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Information diffusion in networks through social learning

Ilan Lobel
IOMS Department, Stern School of Business, New York University

Evan Sadler
IOMS Department, Stern School of Business, New York University

We study perfect Bayesian equilibria of a sequential social learning model in
which agents in a network learn about an underlying state by observing neigh-
bors’ choices. In contrast with prior work, we do not assume that the agents’ sets
of neighbors are mutually independent. We introduce a new metric of informa-
tion diffusion in social learning that is weaker than the traditional aggregation
metric. We show that if a minimal connectivity condition holds and neighbor-
hoods are independent, information always diffuses. Diffusion can fail in a well
connected network if neighborhoods are correlated. We show that information
diffuses if neighborhood realizations convey little information about the network,
as measured by network distortion, or if information asymmetries are captured
through beliefs over the state of a finite Markov chain.

Keywords. Social networks, Bayesian learning, information aggregation, herd-
ing.

JEL classification. C72, D83.

1. Introduction

Social networks play an increasingly important role in our lives, particularly in the for-
mation and spread of beliefs and opinions. Many of our decisions are inherently social
in nature, and we frequently rely on information gleaned from observing the actions of
others. Our choices of what college to attend, what job offer to take, what smart phone
to use, or what politician to support are often influenced by the decisions of our friends,
colleagues, and neighbors.

In this paper, we study how the structure of the social network affects the equilib-
rium outcome in a sequential model of social learning. We consider a countably infinite
set of agents, each endowed with a private signal about an underlying state of the world,
taking actions according to an exogenous ordering. Following Acemoglu et al. (2011),
we assume each agent observes a stochastically generated subset of predecessors’ ac-
tions, which we call the agent’s neighborhood. There is a common prior on the joint
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distribution of all agents’ neighborhoods, and we call this joint distribution the network
topology. Unlike Acemoglu et al. (2011), we do not assume neighborhoods are generated
independently, allowing arbitrary correlations between agents’ neighborhoods. Conse-
quently, when an agent observes her neighborhood, she forms updated beliefs about
the structure of the rest of the network. This allows us to capture asymmetric infor-
mation regarding the network topology that could influence how observed choices are
interpreted.

Studying learning with correlated neighborhoods takes us a step closer to under-
standing the efficiency of learning in realistic settings. A classic example in the literature
involves people arriving sequentially and choosing between two restaurants (Banerjee
1992). Suppose you observe that one restaurant has a long line while the other is nearly
empty, and you consider two plausible scenarios to account for this observation. In one
scenario, the individuals in line arrive sequentially and choose a restaurant using their
own private information as well as their inferences based on the growing line. Alter-
natively, suppose a tour bus pulls up and the entire line of customers follows the tour
leader to this particular restaurant. In the first scenario, we might infer that some indi-
viduals had strong signals indicating that this restaurant is of higher quality. In the sec-
ond scenario, we might infer that everyone in line had a weak signal and simply copied
the rest of the group. Our inference about the restaurant’s quality will depend on how
likely we think the first scenario is relative to the second—it will depend on our beliefs
about the observation network, and those beliefs are far more complex if observations
are correlated.

In a more contemporary example, suppose we observe via social media two friends
sequentially purchase a coupon from a company like Groupon or Living Social. If these
two friends know each other well, we should realize the decisions might provide partially
redundant information because one made the purchase decision after seeing the other
do so. If we believe the two are unlikely to know one another, we can make a stronger
inference about the value of the coupon since the decisions were made independently.
Two people observing this same pair of decisions may reach different conclusions when
given different knowledge of the social network: information about the network struc-
ture can impact how observations are interpreted. Differences in information about the
network, even when agents make similar observations, could alter the outcome of social
learning.

According to the last two decades of economics scholarship, herding is the key in-
efficiency that arises in social learning models. Herding occurs when rational agents
choose to disregard their own private signals, preferring to copy their neighbors’ actions
instead. When agents herd, they prevent others from obtaining any information about
their private signals; this limits the amount of new information that becomes available
to the broader society. While our model still captures herd behavior, we find that corre-
lated neighborhoods may lead to more severe modes of failure.

To distinguish this new kind of failure, we introduce a new metric of social learning.
The traditional metric for a successful outcome is one of aggregation: whether as soci-
ety grows large, later agents approach certainty about the underlying state of the world.
This is a stringent criterion, yet society can sometimes achieve complete aggregation
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because there are many independent signals dispersed among different people. How-
ever, full aggregation is unlikely when agents only observe the discrete actions taken by
their neighbors, rather than actual signals or beliefs. Complete aggregation requires ei-
ther strong assumptions on the network topology (Acemoglu et al. 2011) or that private
signals are of unbounded strength (Smith and Sørensen 2000).

Our new metric of social learning highlights that individuals can benefit substan-
tially from observing the actions of their peers even if full information aggregation does
not occur. Suppose you have a friend who always carefully researches every purchase
she makes; when you decide to copy one of her purchases, you know there is a chance
she erred, but copying likely leads to a better decision than you would make indepen-
dently. Formally, consider an expert as an agent outside the network who draws a signal
from a different distribution than the other agents. This signal takes one of two possible
values, leading respectively to the strongest private belief that an agent in the network
could have in favor of either state. Experts may not be infallible, but if all members of
society can achieve the same ex ante probability of making a good decision as an ex-
pert, we say that information diffuses. Information diffusion captures the idea that the
strongest available signals are transmitted throughout the network.

Both aggregation and diffusion have a role to play in the study of social learning in
networks. When everyone in society already has access to the strongest signals or the
strongest signals provide little information, aggregation is a far more interesting metric:
diffusion is achieved trivially in these contexts. However, if strong signals are rare but in-
formative, the question of diffusion becomes paramount. The two metrics also provide
complementary insights. Previous work studying aggregation calls attention to how the
signal structure impacts learning. As long as the network is sufficiently connected, the
presence of bounded or unbounded private beliefs usually determines whether infor-
mation aggregates. Our new metric of diffusion provides results that are independent
of the private signals, shifting the focus onto the role of network structure and beliefs
about that structure.

One reason prior literature has focused on aggregation rather than diffusion is that
diffusion trivially obtains when agents have identical information about the broader
network. As a special case of Theorem 1, we show that the complete network studied
in early papers (e.g., Banerjee 1992, Bikhchandani et al. 1992, and Smith and Sørensen
2000) always diffuses information. Our theorem also captures results on determinis-
tic network topologies (Çelen and Kariv 2004) as well as stochastic topologies in which
agents have independently drawn neighborhoods (Banerjee and Fudenberg 2004, Smith
and Sørensen 2013, Acemoglu et al. 2011). As long as agents’ neighborhoods are inde-
pendent, a mild connectivity condition referred to as expanding observations is both
necessary and sufficient for the network to diffuse information.

As we emphasize in Proposition 1, this implies that information cascades—when all
agents after some time disregard their private signals and copy their neighbors—only
occur after information has diffused through the network. In the complete network, a
cascade always occurs in a limiting sense, suggesting an equivalence between diffusion
and cascades; however, we show through an example that the two are distinct. In more
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general networks, some realizations may lead agents to continue relying on their private
signals, even if on average the available social information overwhelms these signals.

Once we allow neighborhood correlations, neighborhood realizations convey infor-
mation about the network, and expanding observations is no longer a sufficient condi-
tion for information diffusion. Theorem 2 generalizes the basic intuition that a success-
ful network must be sufficiently connected. More surprisingly, we find that information
diffusion can fail even in strongly connected networks. A series of examples demon-
strates how failures of diffusion can result from agents having substantially different in-
formation about the network. In one case, diffusion fails in a well connected network
because agents cannot identify an information path even though it exists. A more com-
plex example shows how rational behavior can mimic overconfidence, leading agents to
copy the actions of their neighbors too frequently for information to diffuse. Finally, we
demonstrate that the actions of a large collection of neighbors could be rendered unin-
formative in some realizations of a network. That even the weaker metric of information
diffusion can fail in a well connected network is an important finding of our work.

These examples raise serious doubts about the robustness of positive learning re-
sults in networks. Individuals often do have different information about the networks
in which they are embedded, and popular generative network models—for instance,
those based on preferential attachment mechanisms—induce neighborhood correla-
tions. The existing social learning literature is silent on outcomes in such contexts. We
provide two positive results in an effort to fill this gap, suggesting that information dif-
fusion is generally robust.

First, Theorem 3 demonstrates that information diffuses in a well connected net-
work as long as the network satisfies a low distortion property. We interpret distortion
as a focused measure of the information that neighborhood realizations provide to the
agents. If the realizations provide little information relative to this measure, then diffu-
sion occurs through the same mechanisms as in simpler network models. Interestingly,
low distortion is a far weaker condition than neighborhood independence assumed in
prior work. Using this result, we show that any network with long deterministic informa-
tion paths diffuses information regardless of how informative neighborhood realizations
are about the rest of the network structure. An additional example shows that preferen-
tial attachment networks exhibit zero distortion despite strong neighborhood correla-
tions. These findings highlight that the failures of information diffusion in our earlier
examples are not the result of neighborhood correlations per se; rather, it is the infor-
mation neighborhood correlations provide about the broader network that can create
problems.

A second result concerns neighborhood correlations that arise through aggregate
shocks to the network. We can imagine situations in which correlations between the
observations different agents make are the result of some exogenous event, such as an
Internet outage, that similarly affects all of the agents. If the neighborhoods of all agents
are mutually independent conditional on the realization of such a shock, Theorem 4
shows that a connectivity condition still characterizes networks that diffuse informa-
tion. In fact, our theorem establishes a stronger result, showing that as long as neigh-
borhood correlations are fully captured via an underlying Markov process with finitely
many states, connectivity is sufficient for diffusion.
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Our paper makes two key contributions to the study of social learning. First, we ex-
plore the impact of correlated neighborhoods on learning, demonstrating potentially
severe failures. Our findings illustrate previously unstudied outcomes of social learn-
ing, and we shed light on the robustness of earlier results. Second, we introduce and
study a new metric of information diffusion. This metric helps unify the findings of
prior work, particularly the disconnect between learning results obtained with bounded
and unbounded private signals, and provides some measure of how significant herding
inefficiencies can be. Moreover, our metric provides a lens to focus attention on the im-
pact of the network structure on the learning process, in contradistinction to the impact
of the signal structure.

Our work also suggests a few empirical implications. We highlight that network
transparency may play a role that facilitates information diffusion independently of the
actual structure of the network. To the extent that the visibility of connections in on-
line social networks reduces information asymmetry about the social network struc-
ture, we would predict that these communities encourage the diffusion of informa-
tion over and above what we would expect based purely on the increased visibility of
individuals’ actions. Researchers have motivated the study of information cascades
to explain widespread conformity in the adoption of certain behaviors and products
(Bikhchandani et al. 1992). If the greater diffusion of information facilitated through
network transparency leads to more information cascades, we should expect more con-
formity in individual behavior following the growth of social media.

1.1 Related literature

The social learning literature has its origins in the seminal papers of Banerjee (1992)
and Bikhchandani et al. (1992). These papers demonstrated that fully rational agents
who learn by observing the actions of their peers are susceptible to herding, an ineffi-
cient equilibrium outcome in which agents ignore their own private signals and copy
the actions of their neighbors instead. This outcome of social learning is often cited as
an explanation for widespread behavioral conformity in a variety of contexts. Smith and
Sørensen (2000) showed that in a complete network, inefficient herding outcomes oc-
cur as long as private signals are of bounded strength. Çelen and Kariv (2004) extended
the analysis to a line topology, in which agents observe only the most recent action.
Banerjee and Fudenberg (2004) and Smith and Sørensen (2013) incorporated the idea
of neighbor sampling, with the former considering a model with a continuum of agents
and the latter studying a generalization of their own earlier model. Our work builds most
closely on that of Acemoglu et al. (2011), in which agents are situated in a social network
and can only observe the actions of their neighbors. These earlier analyses suggest that
Bayesian agents will generally settle on the right action as long as there exist arbitrarily
strong signals and the network satisfies some minimal connectivity condition.

While the papers above study perfect Bayesian equilibria of social learning games,
a parallel literature has emerged on non-Bayesian or partially Bayesian network learn-
ing models. Some early papers in this stream of work include Ellison and Fudenberg
(1993, 1995), Bala and Goyal (1998), DeMarzo et al. (2003), and Gale and Kariv (2003).
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More recent papers include Golub and Jackson (2010, 2012), Acemoglu et al. (2010), and
Guarino and Ianni (2010). Non-Bayesian models are often motivated by the complex-
ity of equilibrium behavior in dynamic network games with incomplete information.
Our model provides an alternative approach to modeling learning in complex networks.
The model we construct, while still imposing constraints on the problem (such as the
sequential nature of the game), allows us to consider the perfect Bayesian equilibria of
learning models in networks that are both complex and realistic, such as the preferential
attachment network of Barabási and Albert (1999).

An important question that remains largely unanswered is the extent to which the
Bayesian and the non-Bayesian network learning models offer similar predictions. If
the dynamics of the easier-to-analyze non-Bayesian models are similar to the equilibria
of Bayesian models, then one could argue in favor of considering the simpler models
rather than the more complex ones. Jadbabaie et al. (2012) demonstrate that the predic-
tions of both kinds of models often converge asymptotically. However, we argue that the
key driver of inefficiency in learning is not the network structure itself, but persistent
differences in beliefs about the network structure, leading to different interpretations of
the same information. Deriving simple non-Bayesian models that accurately capture
the learning difficulties created by this asymmetry is a substantive challenge.

The social learning literature is, of course, larger than the set of papers we discuss
here. It also includes models where agents communicate signals or beliefs, such as
Eyster and Rabin (2011), Acemoglu et al. (2014), and Fan et al. (2012), as well as mod-
els in which agents have collective preferences, such as Ali and Kartik (2012). Jackson
(2007) and Acemoglu and Ozdaglar (2011) provide excellent surveys of the field.

