
Keller, Godfrey; Rady, Sven

Article

Breakdowns

Theoretical Economics

Provided in Cooperation with:
The Econometric Society

Suggested Citation: Keller, Godfrey; Rady, Sven (2015) : Breakdowns, Theoretical Economics, ISSN
1555-7561, The Econometric Society, New Haven, CT, Vol. 10, Iss. 1, pp. 175-202,
https://doi.org/10.3982/TE1670

This Version is available at:
https://hdl.handle.net/10419/150247

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by-nc/3.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3982/TE1670%0A
https://hdl.handle.net/10419/150247
https://creativecommons.org/licenses/by-nc/3.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Theoretical Economics 10 (2015), 175–202 1555-7561/20150175

Breakdowns

Godfrey Keller
Department of Economics, University of Oxford

Sven Rady
Department of Economics and Hausdorff Center for Mathematics, University of Bonn

We study a continuous-time game of strategic experimentation in which the play-
ers try to assess the failure rate of some new equipment or technology. Break-
downs occur at the jump times of a Poisson process whose unknown intensity is
either high or low. In marked contrast to existing models, we find that the co-
operative value function does not exhibit smooth pasting at the efficient cutoff
belief. This finding extends to the boundaries between continuation and stop-
ping regions in Markov perfect equilibria. We characterize the unique symmetric
equilibrium, construct a class of asymmetric equilibria, and elucidate the impact
of bad versus good Poisson news on equilibrium outcomes.

Keywords. Strategic experimentation, two-armed bandit, Bayesian learning,
Poisson process, piecewise deterministic process, Markov perfect equilibrium,
differential-difference equation, smooth pasting, continuous pasting.

JEL classification. C73, D83, O32.

1. Introduction

The adoption of new technologies crucially hinges on an appraisal of the risks they
might entail. It is very important, therefore, to assess the frequency of critical events,
their severity, the size of the associated costs, etc. Once a new technology, production
process, or equipment is in use, this assessment will be continually revised on the basis
of one’s own experience and, possibly, that of other users whose choices and results one
may be able to observe. Each failure makes the users more pessimistic, and a string of
such events may eventually lead them to abandon the exploration and revert to some
alternative whose risks are better known.

As an example, consider airplane manufacturers’ recent efforts to replace conven-
tional nickel–cadmium batteries by more energy-dense, and hence lighter, lithium-ion
batteries. After a series of incidents in which lithium-ion batteries were suspected of
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causing fires on Boeing’s 787 Dreamliners, Airbus reverted to nickel–cadmium batteries
in its A350 passenger jet.1

We model multiagent exploration efforts of this kind as a continuous-time game of
strategic experimentation with identical two-armed bandits. The risky arm represents
the “machine” whose reliability is being explored (the lithium-ion battery in the exam-
ple). It imposes lump-sum costs at the jump times of a Poisson process; the arrival rate
of these “breakdowns” can be high or low, and is initially unknown.2 The safe arm rep-
resents a machine with known costs per unit of time (the nickel–cadmium battery). If
the risky machine is good, that is, if it fails at the lower rate, it is cheaper than the safe
one; the opposite holds if the risky machine is bad.

We assume that the risky machines are either all good or all bad; conditional on this
common quality, lump-sum costs arrive according to independent Poisson processes.
The players can observe each other’s choices and outcomes, so there is an informational
externality among them. To gauge its effects, we characterize the efficient strategy pro-
file and construct Markov perfect equilibria where the players’ common assessment of
the unknown failure rate serves as the state variable.

We first consider the case where a good risky machine never fails, so that any break-
down provides conclusive evidence of its being bad. In this case, efficient behavior leads
to a value function3 that is continuous and piecewise linear with a single kink at the
boundary between the continuation and stopping regions. Thus, the cooperative value
function does not exhibit smooth pasting at the efficient cutoff belief. This finding ex-
tends to the boundaries between continuation and stopping regions in Markov perfect
equilibria of the experimentation game.

With conclusive breakdowns, any such equilibrium leads to the efficient outcome
on the same interval of initial beliefs. At beliefs optimistic enough to let the risky arm
dominate the safe one in terms of expected current costs, in fact, the equilibrium path
of play is clearly the efficient one, with all players sticking to the risky arm as long as
there is no breakdown and switching to the safe arm irrevocably as soon as a breakdown
occurs. At somewhat less optimistic beliefs, this action profile remains compatible with
equilibrium (and induces a common value function equal to the planner’s solution) up
to the point where a player whose opponents all play risky is just indifferent; the cor-
responding threshold belief depends on the number of players, but not on the precise
structure of the equilibrium being played. Backward induction from this threshold al-
lows us to construct equilibrium actions at more pessimistic beliefs and, despite the
lack of smooth pasting, determine the boundary of the stopping region. We compute
the unique symmetric Markov equilibrium, construct a class of asymmetric equilibria

1See http://www.reuters.com/article/2013/02/15/us-airbus-battery-idUSBRE91E07V20130215, for
example.

2While the failure rate is exogenous in our model, Biais et al. (2010) consider a principal–agent problem
in which this rate depends on the unobservable effort exerted by the agent.

3The mathematics and operations research literatures use the term “value function” for both (payoff)
maximization and (cost) minimization problems; see Fleming and Soner (1993), for example. We follow
this practice here, so in the context of the model that we analyze, “value function” is synonymous with
“minimized total cost function.”

http://www.reuters.com/article/2013/02/15/us-airbus-battery-idUSBRE91E07V20130215


Theoretical Economics 10 (2015) Breakdowns 177

for two players, and indicate how this construction generalizes to an arbitrary number
of players.

In the case where a good risky machine also fails occasionally, breakdowns provide
inconclusive evidence of the true state of the world, and the belief held immediately
after a breakdown may still be optimistic enough to continue using the risky machine.
Put differently, whether it is optimal to use the risky machine at a given belief now de-
pends on what would be the continuation value after a breakdown: this renders the
analysis significantly more difficult. Efficient behavior is still given by a cutoff strategy,
but the optimal cutoff can no longer be computed in closed form. We show that it is
uniquely determined by the requirement that the associated total expected cost func-
tion be continuous, that is, by value matching alone. We again establish existence of a
unique symmetric Markov perfect equilibrium and characterize its properties, among
them continuity and monotonicity of the equilibrium strategy. Finally, we briefly ad-
dress the construction of asymmetric equilibria.

Our model of breakdowns differs from the setup considered by Keller and Rady
(2010) only insofar as we replace lump-sum payoffs (whose expected total net present
value players want to maximize) with lump-sum costs (and the corresponding mini-
mization objective); the special case of conclusive breakdowns corresponds to the setup
with fully revealing “breakthroughs” of Keller et al. (2005). One might have conjectured
that a model of breakdowns (where news is bad) would lead to results that were just
mirror images of those arising in an otherwise identical model of breakthroughs (where
news is good), but this is not so.

