis-
tance during the warring states phase, but something about the actual transition proba-
bilities. We assume that during the warring states phase, when no society has more than
θL units of land each active society has the same probability β< 1/J of losing or gaining
a unit of land. Notice that at some point a new would-be hegemon must have 1

2L units
of land. Hence take an initial condition in which the society with the most land is j and
Ljt = 1

2L units of land. Then Ljτ is a random walk with β chance of increasing by one
or decreasing by one at least until either Ljτ ≥ θL or Ljτ ≤ (1 − θ)L.24 In Appendix S.B,
we establish that the expected passage time is of order L2, which can be compared to
the expected length of the rise and fall in Appendix S.B that are of order L. We put these
results together in Appendix S.C to establish the following proposition.

Proposition 2. For any K there exists an L such that for all L≥ L there exists an ε such
that for all ε ≤ ε the expected length of the warring states phase exceeds that of either the
fall or the rise by K periods.

Note the order of limits here: for larger L, we will generally have to choose smaller ε.

7.2 The fall of the last Qing dynasty in China

An interesting exercise is to compare the theoretical predictions of the transition to the
fall of an actual hegemony. As a case study for which there is quite a bit of historical in-
formation, we take the fall of the final Qing dynasty in China and the subsequent rise of

23Since we are assuming L is large, we are ignoring the rounding off needed due to the integer constraint.
24Even if Ljτ ≤ (1 − θ)L, no other society may have enough land to become a hegemon, but certainly no

other society can have enough land to become a hegemon until this condition is satisfied, so we can use
this condition to derive a lower bound on the expected length of the warring states period.
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the communist hegemony.25 The basic fact is that Chinese institutions that lasted from
roughly the introduction of the Imperial Examination System in 605 CE until 1911 CE
were swept away in less than a year. It is useful to begin the story about 1838, before the
First Opium War. At that time, the Qing dynasty held a hegemony over China proper:
the area bordered by the difficult terrain of Indochina in the Southeast, the Himalayan
mountains in the South, the inhospitable deserts in the West, the Pacific Ocean in the
East and the wasteland of Mongolia in the North. It also held a number of outlying areas
not part of China proper: the Korean Peninsula, Indochina, and Taiwan. As these are not
so easily defended, are not Chinese, and have only been part of the Chinese hegemony at
certain times—and moreover, the current government claims only Taiwan among these
territories—we do not count them as part of the hegemony.

Several independent sources of instability concurred to the fall of the hegemony. In
the early 1800s China fell into a severe economic depression from which it did not re-
cover prior to the fall of the hegemony. Outsiders, most notably the English, French, and
Japanese, actively intervened in China, sometimes fighting for and other times against
the Qing, but in any case certainly piling on pressure. Opium consumption, induced by
the English to correct trade imbalances, increased as well.

From 1839 to 1910 there were a series of unsuccessful attempts to overthrow the
Qing dynasty including local rebellions and acts of defiance by committed revolution-
aries. During this time the outlying territories were lost: Korea became independent,
Indochina was lost to the French, and Taiwan was lost to the Japanese, further weaken-
ing the hegemon. Roughly speaking, the state ξj became increasingly worse. However,
each internal rebellion was successfully repressed, each war brought to an end, and in
each case, the Qing hegemony over China proper—tax collecting authority, and control
of local and global institutions—remained intact. There were institutional changes that
took place during this period, some forced by the outsiders, and an attempt to placate
the revolutionaries, such as the abolition of the imperial examination system in 1905.
These can be viewed as shocks ξj that further weakened the state. Although it is hard to
measure the relative frequency of failed rebellions before and after the economic weak-
ness of the 19th century, in the earlier periods there seem not to have been such dra-
matic episodes as the Boxer rebellion and the less known Duggan revolt (which lasted
for 15 years). As Theorem 4 predicts, before the actual fall the state ξj is very bad, and
there are many and probably increasing failed attempts at rebellion.

The actual fall of the Qing occurred in 1911 and as Theorem 1 suggests, it was very
quick. There were again a series of revolts; now, however, they succeeded. Also as the
theory suggests, the length of the successful revolt (less than a year) is considerably
shorter than the longest failed rebellions—the Boxer and Duggan rebellion lasting many
years. The final successful revolt was coordinated by Sun Yat Sen. The groups carrying
out the various revolts can reasonably be described as zealots: they share in common
a dedication to overthrowing the Qing; they are willing to suffer severe risk and live un-
der unpleasant circumstances to achieve that goal. Such behavior is power maximizing

25There are of course many accounts of this period, and while they sometimes disagree on exactly who
did what to whom and when, all agree on the basic facts we describe below. One readable account by a
journalist is that of Fenby (2008).
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but is not stable in the sense that no society has ever lasted very long based on the fa-
natical devotion of its members; neither was it the case in China. Hence the theoretical
description of the fall of the hegemony is relatively accurate: zealots quickly capture the
land and do so without a serious setback. In some cases, land is seized by other groups,
but they quickly join Sun Yat Sen as the theory suggests. By the end of 1911, the Qing
Emperor abdicated and Sun Yat Sen became the provisional President of China, which,
however, no longer was hegemonic in any reasonable sense of the word.

Next is the period of warring states, both in theory and in fact. The theory says that
there can be many competing societies, land may be lost and gained, and zealots may
or may not play a role. Again, this is an accurate description of the situation in China
between 1911 and 1946. Sun Yat Sen was quickly deposed by a less fanatical and more
materialistic warlord Yuan Shikai, but until about 1927, and even after, there were many
warlords in various parts of China who rise and fall, and many revolutions, some suc-
cessful and others unsuccessful. There is also the Sino–Tibetan war and the Soviet inva-
sion of Xinjiang during this period. Basically, the theory predicts chaos (in the nontech-
nical sense) and that is what we see. Beginning in about 1927, things settle down slightly
with two relatively more powerful groups, the Nationalists and the Communists, fight-
ing a civil war, but there remain many warlords who continue to rise and fall, at times
forming alliances or professing allegiance to the two more significant groups. These two
groups, unlike the earlier revolutionaries, appear to have coherent and potentially stable
institutions. Then in 1936 the Japanese seize control of most of the country, an occupa-
tion that lasts until 1945. Notice that as the theory suggests, the length of this warring
states period (35 years) is much longer than either the fall (less than 1 year) and the rise
(about 3 years).