1.2 Organization

The rest of the paper is structured as follows. Section 2 presents our model. Section 3
discusses measures used to assess learning outcomes, arguing that the measures used
in prior work are too demanding to study settings with correlated neighborhoods. Sec-
tion 4 explores how social learning can fail to diffuse information in complex networks.
Section 5 presents our positive results, establishing conditions under which diffusion
succeeds. Section 6 concludes. All proofs can be found in the Appendix.

2. Model

A set of agents, indexed by n ∈ N, sequentially choose between two mutually exclusive
actions labeled 0 and 1. Denote the action of agent n by xn ∈ {0�1}. The payoff from this
choice depends on an unknown underlying state of the world θ. There are two possible
underlying states, again labeled 0 and 1, and we specify the utility of agent n derived
from act xn:

un(xn�θ)=
{

1 if xn = θ

0 if xn �= θ.

That is, all agents derive strictly higher utility from choosing the action with the same
label as the underlying state of the world. To simplify notation, we further specify that a
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priori the probability of each state is P(θ = 0) = P(θ = 1) = 1
2 . We discuss how to gener-

alize our results to other priors and utility functions in Section 3.
To make an optimal decision, agents seek to learn the true state of the world. Agents

have access to two types of relevant information: private information and social infor-
mation. An agent’s private information consists of a private signal observable only to
the agent. Prior to making a decision, agent n learns the value of a random variable sn
taking values in some metric space S . Conditional on the state θ, each agent’s signal
is independently drawn from the distribution Fθ, and the pair of probability measures
(F0�F1) constitutes the signal structure of the model. The only assumption we impose
on the signal structure is that the two measures are not almost everywhere equal; thus,
the probability of receiving an informative signal is positive.

The probability pn = P(θ = 1 | sn) constitutes agent n’s private belief, and the support
of the private beliefs is the region [β�β], where

β = inf{r ∈ [0�1] | P(p1 ≤ r) > 0}� and β = sup{r ∈ [0�1] | P(p1 ≤ r) < 1}�

The distinction between bounded (β > 0 and β < 1) and unbounded (β = 0 and β = 1)
private beliefs has proved important in prior work on social learning,1 but plays a minor
role in this paper due to our focus on a different learning metric.

An agent’s social information is derived from observing some subset of the past ac-
tions of other agents. The set of agents whose actions are observed by agent n, denoted
by B(n) ⊆ {1�2� � � � � n−1}, is called n’s neighborhood. The set B(n) itself is a random vari-
able, and the sequence of neighborhood realizations describes a social network of con-
nections between the agents. We assume that the neighborhood realizations B(n) are
independent of the state θ. The probability qn = P(θ = 1 | B(n)�xm�m ∈ B(n)) is called
agent n’s social belief.

We describe the structure of the social network via a probability measure Q, giving a
distribution over all possible sequences of neighborhoods. Formally, Q is a probability
measure on the product space B = ∏∞

i=1 2Ni , where Ni = {x : x ∈ N�x < i}. A particular
measure Q on the space B is called a network topology. The topology is deterministic if
Q is a Dirac distribution concentrated on a single element B ∈ B; otherwise the topology
is stochastic.

We assume that the signal structure (F0�F1) and the network topology Q are com-
mon knowledge to all agents. Before making a decision, agent n observes the values
of sn, B(n), and xm for each m ∈ B(n). Let In denote the set of all possible values of
agent n’s information set. Agent n’s strategy is defined by a function σn : In → {0�1}
that maps a realization of this information set to a decision. A strategy profile, de-
noted by σ , is a sequence of strategies for each agent. For notational convenience, let
σ−n = {σ1� � � � �σn−1�σn+1� � � �} denote the set of all strategies other than agent n’s, allow-
ing us to represent the strategy profile as σ = (σn�σ−n). Given a particular strategy pro-
file, the sequence of actions {xn}n∈N is a stochastic process with a measure Pσ generated
by the signal structure and the network topology.

1See Smith and Sørensen (2000), Smith and Sørensen (2013), Acemoglu et al. (2011), and Mossel et al.
(2012) among others.
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The solution concept we consider is the set of perfect Bayesian equilibria of this so-
cial learning game, hereafter referred to simply as the equilibria of the game. A strategy
profile is an equilibrium if for every n, the strategy σn maximizes agent n’s expected util-
ity given the strategies of the other agents, σ−n. For a particular information set In ∈ In,
agent n’s expected utility from action y is simply P(y�σ−n)(y = θ | In). Therefore, agent n’s
decision in equilibrium is

xn = σn(In) ∈ arg max
y∈{0�1}

P(y�σ−n)(y = θ | In)�

Given any set of strategies for the agents acting prior to n and any realization of n’s
information set In ∈ In, this maximization problem has a well defined solution. Thus,
an inductive argument shows that the set � of perfect Bayesian equilibria of this game
is nonempty. The set � will contain multiple equilibria if some agents are indifferent
between their two choices.

The model studied by Acemoglu et al. (2011) is a special case of the one considered
here. Acemoglu et al. (2011) assume all neighborhoods are generated independently
from one another, but in our paper, arbitrary topologies are allowed. This difference
between the two models might appear small at first glance, but it significantly changes
our conclusions about social learning outcomes. Correlations between agents’ neigh-
borhoods imply that agents sometimes disagree over the likely composition of others’
neighborhoods, potentially leading to a lack of consensus over who is well connected or
well informed.

3. The metrics of social learning

The classical metric of learning is whether decisions converge on the fully informed op-
timal action. As society grows, the number of independent private signals grows. In an
ideal world, social learning would aggregate all of these signals, allowing later agents to
approach certainty by drawing wisdom from an ever expanding group of peers.2 This
represents the best possible asymptotic result of the social learning process—the same
limiting outcome that would occur if each agent directly observed the private signals
of all prior agents.3 Given a network topology, a signal structure, and an equilibrium
strategy profile, we say that information aggregates if

lim
n→∞Pσ(xn = θ)= 1�

While this presents a high bar for social learning to meet, aggregation does indeed
occur in many models. In prior papers, successful aggregation often turns on whether
the signal structure features unbounded or bounded private beliefs. A consensus has

2Acemoglu et al. (2011) capture this idea in their definition of asymptotic learning. Smith and Sørensen
(2000) refer to it as complete learning.

3The notion of perfect learning studied by Lee (1993) and Arieli and Mueller-Frank (2012) is an even more
stringent, nonasymptotic criterion, requiring individuals to act as though they have observed all previous
agents’ private signals.
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emerged that unbounded beliefs robustly lead to aggregation in many models and con-
texts. Under varying assumptions, Smith and Sørensen (2000), Smith and Sørensen
(2013), Acemoglu et al. (2011), and Mossel et al. (2012) each establish positive learning
results when private beliefs are unbounded. In contrast, the seminal herding results of
Banerjee (1992) and Bikhchandani et al. (1992), expanded by Smith and Sørensen (2000)
and Acemoglu et al. (2011), demonstrate that aggregation often fails when private beliefs
are bounded. One way to achieve aggregation with bounded private beliefs is to allow
a rich enough action space that the content of an individual’s private signal is largely
revealed through her choice. With finite action spaces, there are a few examples in the
literature of bounded beliefs leading to successful aggregation—notably, Theorem 4 of
Acemoglu et al. (2011)—but aggregation only occurs in networks that are precisely con-
structed to achieve this outcome. For those rare networks in which social learning ag-
gregates information in any equilibrium regardless of the signal structure,4 we say the
network aggregates information.

We argue two reasons why new metrics deserve attention. First, results based on the
aggregation metric rely heavily on the distinction between bounded and unbounded
private beliefs. While we can measure such details of the signal structure in some con-
texts, in others we may need to base predictions on other salient model parameters. In
particular, a metric leading to results based on properties of the network structure could
provide a useful alternative.5

Second, aggregation is often too stringent a criterion for judging the efficiency of
equilibrium outcomes. Individuals may derive a substantial benefit from their social
information without obtaining full knowledge of the underlying state of the world. Con-
sider a technology adoption problem in which most consumers are completely unin-
formed about the merits of a particular product, having only an even chance of making
a good adoption decision on their own. However, a few individuals have strong signals;
they understand the technology and are 95% confident in their assessment of its value.
If this information diffuses so that all agents have a 95% chance of making the correct
choice, the traditional metric would say that learning has failed. While social learning
has not fully aggregated information, agents all perform (weakly) better than any indi-
vidual would by herself. When this occurs, learning has reached a significant threshold,
and a theory of social learning ought to separate this outcome from more significant
failures. To differentiate such outcomes, we motivate a less exacting benchmark of in-
formation diffusion.

Consider a hypothetical expert situated outside the social network. We suppose this
expert has access to the most informative binary signal s̃ supported on [β�β]. That is,
the expert always receives one of the strongest signals an agent in the network could

4Recall that the model assumes that an agent’s probability of receiving an informative signal is positive;
this assumption is essential for the definition to be meaningful.

5Mueller-Frank and Pai (forhcoming) take an another approach to this issue; their work makes private
information endogenous by modeling it as the result of a costly search process. A major finding is that
aggregation occurs in the complete network if and only if some agents have arbitrarily low search costs,
effectively trading an assumption of strong signals for one of low search costs.
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observe, leading to a private belief of either β or β. In the absence of any social infor-
mation, a straightforward calculation shows that the expert chooses the optimal action
with probability

P(x∗ = θ)≡ β∗ = (1 −β)(2β− 1)+β(1 − 2β)

2(β−β)
�

Given a signal inducing belief β, the expert chooses action 1 and is correct with prob-
ability β. Similarly, given a signal inducing belief β, the expert chooses action 0 and is
correct with probability 1 − β. The probability β∗ is a weighted average of these two

outcomes. When the support of private beliefs is symmetric (β = 1 − β), the expert is
equally likely to receive each signal, and this probability reduces to an intuitive expres-
sion β∗ = β = 1 − β. When the support of private beliefs is asymmetric, the expert is
relatively more likely to receive the less informative of the two signals. When the sup-
port of private beliefs is extremely asymmetric (for instance, β = 0�49, β = 0�99), the ex-
pert does only slightly better than flipping a coin; given even prior probabilities on the
two states, the strongly informative signal must occur infrequently relative to the weakly
informative one.

Given a network topology, a signal structure, and an equilibrium strategy profile, we
say that information diffuses if

lim inf
n→∞ Pσ(xn = θ)≥ β∗�

As we did for aggregation, we say a network diffuses information if information diffuses
for any signal structure and any equilibrium.

This notion of diffusion does not require society to fully incorporate infinitely many
signals, and it does not require agents to make near-perfect decisions as society grows
large. The aim is more modest, requiring only that the strongest signals spread through
the network, and agents perform as well as our fictitious expert in the limit as the net-
work grows large. The following definition summarizes our learning metrics.

Definition 1. Given a network topology, a signal structure, and an equilibrium strat-
egy profile, information aggregates if limn→∞ Pσ(xn = θ) = 1, and information diffuses if
lim infn→∞ Pσ(xn = θ) ≥ β∗. If information aggregates (diffuses) in any equilibrium for
any signal structure, we say the network aggregates (diffuses) information.

We do not argue that diffusion, rather than aggregation is the single correct metric
for social learning. The two metrics capture different aspects of learning. If the signal
structure is binary, then the agents’ signal distribution is the same as an expert’s, and
our notion of learning is trivial. When all signals give at most 51% confidence about
the state of the world, successful diffusion is not a particularly striking outcome either.
Diffusion can be a very weak metric in some cases. However, most realistic scenarios
will include a mix of agents, some with strong signals and some with weak signals. In
these settings, finding that all agents perform as well as an expert in the limit is far from
a trivial statement.
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Note that although this metric is generally weaker than aggregation, the two metrics
coincide when private beliefs are unbounded: unbounded private beliefs imply that the
fictitious expert has perfect information. Since much of the past literature required un-
bounded private beliefs to obtain positive results, one could interpret such findings as
characterizations of information diffusion, rather than information aggregation.

The literature on social learning has focused on the more strict criterion of aggrega-
tion for a clear reason: failure of information diffusion, as we have defined it, is atypical
when neighborhoods are independently generated. For example, the complete network
in which B(n) = {1� � � � � n− 1} for all n diffuses information. More generally, any network
with a minimal level of connectivity diffuses information. To make this precise, recall
the definition of expanding observations from Acemoglu et al. (2011).

Definition 2. A network topology Q features expanding observations if for all positive
integers K,

lim sup
n→∞

Q

(
max
b∈B(n)

b <K
)

= 0�

As argued by Acemoglu et al. (2011), this is a mild condition guaranteeing that agents
at least have indirect access to enough information for learning to occur. This restriction
is necessary to rule out trivial failures—for instance, the one that occurs if B(n) = ∅ for
every agent n.

Theorem 1. Suppose neighborhoods are mutually independent in the network topol-
ogy Q. Then Q diffuses information if and only if Q features expanding observations.

Barring neighborhood correlations and barring networks without expanding obser-
vations, information diffusion always occurs. The prior literature has concerned itself
solely with aggregation because diffusion is almost trivially attained in these models
without neighborhood correlations. The inefficient herding results of Banerjee (1992)
and Bikhchandani et al. (1992) are failures of aggregation but not of diffusion. Although
agents may herd on the incorrect action, they are far more likely to herd on the correct
one. To clarify the role of herding in social learning models, we extend the definition of
information cascades from Bikhchandani et al. (1992).

Definition 3. An information cascade occurs if there exists an integer valued random
variable N such that all agents n ≥N ignore their private signals, relying entirely on their
social information.

Proposition 1. If an information cascade occurs, information diffuses.

When an information cascade occurs, agents act according to their social informa-
tion regardless of their private signals. Even agents with the strongest private informa-
tion ignore their signals in favor of social information. This can only occur if the in-
formation obtained from the social network is at least as informative as the strongest
signals, which by definition implies that information diffuses. This is not to say that we
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consider herding a positive outcome, but that the diffusion metric provides a bound on
how inefficient a herd can be.