Above all, the principle of smooth pasting does not apply here: value functions have
a kink at the boundary between the continuation and stopping regions. The reason
for this striking difference lies in the behavior of the process of posterior beliefs when
started at the boundary of the stopping region. Owing to the finite arrival rate of Poisson
jumps, there will almost surely be no news event (breakthrough or breakdown, respec-
tively) over the next instant. In the breakthroughs case, no news is bad news, and the be-
lief thus immediately enters the interior of the stopping region (in the terminology of the
mathematical literature on optimal stopping, this means that the boundary is regular);
in the breakdowns case, by contrast, no news is good news, and the belief moves away
from the stopping region. The lack of smooth pasting at the efficient cutoff confirms the
rule of thumb whereby the value function of a stopping problem is differentiable at a
regular boundary, but not necessarily at an irregular one.4

In our framework, it is actually quite easy to understand why the cooperative value
function cannot be differentiable at the efficient cutoff. At each point in time, the plan-
ner compares the expected informational benefit of using the risky arm with the ex-
pected (shared) cost increment relative to the safe arm. Both depend on the planner’s
belief, that is, the probability he assigns to the good state of the world. The informa-
tional benefit has two components: one capturing a gradual improvement in the over-
all outlook if no breakdown occurs and the other capturing a discrete deterioration if a
breakdown does occur; the former depends on the first derivative of the value function

4See Peskir and Shiryaev (2006), especially Chapters IV.9 and VI.23.
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with respect to the belief, and the latter depends on the difference between the con-
tinuation value at the belief held immediately after a breakdown and the value at the
current belief. As is standard in this type of problem, the interior of the continuation
region (where beliefs are more optimistic than the efficient cutoff) is characterized by
the informational benefit exceeding the expected cost increment of using the risky arm,
and the interior of the stopping region by the converse inequality; at the cutoff itself,
benefits and costs are equal.

Now, the crucial insight is that in the interior of the stopping region, the informa-
tional benefit of experimentation is zero: in the absence of a breakdown, a planner de-
viating to the risky arm would become slightly more optimistic, but then still not find
it optimal to experiment, and if a breakdown did occur, the planner would find himself
even deeper in the stopping region than before and hence see no reason to experiment
either. As a consequence, the benefit of experimentation must possess a jump disconti-
nuity at the efficient cutoff, where the expected cost increment of using the risky arm is
necessarily positive. The discrete-deterioration component of this benefit is continuous
in the belief, however, so it must be the gradual-improvement component that jumps,
implying a jump discontinuity in the first derivative of the value function at the cutoff.5

This argument carries over to any player who chooses a best response against op-
ponents whose actions change continuously with the players’ common posterior belief,
the only difference being that unlike the social planner, each individual player compares
the benefit of experimentation with the full expected cost increment of using the risky
arm, not the shared one. Thus, the players’ common value function in the symmetric
equilibrium must have a kink at the threshold belief at which experimentation starts.
And in an asymmetric equilibrium where experimentation starts with only one player
playing risky, the value function of this player must have a kink at the corresponding
threshold belief.6

Another difference between good and bad news is that in the scenario with break-
downs, the presence of other players always encourages experimentation in the sense
that the equilibrium continuation region is larger than that of a single agent experi-
menting in isolation. In the example of the airplane manufacturers, this suggests that
independent of any payoff externalities or preemption motives, the learning externality
would bring the firms’ experimentation with the new battery type forward in time. While
Keller and Rady (2010) established this encouragement effect for any Markov equilib-
rium of the experimentation game with inconclusive breakthroughs, Keller et al. (2005)
had shown earlier that there is no such effect when breakthroughs provide conclusive
evidence of the risky arm being good. With inconclusive good news, in fact, a player

5In the scenario with breakthroughs, the benefit of experimentation consists of a gradual-deterioration
and a discrete-improvement component, and as we approach the efficient cutoff from the interior of the
stopping region, the latter component is positive and increases monotonically, while the former compo-
nent is zero. This makes it possible for the discrete-improvement component alone to balance the oppor-
tunity cost of experimentation at the efficient cutoff, so that the gradual-deterioration component—and
hence the first derivative of the value function—is continuous there.

6Typically, it will have further kinks at more optimistic beliefs where an opponent’s action changes dis-
continuously. This type of nondifferentiability is familiar from Keller et al. (2005) and Keller and Rady
(2010), and does not indicate a failure of the smooth-pasting principle.
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who experiments beyond the belief at which his opponents stop stands to bring them
back into the game if he has a breakthrough and then benefit from their subsequent ex-
periments. With conclusive breakthroughs, by contrast, those subsequent experiments
are worthless because a successful “pioneer” already knows everything there is to know
about the quality of the risky arm; any such pioneer thus faces the same trade-off as a
single agent experimenting in isolation, and no Markov perfect equilibrium can involve
experimentation beyond the single-agent cutoff. It is noteworthy, therefore, that here
we find an encouragement effect even in the case where a single arrival of bad news is
conclusive. At second sight, this is fully in line with the finding in Keller and Rady (2010):
the absence of bad news (whether conclusive or not) represents inconclusive good news,
and this is what motivates players to venture beyond the single-agent cutoff belief.

Again for conclusive breakdowns, there are a number of further results that stand in
marked contrast to Keller et al. (2005). To start with, the value of information to players
intent on playing the symmetric Markov perfect equilibrium (MPE) is no longer positive
in the entire experimentation region: at relatively pessimistic prior beliefs in this region,
the players would reject a free signal that induces a small lottery over posterior beliefs.7

Moreover, it is no longer the case that the common outcome in the symmetric Markov
perfect equilibrium is uniformly dominated by the average outcome in an asymmetric
Markov perfect equilibrium that has each player use one arm exclusively at any given
belief. In asymmetric equilibria, finally, players who free-ride on the information gener-
ated by others when the opportunity cost of experimentation is high do not benefit, but
do worse than a player who experiments there. We shall discuss each of these findings
in detail below.

In summary, the paper makes three main contributions. First, it shows that when
players learn from occasional bad-news events, the principle of smooth pasting applies
neither to the efficient benchmark nor to the Markov perfect equilibria of the experi-
mentation game; for conclusive breakdowns, this point is made in an elementary fash-
ion and by means of closed-form solutions. Second, it establishes existence and unique-
ness of a symmetric Markov equilibrium in a situation where (as in the case of incon-
clusive bad news) neither smooth-pasting nor backward-induction techniques apply.
Third, it shows that certain seemingly intuitive properties of Markov equilibria—such as
a positive value of information in the small and a positive value of being a free-rider at
pessimistic beliefs—are not robust to the transition from good-news to bad-news Pois-
son learning.