The final stage of a least resistance transition is the rise of the new hegemon. Again
all transitions must have zero resistance, but now we are in the basin of the hegemony,
so the least resistance path consists of the hegemony gaining territory—without losing
any—until hegemony is again established. Notice that since, in this model, once the
basin is left there are zero-resistance transitions to any particular hegemony breach-
ing the threshold, the model makes no prediction about which hegemony eventually
emerges; in particular, there is a nonnegligible probability that even a very weak hege-
mony emerges. In China, the threshold appears to be reached about 1946 when the
Communists controlled about a quarter of the country and about a third of the popula-
tion. They quickly overran the remaining areas held by the Nationalists, who retreated
to Taiwan in 1949.

8. Conclusion

This paper is about events and combinations of events that are unlikely and that can be
modeled as a finite Markov process, in particular how such a process moves from one
relatively stable long-run state to another. Examples are transitions between different
equilibria in a game or different political regimes. We show that these systems exhibit
long periods of stability punctuated by brief episodes of change, and we give a detailed
description of the probabilities and frequencies of these different outcomes. Within the
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literature on “evolution of conventions,” we complement the results of Kandori et al.
(1993), Young (1993), Ellison (2000), Cui and Zhai (2010), and Hasker (2014) on long-
run dynamics in games. When applied to the context of social evolution, our theory has
implications both for the societies we are likely to see and for the design of institutions:
institutions that will persist for long periods of time must be robust against multiple
failures, and it is these multiple failures that lead a society to fall.

It may be useful to look at smaller systems about which we have a great deal of
information—also subject to small unlikely shocks, and subject to the same type of
Markov analysis—to see what is involved; for example, commercial airlines, which crash
relatively infrequently despite the vast number of flights and miles flown. As our theory
predicts, when they do crash, it is typically due to multiple near simultaneous failures.
To take a specific example, on November 24, 2001, en route from Berlin on approach to
Zurich, Crossair Flight 3597 crashed near Bassersdorf, Switzerland, killing 24 of the 33
people on board. According to the flight investigation, seven independent unfortunate
events occurred on that occasion.26 These multiple failures seem typical of commer-
cial aviation crashes. Each individual failure is unlikely, but none terribly so. What is
highly unlikely is that all occur in combination. In general, airplanes are designed with
a high degree of redundancy to provide insulation against failure of one or even several
components: multiple pilots, multiple navigation systems, multiple engines, multiple
independent hydraulic systems, and so forth. So it is with human societies. For ex-
ample, penal codes and the legal systems have a high degree of redundancy (appeals
procedures) to prevent the punishment of the innocent. Societies that survive for long
periods of time must be well cushioned against even multiple failures. For example, the
fall of the Roman Empire has been attributed to many factors: religious ferment, the
plague, corruption, the forced migration of hostile outsiders, economic recession, and
so forth. Despite the effort of historians to establish each as “the” cause of the fall, as is
the case with Flight 3597, all of these things happened, and while each is uncommon,
none is particularly unlikely, and the Roman Empire had suffered through each of these,
often in combination, many times before. What is unique about the fall is that all these
things occurred at once. When a system or society is well designed, it takes a perfect
storm—everything going wrong at once—to bring it down. But, as this paper shows, it
is the least unlikely combination of things—the least resistance direct route—that will
typically lead, for good or ill, to abrupt and sudden change.

Appendix A: Direct routes

Our goal is to establish probability and expectations bounds on subsets A ⊆ AxBW 	= ∅.
Define t(A) = min{t(a) | a ∈ A�r(a) = r(A)} to be the minimum number of transitions of

26See AAIB (2002): (i) the pilot had a bad record of following procedures during landing and was inad-
equately trained, but was allowed nevertheless to transport passengers; (ii) the flight was behind schedule
and, consequently, the pilot was in a hurry to land; (iii) due to noise regulations, the plane was diverted to a
less safe runway; (iv) the runway had inadequate instrumentation, and the airport parameters and proto-
cols for landing on the runway were inadequate; (v) the range of hills the plane crashed into was not marked
on the chart; (vi) the pilot put the plane into an overly steep descent and descended too low without proper
visual contact with the ground; (vii) the pilot did not monitor the proper instruments during the attempted
landing.
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any least resistance path in the set A. This appendix is devoted to proving the following
main result on direct paths that characterizes their probability and length. Theorem 1
in the text follows directly.

Theorem 11. For A ⊆ AxBW nonempty and t ≥ 0, there are bounds G(t)�H(t) > 0
nondecreasing in t such that Ct(A)εr(A) ≤ Pε(A|x) ≤ G(t(A))εr(A) and E[t(a)|x�A] ≤
H(t(A)).

The bounds G and H will be specifically computed.
First we establish that r(A) = mina∈A r(a) exists. Then getting a lower bound on

Pε(A|x) is relatively easy: it is bounded below by the probability of a path a ∈ A with
resistance r(a), which is to say, it is of order εr(A). The main goal is to establish a similar
upper bound. The problem is that A can easily contain infinitely many paths with resis-
tance r(A) as well as paths of greater resistance. However, there are only finitely many
paths of any given length, so if there are infinitely many paths, most of them must be
very long. The idea is that since paths in A must avoid the comprehensive set W , they
are not likely to be very long since there are zero-resistance routes to W . To make this
precise, we construct a finite set of template paths of relatively low resistance and show
that all the paths in A can be constructed by adding loops to the template paths. We then
show that the probability of all paths constructed from a given template is bounded by
the probability of the template times a constant that does not depend on ε. This same
method also yields bounds on the expected length of the direct routes.

Loop cutting and a lower bound

In general paths a ∈ A contain loops, and since an analysis of loops forms a key part
of the analysis, we begin by introducing the notion of loop cutting. The idea is to
construct templates for a from which a can be reconstructed by adding loops. If
a = (z0� z1� � � � � zt), we say that a′ is a loop cut of a at zτ = zτ′ for t > τ′ > τ ≥ 0 if
a′ = (z0� z1� � � � � zτ� zτ′+1� � � � � zt), that is, if the loop at zτ has been cut out.27 Note the
obvious fact that r(a′) ≤ r(a).

Definition 7. A map m from the set of all paths to itself is a loop-cutting algorithm if
there is a sequence a1� a2� � � � � aM with a1 = a, aM = m(a) and aj+1 a loop cut of aj for
j = 1�2� � � � �M − 1.