The converse is false. Diffusion of information does not imply that we have an in-
formation cascade, even in the weak sense of a limit cascade as defined by Smith and
Sørensen (2000). Consider a deterministic network with three distinct groups of agents.
Agents in the set S1 ≡ {n : n = 3k − 2�k ∈ N} observe all previous agents in S1 and only
those agents. Likewise, agents in the set S2 ≡ {n : n = 3k− 1�k ∈ N} observe all previous
agents in S2 and only those agents. The remaining agents in S3 ≡ {n : n= 3k�k ∈N} have
the neighborhoods B(n)= {n− 1� n− 2}.

An agent in S3 observes the most recent member of each of the other two groups. If
signals are symmetric and the two neighbors choose opposite actions, the two observa-
tions balance exactly, generating a social belief of 1

2 . Hence, the agent in S3 relies on her
own signal as though there were no neighbors. If the signals induce bounded private
beliefs, then with positive probability, agents in S1 herd on one action while agents in S2
herd on the other. With positive probability, all later agents in S3 have social belief equal
to 1

2 . There is no sense in which the social belief of agents in S3 converges to a set of cas-
cading beliefs, but our theorem implies we still get diffusion. This shows an important
conceptual distinction between cascades and diffusion: the former represents a notion
of belief convergence, while the latter is fundamentally about utility levels.

Nevertheless, the notion of a cascade and our metric of diffusion share a close rela-
tionship. Define the cascade set for social beliefs as the union [0�1 − β] ∪ [1 − β�1]. If
qn is in the cascade set, then no realization of the private signal will compel agent n to
change her behavior; at most she is indifferent to changing her a priori preferred action.
Let h̃ denote a binary signal inducing private beliefs supported on 1 −β and 1 −β. This
is the weakest signal that guarantees a private belief in the cascade set. Call this the min-
imal cascade signal, and call an agent outside the network with access to this signal the
cascade expert. We could just as easily have defined the diffusion metric in terms of the
cascade expert as the cascade expert is exactly as likely to match the state as the expert.

This relationship between the expert signal and the minimal cascade signal holds
more generally for an arbitrary prior over the two states and an arbitrary utility function
u(x�θ) satisfying u(1�1) > u(0�1) and u(0�0) > u(1�0). We can define the expert signal
s̃ as before, and the minimal cascade signal h̃ is characterized by the property that an
agent receiving both signals is indifferent between the two actions whenever the signals
conflict. Consequently, always following the expert signal is optimal, and always follow-
ing the minimal cascade signal is optimal, so the expected utility derived from having
either signal (or even both signals) is the same. If we then define the utility level of the
expert u∗, an improvement principle still holds, and our later positive results have a clear
analog in the general case.

We can interpret Theorem 1 in terms of the underlying mechanisms that lead to inef-
ficient outcomes. In the absence of neighborhood correlations, there are two potential
sources of inefficiency: limited observations and information externalities. The most
severe failures are caused by the limited observations a disconnected network offers.
We can attribute the distance between diffusion and aggregation to an information ex-
ternality. To the extent that individual decisions rationally rely on social as opposed to
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private information, this private information is left unrevealed. The asymptotic impact
of this externality is limited as a consequence of the “overturning principle” that Smith
and Sørensen (2000) describe. Societal learning continues as long as it remains possible
for a single agent to receive a signal overturning the sum of the available social informa-
tion. Hence, the support of private beliefs provides one measure of the severity of this
externality.

We see in the next section that our more general setting with correlated neighbor-
hoods introduces asymmetric information about the network as a new source of in-
efficiency in the learning process. In a deterministic network, there is no uncertainty
about the network structure, so there can be no information asymmetry regarding the
network. When neighborhoods are stochastic, but independently generated, there are
information asymmetries; however, the asymmetries are localized. The realization of an
agent’s neighborhood conveys no information about the rest of the network. These local
asymmetries are minor and disappear in the limit. One can intuitively think of this as a
“law of large numbers” type of result. With neighborhood correlations, asymmetries in
information about the network are no longer localized, and they can persist, leading to
new modes of failure. A major finding is that even the weaker standard of diffusion can
fail when there are significant asymmetries.

4. Failure to diffuse information

This section examines several of the interesting and surprising ways that information
may fail not just to aggregate, but even to diffuse across a network when there are sig-
nificant correlations between the neighborhoods of different agents. We first revisit net-
works in which agents lack the connections needed for information to diffuse. In simple
network topologies, nonexpanding observations sharply characterizes this type of fail-
ure, but an example shows that our model requires a more robust condition to capture
the same intuition.

Example 1 (Failure with expanding observations). Let En denote the set of agents m< n

whose neighborhoods are empty, and define the network topology Q such that for each
n, B(n) is empty with probability 1/2|En| and B(n) = {m | m= maxi∈En i} otherwise. ♦

This network topology plainly features expanding observations, yet all agents in the
network either have an empty neighborhood or observe one agent whose neighborhood
is empty in turn. The network will fail to diffuse information for exactly the same reason
that a network with nonexpanding observations fails. To more precisely characterize
failures caused by limited observation, we define an agent’s personal subnetwork and
the expanding subnetworks property.

Definition 4. An agent m is a member of agent n’s personal subnetwork if there exists
a sequence of agents, starting with m and terminating on n, such that each member of
the sequence is contained in the neighborhood of the next. The personal subnetwork of
agent n is denoted by B̂(n).
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A network topology Q features expanding subnetworks if

lim sup
n→∞

Q
(|B̂(n)| <K

) = 0

for all positive integers K.

Agent n’s personal subnetwork represents the set of all agents in the network con-
nected to n, either directly or indirectly, as of the time n must make a decision. If n’s
personal subnetwork is bounded in size, then the information available to n is funda-
mentally limited. Without expanding subnetworks, a network topology generates an
infinite subsequence of agents whose social information is subject to a fixed limit on
the number of private signals from which to draw. We intuitively expect information
diffusion to fail in these networks, and our next theorem obliges.

Theorem 2. If the network topology Q does not feature expanding subnetworks, then Q

fails to diffuse information.

When neighborhood realizations are mutually independent, expanding subnet-
works and expanding observations are, in fact, equivalent conditions. This result is in
the same spirit as Theorem 1 from Acemoglu et al. (2011); our refined notion of expand-
ing subnetworks more directly captures the idea of drawing information from a growing
number of signals and rightly excludes networks like that described in Example 1.

When neighborhoods are independent, Theorem 2 describes the only way failure
occurs and the only mechanism through which information diffusion fails that is stud-
ied in prior work. This mode of failure differs fundamentally from those we study in
the rest of this section. Failure in a poorly connected network has nothing to do with
information asymmetries or externalities: even a social planner with full knowledge of
the network realization is unable to dictate a sequence of decision rules that diffuses
the information. When we introduce neighborhood correlations, the situation changes.
Asymmetric information about the network structure can lead to similarly severe fail-
ures, but in all of the examples to follow, a social planner with full knowledge of the
network could ameliorate the problem.

There are at least two analytically distinct ways that a network topology can fea-
ture expanding subnetworks. One is to ensure the existence of arbitrarily long “chains”
of agents where each agent in the chain observes the previous one. Another occurs if
agents directly observe unboundedly many others. In neither case is the network guar-
anteed to diffuse information. We begin by examining the first type of network, provid-
ing the following definitions to facilitate our discussion.

Definition 5. An information path for agent n is a set {a1� a2� � � � � ak} of agents such
that ak = n and ai ∈ B(ai+1) for each i < k. Consider the set Sn comprised of all informa-
tion paths for agent n. The depth of an agent n is defined as d(n)= maxs∈Sn |s|. A network
topology is deep if for any positive integer K,

lim sup
n→∞

Q(d(n) <K)= 0�
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Deep network topologies are precisely those that always develop long paths. We an-
alyze two examples of how information can fail to diffuse in a deep network topology—
described in turn as “failure due to unidentifiable paths” and “failure due to overconfi-
dence.” Failure due to unidentifiable paths can occur when an agent observes several
neighbors and knows one of them has a long information path. A problem arises if the
agent cannot identify this neighbor. We use the notation Si = {2i�2i + 1� � � � �2i+1 − 1} for
any i ∈N to facilitate the exposition of examples.

Example 2 (Failure due to unidentifiable paths). Consider the following network topol-
ogy:

• Exactly one of B(2) and B(3) is empty, and the other is equal to {1}: B(2) and B(3)
are equally likely to be empty.

• For each Si with i > 1, there is exactly one n ∈ Si, chosen uniformly at random,
such that B(n) is empty. This agent is denoted by ei.

• All other agents n ∈ Si have B(n) = {ei−1�mi−1}, where mi−1, fixed for all n ∈ Si, is a
member of Si−1 \ {ei−1} chosen uniformly at random.

This network topology fails to diffuse information. ♦

In the network topology of Example 2 (shown in Figure 1), there are two types of
agents. A small minority are unlucky and must make a decision without observing any
neighbors, while the rest have two neighbors. The network features expanding subnet-
works since for all n ∈ Si, n lies at the end of an information path of length i + 1 with
probability 1 − 2−i. However, whenever n has a long information path, n observes two
neighbors: one always has an empty neighborhood, while the other is sure to have a
long information path. Unfortunately, there is no way for agent n to tell her two neigh-
bors apart. The two neighbors will occasionally choose different actions, and when this
happens, agent n is forced to rely on her own signal.

We can avoid the challenge of identifiability of paths in deep networks if we limit
ourselves to networks in which agents all have at most one neighbor. However, the next
example shows that a well connected network topology can still fail to diffuse informa-
tion. In the example, agents have no difficulty identifying a neighbor with a long infor-
mation path, but agents disagree about the realized structure of the network. There are
persistent information asymmetries regarding the network structure, leading agents to
form different posterior beliefs about the network realization. As a result, key agents
copy their neighbors too frequently. While we do not intend to imply that the agents
suffer from some psychological bias—they are Bayesians after all—we refer to this as a
failure due to overconfidence because the dynamics mimic what might happen if some
agents were misguidedly optimistic about their neighbors’ knowledge.

Example 3 (Failure due to overconfidence). Consider the following network topology:
with probability 1

2 , B(n)= {n− 1} for all n > 1; otherwise, the following statements hold.

• We have B(2) = {1} and B(3) = {2}.
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Figure 1. The network of Example 2. A typical agent n does not know which realization has
occurred.

Figure 2. The network of Example 3. If agent n observes her immediate predecessor, she be-
lieves that most likely all agents have observed their immediate predecessors.

• For each i > 1, a set S′
i = {mi�mi + 1� � � � �mi + i} of i + 1 consecutive agents con-

tained entirely in Si is chosen uniformly at random. We have B(mi) = ∅ and
B(n) = {n− 1} for each n ∈ S′

i \ {mi}.

• For each n ∈ Si with n /∈ S′
i, B(n) = {mi−1 + i− 1}.

This network topology fails to diffuse information. Figure 2 illustrates this example. ♦

The realizations of this network topology fall into two distinct regimes. In the “good”
regime, all agents observe their immediate predecessor and information diffuses. In the
“bad” regime, the growing information paths are broken from time to time and must
be rebuilt. When this happens, the agents in S′

i who rebuild the path are nearly certain
the network has realized the good regime. The agents in S′

i \ {mi} each observe their
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immediate predecessor, and conditional on this fact, the probability that the bad regime
has been realized is small. As a result, agents in S′

i are far too confident in their neighbors
and copy too frequently, leading to the failure of information diffusion.

Failure due to overconfidence is related to information cascades, but this phe-
nomenon is distinct in several important ways. When the bad regime is realized, agents
in S′

i are far too likely to copy, but there is no information cascade: each agent still has
a small chance of following her own signal. However, the agents in S′

i approach herd
behavior asymptotically as i grows. The probability that an agent follows her own sig-
nal approaches zero faster than the chain grows; thus, the agents mi + i approach the
performance of an agent with an empty neighborhood. Another distinction between
the phenomenon in this network and an information cascade is that not all agents join
the herd in the limit. Most agents in Si are fully aware when the bad regime has been
realized. The problem is that the agents they observe and the agents further down the
information path do not share this awareness. The severe failure we see is driven by the
interaction of these incongruent perspectives, rather than by simple herding.

In networks with independent neighborhoods, all topologies featuring expanding
subnetworks are deep, but this is not true in general. Our framework allows the con-
struction of network topologies with expanding subnetworks and bounded depth, and
these networks exhibit unique learning dynamics. The final failure we catalogue—
failure due to correlated actions—occurs in one such network: as the network grows,
agents observe unboundedly many others. In these situations, we might expect both
information diffusion and aggregation to easily succeed. However, despite the apparent
abundance of social information, cases arise in which no number of neighbors yields
any information relevant to the state θ.

Example 4 (Failure due to correlated actions). Let Fn denote the set {m < n |
B(m) = {1}}. Consider a network topology in which B(n) = {1} with probability 1/2|Fn|
and B(n)= Fn otherwise for all n > 1. This network topology fails to diffuse information.
This example is illustrated in Figure 3. ♦

Under some signal structures, if θ = 0 and x1 = 1, then the social information and
private information of an agent m ∈ Fn effectively cancel; m is equally likely to choose
xm = 0 and xm = 1. The same outcome occurs when θ = 1 and x1 = 0. With one of
these signal structures, if x1 �= θ, agents who observe Fn cannot tell from their social
information whether θ = 0 and x1 = 1 or θ = 1 and x1 = 0. They learn merely that the
first agent erred.

Our examples reflect the rich variety of phenomena that may appear in general net-
works when agents have asymmetric network information. These asymmetries give rise
to several ways for information diffusion to fail beyond those that prior researchers have
studied. In the next section, we provide sufficient conditions for a network to success-
fully diffuse information despite the presence of neighborhood correlations that induce
information asymmetries.
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Figure 3. The network of Example 4. A typical agent n observes many agents, each of whom in
turn observes the first agent.

5. Conditions for success

The positive results of this section establish sufficient conditions for successful infor-
mation diffusion in the presence of asymmetric network information. Theorem 3 shows
that learning succeeds in a sufficiently connected network if each agent’s neighborhood
realization provides little knowledge about agents along some information path. Theo-
rem 4 demonstrates that if information asymmetries concern an aggregate shock to the
entire network, information diffusion proceeds without any complications.