After a discussion of the related literature, the paper proceeds as follows. Section 2
sets up the model. Sections 3 and 4 study the efficient benchmark and Markov perfect
equilibria for conclusive breakdowns and inconclusive breakdowns, respectively. Sec-
tion 5 concludes.

1.1 Related literature

Our work is part of a growing literature on bandit-based games of learning and experi-
mentation. Assuming that the cumulative payoff from the risky arm follows a Brownian

7This finding carries over to inconclusive, but highly informative breakdowns.
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motion with unknown drift, Bolton and Harris (1999) prove existence of a unique sym-
metric Markov perfect equilibrium and analyze it in terms of two effects: the free-rider
effect, which reflects the public-good nature of the information generated by the play-
ers’ experiments, and the encouragement effect, which was already explained above.
Their insight that “current experimentation by one player is a strategic substitute for cur-
rent experimentation by another, but future experimentation by one player is a strategic
complement for current experimentation by another” (Bolton and Harris 1999, p. 361),
and that the free-rider effect dominates in equilibrium, also applies to our setup. Bolton
and Harris (2000) characterize all Markov perfect equilibria of the undiscounted limit of
their model. A version of the Bolton–Harris model in which the Brownian motion rep-
resents cumulative costs whose expected present value is to be minimized would pro-
duce perfect mirror images of the results obtained in the original model; in particular,
smooth pasting would again apply to both the cooperative solution and the symmet-
ric MPE. Keller et al. (2005) and Keller and Rady (2010) maintain the structure of the
Bolton–Harris model, but replace Brownian payoffs with a compound Poisson process;
the connection of the present paper with these two articles has already been discussed
in detail.

Owing to their tractability, the learning dynamics associated with conclusive Pois-
son news have repeatedly been used as building blocks for richer models. Examples
of the good-news variety are the models of research and development (R&D) competi-
tion of Malueg and Tsutsui (1997) and Besanko and Wu (2013), and the (discrete-time)
financial contracting model of Bergemann and Hege (1998, 2005). Décamps and Mar-
iotti (2004) analyze a duopoly model of irreversible investment with a learning exter-
nality and a public background signal that produces conclusive bad news; since a firm
stops learning once it is optimistic enough to invest, the stopping boundary is regular,
however, and so the smooth-pasting principle applies.8  Strulovici (2010) investigates
how individual experimentation on a two-armed bandit interacts with collective deci-
sion making through voting. His benchmark model assumes conclusive good news; in
an extension, he allows for bad news and alludes to the failure of smooth pasting. Klein
and Rady (2011) allow the type of the risky arm to be negatively correlated across players,
so that good news for one player is bad news for the other. They show that equilibrium
value functions are discontinuous at the boundary between adjacent intervals both of
which are absorbing for the learning dynamics; such pairs of intervals do not exist in our
model.

By their very nature, economic models of rational learning are closely related to
models of sequential testing in mathematical statistics. This link is especially tight in
our case. On the one hand, this is because the very first formulation of smooth-pasting
conditions appears in Mikhalevich (1958), a paper dealing with the sequential testing
of two simple hypotheses about the unknown drift parameter of an observed Brownian

8Bergemann and Hege (1998, 2005) allow for moral hazard in the allocation of funds; Décamps and Mari-
otti (2004) allow for privately observed investment costs. For further related work on strategic learning with
private information, see Rosenberg et al. (2007), Moscarini and Squintani (2010), Acemoglu et al. (2011),
Bonatti and Hörner (2011), Hopenhayn and Squintani (2011), Murto and Välimäki (2011), and Heidhues
et al. (2012).
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motion.9 On the other hand, the analysis of the corresponding problem for a Poisson
process in Peskir and Shiryaev (2000) provides the first example for the failure of smooth
pasting. Observing a Poisson process whose unknown intensity can be either high or
low, and revising beliefs in exactly the same way as in our model, the decision maker
in that paper faces the combined task of stopping the process and deciding which of
the two rates to accept; his objective is to minimize a weighted sum of the observation
costs and the probabilities of making an error of the first and second kind, respectively.
The optimal continuation region lies in between two threshold levels for the probabil-
ity assigned to the high intensity. In between Poisson jumps, this probability declines
gradually, which makes the lower threshold a regular stopping boundary and the upper
threshold an irregular one. Correspondingly, the optimal solution is found by imposing
smooth pasting at the lower threshold, but only continuous pasting at the upper thresh-
old. With a different objective function, the social optimum and best responses in the
good-news scenario of Keller and Rady (2010) mirror the situation at the lower thresh-
old, while their bad-news counterparts in the present paper mirror the situation at the
upper threshold.

In the mathematical finance literature, several papers report a failure of smooth
pasting in stopping problems where the underlying asset price is driven by a stochastic
process with jumps; see Boyarchenko and Levendorskǐı (2002), Asmussen et al. (2004),
Alili and Kyprianou (2005), and Matache et al. (2005) for the valuation of American op-
tions, Dalang and Hongler (2004) for the optimal time to sell a stock, and Gapeev and
Kühn (2005) as well as Baurdoux et al. (2011) for the zero-sum stopping game played
by the holder and the issuer of a convertible bond. Outside this particular literature,
we are aware of only one paper that identifies a lack of smooth pasting in an economi-
cally motivated setting. Ludkovski and Sircar (2012) study optimal resource exploration
in a model where new discoveries occur according to a jump process whose intensity
is given by the exploration effort. Under a monopolist’s optimal policy, costly explo-
ration takes place between two threshold levels for current reserves. As these reserves
diminish in between discoveries, the upper threshold is an irregular stopping boundary
and the value function is not smooth there. The extension of the model to a Cournot
duopoly with a “green” second producer who has access to an inexhaustible but rela-
tively expensive source is analyzed numerically only. Our paper is thus the first in the
economics literature to identify in a fully analytic fashion—and even in closed form
when breakdowns are conclusive—a failure of smooth pasting in a continuous-time,
non-zero-sum stochastic game and to recognize its replacement by the principle of con-
tinuous pasting.