Note that r(m(a)) ≤ r(a). The path m(a) is a template for a from which a can be
reconstructed by adding loops. A loop-cutting algorithm is maximal if m(m(a)) =m(a).

We can establish the existence of mina∈A r(a) using the zero-cut algorithm defined as
follows. For any a = (z0� z1� � � � � zt), if there is no loop of zero-resistance, stop; otherwise,
cut the first and shortest loop of zero resistance and repeat. This is obviously maximal.
Note that m(a) is a no-zero-loop path in the sense that it contains no zero-resistance

27Note that there cannot be a loop cut that begins with the final element zt . Indeed zt ∈ B; when the path
gets there it stops.
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loops and that r(m(a)) = r(a). Our first step is to give a bound on the length of no-zero-
loop paths. Let ZA to be the set of non-end points touched by paths in A, that is, the
set of zτ such that there is some (x� z1� z2� � � � � zτ� � � � � zt) ∈ A with τ < t—leading and
trailing elements not counted. Let NA be the number of elements in ZA, and let NAB

be the maximum of NA and the number of elements in the target B. These are both
bounded above by N , but may be much smaller: using computations based only on A

allows our results to be extended from a finite state space to a countable state space. Let
r(A) be the smallest finite nonzero resistance of any transition in any path in A.

Lemma 1. If a ∈A is a no-zero-loop path,28 then t(a) ≤NAr(a)/r(A).

Proof. Observe that since nonzero-resistance transitions have resistance at least r(A),
there are at most r(a)/r(A) such transitions in a, and the remaining transitions must
have zero resistance. Since there are no zero-resistance loops, the number of zero-
resistance transitions between each positive resistance transition is at most NA. �

We can now apply the zero-cut algorithm to prove the following basic fact.

Lemma 2. The function r(A) = mina∈A r(a) is well defined.

Proof. Fix a ∈ A. Recall that, by assumption, a has positive probability for ε > 0, so
that r(a) < ∞. Let m be the zero-cut algorithm. Consider that for any a′ ∈ A with
r(a′) ≤ r(a), we have r(a′) = r(m(a′)). Let A be the set of all finite resistance paths
(x� z1� z2� � � � � zτ� � � � � zt) with zt ∈ B and zτ ∈ ZA. Since m(a′) ∈ A then by Lemma 1
t(m(a′)) ≤NAr(a)/r(A). But there are only finitely many paths of length t that begin at x
and take values in ZA and end in B, so only finitely many possible values of r(a′) ≤ r(a).
Hence mina∈A r(a) exists. �

Having established that r(A) is well defined, we can easily establish a lower bound
on Pε(A|x).

Lemma 3. We have Pε(A|x)≥ Ct(A)εr(A).

Proof. Let a ∈ A satisfy r(a) = r(A) and t(a) = t(A). Then

Pε(A|x) ≥ Pε(a|x) =
t(a)∏
τ=1

Pε(zτ|zτ−1)≥
t(a)∏
τ=1

Cεr(zτ�zτ−1) = Ct(a)εr(a)�
�

More about loops To establish an upper bound, we need further results about loops.
First, we give a useful refinement on Lemma 1 using the all-cut algorithm, which is de-
fined as follows. For any a = (z0� z2� � � � � zt), if there is no loop, stop; otherwise cut the
first and shortest loop, and repeat. This is obviously maximal.

28Note that this results for any set of paths A, not just direct routes.
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Lemma 4. If a ∈ A is a no-zero-loop path, then

t(a) ≤ 2NA

(
1 + r(a)− r(A)

r(A)

)
�

Proof. Let m be the all-cut algorithm. Observe that to get from m(a) to a, we must
add loops containing at least t(a)− t(m(a)) elements. Suppose that there are fewer than
(t(a)− t(m(a)))/(2NA) loops that cannot be subdivided into two non-overlapping sub-
loops. Then one of these loops must have length at least 2NA. But the first NA of the loop
must contain a loop and so must the second NA so that the loop can be divided into two
non-overlapping sub-loops. By assumption, none of the loops have zero resistance, so
each has resistance at least r(A); hence

r(a) ≥ r(m(a))+ (t(a)− t(m(a))
r(A)

2NA

and the result follows from r(m(a)) ≥ r(A) and t(m(a)) ≤NA. �

Next we consider a loop-cutting algorithm that produces templates with resistance
no smaller than r(A). We say that m preserves r if r(a) ≥ r implies r(m(a)) ≥ r. One
such algorithm is the r-preserving algorithm. For any a = (x� z1� � � � � zt), if no loop can
be cut without reducing the resistance of a below r, stop; otherwise, cut the first and
shortest such loop and repeat. Observe that for an r-preserving algorithm, the image
m(A) consists of no-zero-loop paths and is maximal since removing any loop would
necessarily reduce the resistance below r. The key property of this algorithm is that it
produces templates with resistance not too much bigger than r and of bounded length
(by Lemma 1), and in particular that means there are finitely many templates.

Definition 8. We take r(A) to be the greatest (finite) resistance of any transition in any
path in A, and

t(A) ≡ 2NA

(
2 + r(A)− r(AxBW )

r(A)

)
�

Lemma 5. For a ∈ A and the r(A)-preserving loop-cut algorithm, r(m(a)) ≤ r(A) +
NAr(A) and t(m(a)) ≤ t(A), and m(A) is finite with at most Nt(A)

AB elements.

Proof. Observe first that if m is the r(A)-preserving loop-cut algorithm if r(m(a)) >

NAr(A), then m(a) must have a loop of resistance greater than zero and, hence, must
have a loop of resistance no greater than NAr(A). If r(m(a)) > r(A)+NAr(A), removing
such a loop leaves resistance greater than or equal to r(A), contradicting the fact that the
r(A)-preserving algorithm can leave no such loop.