Both of our theorems are based on a generalization of the improvement principle
introduced by Acemoglu et al. (2011). For an improvement principle to work, long infor-
mation paths must exist and must be identifiable. Moreover, agents along the path need
reasonably accurate information about the network realization. The essential proof
technique is to benchmark the performance of fully Bayesian agents against the per-
formance of a heuristic that is simpler to analyze. Imagine that agents behave in the
following way: on seeing who their neighbors are, each selects one neighbor on whom
to rely. An agent considers the decision of this chosen neighbor along with her own sig-
nal, and chooses an action without regard for what other neighbors have done. If agents
could diffuse information by following the heuristic, then the Bayesian agents of our
model must do at least as well.

More formally, we define the concepts of neighbor choice functions and chosen
neighbor topologies. A neighbor choice function represents a particular agent’s means
of selecting a neighbor, and a chosen neighbor topology represents a network in which
agents discard all observations of the unselected neighbors.

Definition 6. A function γn : 2Nn → Nn ∪ {0} is a neighbor choice function for agent n if
for all sets Bn ∈ 2Nn , we have either γn(Bn) ∈ Bn or γn(Bn) = 0. Given a neighbor choice
function γn, we say that 	n

m = {Bn | γn(Bn) =m} is agent n’s neighbor-m choice set.

That is, agent n’s neighbor choice function either selects an agent m contained in
her neighborhood B(n) or it selects no one. Agent n’s neighbor-m choice set is the set of
realizations of B(n) such that agent n selects agent m.
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Definition 7. A chosen neighbor topology, denoted by Qγ , is derived from a network
topology Q and a sequence of neighbor choice functions {γn}n∈N. It consists only of the
links in Q selected by the sequence of neighbor choice functions {γn}n∈N.

Our first positive result depends on controlling what we call network distortion.
Given some information about the realized network, the distortion of a particular agent
captures how much the distribution of historical neighborhood realizations changes.

Definition 8. Let E denote a Q-measurable event. Let B(n) be the n vector comprised
of the neighborhoods of the first n agents, and let Bn denote a particular realization of
B(n). The network distortion of agent n with respect to event E is

δn(E) =
∑
Bn

∣∣Q(B(n) = Bn | E)−Q(B(n) = Bn)
∣∣�

The network distortion of agent n is a bound on how much some piece of infor-
mation about the network changes the likelihood of each possible realization of B(n).
When agent n’s network distortion with respect to event E is low, the probability of real-
izing a given sequence of n neighborhoods and the conditional probability of realizing
this sequence given E are approximately the same.

Given a sequence of neighbor choice functions, for each agent m < n, we consider
the distortion of m with respect to the event that m is n’s chosen neighbor. Since the
neighborhoods are drawn from a joint distribution, the unconditional distribution of
agent m’s neighborhood (and personal subnetwork) is generally different from the dis-
tribution of agent m’s neighborhood (and personal subnetwork) conditional on agent
n’s neighborhood. The neighbor choice functions allow us to consider the change in
this distribution conditional on agent n’s chosen neighbor realization rather than the
change in the distribution given agent n’s neighborhood realization. If for all ε > 0, the
probability that agent n’s chosen neighbor has distortion greater than ε approaches zero
as n approaches infinity, then the chosen neighbor topology has low distortion.

Definition 9. The chosen neighbor topology derived from Q and {γn}n∈N has low net-
work distortion if for any ε > 0, we have

lim
n→∞

∑
m:δm(B(n)∈	nm)<ε

Q(B(n) ∈ 	n
m) = 1�

Low distortion and sufficient connectivity are jointly sufficient for successful in-
formation diffusion. For any network topology, if we can find a sequence of neigh-
bor choice functions such that the derived chosen neighbor topology satisfies both the
expanding subnetworks condition and the low distortion condition, then information
diffuses.

Theorem 3. Consider an arbitrary network topology Q. If there exists a sequence of
neighbor choice functions {γn}n∈N such that the corresponding chosen neighbor topol-
ogy features both expanding subnetworks and low network distortion, then Q successfully
diffuses information.
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This theorem characterizes a large class of network topologies in which information
diffuses. Use of the theorem centers on the selection of neighbor choice functions. For
instance, if we take the agent with the largest index in B(n) as the chosen neighbor of
agent n, i.e., γn(B(n)) = maxm∈B(n) m, we can easily prove Theorem 1. With mutually in-
dependent neighborhoods, there is no network distortion, and expanding subnetworks
is equivalent to expanding observations. Thus, expanding observations is a sufficient
condition for learning when neighborhoods are generated independently. Theorem 2
then shows that expanding observations is a necessary condition for information diffu-
sion in this setting, completing the proof of Theorem 1.

Another immediate application of Theorem 3 comes in a setting that allows signifi-
cant neighborhood correlations. If a network topology has long deterministic informa-
tion paths, we can consider the chosen neighbor topology these paths generate to show
that information diffusion is successful. Agents may have other neighbors with complex,
correlated relationships in the network, but the unambiguous existence of one informa-
tion path for each agent allows information to diffuse.

Definition 10. A sequence of agents, {a1� a2� � � � � ak}, is a deterministic information
path if Q(ai ∈ B(ai+1)) = 1 for all i < k.

Proposition 2. Let d∗(n) denote the length of the longest deterministic information
path terminating on agent n, and suppose we have

lim
n→∞Q(d∗(n) <K)= 0

for any positive integer K. Then Q successfully diffuses information.

Two additional examples illustrate the broad applicability of Theorem 3. The first
example is based on the Barabási–Albert random graph model. Barabási and Albert
(1999) introduced a model for generating random graphs that feature the “scale-free”
property commonly associated with complex networks that emerge naturally in many
fields. The key feature of this model is that new vertices in the graph attach preferen-
tially to those that are already well connected—a property colloquially described by the
phrase, “the rich get richer.” We consider the equilibria of the social learning game in a
network based on this generative mechanism. Although there are strong correlations in
this model, there is no network distortion, and information diffuses.

Prior work has modeled preferential attachment networks in a setting without neigh-
borhood correlations (see Acemoglu et al. (2011)). These networks can be described by
designating predetermined sets of agents with varying probabilities of being observed:
some groups are persistently more likely to be observed than others, and we can think
of agents in the network attaching preferentially to these groups. However, the likeli-
hood of a given agent being observed in the future cannot vary with the actual network
realization in such models. Without correlated neighborhoods, the natural generative
mechanism cannot be captured, and more importantly, the information conveyed by
observing an agent’s local neighborhood cannot be captured in the model.
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Example 5 (Learning with preferential attachment). Define λn(m) to be the number of
agents acting prior to n who either observe agent m or are observed by agent m:

λn(m) = ∣∣{i < n : m ∈ B(i) or i ∈ B(m)}∣∣�
Consider the network topology

• B(2) = {1}
• Q(B(n) = {m} | B(n− 1)= Bn−1) = (λn(m))/(2(n− 2)) for all n > 2 and m< n.

This network topology diffuses information. ♦

In this network, agent n observes exactly one agent chosen at random from those
who have already acted: the probability of observing an agent m < n is proportional
to the number of links already connecting to m in the network when n’s neighborhood
is realized. Social learning succeeds because the distortion of m conditional on being
observed by n is zero, despite the highly correlated neighborhood realizations. By ob-
serving m, agent n learns that her recent predecessors are likely to have observed m as
well, but no information is conveyed about agents who acted prior to m.

We next present a network where learning occurs despite nonzero distortion. If
agents’ neighborhoods are not strongly correlated with neighborhoods realized in the
distant past, then social learning can still diffuse information.

Example 6 (Learning with nonzero distortion). Consider a network topology Q where
all agents observe exactly one neighbor and the probability of observing any particular
agent m depends on the depth of m, d(m). In particular, define the sets {Tk}k∈N by Tk =
{2k− 1�2k} for each k ∈N. For agent n ∈ Ti and a fixed realization of B(n− 1),

Q
(
B(n) = {m} | B(n− 1) = Bn−1

) =

⎧⎪⎨
⎪⎩

1
2(i−1) (1 − 1

i−j ) if d(m) > d(m′)
1

2(i−1) (1 + 1
i−j ) if d(m) < d(m′)

1
2(i−1) if d(m) = d(m′)

for m�m′ ∈ Tj , m �= m′, and j < i. If m ∈ Ti, Q(B(n) = {m} | B(n − 1) = Bn−1) = 0. This
network topology diffuses information. ♦

Each agent in this network observes one neighbor chosen randomly from the past,
but past agents have different likelihoods of being chosen. Past agents are assigned
weights such that agents with longer information paths are less likely to be chosen; how-
ever, differences in weightings are small for agents in the distant past. Therefore, if an
agent’s neighbor acted far enough in the past, the distortion of that neighbor is low, and
this happens with increasing frequency as n grows large. Despite a bias toward observ-
ing agents with short information paths, distortion in this network is low enough that
information diffuses.

An empirically minded researcher might wonder how to utilize this characterization
and, in particular, how to determine whether a network has low or high distortion. We
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suggest a few approaches, noting that tests to establish low distortion are easier to design
than tests to establish high distortion. Tests of low distortion can rely entirely on statis-
tical features of observed networks. One approach is to show that the network is well
described by a member of some family of networks with low distortion. For instance,
through Example 5 we show that preferential attachment models have low distortion, so
one might test whether a Barabási–Albert model is a good description of the network.
After fitting the model parameters from data, we can judge how well the model fits by
simulating many instances of the network and checking whether features like the de-
gree distribution, clustering coefficient, and average path length match their empirical
counterparts.

Similarly, one could test whether the network fits a configuration model (Bender and
Canfield 1978, Bollobás 1980). Configuration models are a family of random networks
parameterized by their degree distributions. These models lead to neighborhoods that
are approximately independent, so large networks will exhibit low distortion. Given data
on a network, one can measure the degree distribution and obtain its corresponding
configuration model. One can measure structural properties of this model by generating
samples via simulation. If the observed network has structural properties similar to the
corresponding configuration model, we would conclude that the configuration model is
a good description of the data and the network has low distortion.

Demonstrating high distortion is a more difficult task. This requires us to show that
an agent’s neighborhood conveys significant information about the broader network—
that beliefs about the network conditional on the set of neighbors are substantially dif-
ferent than unconditional beliefs. In the absence of a well understood parameterized
network model with high distortion, this is hard to test based on network data alone.
It may require surveying individuals on their beliefs about the overall network topol-
ogy. Supposing data on these subjective beliefs were available, the most direct way to
test for high distortion would be to check whether individuals have similar beliefs about
the broader network. If individuals have very dissimilar beliefs, this would be a strong
indication of high distortion.

Our other positive finding concerns correlations that stem from an underlying
Markov process. Let C be a finite space and for each i ∈ C, let Q(i)

n denote a probability
measure on the collection of subsets of {1�2� � � � � n − 1}. We say that the network topol-
ogy Q is Markovian if we can find a finite set C, a Markov chain Zn on C, and a collection
of measures {Q(i)

n }n∈N�i∈C such that B(n) is drawn according to Q
(Zn)
n independently from

the rest of the network for all n. We call the chain Zn and the collection {Q(i)
n } the Markov

decomposition of Q. In a Markovian network topology, all dependencies between the
neighborhoods of different agents are captured in the underlying process Zn. Earlier
positive learning results are robust to Markovian network topologies.

Definition 11. A Markovian network topology Q features statewise expanding observa-
tions if there exists a decomposition {Zn� {Q(i)

n }} such that for all i ∈ C and each positive
integer K, we have

lim sup
n→∞

Q(i)
n

(
max
b∈B(n)

b <K
)

= 0�
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Statewise expanding observations is a slightly stronger condition than the expanding
observations property that characterizes learning networks with mutually independent
neighborhoods. The intuition is similar though. This represents a mild connectivity
condition and is sufficient for information diffusion if the network is Markovian.

Theorem 4. If Q is a Markovian network topology with statewise expanding observa-
tions, then information diffuses.

A simple and interesting application of Theorem 4 is the case in which all states of
the Markov chain are absorbing. In this scenario, some state of network is realized and
neighborhoods will be generated independently conditional on that network state. This
could represent an aggregate shock to the network, such as a mass Internet disruption,
that affects all agents similarly. As long as the chain has finitely many states, asymmetric
information about this shock will not impede information diffusion.

This result describes an overlapping, but distinct set of networks that diffuse infor-
mation compared with those captured in Theorem 3. For instance, Theorem 3 fails to
encompass a network in which, with equal probability, either all agents observe their
immediate predecessor, or all agents observe a single neighbor drawn uniformly at ran-
dom. Likewise, Theorem 4 fails to capture the preferential attachment example. The
notion of a Markov decomposition offers some additional insight on how significant in-
formation asymmetries must be to disrupt information diffusion. Examples 2–4 in the
previous section are all sufficiently connected networks, featuring expanding subnet-
works, but the topologies cannot be represented through a Markov decomposition nor
do they feature low network distortion for any sequence of neighbor choice functions.
Some agents receive strongly conflicting information about the network structure in-
ducing vastly different posterior beliefs about this structure.

6. Conclusions

Studying more complex network structures that feature correlated neighborhoods adds
richness to our view of observational social learning. When we move beyond the con-
fines of networks with independently realized neighborhoods, we find striking new phe-
nomena that fail to appear in simpler models. Our weaker learning metric of informa-
tion diffusion highlights the severity of learning failures that can appear in such mod-
els. Asymmetric information about the network structure creates inefficiencies that are
more harmful than simple herding.

Distortion has emerged in our paper as an especially useful measure of the infor-
mation neighborhood realizations provide to the agents. When the act of observing
neighbors substantially alters our beliefs about their personal subnetworks, learning be-
comes markedly more difficult. Together with expanding subnetworks, low distortion is
a broadly applicable sufficient condition for information diffusion. We also demonstrate
that positive learning results are robust to aggregate network shocks and more generally
to Markovian network structures.