9Starting with Samuelson (1965), smooth-pasting conditions have been used extensively in (financial)
economics to solve problems of optimal stopping or control of one-dimensional diffusions; see Dumas
(1991), Dixit (1993), and Dixit and Pindyck (1994) for classic references, and Strulovici and Szydlowski (2014)
for a recent contribution. All these papers specify a diffusion coefficient that is bounded away from zero,
which (for sufficiently well behaved terminal reward functions) ensures smooth pasting even when the
underlying process can jump; see Bayraktar and Xing (2012). A case in point is the single-agent bandit
model of Cohen and Solan (2013), where payoffs on the risky arm are given by a Lévy process and posterior
beliefs follow a jump diffusion.
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Through the underlying theme of bad versus good news, our work is loosely linked to
a set of papers that investigate the impact of different signal structures on the equilibria
of dynamic games with imperfect public monitoring; examples are Abreu et al. (1991),
Fudenberg and Levine (2007), and Faingold and Sannikov (2011). Closer to our work,
Board and Meyer-ter-Vehn (2013) examine reputation building by a seller in a model
where consumers receive Poisson signals of product quality. Markov perfect equilibria
are constructed via a path integral that represents the value of high quality, so pasting
principles are not of the essence here.

2. A model of stochastic breakdowns

The setup of the model is that of Keller and Rady (2010) except for the fact that here
events occurring on the risky arm are bad news. The Bellman equations stated below
follow from exactly the same arguments as in Keller et al. (2005); see also Davis (1993).

There are N ≥ 1 players, each of them endowed with one unit of a perfectly divisible
resource per unit of time and each facing a two-armed bandit problem in continuous
time. If a player allocates the fraction kt ∈ [0�1] of her resource to the risky arm R over
an interval of time [t� t + dt[, the probability of a breakdown on R at some point in the
interval is ktλθ dt, where θ = 1 if R is bad, θ = 0 if R is good, and λ1 > λ0 ≥ 0 are constants
known to all players. The realization of θ is the same for all players and, conditional on
θ, the occurrence of breakdowns is independent across players. Each breakdown causes
a lump-sum cost that is drawn from a time-invariant distribution on ]0�∞[ with known
mean h; this distribution is independent of θ, and the cost draws are independent across
time and players. The fraction 1 − kt allocated to the safe arm S causes an expected
cost of (1 − kt)s dt, where s > 0 is a constant known to all players. Therefore, the overall
expected cost increment conditional on θ is [(1−kt)s+ktλθh]dt. We assume that λ0h<

s < λ1h, so each player prefers R to S if R is good and prefers S to R if R is bad.
Players start with a common prior belief about the unknown state of the world θ.

Observing each other’s actions and outcomes, they hold common posterior beliefs
throughout time. With pt denoting the subjective probability at time t that players as-
sign to the risky arm being bad, a player’s expected cost increment conditional on all
available information is [(1 − kt)s + ktλ(pt)h]dt with

λ(p) = pλ1 + (1 −p)λ0�

Given a player’s actions {kt}t≥0 such that kt is measurable with respect to the infor-
mation available at time t, her total expected discounted cost, expressed in per-period
units, is

E
[∫ ∞

0
re−rt[(1 − kt)s + ktλ(pt)h]dt

]
�

where the expectation is over the stochastic processes {kt} and {pt}, and r > 0 is the
common discount rate.

As long as no lump-sum cost arrives, the belief evolves smoothly with infinitesi-
mal increment dpt = −Kt�λpt(1 − pt)dt, where Kt = ∑N

n=1 kn�t is the overall intensity
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of experimentation and �λ = λ1 − λ0. If any of the players incurs a lump-sum cost at
time t, the belief jumps up from pt− (the limit of beliefs held before the breakdown) to
pt = j(pt−), where

j(p) = λ1p

λ(p)
�

Players are restricted to Markov strategies kn : [0�1] → [0�1] with the left limit belief
pt− as the state variable, so that the action player n takes at time t is kn(pt−). We re-
quire each strategy to be left-continuous and piecewise Lipschitz-continuous.10 This
ensures that each strategy profile (k1�k2� � � � �kN) induces, for any prior p, a well de-
fined law of motion for players’ common beliefs and well defined total expected costs
un(p|k1�k2� � � � �kN) for each individual player. These costs are continuous in p on any
interval where the overall intensity of experimentation is positive; jump discontinuities
can occur at priors p where the intensity lifts off from its lower bound, being positive on
]p− ε�p] and zero on ]p�p+ ε[. Furthermore, un is once continuously differentiable in
p on any interval where kn and K¬n = ∑

��=n k� (the intensity of experimentation carried
out by player n’s opponents) are both continuous, and at least one of them is positive;
otherwise, un can have a kink.11

A strategy kn is a cutoff strategy if there is a belief p̂ such that kn(p) = 1 for all p ≤ p̂

and kn(p) = 0 otherwise. As an example, consider an infinitely impatient agent who
merely weighs the short-run cost from playing the safe arm, s, against the expected
short-run cost from playing the risky arm, λ(p)h. Such an agent would optimally use
the myopic cutoff belief

pm = s − λ0h

�λh
�

playing R for p ≤ pm and S for p>pm.
When the players act cooperatively so as to minimize the average total cost per

player, their common value function U∗
N is concave and continuous. Concavity reflects

a nonnegative value of information and implies continuity in the open unit interval.
Continuity at the boundaries follows from the fact that U∗

N(p) is bounded above by the
myopic cost λ(p)h∧ s and bounded below by the full-information cost ps + (1 −p)λ0h,
both of which converge to λ0h=U∗

N(0) as p → 0 and to s =U∗
N(1) as p → 1.

Moreover, U∗
N solves the Bellman equation

u(p) = s + min
K∈[0�N]

K{c(p)/N − b(p�u)}� (1)

where K is the intensity of experimentation,

c(p) = λ(p)h− s

10The latter means that [0�1] can be partitioned in a finite number of intervals such that the strategy is
Lipschitz-continuous on each of them. This rules out the infinite-switching strategies considered in Sec-
tion 6.2 of Keller et al. (2005). Equilibria in such strategies cannot be obtained as the limit of equilibria
of discrete-time approximations of the experimentation game; see Heidhues et al. (2012). With bad news,
moreover, the use of such strategies would not enlarge the range of beliefs at which experimentation is
sustainable in equilibrium.

11We shall see below that such kinks always occur in equilibrium, whereas jumps are ruled out.
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is the expected current cost increase from playing R rather than S, and

b(p�u) = [
�λp(1 −p)u′(p)− λ(p)

[
u(j(p))− u(p)

]]
/r

is the expected learning benefit of playing R. In fact, the term −K�λp(1 − p)u′(p)/r
in the Bellman equation (1) captures the marginal improvement in the players’ outlook
while they experiment without a breakdown, and the term Kλ(p)[u(j(p))−u(p)]/r cap-
tures the discrete deterioration at the time of a breakdown. As infinitesimal changes of
the belief are always downward, we say that a continuous function u solves the Bellman
equation if its left-hand derivative exists on ]0�1] and (1) holds on ]0�1[ when this left-
hand derivative is used to compute b(p�u). The cooperative value function U∗

N is the
unique solution satisfying the boundary conditions u(0) = λ0h and u(1) = s.