Now let m be the r(A)-preserving algorithm and suppose that r(m(a)) > r(AxBW ).
Remove the shortest loop from m(a) to get a′ so that r(m(a)) ≥ r(A) > r(a′) ≥ r(AxBW ).
Since a′ has no zero-resistance loops, by Lemma 4,

t(a′) ≤ 2NA

(
1 + r(a′)− r(AxBW )

r(A)

)
�
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Also, since the a′ is m(a) with the shortest loop—so less than NA in length—removed,
we must have t(m(a)) ≤ t(a′)+NA. Hence

t(m(a)) ≤ 2NA

(
2 + r(a′)− r(AxBW )

r(A)

)
≤ 2NA

(
2 + r(A)− r(AxBW )

r(A)

)
= t(A)�

If r(m(a)) = r(A), then m removes all the loops, so we have the bound t(m(a)) ≤ NA so
that certainly t(m(a)) ≤ t(a) and that bound holds in all cases.

Finally, since a ∈ m(A) are constructed of elements from ZA ∪ B and have length at

most t(A), there are at most Nt(A)
AB elements. �

We also can give a bound in terms of t(a) as follows.

Lemma 6. We have

t(A) ≤ 2NA

(
2 + t(A)r(A)

r(A)

)
�

Proof. Clearly r(A) ≥ 0. Moreover, since there is a path a ∈ A with length t(a) = t(A),
such a path can have resistance at most t(A)r(A), so r(A) cannot be greater than this. �

Upper bounds

Once the loops have been removed to create templates, we must put them back in to
compute probabilities. It is convenient at this point to work with loops with the first ele-
ment removed, so that a loop at zτ is a sequence of the form ∅, (zτ) or (ζτ� � � � � ζτ+k� zτ),
where ζτ ∈ ZA.29 If we have a transition (zτ� zτ+1) and �τ is a loop at zτ , then the corre-
sponding path is a = (zτ� �τ� zτ+1), with number of transitions t(a) equal to the number
of elements of �τ plus 1.

For any path a = (x� z1� z2� � � � � zt) and 0 ≤ τ ≤ t, let a[τ] = (x� z1� z2� � � � � zτ) be the
corresponding τ truncation. Then for any a = (z0� z1� z2� � � � � zt) ∈ A, τ < t, and path a′,
consider the path (a[τ]� a′) = (z0� z1� z2� � � � � zτ�a

′) that starts along a and deviates to a′ at
zτ . Define tF (a� τ) to be the least length of any path (zτ�a

′) that has zero resistance and
(a[τ]� a′) /∈A (so that the deviation does not reach B). Notice that tF (a� τ) ≤N − 1: since
W is comprehensive, there is a path (zτ�a

′) of zero resistance with no loops that ends in
W , and such a path can have at most N elements, hence at most N − 1 transitions.

Definition 9. The failure time tF (A) = maxa∈A�τ<t(a) tF(a� τ).

Hence tF (A) ≤N − 1, but it may be much smaller: in one of the examples in the text,
tF (A) = 1 regardless of N .

To establish upper bounds on the probability of A and on the expected length of its
paths, we start by establishing the fact that, given that W is comprehensive, long loops

29Note that we must include ∅ because when we compute probabilities of transitions from z to y along
a set of loops, we must also include the probability that we go directly from z to y without a loop, that is,
along a null loop.
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are not very likely. Let �R� be the largest integer not greater than R. We can now give the
following bound on the probability of long loops.

Lemma 7. Suppose z ∈ ZA and that LA(z) is a set of loops at z. Then for t ≥ 0, we have
Pε(t((z� �� y)) = t + 1� � ∈LA(z)|z) ≤ Pε(y|z)(1 −CtF(A))�t/tF (A)�.

Proof. If t = 0, the result is immediate since in fact the left and right sides are equal.
Since (z� �� y) always ends with the transition (z� y), we have

Pε
(
t((z� �� y)) = t + 1� � ∈LA(z)|z

) ≤ Pε(y|z)

for all t and in particular for t < tF(A), which is the desired bound in that case. If t ≥
tF (A), we may define Lk to be the set of paths (z� �) with � ∈ LA(z) truncated at ktF(A)

for 1 ≤ k≤ �t/tF(A)� and we have

Pε
(
t((z� �� y)) = t + 1� � ∈LA(z)|z

) ≤ Pε(L�t/tF (A)�|z)Pε(y|z)�

Moreover, L�t/tF (A)� ⊆ Lk for 1 ≤ k ≤ �t/tF(A)�, so it suffices to prove recursively that
Pε(Lk|z)≤ (1 −CtF(A))k for 1 ≤ k≤ �t/tF(A)�.

First we take k = 1. Observe that starting at z, there is a zero-resistance path of
length no longer than tF (A) that reaches a point y that is contained in no loop. Since the
probability of each zero-resistance transition is at least C, there is at most a probability
1 −CtF(A) of remaining in the set L1.

Now we suppose the result is true for k and prove it for k + 1. Each loop in Lk+1

has the form (a1� z
′� a2), where (a1� z

′) ∈ Lk and t(a2) = tF (A). Let L+(a1� z
′) be the set

{a2 | (a1� z
′� a2) ∈ Lk+1}. Then

Pε(Lk+1|x) =
∑

(a1�z′)∈Lk

∑
a2∈L+(a1�y)

Pε((a1� z
′)|x)Pε(a2|z′)

=
∑

(a1�z′)∈Lk

Pε((a1� z
′)|x)

∑
a2∈L+(a1�y)

Pε(a2|z′)

=
∑

(a1�z′)∈Lk

Pε((a1� z
′)|x)Pε(L

+(a1� z
′)|z′)�

Moreover, since again there is a zero-resistance path starting at z′ of length no
longer than tF (A) that reaches a point y ′ that is contained in no loop, we have
Pε(L

+(a1� z
′)|z′)≤ 1 −CtF(A). Hence

Pε(Lk+1|x) ≤
∑

(a1�z′)∈Lk

Pε((a1� yz
′)|x)(1 −CtF(A))

= Pε(Lk|x)(1 −CtF(A))

≤ (1 −CtF(A))k+1

by the inductive hypothesis. �
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We are now ready to reverse the loop-cutting procedure by adding loops to tem-
plates to construct the paths in A. Opposite to a loop-cutting algorithm is the idea
of a loop insertion set. Let LA(zτ) be a set of loops at zτ . We suppose we are
given an a = (z0� z1� � � � � zt) ∈ A. A loop set m−1(a) is defined by a sequence of
sets of loops Lτ ⊆ LA(zτ), τ = 0�1� � � � � t − 1, and consists of all paths of the form
(z0� �0� z1� �1� � � � � zt−1� �t−1� zt) such that �τ ∈ Lτ. If m is a loop-cutting algorithm and

a ∈m(A) if m−1(a) ⊇A∩m−1(a), we say that m−1(a) covers m, a.
We now define

Sk(m−1(a)|x)

≡
∞∑

t0=0

∞∑
t1=0

· · ·
∞∑

tt(a)−1=0

[(
t(a)−1∑
s=0

ts

)k]
t(a)−1∏
τ=0

Pε
(
t((zτ� �� zτ+1)) = tτ + 1� � ∈Lτ|zτ

)
�

The significance of these numbers is given by the following lemma.