Our results also contribute to the discussion on appropriate metrics for social learn-
ing. The distinction between diffusion and aggregation provides finer detail on what
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social learning can achieve in different settings and connects prior results in the litera-
ture. Networks that always lead to the strongest learning results are rare, but common
generative models for social networks do reach our lower bar of diffusion. If no one is
well informed to begin with, then social learning has difficulty making any headway, but
when some individuals have strong signals, we should expect this information to spread
effectively. Importantly, by rendering metrics independently of the signal structure of
the model, we offer a clearer picture of the network topology’s effect on the learning
process.

Appendix

We begin with some preliminaries before providing proofs of the results in the paper in
the order that they appear. Subsequently, we analyze each of the examples that were pre-
sented, both failures and successes. The first lemma characterizes an agent’s decision in
equilibrium.

Lemma 1. Let σ be an equilibrium strategy profile and let In ∈ In be agent n’s information
set. Then the decision xn = σn(In) satisfies

xn =
{

1 if Pσ(θ = 1 | sn)+ Pσ(θ = 1 | B(n)�xk�k ∈ B(n)) > 1
0 if Pσ(θ = 1 | sn)+ Pσ(θ = 1 | B(n)�xk�k ∈ B(n)) < 1,

and xn ∈ {0�1} otherwise.

This lemma is Proposition 2 in Acemoglu et al. (2011).
We shall find ourselves working with the signal structure frequently. Generally, we

find working with the distributions of the private beliefs more convenient than work-
ing directly with the signal structure. The private belief distributions are given by
Gi(r) = P(p1 ≤ r | θ = i) for each i ∈ {0�1}. The private belief distributions and the sig-
nal structure provide equivalent representations of the agents’ private information. The
next lemma notes some important properties of the private belief distributions.

Lemma 2. The private belief distributions, G0 and G1, satisfy the following properties:

(a) For all r ∈ (0�1), dG0(r)/dG1 = (1 − r)/r.

(b) For all 0 < z < r < 1, G0(r) ≥ ((1 − r)/r)G1(r)+ ((r − z)/2)G1(z).

(c) For all 0 < r <w< 1, 1 −G1(r) ≥ (r/(1 − r))(1 −G0(r))+ ((w − r)/2)(1 −G0(w)).

(d) The term G0(r)/G1(r) is nonincreasing in r and is strictly larger than 1 for all r ∈
(β�β).

This is Lemma 1 in Acemoglu et al. (2011)

Proof of Theorem 1. This theorem is a direct consequence of Theorems 2 and 3. The
proof of this result is presented in the paragraph immediately following Theorem 3. �
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Proof of Proposition 1. We need only consider the probability that agent N makes
a correct decision. Since agent N has begun an information cascade, we have from
Lemma 1 that the social belief qN satisfies either qN > 1 − β or qN < 1 − β. The proba-
bility that agent N is correct can be expressed as

Pσ(xN = θ) = 1
2 [Pσ(cascade on 0 | θ = 0)+ Pσ(cascade on 1 | θ = 1)]

= 1
2 [Pσ(qN < 1 −β | θ = 0)+ Pσ(qN > 1 −β | θ = 1)]�

Since N has begun an information cascade, we have

Pσ(qN < 1 −β | θ = j) = 1 − Pσ(qN > 1 −β | θ = j) (1)

for j ∈ {0�1}. Further, the definition of qN and an application of Bayes’ rule give

Pσ(qN < 1 −β | θ = 0) ≥ β

1 −β
Pσ(qN < 1 −β | θ = 1) (2)

Pσ(qN > 1 −β | θ = 1) ≥ 1 −β

β
Pσ(qN < 1 −β | θ = 0)� (3)

We now consider the problem of minimizing Pσ(xN = θ) subject to the constraints
given by (1), (2), and (3). Let xi denote Pσ(qN > 1 − β | θ = i) and let xi denote

Pσ(qN < 1 − β | θ = i). The problem can then be written as minimizing x0 + x1 subject
to xi = 1 − xi, x0 ≥ (β/(1 − β))x1, and x1 ≥ ((1 − β)/β)x0. We can simplify the prob-
lem to two variables by substituting (1) into the inequality constraints, obtaining as new
constraints (β/(1 − β))(1 − x1) − x0 ≤ 0 and ((1 − β)/β)(1 − x0) − x1 ≤ 0. The Karush–
Kuhn–Tucker (KKT) conditions imply that both constraints are binding in an optimal
solution and, therefore, the solution is determined by a pair of linear equations. Solving
the resulting equations gives the minimum value of Pσ(xN = θ) as β∗, thus proving that
information diffuses. �

Proof of Theorem 2. Given an equilibrium σ , fix a realization of B(n), and define zn

as a decision that maximizes the conditional probability of making a correct decision
given B(n) = Bn and given the private signals of agent n and each agent in B̂(n)= B̂n:

zn ∈ arg max
y∈{0�1}

P(y�σ−n)(y = θ | B(n) = Bn� si = si� for i ∈ B̂n ∪ {n})�

We use si to denote a particular realization of the private signal si. Observe that for any
realization of B̂(n), we have B(m) ⊂ B̂(n) for all m ∈ B̂(n). Thus, given a realization of
the signals {si}i∈B̂n∪{n}, the decisions xi for i ∈ B̂n ∪ {n} are completely determined by the
equilibrium condition. Therefore,

Pσ(xn = θ | B(n) = Bn� si = si� for i ∈ B̂n ∪ {n})
≤ Pσ(zn = θ | B(n)= Bn� si = si� for i ∈ B̂n ∪ {n})�
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Integrating over all possible sets of signals {si}i∈B̂(n)∪{n}, we have

Pσ(xn = θ | B(n)= Bn)≤ Pσ(zn = θ | B(n) = Bn)

for any Bn. Since neighborhoods are realized independently from θ and the private sig-
nals, zn only depends on the signals of agents in B̂n ∪ {n}:

zn ∈ arg max
y∈{0�1}

Pσ(y = θ | si = si� for i ∈ B̂n ∪ {n})�

Since signals are identically distributed, this means Pσ(zn = θ | si = si� for i ∈ B̂n ∪ {n}) =
Pσ(z|B̂n|+1 = θ), where

zk ∈ arg max
y∈{0�1}

Pσ(y = θ | si = si� for i ∈ {1�2� � � � �k})�

Therefore, Pσ(xn = θ | B(n) = Bn) ≤ Pσ(z|B̂n|+1 = θ).
We now examine the probability that zk is incorrect. Consider a signal structure

where the probability of a partially informative signal is positive such that

Pσ(z1 = 1 | θ = 1)= 1 −G1

(
1
2

)
< 1 and Pσ(z1 = 0 | θ = 0)= G0

(
1
2

)
< 1�

Let Sσ denote the set of signals such that in equilibrium σ , x1 = 0 if s1 ∈ Sσ . We have
Pσ(s1 ∈ Sσ | θ = 1) = G1(

1
2) > 0. Since private signals are independent conditional on θ,

we have Pσ(si ∈ Sσ for all i ≤ k | θ = 1)= Pσ(s1 ∈ Sσ | θ = 1)k > 0.
Now suppose that si ∈ Sσ for each i ≤ k. Applying Bayes’ rule gives

Pσ(θ = 0 | si ∈ Sσ for all i ≤ k) =
[

1 + Pσ(si ∈ Sσ for all i ≤ k | θ = 1)

Pσ(si ∈ Sσ for all i ≤ k | θ = 0)

]−1

=
[

1 +
(
Pσ(s1 ∈ Sσ | θ = 1)

Pσ(s1 ∈ Sσ | θ = 0)

)k]
�

Another application of Bayes’ rule gives

Pσ(s1 ∈ Sσ | θ = 1) = Pσ(θ = 1 | s1 ∈ Sσ)Pσ(s1 ∈ Sσ)

Pσ(θ = 1)

Pσ(s1 ∈ Sσ | θ = 0) = Pσ(θ = 0 | s1 ∈ Sσ)Pσ(s1 ∈ Sσ)

Pσ(θ = 0)
�

Since P(θ = 0) = P(θ = 1)= 1
2 ,

Pσ(s1 ∈ Sσ | θ = 1)

Pσ(s1 ∈ Sσ | θ = 0)
= Pσ(θ = 1 | s1 ∈ Sσ)

Pσ(θ = 0 | s1 ∈ Sσ)

= 1

Pσ(θ = 0 | s1 ∈ Sσ)
− 1�
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For s1 ∈ Sσ , we have x1 = 0, so Pσ(θ = 0 | s1 ∈ Sσ) ≥ 1
2 . The function

Pσ(θ = 0 | si ∈ Sσ for all i ≤ k) =
[

1 +
(

1

Pσ(θ = 0 | s1 ∈ Sσ)
− 1

)k]−1

is nondecreasing in Pσ(θ = 0 | s1 ∈ Sσ) for any value in [ 1
2 �1], so Pσ(θ = 0 |

si ∈ Sσ for all i ≤ k) ≥ 1
2 . Thus, zk = 0 whenever si ∈ Sσ for each i ≤ k (we may take zk = 0

in cases of indifference). Similarly, zk = 1 whenever si /∈ Sσ for each i ≤ k. Therefore,

Pσ(zk �= θ) ≥ P(θ = 0)P(si /∈ Sσ� i ≤ k | θ = 0)+ P(θ = 1)P(si ∈ Sσ� i ≤ k | θ = 1)

= 1
2 [P(s1 /∈ Sσ | θ = 0)k + P(s1 ∈ Sσ | θ = 1)k]

= 1
2

[(
1 −G0

(
1
2

))k +G1

(
1
2

)k]
�

Now, suppose the network topology does not feature expanding subnetworks. Then
there exists some positive integer K, some ε > 0, and an infinite sequence of agents n

such that Q(|B̂(n)| <K)≥ ε. For these agents we have

Pσ(xn = θ) =
∑
Bn

Pσ(xn = θ | B(n) = Bn)Q(B(n) = Bn)

≤ 1 − ε+
∑

Bn||B̂n|<K

Pσ(xn = θ | B(n) = Bn)Q(B(n) = Bn)

≤ 1 − ε+ εPσ(zK = θ)

≤ 1 − ε+ ε
[
1 − 1

2

[(
1 −G0

(
1
2

))K +G1

(
1
2

)K]]
�

If this last expression is less than β∗, then information does not diffuse. We can easily
find signal structures for which this is true; for instance, information will not diffuse if
the signal structure exhibits unbounded private beliefs. Therefore, the network topology
fails to diffuse information. �

The improvement principle

The proofs of Theorems 3 and 4 center on an improvement principle, which is built over
several lemmas that collectively give us a lower bound on the improvement an agent
makes over one of her neighbors. We begin by characterizing the optimal decision using
information from only one neighbor. In the event that agent b is selected by agent n’s
neighbor choice function, let x̃n be a coarse version of agent n’s decision:

x̃n = arg max
y∈{0�1}

Pσ(y = θ | sn�B(n) ∈ 	n
b�xb)�

Note that Pσ(x̃n = θ | B(n) ∈ 	n
b) provides a lower bound on the probability that n makes

a correct decision given B(n) ∈ 	n
b. Further note that if |B(n)| = 1 whenever agent b is
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selected, then B(n) ∈ 	n
b is equivalent to B(n) = {b}, and x̃n = xn. Define the probabilities

Yσ
b = Pσ(xb = 1 | B(n) ∈ 	n

b�θ = 1)� Nσ
b = Pσ(xb = 0 | B(n) ∈ 	n

b�θ = 0)�

Further, define the decision thresholds

Lσ
b = 1 −Nσ

b

1 −Nσ
b +Yσ

b

� Uσ
b = Nσ

b

Nσ
b + 1 −Yσ

b

�

Observe that whenever Pσ(xb = θ | B(n) ∈ 	n
b) = 1

2(Y
σ
b +Nσ

b ) ≥ 1
2 , we have Lσ

b ≤ 1
2 ≤

Uσ
b . Our first lemma characterizes the decision x̃n when Pσ(xb = θ | B(n) ∈ 	n

b) ≥ 1
2 . Our

second shows that networks with Q(|B(n)| ≤ 1) = 1 for all n always satisfy this condition.

Lemma 3. Suppose Pσ(xb = θ | B(n) ∈ 	n
b) ≥ 1

2 . Then the decision x̃n satisfies

x̃n =
⎧⎨
⎩

0 if pn <Lσ
b

xb if pn ∈ (Lσ
b �U

σ
b )

1 if pn >Uσ
b .

Apply Bayes’ rule to determine Pσ(θ = 1 | xb = j) for each j ∈ {0�1}; the proof follows
immediately from Lemma 1.

Lemma 4. If Q(|B(n)| ≤ 1) = 1 for all n ≥ 1, then Pσ(xn = θ | B(n) = Bn) ≥ 1
2 for any real-

ization Bn that occurs with positive probability. It follows that Pσ(xb = θ | B(n) ∈ 	n
b) ≥ 1

2
for any b and n.

Proof. Proceed by induction. The first agent has an empty neighborhood with proba-
bility 1, so the equilibrium condition guarantees Pσ(x1 = θ | B(1) = B1) = Pσ(x1 = θ) ≥
1
2 . Suppose that Pσ(xn = θ | B(n) = Bn) ≥ 1

2 for all n ≤ k and all Bn. Given a realization
B(k + 1) = Bk+1, if B(xk+1) is empty, then agent k + 1 is just as likely to be correct as
the first agent, and we immediately get the desired conclusion. If B(k + 1) = {b}, take
γk+1({b}) = b. By Lemma 3,

Pσ(xk+1 = θ | B(k+ 1) = Bk+1)= Pσ(pn < Lσ
b )Pσ(θ = 0 | pn < Lσ

b )

+ Pσ(pn >Uσ
b )Pσ(θ = 1 | pn >Uσ

b )

+ Pσ(pn ∈ [Lσ
b �U

σ
b ])Pσ(θ = xb | B(k+ 1)= Bk+1)

≥ 1
2

[
Pσ(pn < Lσ

b )+ Pσ(pn >Uσ
b )+ Pσ(pn ∈ [Lσ

b �U
σ
b ])]

= 1
2 �

where we have assumed that agent k+1 copies in the event of indifference; this assump-
tion does not affect our result. �

Using Lemma 3, a straightforward calculation shows that Pσ(x̃n = θ | B(n) ∈ 	n
b) is

equal to

1
2

[
G0(L

σ
b )+ (G0(U

σ
b )−G0(L

σ
b ))N

σ
b + 1 −G1(U

σ
b )+ (G1(U

σ
b )−G1(L

σ
b ))Y

σ
b

]
� (4)
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Some additional effort yields a lower bound on the improvement over xb.