If the shared extra cost of playing R exceeds the full expected benefit, the collectively
optimal choice is K = 0 (all agents use S exclusively) and the cooperative value function
satisfies u(p) = s. Otherwise, K = N is optimal (all agents use R exclusively) and u(p) =
s + c(p)−Nb(p�u)= λ(p)h−Nb(p�u).

When N ≥ 2 players act non-cooperatively, a strategy k∗
n for player n is a best re-

sponse against his opponents’ strategies k1� � � � �kn−1�kn+1� � � � �kN if

un(p|k1� � � � �kn−1�k
∗
n�kn+1� � � � �kN) ≤ un(p|k1� � � � �kn−1�kn�kn+1� � � � �kN)

for all priors p and all strategies kn. The value function from playing a best response
is continuous. Continuity at the boundaries of the unit interval follows from the same
upper and lower bounds as in the cooperative case. Continuity in the interior follows
from the observation that at a belief p where the overall intensity of experimentation
lifts off as described above, any jump discontinuity in un would contradict the optimality
of the strategy player n uses. In fact, un(p−) > un(p) = s would imply costs above s

immediately to the left of p, while un(p−) < un(p) = s would imply that player n could
do better by not playing safe at p.

Moreover, a strategy k∗
n is a best response for player n if and only if the resulting value

function un solves the Bellman equation

un(p)= s −K¬n(p)b(p�un)+ min
kn∈[0�1]

kn{c(p)− b(p�un)} (2)

and k∗
n(p) achieves the minimum on the right-hand side at each belief p. The benefit

of experimentation b(p�un) is then nonnegative at all beliefs. In fact, there are three
cases. If un(p)= s, then this is a global maximum, so we must have a left-hand derivative
u′
n(p) ≥ 0; as un(j(p)) ≤ s, moreover, we find b(p�un) ≥ 0. If un(p) < s and k∗

n(p) = 0 is
an optimal action, the Bellman equation (2) implies un(p) = s − K¬n(p)b(p�un) and
hence K¬n(p)b(p�un) > 0. If un(p) < s and k∗

n(p) = 1 is optimal, the Bellman equation
yields un(p) = λ(p)h − [K¬n(p) + 1]b(p�un); as un(p) ≤ λ(p)h ∧ s ≤ λ(p)h, this in turn
implies [K¬n(p)+ 1]b(p�un) ≥ 0.

If c(p) > b(p�un), then the optimal action is k∗
n(p) = 0 and equation (2) implies

un(p) = s − K¬n(p)b(p�un) ≥ s − K¬n(p)c(p), with a strict inequality if K¬n(p) > 0.
If c(p) = b(p�un), then k∗

n(p) is arbitrary in [0�1] and un(p) = s − K¬n(p)c(p). Fi-
nally, if c(p) < b(p�un), then k∗

n(p) = 1 and un(p) = s − [K¬n(p) + 1]b(p�un) + c(p) <
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s − K¬n(p)c(p). When player n uses a best response, therefore, his optimal action at
a given belief p depends on whether his value un(p) is above, at, or below the level
s −K¬n(p)c(p).

A Markov perfect equilibrium (MPE) is a profile of strategies that are mutually best
responses.

3. Conclusive breakdowns

Suppose that λ0 = 0 so that a good risky machine never breaks down. Then j(p) = 1
and u(j(p)) = s for all p > 0, which simplifies the analysis considerably. In particular,
each of the Bellman equations introduced in the previous section reduces to an ordinary
differential equation (ODE).

3.1 Cooperative solution

Fix an initial belief p0 = p and consider the following strategy: all players use the risky
arm until a breakdown occurs, at which point all players irrevocably switch to the safe
arm. With prior probability 1 − p, this strategy generates total costs of zero as the risky
machine never fails.

With prior probability p, the machine will fail for the first time at some random time
τ, the lump-sum cost is incurred, and the players suffer a flow cost of s evermore; thus,
the total expected costs per player will be e−rτ(rh/N + s). Taking expectations first with
respect to the exponentially distributed variable τ and then with respect to the unknown
state of the world, we compute the total expected costs per player as

Nλ1

r +Nλ1

(
rh

N
+ s

)
p�

These costs are smaller than s if and only if p is below the threshold stated in the follow-
ing proposition.

Proposition 1 (Cooperative solution, λ0 = 0). If breakdowns are conclusive, the N-
agent cooperative solution has all players use the safe arm above the cutoff belief

p∗
N = (r +Nλ1)s

(rh+Ns)λ1
>pm

and the use risky arm below. The cooperative value function is continuous, nondecreas-
ing, and piecewise linear with a single concave kink at p∗

N .

Proof. If the players adopt the stated strategy, then each player’s total expected costs
are

U∗
N(p)= (rh+Ns)λ1

r +Nλ1
p

when p ≤ p∗
N and U∗

N(p) = s otherwise, implying the stated properties. For p ≤ p∗
N ,

we have s ≥ U∗
N(p) = s + c(p) − Nb(p�U∗

N) and thus b(p�U∗
N) ≥ c(p)/N . For p > p∗

N ,
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we have b(p�U∗
N) = 0 < c(p)/N as p > pm. So U∗

N solves the Bellman equation (1) and
hence is the value function for the cooperative problem. At all beliefs, the actions speci-
fied in the proposition achieve the minimum in the Bellman equation, so this common
strategy is optimal. �

The linearity of U∗
N to the left of the cutoff p∗

N reflects the fact that the players’ actions
are frozen until the random time when, in the bad state of the world, the first breakdown
resolves all uncertainty. The concave kink at p∗

N reflects a positive value of information
around the cutoff.

In view of the fact that either K = 0 or K = N is optimal at any given belief, the co-
operative problem can be viewed as a simple stopping problem. As already mentioned
in the Introduction, the failure of smooth pasting at the cutoff p∗

N is then fully in line
with this cutoff being an irregular stopping boundary for the process of posterior beliefs.
What is more, the arguments underlying the proof of Proposition 1 allow us to explain
in a very elementary fashion why there cannot be smooth pasting at the socially optimal
cutoff. To the right of it, in fact, the benefit of experimentation b(p�u) must be zero be-
cause, with u(p) = u(j(p)) = s and u′(p) = 0, both the “slide benefit” �λp(1 −p)u′(p)/r
and the “jump disbenefit” λ(p)[s − u(p)]/r vanish. The latter is continuous in p, so
for the benefit of experimentation to cover the shared cost increment c(p)/N > 0 at the
cutoff, the slide disbenefit must be positive there, which requires a positive left-hand
derivative.12

Instead of smooth pasting, it is the principle of continuous pasting that applies here:
among all possible common cutoffs, the socially optimal one is uniquely pinned down
by the requirement that the cooperative value function be continuous. If all players used
a cutoff p̂ > p∗

N , for instance, the average total cost per player would satisfy u(p̂) > s =
u(p̂+) and vice versa for p̂ < p∗

N .
Finally, we note that the value function for the cooperative problem can be recast as

U∗
N(p) = λ1hp− Nλ1

r +Nλ1
(λ1h− s)p

when p ≤ p∗
N . The first term, λ1hp, is the expected cost of committing to the risky arm,

while the second term captures the option value of being able to change to the safe arm
after the arrival of bad news.