Lemma 8. If m−1(a) covers m, a, then

∑
a′∈m−1(a)

Pε(a
′|x) ≤ S0(m−1(a)|x)

∑
a′∈m−1(a)

t(a′)Pε(a
′|x) ≤ S1(m−1(a)|x)

and both hold with equality if every a′ ∈ m−1(a) has a unique representation of the form
a′ = (z0� �0� z1� �1� � � � � zt), where �τ ∈Lτ .

Proof. By definition every a′ ∈ m−1(a) has a representation of the form a′ = (z0� �0�

z1� �1� � � � � zt), where �τ ∈Lτ .30 Hence for any nonnegative function f (a′), we have

∑
a′∈m−1(a)

f (a′)Pε(a
′|x)

≤
∑
�0∈L0

∑
�1∈L1

· · ·
∑

�t(a)−1∈Lt(a)−1

f ((z0� �0� z1� �1� � � � � zt))

t(a)−1∏
τ=0

Pε(�τ|zτ)

with equality if the representation is unique; that is, if each a′ has a unique representa-
tion, then it appears exactly once in the sum. Rearranging the sum by adding over the
length of the loops then gives the desired result. �

We can now compute the desired upper bounds.

30A simple example shows that there can be more than one representation. Suppose (z0� z1� z2) ∈
m(A). If �0 = (z1� z0), �1 = ∅, then a′ = (z0� �0� z1� �1� z2) = (z0� z1� z0� z1� z2). If �0 = ∅, �1 = (z0� z1), then
(z0� �0� z1� �1� z2) = (z0� z1� z0� z1� z2)= a′.
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Lemma 9. We have

S0(m−1(a)|x) ≤ Pε(a|x)[tF (A)/CtF (A)]t(a)

and

S1(m−1(a))/S0(m−1(a)) ≤ 3t(a)tF(A)2/C2tF (A)�

Proof. From Lemma 7 we have

S0(m−1(a)|x) =
∞∑

t0=0

∞∑
t1=0

· · ·
∞∑

tt(a)−1=0

t(a)−1∏
τ=0

Pε
(
t((zτ� �� zτ+1)) = tτ + 1� � ∈Lτ|zτ

)

=
t(a)−1∏
τ=0

∞∑
t=0

Pε
(
t((zτ� �� zτ+1)) = t + 1� � ∈Lτ|zτ

)

≤
t(a)−1∏
τ=0

∞∑
t=0

Pε(zτ+1|zτ)(1 −CtF(A))�t/tF (A)�

=
(
t(a)−1∏
τ=0

Pε(zτ+1|zτ)
)

t(a)−1∏
τ=0

∞∑
t=0

(1 −CtF(A))�t/tF (A)�

= Pε(a|x)[tF (A)/CtF (A)]t(a)�
Next to simplify notation, set

Pτ(tτ) ≡ Pε
(
t((zτ� �� zτ+1)) = tτ + 1� � ∈ Lτ|zτ

)
�

Then

S1(m−1(a)|x) =
∞∑

t0=0

∞∑
t1=0

· · ·
∞∑

tt(a)−1=0

(
t(a)−1∑
s=0

ts

)
t(a)−1∏
τ=0

Pτ(tτ)

=
t(a)−1∑
s=0

∞∑
t0=0

∞∑
t1=0

· · ·
∞∑

tt(a)−1=0

ts

t(a)−1∏
τ=0

Pτ(tτ)

=
t(a)−1∑
s=0

(∑∞
t=0 tsPs(t)∑∞
t=0 Ps(t)

) t(a)−1∏
τ=0

∞∑
t=0

Pτ(t)

=
t(a)−1∑
s=0

(∑∞
t=0 tsPs(t)∑∞
t=0 Ps(t)

)
S0(m−1(a)|x)�

Moreover,

∞∑
t=0

Ps(t) ≥ Ps(1) = Pε
(
t((zs� �� zs+1)) = 1� � ∈Lτ|zs

)
= Pε(zs+1|zs)�
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and applying again Lemma 7 and using a summation formula proven in Appendix S.A,
we have

S1(m−1(a)|x)/S0(m−1(a)|x) ≤
t(a)−1∑
s=0

(∑∞
ts=0 tsPε(zs+1|zs)(1 −CtF(A))�ts/tF (A)�

Pε(zs+1|zs)
)

= t(a)

∞∑
ts=0

ts(1 −CtF(A))�ts/tF (A)�

≤ t(a)3tF (A)2/C2tF (A)�

which is the desired bound. �

We can now establish the upper bounds stated in Theorem 11.

Theorem 12. If A⊆AxBW is nonempty, then Pε(A|x)≤ [NABDtF(A)/CtF (A)]t(A)εr(A).

Proof. Take m to be the r(A)-preserving loop-cut algorithm and, for a ∈ m(A), take
m−1(a) to be defined by the sequence Lτ = LA(zτ). Let T(A) = maxa∈m(A) t(a) ≤ t(A).