Lemma 5. Suppose Pσ(xb = θ | B(n) ∈ 	n
b) ≥ 1

2 . Then

Pσ(x̃n = θ | B(n) ∈ 	n
b) ≥ Pσ(xb = θ | B(n) ∈ 	n

b)+ (1 −Nσ
b )(L

σ
b −β)

8
G1

(
Lσ
b +β

2

)

+ (1 −Yσ
b )(β−Uσ

b )

8

[
1 −G0

(
β+Uσ

b

2

)]
�

Proof. We use properties of the belief distributions given in Lemma 2. In Lemma 2(b),
take r =Lσ

b and z = min(Lσ
b � (L

σ
b +β)/2) to obtain

(1 −Nσ
b )G0(L

σ
b ) ≥ Yσ

b G1(L
σ
b )+ (1 −Nσ

b )(L
σ
b −β)

4
G1

(
Lσ
b +β

2

)
�

Even if Lσ
b < β, the second term on the right is zero, so the inequality still holds. Simi-

larly, using Lemma 2(c) with r =Uσ
b and w = max(Uσ

b � (U
σ
b +β)/2) yields

(1 −Yσ
b )(1 −G1(U

σ
b )) ≥Nσ

b (1 −G0(U
σ
b ))+ (1 −Yσ

b )(β−Uσ
b )

4

[
1 −G0

(
Uσ
b +β

2

)]
�

Substitute these two results into (4) and note that Yσ
b +Nσ

b = 2Pσ(xb = θ | B(n) ∈ 	n
b) to

complete the proof. �

The next lemma shows the improvement is uniformly bounded away from zero
whenever Pσ(xb = θ | B(n) ∈ 	n

b) < β∗. When Pσ(xb = θ | B(n) ∈ 	n
b) ≥ β∗, Lemma 5 still

guarantees that the improvement is nonnegative.

Lemma 6. Let α denote Pσ(xb = θ | B(n) ∈ 	n
b). Suppose that 1

2 ≤ α < β∗ and let � =
β∗ − α. Further, define c = 1 − 2β, c = 2β− 1, and c∗ = 2β∗ − 1. Then

Pσ(x̃n = θ | B(n) ∈ 	n
b) ≥ α+ �2

8c∗ min
{
c2G1

(
β+ c2�

2c∗

)
� c2

[
1 −G0

(
β− c2�

2c∗

)]}
�

Proof. One of the following two inequalities must hold:

Nσ
b ≤ 1 −β− 2αβ

1 − 2β
−� or Yσ

b ≤ β− 2α(1 −β)

2β− 1
−�� (5)

Suppose not. We then have

α = 1
2
(Nσ

b +Yσ
b ) >

1
2

(1 −β− 2αβ

1 − 2β
+ β− 2α(1 −β)

2β− 1

)
−��

which is equivalent to

β∗ > 1
2

(1 −β− 2αβ

1 − 2β
+ β− 2α(1 −β)

2β− 1

)
�

Rearranging and simplifying gives α> β∗, contradicting our assumptions.
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Suppose the first inequality in (5) holds. The definition of Lσ
b , along with the rela-

tionship 2α=Nσ
b +Yσ

b , yields

Lσ
b = 1 −Nσ

b

1 − 2Nσ
b + 2α

�

Taking the first derivative with respect to Nσ
b and recalling that α ≥ 1

2 , we see that Lσ
b is

a nonincreasing function of Nσ
b . Therefore, the minimum occurs at the corner and

Lσ
b ≥ 2α− 1

2β∗ − 1 − 4β�

(
β+ (1 − 2β)�

2α− 1

)
�

It follows that 1 − Nσ
b ≥ � and Lσ

b − β ≥ (1 − 2β)2�/(2β∗ − 1) = (c2�)/c∗. Substituting
gives

(1 −Nσ
b )(L

σ
b −β)

8
G1

(
Lσ
b +β

2

)
≥ (c�)2

8c∗ G1

(
β+ c2�

2c∗

)
�

Similarly, if the second inequality in (5) holds, then 1 − Yσ
b ≥ �, β − Uσ

b ≥ (c2�)/c∗,
and

(1 −Yσ
b )(β−Uσ

b )

8

[
1 −G0

(
β+Uσ

b

2

)]
≥ (c�)2

8c∗

[
1 −G0

(
β− c2�

2c∗

)]
�

Substituting these inequalities into Lemma 5 completes the proof. �

The last two lemmas describe the improvement that a single agent can make over her
neighbor by employing a heuristic that discards the information from all other neigh-
bors. To study the limiting behavior of these improvements, we define the function

Z(α) = α+ �2

8c∗ min
{
c2G1

(
β+ c2�

2c∗

)
� c2

[
1 −G0

(
β− c2�

2c∗

)]}

for α ∈ [1/2�β∗] and Z(α)= α for α ∈ (β∗�1]. By Lemmas 5 and 6, we have

Pσ(x̃n = θ | B(n) ∈ 	n
b)≥ Z

(
Pσ(xb = θ | B(n) ∈ 	n

b)
)
�

We note some important properties of the function Z in the next lemma.

Lemma 7. The function Z has the following properties:

(a) The function Z is left-continuous and has no upward jumps:

Z(α) = lim
r↑αZ(r) ≥ lim

r↓αZ(r)�

(b) For any α ∈ [1/2�1], Z(α) ≥ α.

(c) For any α ∈ [1/2�β∗), Z(α) > α.
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Proof. The G0 and G1 are cumulative distribution functions, so they are left-
continuous with no downward jumps. Part (a) follows. For parts (b) and (c), observe
that the improvement term in the definition of Z(α) is nonnegative and it is strictly
positive whenever α< β∗. �

We further define a related function Z(α) that is continuous and monotonic while
maintaining the same improvement properties as Z(α):

Z(α) = 1
2

(
α+ sup

r∈[1/2�α]
Z(r)

)
�

Lemma 8. The function Z(α) has the following properties:

(a) For any α ∈ [1/2�1], Z(α) ≥ α.

(b) For any α ∈ [1/2�β∗), Z(α) > α.

(c) The function Z is increasing and continuous.

Proof. Parts (a) and (b) are immediate consequences of Lemma 7. Note that
supr∈[1/2�α] Z(r) is nondecreasing and α is an increasing function. Thus, the average
of these two is an increasing function, establishing the first part of (c).

We now show that Z is continuous on [ 1
2 �1]. For α ∈ (β∗�1], this is obvious since Z(α)

is constant on that interval. For α ∈ [ 1
2 �β

∗), we argue by contradiction. Suppose Z(α)

is discontinuous at α′ ∈ [ 1
2 �β

∗); this implies supr∈[1/2�α] Z(r) is discontinuous at α = α′.
Since this is a nondecreasing function, we have

lim
α↓α′ sup

r∈[1/2�α]
Z(r) > sup

r∈[1/2�α′]
Z(r)�

However, this contradicts property (a) of Lemma 7: Z has no upward jumps. It remains
to show that Z is continuous at β∗. This follows from property (b) of Lemma 7 once we
note that the improvement term in the definition of Z is less than β∗ − α. �

Lemma 9. Let σ ∈ � be an equilibrium, and suppose that Pσ(xb = θ | B(n) ∈ 	n
b) ≥ 1

2 .
Then Pσ(x̃n = θ | B(n) ∈ 	n

b) ≥ Z(Pσ(xb = θ | B(n) ∈ 	n
b)).

Proof. Let α denote Pσ(xb = θ | B(n) ∈ 	n
b). If Z(α) = α, the result follows from

Lemma 5. If Z(α) > α, then Z(α) ≤ supr∈[1/2�α] Z(r), and there exists α ∈ [ 1
2 �α] such that

Z(α) ≥ Z(α). We now show that Pσ(x̃n = θ | B(n) ∈ 	n
b) ≥Z(α).

Agent n can render her decision even coarser by choosing not to observe the action
of agent b with some probability. Suppose that instead of considering b’s action directly,
agent n bases her decision on the coarse observation x̃b generated as

x̃b =
⎧⎨
⎩
xb with probability (2α− 1)/(2α− 1)
0 with probability (α− α)/(2α− 1)
1 with probability (α− α)/(2α− 1),
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with the realizations of x̃b independent of the rest of n’s information set. Note that
Pσ(x̃b = θ | B(n) ∈ 	n

b) = α. Lemma 6 implies that the decision based on this coarse ob-
servation of b is correct with probability at least Z(α), and the desired result follows. �

Proof of Theorem 3. We proceed by constructing sequences {αk} and {φk} such
that Pσ(xn = θ) ≥ φk for all n ≥ αk. Define the sequence φk by φ1 = 1

2 and φk+1 =
(φk + Z(φk))/2. By the hypothesis of the theorem, for any positive integer K and any
ε > 0, we can find a positive integer N(K�ε) and a sequence of neighbor choice functions
{γk}k∈N such that the following condition holds: For all n ≥N(K�ε), the probability that
either γn(B(n)) <K or γn(B(n)) = b such that δσb (B(n) ∈ 	n

b) ≥ ε is less than ε. Define the
sequence

εk = min
[

1
2(1 +Z(φk)−

√
1 + 2φk +Z(φk)2)�Pσ(x1 = θ)− 1

2

]
�

Under the assumption that dG0/dG1 is not uniformly equal to 1, some of the sig-
nals are informative and Pσ(x1 = θ) > 1

2 , so εk > 0 for all k. Now let α1 = 1 and define
the rest of the sequence by αk+1 = N(αk�εk). Proceed by induction on k. Since agents
can always do as well as the first agent by ignoring their social information, we have
Pσ(xn = θ)≥ Pσ(x1 = θ) > 1

2 for all n, establishing the result for k = 1.
Assume the result for some arbitrary k and consider n ≥ αk+1. First note that for any

Q-measurable event E, we have the bound

|Pσ(xn = θ | E)− Pσ(xn = θ)| =
∣∣∣∣
∑
Bn

Pσ(xn = θ | B(n) = Bn�E)Q(B(n) = Bn | E)

− Pσ(xn = θ | B(n) = Bn)Q(B(n) = Bn)

∣∣∣∣
=

∣∣∣∣
∑
Bn

Pσ(xn = θ | B(n) = Bn)

· [Q(B(n) = Bn | E)−Q(B(n) = Bn)
]∣∣∣∣

≤
∑
Bn

∣∣Q(B(n) = Bn | E)−Q(B(n) = Bn)
∣∣ = δσn (E)�

where the second equality follows because, conditional on B(n) = Bn, the probability
that agent n makes a correct decision is independent of any later neighborhood realiza-
tions. Using Lemma 9, we have

Pσ(xn = θ) =
n−1∑
b=0

Pσ(xn = θ | B(n) ∈ 	n
b)Q(B(n) ∈ 	n

b)

≥
n−1∑
b=0

Pσ(x̃n = θ | B(n) ∈ 	n
b)Q(B(n) ∈ 	n

b)
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≥
n−1∑
b=0

Z
(
Pσ(xb = θ | B(n) ∈ 	n

b)
)
Q(B(n) ∈ 	n

b)

≥
∑

b:b≥αk
δσb (B(n)∈	nb)<ε

Z
(
Pσ(xb = θ | B(n) ∈ 	n

b)
)
Q(B(n) ∈ 	n

b)

≥
∑

b:b≥αk
δσb (B(n)∈	nb)<ε

Z(φk − εk)Q(B(n) ∈ 	n
b)

≥ Z(φk − εk)(1 − εk)≥φk+1�

From here it remains only to show that limk→∞ φk ≥ β∗. The term {φk}k∈N is a
bounded, nondecreasing sequence, so the sequence converges to a limit, φ∗. Now note

2φ∗ = 2 lim
k→∞

φk = lim
k→∞

(φk +Z(φk)) =φ∗ +Z(φ∗)

since Z is continuous. Therefore, φ∗ is a fixed point of the function Z , i.e., φ∗ = Z(φ∗).
By Lemma 8(b), this means that φ∗ ≥ β∗, completing the proof. �

Proof of Proposition 2. Suppose Q(m ∈ B(n)) = 1 and define γn(B(n)) = m for all
realizations of B(n). Then the distortion δσm(B(n) ∈ 	n

m) is zero. We can form a cho-
sen neighbor topology with low distortion and expanding subnetworks as follows. For
every n, set γn(B(n)) equal to the neighbor with the longest deterministic information
path. �

Proof of Theorem 4. The proof of this theorem follows a similar inductive argument
as in Theorem 3. Define neighbor choice functions that always select the neighbor of
highest index. Since C is finite, by the hypothesis of the theorem, for any positive integer
K and any ε > 0, we can find N(K�ε) such that Q(i)

n (γn(B(n)) < K) < ε for all i ∈ C and
all n ≥ N(K�ε). Define the sequences {αk} and {φk} recursively. Let α1 = 1 and φ1 = 1

2 ;
for k≥ 1, we have

αk+1 =N

(
αk�

1
2

[
1 − φk

Z(φk)

])
� φk+1 = φk +Z(φk)

2
�

We apply the improvement principle to the minimal value of Pσ(xn = θ | Zn = i) over
all possible realizations of Zn. Suppose mini∈C Pσ(xn = θ | Zn = i) ≥ φk for all n ≥ αk.
Since Z is increasing, we have the bound

Pσ(xn = θ | Zn = i) =
n−1∑
b=0

Pσ(xn = θ | Zn = i�B(n) ∈ 	n
b)Q

(i)
n (B(n) ∈ 	n

b)

≥
n−1∑
b=0

Pσ(x̃n = θ | Zn = i�B(n) ∈ 	n
b)Q

(i)
n (B(n) ∈ 	n

b)



840 Lobel and Sadler Theoretical Economics 10 (2015)

≥
n−1∑
b=0

Z
(

min
j∈C

Pσ(xb = θ |Zb = j)
)
Q(i)

n (B(n) ∈ 	n
b)

≥
∑
b≥αk

Z
(

min
j∈C

Pσ(xb = θ | Zb = j)
)
Q(i)

n (B(n) ∈ 	n
b)

≥ Z(φk)
1
2

[
1 − φk

Z(φk)

]
≥ φk+1�

Since this is true for each i ∈ C, we have mini∈C Pσ(xn = θ | Zn = i) ≥ φk+1. Since
lim infk→∞ φk ≥ β∗, the proof is complete. �

We now turn to the analysis of the examples presented in the body of the paper.