3.2 Symmetric equilibrium

The players’ value functions in any MPE lie in the region of the (p�u) plane below the
graph of the myopic cost function, λ1hp∧ s, and indeed below U∗

1 . Define

DK¬n = {(p�u) ∈ [0�1] ×R+ :u = s −K¬nc(p)}�
12In the good-news scenario of Keller et al. (2005), by contrast, there is a slide disbenefit and a jump

benefit, and as we approach the optimal cutoff from within the stopping region, the jump benefit increases
to the point where it alone suffices to cover the shared opportunity costs of experimentation, so that the
slide disbenefit—and hence the derivative of the value function—can indeed be zero at the optimal cutoff.
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Figure 1. Value functions of a single agent, a two-person cooperative, and the two-player sym-
metric equilibrium (λ0 = 0).

For K¬n > 0, this is a downward sloping diagonal in the (p�u) plane that cuts the safe
cost line u = s at the myopic cutoff pm; for K¬n = 0, it coincides with the safe cost line.

By the characterization of best responses in Section 2, the efficient actions described
in Proposition 1 are mutually best responses whenever the graph of the cooperative
value function U∗

N is weakly below the diagonal DN−1, that is, at beliefs no higher than

p†
N = (r +Nλ1)s

[rh+ s + (N − 1)λ1h]λ1
<p∗

1�

In this region, U∗
N satisfies the ODE u(p) = s−Nb(p�u)+c(p), so when U∗

N meets DN−1,

we have s − (N − 1)c(p†
N) = s −Nb(p†

N�U∗
N)+ c(p†

N) and hence b(p†
N�U∗

N)= c(p†
N).

The characterization of best responses in Section 2 further entails that in a symmet-
ric MPE with common value function u, there are three cases: either all players use the
safe arm exclusively and u(p) = s; or they all choose the interior allocation

k(p)= s − u(p)

(N − 1)c(p)

and u satisfies b(p�u) = c(p) with s − (N − 1)c(p) < u(p) < s; or they use the risky arm
exclusively and u(p) = s −Nb(p�u)+ c(p) ≤ s − (N − 1)c(p). We know already that the
latter case arises if and only if p ≤ p†

N . Given this threshold, backward induction yields
the following result, which is illustrated in Figure 1 for the case N = 2.
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Proposition 2 (Symmetric MPE, λ0 = 0). If breakdowns are conclusive, the N-player ex-
perimentation game has a unique symmetric Markov perfect equilibrium with the com-
mon posterior belief as the state variable. The equilibrium strategy is continuous and
nonincreasing, and has all players use the risky arm exclusively for p ≤ p†

N . In addition,

there is a threshold belief p̃N > p†
N with p∗

1 < p̃N < p∗
N such that the players choose an

interior allocation for p†
N < p < p̃N and use the safe arm exclusively for p ≥ p̃N . The

equilibrium value function is continuous, strictly increasing on [0� p̃N ], and once contin-
uously differentiable except for a concave kink at p̃N . On [0�p†

N ], it coincides with the

cooperative value function U∗
N ; on [p†

N� p̃N ], it is strictly convex.

Proof. As u(j(p)) = s, the indifference condition c(p) = b(p�u) reduces to an ODE
with the general solution

w(p) = rh+ s − rs

λ1
+ rs

λ1
(1 −p) ln

1 −p

p
+C(1 −p)�

Choosing the constant C so that w(p†
N) = s − (N − 1)c(p†

N), we obtain a convex and

increasing function WN for p ≥ p†
N with WN(p†

N) = U∗
N(p†

N), and it follows from value

matching together with b(p†
N�WN) = c(p†

N) = b(p†
N�U∗

N) that W ′
N(p†

N) = (U∗
N)′(p†

N).
Let p̃N be the belief at which this function WN reaches the cost level s, and define the
Lipschitz-continuous strategy

k(p)=

⎧⎪⎨
⎪⎩

1 if p ≤ p†
N

s−WN(p)
(N−1)c(p) if p†

N < p< p̃N

0 if p ≥ p̃N�

The function

u(p) =

⎧⎪⎨
⎪⎩
U∗
N(p) if p≤ p†

N

WN(p) if p†
N < p< p̃N

s if p≥ p̃N

has the stated properties and satisfies the Bellman equation

u(p) = s − (N − 1)k(p)b(p�u)+ min
k∈[0�1]

k{c(p)− b(p�u)}

on [0�1], with the minimum on the right-hand side achieved at k∗ = k(p). This proves
that all players using the above strategy constitutes a symmetric MPE. Uniqueness fol-
lows from continuity of the equilibrium value function, the fact that it necessarily coin-
cides with U∗

N on [0�p†
N ], and the fact that it cannot exceed the safe cost level s.

It remains to show that p̃N > p∗
1. Since in any equilibrium, each player must be

at least as well off as in the single-agent solution, we cannot have p̃N < p∗
1. Sup-

pose, therefore, that p̃N = p∗
1. Then the equilibrium value function u and the single-

agent value function U∗
1 satisfy �λp∗

1(1 − p∗
1)u

′(p∗
1)/r = b(p∗

1�u) = c(p∗
1) = b(p∗

1�U
∗
1 ) =

�λp∗
1(1 − p∗

1)(U
∗
1 )

′(p∗
1)/r and hence u′(p∗

1) = (U∗
1 )

′(p∗
1). Immediately to the left of p∗

1,
strict convexity of u and linearity of U∗

1 then imply u >U∗
1 . This is impossible. �
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It is remarkable that even though each player optimizes against continuous behavior
of his opponents and uses a continuous strategy himself, the resulting value function is
not differentiable at the belief where experimentation with the risky arm takes off. This
lack of smooth pasting at the threshold belief p̃N can be explained in exactly the same
way as in the cooperative problem. To the right of the threshold, both the slide benefit
and the jump disbenefit of experimentation are zero. At the threshold, the slide benefit
must be positive so as to cover the cost increment c(p̃N) > 0, and this again requires a
positive left-hand derivative.