Since Pε(m−1(a)|x) ≤ S0(m−1(a)|x), we may apply Lemma 9 and use the fact that
m−1(a) covers m�a to conclude Pε(A|x) ≤ #m(A)εr(A)[DtF(A)/CtF (A)]T(A). Moreover,

by Lemma 5, we have #m(A) ≤N
t(A)
AB , giving the desired result. �

Theorem 13. If A⊆AxBW is nonempty, then

E[t(a)|x�A] ≤ t(A)

[
3tF (A)2

C2tF (A)

] [NABDtF(A)/CtF (A)]t(A)

Ct(A)
�

and if A are the least resistance paths and t̃(A) is the longest least resistance path con-
taining no loops, then

E[t(a)|x�A] ≤ t̃(A)

[
3tF (A)2

C2tF (A)

]
�

Proof. In all cases, by Lemma 9, we have for any loop-cutting algorithm that preserves
r(A),

E[t(a)|x�A] ≤
∑

a∈m(A) S1(m−1(a)|x)
Pε(A|x)

=
∑

a∈m(A)

S1(m−1(a)|x)
S0(m−1(a))

S0(m−1(a))

Pε(A|x)

≤ 3tF (A)2

C2tF (A)

∑
a∈m(A)

t(a)S0(m−1(a))

Pε(A|x) �
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In general, we can take m to be the r(A)-preserving loop-cut algorithm and, for a ∈
m(A), take m−1(a) to be defined by the sequence Lτ = LA(zτ). Then we observe that

there are at most Nt(A)
AB templates and we apply Theorems 3 and 12 to get

E[t(a)|x�A] ≤ 3tF (A)2

C2tF (A)
Nt(A)

AB

t(A)Dt(A)εr(A)[tF (A)/CtF (A)]t(A)

Ct(A)εr(A)
�

giving the first result.
Now suppose that A are the least resistance paths. We can now take m to be the all-

cut algorithm, which, since no least resistance path can have a positive resistance loop
in it, is the same as the zero-cut algorithm when applied to A. For a ∈ m(A), we now
take m−1(a) to be defined by the sequence Lτ of zero-resistance loops in LA(zτ) that do
not contain zs for s < τ.31

First we observe that m−1(a) = m−1(a) ∩ A. Starting at zτ , the all-cut algo-
rithm cuts the longest loop ending at zτ ; hence zτ cannot subsequently appear in
the template. Moreover, the loops added back are exactly the ones that were cut.
Second we observe that for a given template (z1� z2� � � � � zt) ∈ m(A), and two states
a′ = (z0� �

′
0� z1� �

′
1� � � � � zt) and a′′ = (z0� �

′′
0� z1� �

′′
1� � � � � zt) ∈ m−1(a), then a′ = a′′ only if

�′
0� �

′
1� � � � � �

′
t−1 = �′′

0� �
′′
1� � � � � �

′′
t−1. Hence S0(m−1(a)) = Pε(m

−1(a)∩A). So

E[t(a)|x�A] ≤ 3tF (A)2

C2tF (A)

∑
a∈m(A)

t(a)Pε(m
−1(a)∩A)

Pε(A|x)

= 3tF (A)2

C2tF (A)

∑
a∈m(A)

t(a)Pε(m
−1(a)∩A)∑

a∈m(A) Pε(m−1(a)∩A)

≤ t̃(A)
3tF (A)2

C2tF (A)
�

giving the second result. �

Appendix B: Quasi-direct routes

We fix a start point x ∈ �x, a target set B, and a quasi-comprehensive forbidden set
W ⊇ B, and we let QxBW be the corresponding nonempty set of quasi-direct routes.
Recall that the paths a ∈ QxBW can be decomposed as a1� a2� � � � � an(a)� a

+, where the
ai ∈ AxxW are loops from x to x that do not touch x or W in between and a+ ∈ AxBW is
the exit path, a direct route from x to B that does not touch W or x in between.

Theorem 3 (Repeated). Let A = {a ∈ QxBW | ρ(a) = ρ(QxBW )} denote the least peak re-
sistance paths in QxBW . Then limε→0(Pε(A|x)/Pε(QxBW \A|x)) = ∞.

Proof. Fix ρ = ρ(QxBW ). By Theorem 2, the set A consists of the set of paths of the
form a1� a2� � � � � an�a

+, where ai ∈ AxxW and a+ ∈ AxBW , and r(ai) ≤ ρ, r(a+) = ρ. De-
fine the set of paths A>ρ as those having the form a1� a2� � � � � an�an+1, where ai ∈ AxxW

31Notice that the construction in the example of footnote 30 is ruled out in the present case.
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and an+1 ∈ AxxW ∪ AxBW , and r(ai) ≤ ρ, r(an+1) > ρ. We claim that Pε(A>ρ|x) ≥
Pε(QxBW \A|x) so that it will suffice to prove that limε→0(Pε(A|x)/Pε(A>ρ|x)) = ∞. To
prove this claim, observe that if a ∈QxBW \A, then the first part of the path must neces-
sarily lie in A>ρ so the event QxBW \A implies the event A>ρ.

Now let Aρ
xxW , Aρ

xBW and A
>ρ
xxW , A>ρ

xBW denote the subsets of resistance exactly equal
to ρ and strictly bigger than ρ, respectively. We compute

Pε(A|x)
Pε(A>ρ|x) =

∑∞
n=0 P

n
ε (A

ρ
xxW |x)Pε(A

ρ
xBW |x)∑∞

n=0 P
n
ε (A

ρ
xxW |x)Pε(A

>ρ
xxW ∪A

>ρ
xBW |x)

= Pε(A
ρ
xBW |x)

Pε(A
>ρ
xxW ∪A

>ρ
xBW |x) ≥ Pε(A

ρ
xBW |x)

Pε(A
>ρ
xxW |x)+ Pε(A

>ρ
xBW |x)

and the result now follows directly from Theorem 1 on the probability of direct paths.
�

When B = W , the decomposition also makes it easy to do computations since the
loops ai are independent and identically distributed random variables. Specifically, for
f : AxxW → � and a ∈ A, define F(a) ≡ ∑n(a)

i=1 f (ai). Then for any function g(n) of the
number of loops we have the following lemma.

Lemma 10. If B = W , then E(Fg|x�QxBW ) = E(f |x�A0)E(ng|x�QxBW ) and
Pε(n|x�QxBW ) is geometric with E(n|x�QxBW )= (1/Pε(AxBW |x))− 1.