Example 2 (Failure due to unidentifiable paths). An agent n ∈ Si with i ≥ 1 has an empty
neighborhood with probability 1/2i, and this probability approaches zero as n grows. For
all other agents n ∈ Si, there is an information path of length i+1 terminating on agent 1.
These agents observe two neighbors: one with an empty neighborhood and one with an
information path of length i. By construction, each neighbor is equally likely to have an
empty neighborhood. If the two neighbors choose the same action, no trouble arises: n
knows the decision of her well informed neighbor. If the two neighbors choose different
actions, n has a problem.

Since mi−1 and ei−1 are indistinguishable, agent n’s social belief given xmi−1 �= xei−1 is
the same regardless of who chooses 0 and who chooses 1:

q∗
n ≡ Pσ(θ = 1 | B(n)�xmi−1 = 0�xei−1 = 1) = Pσ(θ = 1 | B(n)�xmi−1 = 1�xei−1 = 0)�

We can bound the probability of agent n making an error as

Pσ(xn �= θ)= 1
2 [Pσ(xn = 1 | θ = 0)+ Pσ(xn = 0 | θ = 1)]

≥ 1
2 [Pσ(xn = 1 | xmi−1 �= xei−1� θ = 0)Pσ(xmi−1 �= xei−1 | θ = 0)

+ Pσ(xn = 0 | xmi−1 �= xei−1� θ = 1)Pσ(xmi−1 �= xei−1 | θ = 1)]
= 1

2

[
(1 −G0(q

∗
n))Pσ(xmi−1 �= xei−1 | θ = 0)+G1(q

∗
n)Pσ(xmi−1 �= xei−1 | θ = 1)

]
�

Since neither mi−1 nor ei−1 is in the other’s personal subnetwork, their actions are inde-
pendent conditional on θ. To simplify notation, define p(xi)a�b = P(xi = a | B(n)�θ = b).
We have

Pσ(xmi−1 �= xei−1 | θ = 0) = p(xmi−1)0�0p(xei−1)1�0 +p(xmi−1)1�0p(xei−1)0�0

= p(xmi−1)0�0

[
1 −G0

(
1
2

)]
+p(xmi−1)1�0G0

(
1
2

)

≥ min
[
1 −G0

(
1
2

)
�G0

(
1
2

)]
≡ p∗

0�

where the inequality follows since p(xmi−1)0�0 + p(xmi−1)1�0 = 1. A similar calculation
gives

Pσ(xmi−1 �= xei−1 | θ = 1)≥ min
[
G1

(
1
2

)
�1 −G1

(
1
2

)]
≡ p∗

1�



Theoretical Economics 10 (2015) Information diffusion in networks 841

Define p∗ = min(p∗
0�p

∗
1). Substituting into our previous bound for Pσ(xn �= θ) gives

Pσ(xn �= θ)≥ p∗

2
[1 −G0(q

∗
n)+G1(q

∗
n)]�

Now define g by g = minq∈[0�1]{1 − G0(q) + G1(q)}. Clearly, g > 0 and Pσ(xn �= θ) ≥
(p∗g)/2. The quantity on the right hand side is strictly positive and depends solely on
the signal structure. If (p∗g)/2 ≥ 1 −β∗, then information does not diffuse. Since this is
true for any signal structure with unbounded private beliefs, the network topology does
not diffuse information. ♦

Example 3 (Failure due to overconfidence). Our proof is divided into three parts. In the
first part, we establish a variation on the improvement principle derived in the proof of
Theorem 3. The second part uses the improvement principle to provide a lower bound
on the level of confidence agent n has in agent n−1 whenever B(n) = {n−1} and, hence,
a lower bound on the probability that n copies n−1. The final part of our proof combines
these results to show that the network topology fails to diffuse information.

Part 1: The improvement principle
We extend the result of Lemma 6 to give a lower bound on the probability that n

makes a correct choice conditioned on any realization of a network with Q(|B(n)| ≤ 1) =
1 for all n. Let Bn denote a realization of the first n neighborhoods B(n) and suppose that
B(n) = {b} in this realization. Further, let α, c, c, c∗, and � be defined as in the statement
of Lemma 6. We show that if 1

2 ≤ α< β∗ and α′ = Pσ(xb = θ | B(n) = Bn), then

Pσ(xn = θ | B(n) = Bn) ≥ min(α�α′)

+ �2

8c∗ min
{
c2G1

(
β+ c2�

2c∗

)
� c2

[
1 −G0

(
β− c2�

2c∗

)]}
�

By Lemma 6, we have

Pσ(xn = θ | B(n) = {b}) ≥ α+ �2

8c∗ min
{
c2G1

(
β+ c2�

2c∗

)
� c2

[
1 −G0

(
β− c2�

2c∗

)]}
�

The probability Pσ(xn = θ | B(n) = {b}) can be split into two components:

Pσ(xn = θ | B(n) = {b})
= Pσ(xn = θ | B(n) = {b}�pn ∈ (Lσ

b �U
σ
b ))Pσ(pn ∈ (Lσ

b �U
σ
b ))

+ Pσ(xn = θ | B(n) = {b}�pn /∈ (Lσ
b �U

σ
b ))Pσ(pn /∈ (Lσ

b �U
σ
b ))

= αPσ(pn ∈ (Lσ
b �U

σ
b ))

+ Pσ(xn = θ | B(n) = {b}�pn /∈ (Lσ
b �U

σ
b ))Pσ(pn /∈ (Lσ

b �U
σ
b ))�

Similarly,

Pσ(xn = θ | B(n) = Bn))

= Pσ(xn = θ | B(n) = Bn�pn ∈ (Lσ
b �U

σ
b ))Pσ(pn ∈ (Lσ

b �U
σ
b ))
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+ Pσ(xn = θ | B(n) = Bn�pn /∈ (Lσ
b �U

σ
b ))Pσ(pn /∈ (Lσ

b �U
σ
b ))

= α′Pσ(pn ∈ (Lσ
b �U

σ
b ))

+ Pσ(xn = θ | B(n) = {b}�pn /∈ (Lσ
b �U

σ
b ))Pσ(pn /∈ (Lσ

b �U
σ
b ))�

The second equality above follows because private signals are independent of the net-
work realization, n relies on her private signal whenever pn /∈ (Lσ

b �U
σ
b ), and the interval

(Lσ
b �U

σ
b ) is deterministic given B(n) = {b}. Consider the difference between the last two

expressions and note that Pσ(pn ∈ (Lσ
b �U

σ
b )) ≤ 1; our claim follows immediately.

Part 2: Level of confidence
In this part of our proof, we focus on the network topology of the example and es-

tablish a lower bound on the probability, Pσ(xn = θ | B(n + 1) = {n}) for n ∈ Si. Let B∗
n

denote the event that B(k+ 1)= {k} for 1 ≤ k< n. Observe

Pσ(xn = θ | B(n+ 1)= {n}) ≥ Pσ(xn = θ | B∗
n)Q(B∗

n | B(n+ 1) = {n})
≥ Pσ(xn = θ | B∗

n)(1 − εi)

≥ Pσ(xn = θ | B∗
n)− εi�

where

εi = 1 − min
n∈Si

Q(B∗
n | B(n+ 1)= {n}) = i

2i

for i ≥ 1. Let αn = Pσ(xn = θ | B∗
n). The rest of this part centers on bounding αn;

Pσ(xn = θ | B(n + 1) = {n}) ≥ αn − εi then provides a bound on the quantity of interest.
By Part 1 and a straightforward adaptation of the coarsening argument in Lemma 9,

αn+1 ≥ Z(αn − εi)� (6)

From this point forward, we restrict our attention to a particular class of signal struc-
tures that will be shown to preclude information aggregation in this network. We assume
the signal structure exhibits unbounded private beliefs and polynomial shape.

Definition 12. The private belief distributions G0 and G1 have polynomial shape of
degree K if there exist constants C ′ > 0 and C ′′ > 0 such that

G1(1 − α) ≥ C ′(1 − α)K� 1 −G0(α) ≥ C ′(1 − α)K

G1(α) ≥ 1 −C ′′(1 − α)K� 1 −G0(1 − α) ≥ 1 −C ′′(1 − α)K

for all α ∈ [ 1
2 �1].

For a signal structure with unbounded beliefs and polynomial shape of degree K,
the function Z simplifies to

Z(α) = α+ (1 − α)2

8
min

{
G1

(
1 − α

2

)
�1 −G0

(
1 + α

2

)}
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and there exists a constant C > 0 such that Z(α)− α ≥ C(1 − α)K+2. From (6), we have

αn+1 ≥ αn − εi +C(1 − (αn − εi))
K+2� (7)

Without loss of generality, we assume that (7) is increasing in αn. If not, we can replace
C by C∗ < C, with C∗ < 2K+1/(K + 2), and the desired condition will hold. Now, define
the sequence {ϕk}k∈N by ϕ1 = 1

2 and

ϕk+1 = max
(

1
2 �ϕk − εi +C(1 − (ϕk − εi))

K+2
)

for all k ∈ Si, i ≥ 1. We now establish a lower bound on αn when n ∈ Si, thereby providing
a lower bound on Pσ(xn = θ | B(n + 1) = {n}). First, assuming a signal structure with
polynomial shape, we show that αn ≥ ϕn for all n.

Proceed inductively. The case n = 1 is trivially satisfied since αn ≥ 1
2 for all n by

Lemma 4. Suppose the inequality holds for an arbitrary n. Then

αn+1 ≥ αn − εi +C(1 − (αn − εi))
K+2

≥ ϕn − εi +C(1 − (ϕn − εi))
K+2�

Therefore, αn+1 ≥ ϕn+1 as desired.
We further show that under the same assumptions, for all i > 1 and n ∈ Si, we have

C(1 − (αn − εi))
K+2 ≤ 2εi−1�

It follows that

αn ≥ 1 −
(

2εi−1

C

)1/(K+2)

�

We prove the result for the sequence {ϕn}, and our knowledge that αn ≥ ϕn completes
the proof. To simplify notation, let f (α) denote C(1 − α)K+2. We begin by noting a few
important properties of the function f :

(a) The term f (α) is differentiable and strictly decreasing for α ∈ [ 1
2 �1].

(b) The term α+ f (α) is increasing due to the constraint placed on C.

(b) As a result of (b), f ′(α) >−1.

Proceed by induction on i; the case i = 2 is trivially satisfied as 2ε1 = 1. Assuming the
result for an arbitrary i, we proceed in two steps to demonstrate the result for i+ 1:

Claim 1. If f (ϕ2i+1 − εi+1) ≤ 2εi, then f (ϕn − εi+1)≤ 2εi for all n ∈ Si+1.

Claim 2. If f (ϕ2i − εi) ≤ 2εi−1, then f (ϕ2i+1 − εi+1) ≤ 2εi, completing the inductive step.

For Claim 1, take n ∈ Si+1 and suppose f (ϕn − εi+1) ≤ 2εi. We show that
f (ϕn+1 − εi+1)≤ 2εi. Consider two cases.
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Case 1: f (ϕn − εi+1) ≥ εi+1. In this case, ϕn+1 ≥ ϕk. f (α− εi+1) is decreasing in α, so
the result follows.

Case 2: f (ϕn − εi+1) < εi+1. This quantity is never less than zero, so ϕn+1 ≥ ϕn − εi+1.
Using property (c),

f (ϕn+1 − εi+1)≤ f (ϕn − 2εi+1) ≤ f (ϕn − εi+1)+ εi+1 < 2εi+1 < 2εi�

proving our first claim.

We now prove Claim 2. For any n ∈ Si, the argument from Claim 1 above shows that
if

f (ϕn − εi) ≤ 2εi� then f (ϕn+1 − εi) ≤ 2εi�

Therefore, if f (ϕ2i+1 − εi+1) > 2εi, we have f (ϕn − εi) > 2εi for all n ∈ Si. However,
this implies that ϕn+1 ≥ ϕn + εi for all n ∈ Si. Since εi ≥ 1/2i and ϕ2i ≥ 1

2 , this would
imply ϕ2i+1 > 1, which is not possible. Thus, f (ϕ2i+1 − εi) ≤ 2εi, completing the proof.