That there is smooth pasting at the diagonal DN−1 can also be understood in terms
of the benefits and costs of experimentation. This diagonal has been constructed as
the locus of all pairs of a belief and a continuation value such that when playing a best
response against N − 1 opponents who use the risky arm exclusively, the Nth player
is indifferent between all possible intensities of experimentation. Thus, the benefit of
experimentation exactly offsets its cost at p†

N , just as it does to the right of this threshold,
where all players use an interior allocation. Given that the jump disbenefit and the cost
are continuous in beliefs, therefore, the slide disbenefit—and hence the first derivative
of the equilibrium value function—must also be continuous at p†

N .

The equilibrium value function is strictly convex over the range of beliefs ]p†
N� p̃N [

associated with interior allocations (see the curve labelled W2 in Figure 1). Starting from
a prior p in this range, players who are intent on playing the symmetric MPE would
thus reject any free signal about the unknown state of the world that induces a lottery
(centered at p) over beliefs in ]p†

N� p̃N [. This negative value of information in the small
conforms to the familiar observation in multiagent settings that the positive effect of
additional information on one’s own optimization can be overcome by the adverse effect
of the concomitant change in the other agents’ behavior.13 There is no contradiction,
however, with the nonnegative value of information in the large that manifests itself in
the globally nonnegative benefit of experimentation b(p�un) along any best response. In
fact, the observation of a risky arm at an intensity k > 0 and over a length of time � > 0
leads to a “nonlocal” binary lottery with possible outcomes p′ = pe−k�/(1 −p+pe−k�)

and 1. And as can be seen in Figure 1, the straight line joining the point (p′�W2(p
′))

with the point (1� s) is everywhere below the graph of the symmetric equilibrium value
function, so that observing the risky arm indeed lowers total costs on average.

As p̃N > p∗
1, the equilibrium exhibits an encouragement effect in the sense that it

features experimentation on a strictly larger set of beliefs than would be optimal for
a single agent experimenting in isolation. This effect is well known from the unique
symmetric MPE in the Brownian model of Bolton and Harris (1999) and in the Poisson
model with inconclusive good news of Keller and Rady (2010). There, intuitively, each
player is willing to experiment beyond the single-agent cutoff because any good news
thus obtained makes all players more optimistic and increases the overall intensity of
experimentation to everyone’s benefit. When good news is conclusive, however, this

13The scenario with conclusive good news is different in this regard. In the symmetric MPE of Keller et al.
(2005), the value of information in the small is always nonnegative and is positive in the entire experimen-
tation region.
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reasoning breaks down: a player who experiences a breakthrough becomes certain of
the good state of the world and, hence, cannot learn anything from the opponents’ sub-
sequent use of the risky arm. In Keller et al. (2005), equilibrium experimentation thus
stops at the single-agent cutoff p∗

1. The case of conclusive bad news is strikingly different
in this respect, therefore. We can easily reconcile this finding with the above intuition,
however, by noting that in the model with conclusive bad news, the absence of a break-
down represents inconclusive good news, and it is the prospect of generating this kind
of good news that gives the players an incentive to experiment beyond p∗

1.

3.3 Asymmetric equilibria and welfare properties

For conclusive good news, Keller et al. (2005) show that the symmetric MPE is dom-
inated, in terms of average performance per player, by any asymmetric MPE in simple
strategies; by definition, these are strategies that take values in {0�1} only and hence pre-
scribe exclusive use of an arm at any given belief. Such equilibria have players take turns
using the risky arm at beliefs slightly more optimistic than the single-agent cutoff where,
owing to the lack of an encouragement effect, all experimentation stops. This keeps
the intensity of experimentation bounded away from zero as the belief approaches the
single-agent cutoff, whereas the symmetric MPE would see that intensity fall to zero so
rapidly that the single-agent cutoff is actually not reached in finite time. A higher inten-
sity of experimentation at relatively pessimistic beliefs implies better performance there,
and this improvement ripples up to more optimistic beliefs by backward induction. The
inefficiency of the symmetric MPE close to the single-agent cutoff is actually so severe
that even though it might specify a higher aggregate intensity than a simple MPE over
some range of more optimistic beliefs, its average performance remains worse there.14

We shall show that this unambiguous welfare comparison does not carry over to the
scenario with conclusive bad news. The basis for this finding as well as for the construc-
tion of asymmetric equilibria is the observation that with conclusive breakdowns, any
Markov perfect equilibrium of the N-player experimentation game coincides with the
cooperative solution at all beliefs p ≤ p†

N . In fact, once the value functions of all the
players have crossed DN−1 from above, the profile of players’ best responses is for them
all to use the risky arm until a breakdown occurs. Therefore, below DN−1, each player’s
equilibrium cost function coincides with the cooperative value function U∗

N from Propo-
sition 1. Asymmetric equilibria can thus also be constructed by backward induction
from p†

N , and perform neither better nor worse than the symmetric MPE to the left of
this threshold.

Proposition 3 (Welfare comparison, λ0 = 0). When breakdowns are conclusive, total
costs per player immediately to the right of the threshold belief p†

N are lower in the sym-
metric Markov perfect equilibrium of the N-player experimentation game than in any
equilibrium in simple strategies.

14There could be a range of beliefs, for example, where the simple MPE specifies the intensity K =N − 1
while the symmetric MPE has N − 1 <K <N .
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Proof. Consider an equilibrium in simple strategies with average cost function ū. Im-
mediately to the right of p†

N , this function satisfies ū(p) = s + K{c(p)/N − b(p� ū)} for
some K ∈ {1�2� � � � �N − 1}. Recalling the function WN defined in the proof of Proposi-
tion 2, we have ū(p†

N) = s − (N − 1)c(p†
N) =WN(p†

N) and hence

b(p†
N� ū) = c(p†

N)

N
+ s − ū(p†

N)

K
=

[
1
N

+ N − 1
K

]
c(p†

N) > c(p†
N)= b(p†

N�WN)�

This implies ū′(p†
N) >W ′

N(p†
N). �

In general, the symmetric MPE does not imply lower average costs all the way up
to the belief p̃N at which experimentation takes off. With a view toward providing a
counterexample, we note that when a player is volunteering to experiment with K − 1
others, the Bellman equation (2) with K¬n(p) = K − 1 and kn = 1 gives rise to the ODE
u(p) = s −Kb(p�u)+ c(p) whose general solution is

vK(p) =U∗
K(p)+Cv(1 −p)

(
1 −p

p

)r/(Kλ1)

with some constant of integration Cv. When a player is free-riding on the experimenta-
tion of K others, the Bellman equation (2) with K¬n(p) = K and kn = 0 gives rise to the
ODE u(p) = s −Kb(p�u) whose general solution is

fK(p) = s +Cf (1 −p)

(
1 −p

p

)r/(Kλ1)

with a constant Cf . Inspection of the ODEs for vK and fK shows that these functions are
increasing whenever they are below the myopic cost function; their second derivative
has the same sign as the respective constant of integration.