Proof. Since B =W , we have Pε(AxxW |x)+Pε(AxBW |x) = 1, while AxxW and AxBW are
disjoint. Then abbreviating Q =QxBW , we get

E(Fg|x�Q) = E

[
n∑

i=1

f (ai)g
∣∣∣x�Q

]

= E

[
n∑

i=1

E[f (ai)g|x�Q�n]
∣∣∣x�Q

]
= E

[
n∑

i=1

gE[f (ai)|x�Q�n]
∣∣∣x�Q

]
�

The event (Q�n) is exactly the event ai ∈ AxxW for i = 1�2� � � � � n and an+1 ∈ AxBW , and
conditional on x these are independent events. Hence E(f(ai)|x�Q�n) = E(f |x�AxxW ).
We conclude that

E(Fg|x�Q) = E

[
n∑

i=1

gE(f |x�A0)
∣∣∣x�Q

]

= E(f |x�A0)E

[
n∑

i=1

g
∣∣∣x�Q

]
=E(f |x�A0)E[ng|x�Q]�

This is the first result. Also since Pε(AxxW |x) + Pε(AxBW |x) = 1, it follows that n is ge-
ometrically distributed with success probability Pε(AxBW |x), which gives the stated ex-
pected value. �
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Recall that M(a�A) is the number of loops of a that lie in A ⊆ AxxW ; that is, if
f : AxxW → � is the indicator of A (taking the value 1 if a0 ∈ A and 0 otherwise), then
M(a�A) is the aggregate F defined by F(a�A) ≡ ∑n(a)

i=1 f (ai). Also, recall that t−(a) is the
amount of time along a spent outside of �(x). Let ZxW be the subset of Z that is reach-
able by finite resistance paths that start at x and touch W at most once, and let NxW be
the number of elements in ZxW . This is bounded above by N , and sets A of direct routes
that we consider satisfy ZA ⊆ZxW so that NAB ≤NxW . Define

G1 ≡ [N2
xW D/CNxW ]NxW � H1 = 6N3

xW G1

C3NxW
�

Theorem 4 (Repeated). If B = W , then

ε−r(AxBW )/G1 ≤ Eε[t(a)|x�QxBW ]�Eε[t(a−)|x�QxBW ]
≤ H1(1 +C−2NxW ε−r(AxBW ))ε−r(AxBW )

while

lim
ε→0

Eε

[
t−(a)
t(a−)

∣∣∣x�QxBW

]
= 0�

For A⊆AxxW ,

G−1
1 C2NxW εr(A)−r(AxBW ) ≤ Eε[M(a�A)|x�QxBW ] ≤ G1C

−2NxW εr(A)−r(AxBW )�

and if r(A) < r(AxBW ), then for all k≥ 0,

lim
ε→0

Pε[M(a�A) > k|x�QxBW ] = 1�

Proof. Observe that for A ∈ {AxxW �AxBW }, tF (A) ≤ NxW and t(A) = 4NA ≤ 4NxW so
that the bound from Theorem 12 is in turn bounded by G1 and that from Theorem 13 is
bounded by H1.

From Lemma 10, Eε[t(a−)|x�QxBW ] ≤ Eε[t|x�AxxW ]/Pε(AxBW |x). Moreover, recall
that t(A) is the number of transitions in the shortest of the least resistance paths in
A; since AxxW contains all zero-resistance loops r(AxxW ) = 0, the shortest of these
loops is no longer than NxW , so t(AxxW ) ≤ NxW . Analogously, AxBW contains tem-
plates without loops; hence t(AxBW ) ≤ NxW . Hence from Theorems 12 and 13, we
have 1 ≤ Eε[t|x�AxBW ] ≤ H1, 1 ≤ Eε[t|x�AxxW ] ≤ H1 and CNxW εr(AxBW ) ≤ Pε(AxBW |x) ≤
G1ε

r(AxBW ). This gives the stated bounds on Eε[t|x�QxBW ].
Now set τ− = t−(a) and τ = t(a−). For the next part, observe that Eε[τ−/τ|x�QxBW ] ≤

Eε[τ−/n|x�QxBW ] = Eε[t−(a)|x�AxxW ]. Now split AxxW into two disjoint sets A0
0 of

paths of zero resistance and A0
r of positive resistance, where r is the least

positive resistance in AxxW . Then Eε[t−|x�AxxW ] = Eε[t−|x�A0
0]Pε[A0

0|x�AxxW ] +
Eε[t−|x�A0

r ]Pε[A0
r |x�AxxW ]. However, Eε[t−|x�A0

0] = 0 by definition, while by Theorems
12 and 13

Eε[t−|x�A0
r ]Pε[A0

r |x�AxxW ] ≤ [H1G1/C
t(A0

r )]εr → 0�

which implies the result.
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Next, given A⊆AxxW and f the indicator of A, Lemma 10 gives

Eε[M(a�A)|x�QxBW ] = Eε[F |x�QxBW ] = Eε(f |x�AxxW )/Pε(AxBW |x)
= Pε(A|x�AxxW )/Pε(AxBW |x)�

Applying Theorem 12 (and recalling that r(AxxW ) = 0) then gives the stated bounds on
M(a�A).

Last, since Pε(n|x�QxBW ) is geometric, we have

Pε(n(a) ≥ n|x�QxBW ) = (1 − Pε(AxBW |x))n

and

Pε[M(a�A) > k|x�QxBW �n(a) = n] = 1 −
k∑
i=0

(
n

i

)
Pε(A|x)i(1 − Pε(A|x))n−i

≥ 1 − (k+ 1)nk(1 − Pε(A|x))n�
By hypothesis we can choose r(A) < r < r(AxBW ). Take n = ε−r . Then by Theorem 12,
we have Pε(n(a) ≥ n|x�QxBW ) ≥ (1 − G1ε

r(AxBW ))ε
−r

and Pε[M(a�A) > k|x�QxBW �

n(a) = n] ≥ 1 − (k + 1)ε−rk(1 − G1ε
r(A))ε

−r
. Taking the log of the first expression and

using de l’Hospital’s rule gives, as ε→ 0,

lim
log(1 −G1ε

r(AxBW ))

εr
= lim−G1r(AxBW )εr(AxBW )−1

rεr−1(1 −G1εr(AxBW ))
= lim−G1r(AxBW )

r
εr(AxBW )−r = 0

so that Pε(n(a) ≥ n|x�QxBW )→ 1. Next take the log of ε−rk(1 −G1ε
r(A))ε

−r
to find

−rk logε+ ε−r log(1 −G1ε
r(A)) =

[
1 − rk logε

ε−r log(1 −G1εr(A))

]
ε−r log(1 −G1ε

r(A))�

Then by de l’Hospital’s rule,

lim
rk logε

ε−r log(1 −G1εr(A))
= lim

rk

− r log(1−G1εr(A))
εr − G1r(A0)εr(A)−r

log(1−G1εr(A))

≤ − lim
rk log(1 −G1ε

r(A))

G1r(A)εr(A)−r
= 0

and

lim
log(1 −G1ε

r(A))