In light of this result, we now have the following bound for n ∈ Si:

Pσ(xn = θ | B(n+ 1)= {n}) ≥ 1 −
(

2εi−1

C

)1/(K+2)

− εi� (8)

Part 3: Failure to diffuse
Suppose B(n + 1) = {n} for some n ∈ Si. By Lemma 3, agent n + 1 chooses the same

action as agent n if either xn = 0 and pn+1 < Uσ
n or xn = 1 and pn+1 > Lσ

n . Therefore,
given some realization B(n+ 1)= Bn+1, with B(n+ 1) = {n}, then

Pσ(xn+1 �= θ | B(n+ 1) = Bn+1)

= 1
2

[
Pσ(xn+1 = 0 | B(n+ 1)= Bn+1� θ = 1)

+ Pσ(xn+1 = 1 | B(n+ 1) = Bn+1� θ = 0)
]

≥ 1
2

[
Pσ(xn = 1 | B(n+ 1) = Bn+1� θ = 0)(1 −G0(L

σ
n ))

+ Pσ(xn = 0 | B(n+ 1) = Bn+1� θ = 1)G1(U
σ
n )

]
≥ Pσ(xn �= θ | B(n+ 1) = Bn+1)min

[
(1 −G0(L

σ
n ))�G1(U

σ
n )

]
�

Let Pσ
n = min[(1 − G0(L

σ
n ))�G1(U

σ
n )]. Further, let α = Pσ(xn = θ | B(n + 1) = {n}), and

rewrite Lσ
n and 1 −Uσ

n as

Lσ
n = 1 −Nσ

n

1 − 2Nσ
n + 2α

� 1 −Uσ
n = 1 −Yσ

n

2α+ 1 − 2Yσ
n

�

Recall that these are decreasing in Nσ
n and Yσ

n , respectively. Since Yσ
n and Nσ

n are both
between 0 and 1, we have Yσ

n �Nσ
n ≥ 2α− 1, giving

Lσ
n ≤ 2 − 2α

3 − 2α
≤ 2 − 2α�
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and similarly, Uσ
n ≥ 2α − 1. Thus, using the assumption that the signal structure has

polynomial shape of degree K,

Pσ
n ≥ min[1 −G0(2 − 2α)�G1(2α− 1)] ≥ 1 −C ′(1 − α)K (9)

for some constant C ′.
Recall that with probability 1

2 , we have B(k + 1) = {k} for all k ≥ 1. If this happens,
the network has realized the “good” regime, and otherwise, the network has realized the
“bad” regime. If the network does not realize the good regime, then in Si, there exists an
agent mi, whose neighborhood is empty. Moreover, there is a chain of agents, starting
on mi + 1 and terminating on mi + i, who each observe their immediate predecessor.
Using Part 2, we have

Pσ(xmi+i �= θ | bad regime) ≥ Pσ(xmi �= θ | bad regime)
mi+i−1∏
k=mi

Pσ
k

≥ Pσ(x1 �= θ)

[
1 −C ′

(
εi +

(
2εi−1

C

)1/(K+2))K]i
�

where the second inequality follows from (8) and (9). Since εi decays exponentially, the
second term approaches 1 as n approaches infinity. For large i, the probability that agent
mi + i makes a correct decision is bounded away from 1 and, in fact, is almost the same
as the probability that the first agent makes a correct decision. Therefore, since the ma-
jority of agents in Si+1 observe only agent mi+ i, these agents are correct with probability
bounded away from 1. For an unbounded signal structure with polynomial shape, we
plainly see that information does not diffuse. We can easily construct such signal struc-
tures; for instance, the private belief distributions given by G0(r)= 2r− r2 and G1(r) = r2

satisfy these properties. ♦

Example 4 (Failure due to correlated actions). We say that a signal structure is sym-
metric if G0(r) = 1 −G1(1 − r) for all r ∈ [0�1] and G1(G0(

1
2)) = G0(G1(

1
2)) = 1

2 . Suppose
the signal structure is symmetric. Let p(xm)a�b denote Pσ(xm = a | B(m)�θ = b), and
suppose that θ = 1 and x1 = 0. Then for m ∈ Fn for any n, we have

p(xm)1�1 = Pσ(pm + qm > 1 | θ = 1) = Pσ

(
pm + p(x1)0�1

p(x1)0�1 +p(x1)0�0
> 1

∣∣∣ θ = 1
)

= Pσ

(
pm + G1

( 1
2

)
G1

( 1
2

) +G0
( 1

2

) > 1
∣∣∣ θ = 1

)

= Pσ

(
pm > 1 −G1

(
1
2

) ∣∣ θ = 1
)

= 1 −G1

(
1 −G1

(
1
2

))
= 1

2 �

where the last three equalities follow from the symmetry of the signal structure. A similar
calculation shows that if θ = 0 and x1 = 1, then p(xm)0�0 = p(xm)1�0 = 1

2 . Thus, if x1 �= θ,
all agents m ∈ Fn are equally likely to choose xm = 0 or xm = 1, regardless of the true
state. Furthermore, Pσ(x1 = 0 | θ = 1) =G1(

1
2) = 1 −G0(

1
2) = Pσ(x1 = 1 | θ = 0)≡ p.
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Now, since the agents in Fn all have exactly the same social information, they are
interchangeable from the perspective of an agent observing Fn; conditional on θ and x1,
the decisions xm for m ∈ Fn are independent and identically distributed. Thus, the social
belief of an agent n with B(n) = Fn depends on the number of members of Fn who have
chosen action 1. Let Pk

i�j denote the probability that k members of Fn choose action 1
conditional on θ = i and x1 = j, and let η denote the number of members in Fn who
choose action 1. We calculate

qn = P
η
1�0p+ P

η
1�1(1 −p)

P
η
1�0p+ P

η
1�1(1 −p)+ P

η
0�1p+ P

η
0�0(1 −p)

�

Since agents in Fn are equally likely to be right or wrong when x1 �= θ, we have P
η
1�0 =

P
η
0�1 for any η. If x1 = θ, then each agent m ∈ Fn makes a correct decision with probability

greater than 1
2 . This, together with the symmetry of the signal structure, gives Pη

1�1 ≥ P
η
0�0

whenever η ≥ |Fn|/2 and P
η
1�1 ≤ P

η
0�0 whenever η ≤ |Fn|/2. Therefore, if η ≥ |Fn|/2, then

qn ≥ 1
2 , and if η≤ |Fn|/2, then qn ≤ 1

2 .
Suppose θ = 0 and x1 = 1. We have Pσ(η ≥ |Fn|/2 | θ = 0�x1 = 1) ≥ 1

2 . For any n with
B(n) = Fn,

Pσ(xn = 0 | θ = 0�x1 = 1�B(n) = Fn) ≤ 1 − Pσ

(
η≥ |Fn|

2
�pn >

1
2

∣∣∣ θ = 0�x1 = 1
)

≤ 1 − 1
2

(
1 −G0

(
1
2

))
�

Similarly, Pσ(xn = 1 | θ = 1�x1 = 0�B(n) = Fn) ≤ 1 − (G1(
1
2))/2. Combining these results

with the probability that the first agent errs gives us

Pσ(xn �= θ | B(n) = Fn) ≥ 1
4p

[
1 −G0

(
1
2

)
+G1

(
1
2

)]
�

As n approaches infinity, the probability that B(n) = Fn approaches 1. All that re-
mains to complete the proof is to establish the existence of symmetric signal structures
for which Pσ(xn �= θ | B(n) = Fn) > 1 −β∗. Taking G0(r) = 2r− r2 and G1(r) = r2 provides
one example. ♦

Example 5 (Learning with preferential attachment). We show that this network satis-
fies the hypotheses of Theorem 3. We first show that δm(B(n) = {m}) = 0 for all m < n.
Proving that this network features expanding subnetworks then establishes the result.

Suppose Bm is a realization of B(m). We proceed by induction to show that

Q(B(n) = {m} | B(m) = Bm) =Q(B(n) = {m})

for n >m. Once we establish this, a simple application of Bayes’ theorem gives

Q(B(m) = Bm) =Q(B(m) = Bm | B(n) = {m})�

which implies δ̂m(B(n) = {m}) = 0.
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We will actually employ a slightly stronger inductive hypothesis: we show that for
any n > m, Q(λn(m) = i | B(m) = Bm) = Q(λn(m) = i). The desired result follows from
the calculation

Q(B(n) = {m} | B(m) = Bm) = 1
2(n− 1)

n−m∑
i=1

iQ(λn(m) = i | B(m) = Bm)�

For n = m+ 1, we trivially have λn(m) = 1 with probability 1. Now suppose the iden-
tity holds for m< n ≤ m + k − 1. For n = m + k, we can write Q(λn(m) = i | B(m) = Bm)

as

Q(λn−1(m) = i | B(m) = Bm)Q(B(n− 1) �= {m} | λn−1(m) = i)

+Q(λn−1(m) = i− 1 | B(m) = Bm)Q(B(n− 1) = {m} | λn−1(m) = i− 1)

=Q(λn−1(m) = i)Q(B(n− 1) �= {m} | λn−1(m) = i)

+Q(λn−1(m) = i− 1)Q(B(n− 1) = {m} | λn−1(m) = i− 1)= Q(λn(m) = i)�

where the first equality follows from the inductive hypothesis. Thus, there is no distor-
tion in this network.

We now show that the network has expanding subnetworks. We show inductively
that lim supn→∞ Q(d(n) < K) = 0 for all positive integers K. We clearly have d(n) ≥ 2 for
all n > 1, establishing the base case. We now assume the result for some integer K and
prove that it holds for K + 1. Since there is no distortion, we have

Q(d(n) <K + 1) =
∑
m<n

Q(B(n) = {m})Q(d(m) <K | B(n) = {m})

=
∑
m<n

Q(B(n) = {m})Q(d(m) <K)�

By our inductive hypothesis, given ε > 0, there exists a positive integer N(K�ε) such
that for all n ≥ N(K�ε), Q(d(n) < K) < ε/2. By the above calculation, if we can find
N(K + 1� ε) such that for any n ≥ N(K + 1� ε),

∑
m<N(K�ε)

Q(B(n) = {m}) < ε

2
�

then Q(d(n) <K + 1) < ε for any n≥ N(K + 1� ε). We now show that

lim sup
n→∞

∑
m<N

Q(B(n) = {m}) = 0

for any positive integer N , completing the proof.
Define λn�N to be the number of network connections to the first N − 1 agents after

the first n− 1 neighborhood realizations. That is,

λn�N =
{

2(n− 2) if n <N

2(N − 2)+ |{l : l ≥ N�B(l) = {m}�m <N}| otherwise.
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Given an agent n >N , let Pn denote the probability that B(n) = {m} with m<N :

Pn =
n+N−4∑

i=2(N−2)+1

Q(λn�N = i)
i

2(n− 1)
�

Alternatively, we can express Pn in terms of Pn−1 by noting that λn�N = λn−1�N if agent
n− 1 observes an agent with index at least N , and λn�N = λn−1�N + 1 otherwise. We have

Pn =
n+N−5∑

i=2(N−2)+1

Q(λn−1�N = i)

[
Pn−1

i+ 2
2(n− 2)

+ (1 − Pn−1)
i+ 1

2(n− 2)

]

=
n+N−5∑

i=2(N−2)+1

Q(λn−1�N = i)(i+ 1)
2(n− 2)

+
n+N−5∑

j=2(N−2)+1

n+N−5∑
i=2(N−2)+1

jQ(λn−1�N = j)

2(n− 3)
Q(λn−1�N = i)

2(n− 2)

= 1
2(n− 2)

+ n− 3
n− 2

Pn−1 + 1
2(n− 2)

Pn−1 = 1 + (2n− 5)Pn−1

2(n− 2)
�

Note that Pn > Pn−1 as long as Pn−1 < 1 and, furthermore, Pn − Pn−1 =
(1 − Pn−1)/(2(n − 2)), which goes to zero as n goes to infinity. Therefore, {Pn} is an
increasing Cauchy sequence with a limit P∗. We finish our proof by showing that
P∗ = 1. Suppose P∗ < 1. We have Pn < P∗ for all n, from which we obtain Pn − Pn−1 >

(1 − P∗)/(2(n − 2)) for all n. However,
∑∞

k=1 1/(2(k − 2)) = ∞, implying that P∗ = ∞, a
contradiction. ♦

Example 6 (Learning with nonzero distortion). We proceed as in the last example to
show that this network satisfies the hypotheses of Theorem 3. Since each agent observes
only one neighbor, we may take γn(B(n)) to be the lone agent contained in B(n). We first
establish low distortion by bounding δm(B(n) = {m}) for m< n.

Suppose n ∈ Ti and Tj = {m�m′} for some j < i. We compute the network distortion
δm(B(n) = {m}) from the definition:

δm(B(n) = {m}) =
∑
Bm

∣∣Q(B(m) = Bm | B(n) = {m})−Q(B(m) = Bm)
∣∣

=
∑
Bm

∣∣∣∣Q(B(n) = {m} | B(m) = Bm)Q(B(m) = Bm)

Q(B(n) = {m}) −Q(B(m) = Bm)

∣∣∣∣�

From the definition of the network topology, we have

i− j − 1
i− j + 1

≤ Q(B(n) = {m} | B(m) = Bm)

Q(B(n) = {m}) ≤ i− j + 1
i− j − 1

�

and it follows that δm(B(n) = {m}) ≤ 1/(i− j).
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To show that the chosen neighbor topology has low network distortion, we must
show that for any ε > 0, the probability that n’s neighbor has network distortion
at least ε goes to zero as n approaches infinity. Given the above bound on the
network distortion, this is equivalent to showing that given any positive integer K,
limn→∞ Q(B(n) = {m}�m > n − K) = 0. The bound Q(B(n) = {m}�m > n − K) ≤ (K +
1)/(n− 2) establishes this result.

We now show that the chosen neighbor topology features expanding subnetworks by
inductively showing that lim supn→∞ Q(d(n) < K) = 0 for all positive integers K. For all
n > 2, d(n)≥ 2 by our definition of the network topology. If the result holds for some pos-
itive integer K, then given ε > 0, we can find N1(K�ε) such that Q(d(n) <K)≤ ε/4 when-
ever n ≥ N1(K�ε). We have Q(B(n) = {m}�m < N1(K�ε)) ≤ (N1(K�ε))/(n − 2), which
approaches zero as n approaches infinity. Thus, we can find N2(K�ε) such that for any
n ≥N2(K�ε), we have

Q(B(n) = {m}�m <N1(K�ε)) ≤ ε

4
�

Since the chosen neighbor topology has low network distortion, we can find N(ε) such
that ∑

m:δ̂(B(n)={m})≥ε/4

Q(B(n) = {m}) < ε

4

whenever n ≥ N(ε). Thus, if n ≥ max(N2(K�ε)�N(ε)), then Q(d(n) < K + 1) < ε, com-
pleting our proof. ♦
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