εr
= lim−G1r(A)εr(A)−r

r(1 −G1εr(A))
= −∞

so −rk log(ε) + ε−r log(1 − G1ε
r(A)) → −∞ and ε−rk(1 − G1ε

r(A))ε
−r → 0. Hence

Pε[M(a�A) > k|x�QxBW �n(a) = n] → 1. �

Recalling that AxxW (t) are the loops that spend at least t consecutive periods outside
of �x, we now prove the corollary.
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Corollary 6 (Final part of Theorem 5). If there is a path a0 ∈ AxxW that contains a
zero-resistance loop not touching �(x) with 0 < r(a0) < r(AxBW ), then for any k> 0,

lim
ε→0

Pε
(
M(a�AxxW (kt(a+))) > k|x�QxBW

) = 1�

Proof. Fix a δ > 0. By Theorem 11 and Chebychev’s inequality we may choose K such
that Pε(t(a

+) > K) < 1 − δ. Given a0 as described, we can insert zero-resistance loops to
get a path aK ∈ AxxW (K) with resistance r(aK) < r(AxBW ). Hence we may apply Theo-
rem 4 to conclude that for all sufficiently small ε,

Pε
[
M(a�AxxW (K)) >K|x�QxBW

]
< 1 − δ�

Since, conditional on x, the loops and exit path are independent, we then have

Pε
(
M(a�AxxW (kt(a+))) > K|x�QxBW

)
< (1 − δ)2�

which implies the desired result. �

Appendix C: Ergodic probabilities and bounds

Theorem 7 (Repeated). If y ∈�x, then

lim
ε→0

με(x)

με(y)
= μ0(x)

μ0(y)
�

Proof. Partition the matrix Pε with rows corresponding to source states and columns
corresponding to target states into P

ij
ε , where i� j = 1 corresponds to �x and i� j = 2 cor-

responds to � \ �x. In particular P11 is square, the size of �x. Correspondingly, let ei

be the column vectors of 1s with dimension corresponding to i = 1�2. Define the row
vector με(z) = με(z)/

∑
y∈�(x) με(y) and partition this vector conformally. Since με is

normalized to 1 on �x and μ0 is strictly positive, it suffices to prove that as ε → 0, ev-
ery limit point μ1

ε is equal to μ1
0, where we include the superscript to emphasize that we

are dealing only with the invariant distribution on �x. The invariance condition is μ1
ε =

μ1
εP

11
ε + μ2

εP
21
ε . Multiplying this on the right by e1, we get 1 = μ1

εP
11
ε e1 + μ2

εP
21
ε e1, while

the fact that Pε is a Markov kernel means that P11
ε e1 + P12

ε e2 = e1 or P11
ε e1 = e1 − P12

ε e2.

Substituting, we see that 1 = μ1
ε(e

1 − P12
ε e2) + μ2

εP
21
ε e1 = 1 − μ1

εP
12
ε e2 + μ2

εP
21
ε e1 so that

μ2
εP

21
ε e1 = μ1

εP
12
ε e2, which says roughly that the steady state flow into �x must equal the

steady state flow out. Now P12
ε → 0 as ε → 0 since these are the probabilities of leaving

the recurrent communicating set �x; hence μ2
εP

21
ε e1 → 0. But μ2

εP
21
ε is a nonnegative

vector, so μ2
εP

21
ε e1 → 0 is possible only if μ2

εP
21
ε → 0. Then in the invariance condition

μ1
ε = μ1

εP
11
ε +μ2

εP
21
ε , as P11

ε → P11
0 if μ1

00 is a limit point of μ1
ε, it must satisfy the limiting

condition that μ1
00 = μ1

00P
11
0 . However, as �x is recurrent, communicating this equation

has only one solution μ1
0, so we conclude that, in fact, μ1

ε → μ1
0. �

Recall that r(�x) = min�y∈� r(�x��y). Also let r, r be the largest resistance of any

transition and smallest positive resistance, and set G ≡G1((N − 1)(1 + (r/r))).
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Theorem 8 (Repeated). Allowing that �x may be empty, if A = AxyW are the di-
rect routes from x to y with forbidden set W = {x} ∪ {y} ∪ (� \ �x), then με(y) ≥
με(x)C

Nεr(A). If x ∈ �x and there is a zero-resistance path from y to x, then also

με(y) ≤ με(x)C
−NG

2
εmin{r(A)�r(�x)}.

Proof. We use the standard fact about Markov ergodic probabilities as used for exam-
ple by Ellison (2000): If we let Nε(y�x|x) be the expected number of times y occurs before
x starting at x, then με(y) = με(x)Nε(y�x� |x).

The lower bound is immediate: Since with probability Pε(A), we have y hit
once without returning to x, we have from Theorem 11 με(y) = με(x)Nε(y�x|x) ≥
με(x)Pε(A) ≥ με(x)Cεr(A).

Next we suppose that y has zero resistance for getting to x ∈ �x. We use the re-
verse condition με(x) = με(y)Nε(x� y� |y), so we must find a lower bound on Nε(x� y|y).
Let A1 = Ayx(x∪y∪(�\�x)). Observe that Nε(x� y|y) ≥ Pε(A1)Nε(x� y|x). Since there is a
zero-resistance path from y to x, we have from Theorem 11 the bound Pε(A1) ≥ CN , so
Nε(x� y|y)≥ CNNε(x� y|x).

Now define sets B = {y} ∪ (� \�x) and A2 =AxB(x∪B). Then Nε(x� y|x) ≥Nε(x�B|x).
Since starting at x the events B and ∼B =A2 are mutually exclusive independent events,
Nε(x�B|x) = 1/Pε(∼B) = 1/Pε(A2). Since from Theorem 11 Pε(A2) ≤ εr(A2), we get

Nε(x� y|y)≥ CNε−r(A2)/G, or με(y)≤ με(x)C
−NG

2
εr(A2).

Finally, the event A2 is contained in the event Axy(x∪y∪(�\�x)) ∪ Ax(�\�x)(x∪(�\�x)).
Hence

r(A2) = min{r(Axy(x∪y∪(�\�x)))� r(Ax(�\�x)(x∪(�\�x)))}�
However r(Ax(�\�x)(x∪(�\�x))) = r(�x) and r(Axy(x∪y∪(�\�x))) = r(A), which gives the
desired upper bound. �
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