If N = 2, then, as noted above, both players play risky below and to the left of D1;
above and to the right of D1, safe and risky are mutual best responses as long as the
cost function of at least one player (and hence the average cost function ū) is below the
level s. As ū is increasing over the corresponding range of beliefs, there exists a thresh-
old p̄2�1 with p†

2 < p̄2�1 < p∗
2 such that in any simple Markov perfect equilibrium of the

two-player experimentation game, both players play risky when p ≤ p†
2, one of the two

players is playing risky and the other safe when p†
2 <p ≤ p̄2�1, and both are playing safe

when p > p̄2�1. The assignment of roles within the interval ]p†
2� p̄2�1] is arbitrary. Fig-

ure 2 illustrates the assignment that leads to the most inequitable cost functions, with
player A, the first volunteer, subsequently free-riding over the largest possible interval
of beliefs.15 More equitable value functions emerge simply by exchanging the roles of

15In the labelling of value functions to the right of D1 in Figure 2, the first subscript refers to the aggregate
intensity of experimentation, K = 1, and the second subscript refers to the identity of the player. Note that
when player B free-rides, he has a value function identical to s (which is trivially of the form f1). Intuitively,
player B will only ever switch from the safe to the risky arm if player A observes no breakdown while he acts
as the first volunteer. As the burden of experimentation is subsequently borne by player B himself, player
A’s experimentation has indeed no option value for player B. This implies that player B is worse off than A,
despite his free-riding when the costs of experimentation are high and experimenting when they are low.
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Figure 2. Value functions in a two-player asymmetric equilibrium (λ0 = 0).

free-rider and volunteer more often, the only constraint being that once one of the value
functions is at the level s, that player is assigned the safe role for all higher beliefs and
the other plays risky until his value function is also at the level s.

The numerical solutions (using parameter values r = 1, s = 2, h = 8, λ1 = 1) illus-
trated in Figures 1 and 2 show that it is possible to have p̃2 < p̄2�1; since W2(p̃2) =
s = ū(p̄2�1), this implies that W2(p) > ū(p) immediately to the left of p̄2�1. In general,
therefore, equilibria in simple strategies and the symmetric MPE cannot be compared
in terms of aggregate welfare: while the latter performs better at relatively optimistic
beliefs, the former have the potential to let experimentation take off earlier.

The above construction of a most inequitable equilibrium in simple strategies gen-
eralizes to games involving more than two players, along the lines of Keller et al. (2005,
Section 6.1). Figure 3 shows the assignment of actions in the most inequitable MPE for
N = 3. (At and to the left of p̄N�K , at least K of the N players are playing risky; p̄N�N

can be identified with p†
N .) Unlike the two-player situation, the belief above which there

is no experimentation is endogenously determined by how the burden of experimenta-
tion is shared in the interval to the right of where all agents play risky. In the situation de-
picted in Figure 3, for example, by more frequently changing roles between the free-rider
and two volunteers for beliefs above p†

3, we can increase p̄3�2 (the switch where aggre-
gate experimentation moves up from 1 to 2), with the concomitant increase in p̄3�1 (the
threshold between no experimentation and some); this reduces total costs per player at
those beliefs where one or two of them are playing risky.

The greatest lower bound on total costs per player in simple N-player asymmetric
equilibria is given by the cost function that corresponds to each player allocating K/N
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Figure 3. Action assignments in a three-player asymmetric equilibrium (λ0 = 0).

of her resource to playing risky in the region between DK and DK−1—a mirror image of
the corresponding observation in Keller et al. (2005). In particular, the highest threshold
p̄N�1 in any such equilibrium is bounded away from the efficient cutoff p∗

N .
Exactly like the symmetric MPE, finally, any equilibrium in simple strategies exhibits

a failure of smooth pasting at the boundary of the experimentation region as well as
the encouragement effect, irrespective of the number of players. In fact, if player A is
the one to play risky on ]p̂� p̄N�1] and player B is the one to take over at p̂, then the re-
quirement that b(p̄N�1� v1�A) ≥ c(p̄N�1) implies v′

1�A(p̄N�1) > 0 by the same argument as

before.16 As player B has a value equal to s while free-riding and this value cannot ex-
ceed U∗

1 , moreover, we must have p∗
1 ≤ p̂ and hence p∗

1 < p̄N�1. Clearly, these statements
remain true in any nonsimple asymmetric equilibrium that has the players take turns
playing risky immediately to the left of the threshold belief at which experimentation
takes off.

4. Inconclusive breakdowns

Now suppose that λ0 > 0, so that even a good machine breaks down occasionally. In this
case, j(p) < 1 for all p < 1 and the benefit of an experiment, b(p�u), depends on the
post-jump value u(j(p)). This means that Bellman equations are not ODEs any more,
but constitute differential-difference equations with a nontrivial impact of post-jump
values.

We first show that the cooperative solution is again achieved by a common cutoff
strategy and that the cutoff is uniquely determined by continuous pasting. We then
establish existence of a unique symmetric Markov perfect equilibrium (which again ex-
hibits a failure of smooth pasting) and briefly address the problem of constructing asym-
metric equilibria, which is considerably more difficult than in the case of conclusive
breakdowns.

4.1 Cooperative solution

Suppose that all players behave as in the cooperative solution for conclusive break-
downs, and switch to the safe arm as soon as one of them observes a breakdown. Then
the expected total costs per player as a function of the initial belief are

(
rh

N
+ s

)[
Nλ1

r +Nλ1
p+ Nλ0

r +Nλ0
(1 −p)

]

16Kinks at more optimistic beliefs are caused by discontinuities in the intensity of experimentation car-
ried out by a player’s opponents and, as such, have nothing to do with a failure of the smooth-pasting
principle. In Figure 2, this remark concerns player A at belief p̂ and player B at p†

2.
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by a straightforward generalization of the computation leading up to Proposition 1.
These costs are smaller than s if and only if p is below the threshold

p̄N = (r +Nλ1)(s − λ0h)

(rh+Ns)�λ
= (r +Nλ1)h

(rh+Ns)
pm > pm�

At very optimistic beliefs, switching to the safe arm after a single (inconclusive) break-
down is clearly suboptimal, so the cooperative solution achieves a lower expected to-
tal cost than the one stated above. We should expect, therefore, that the cooperative
optimum will involve experimentation to the right of p̄N . Our next proposition con-
firms this; its proof shows that the optimal cutoff is uniquely determined by continuous
pasting.17

Proposition 4 (Cooperative solution, λ0 > 0). If breakdowns are inconclusive, the N-
agent cooperative solution has all players use the safe arm above a unique cutoff belief
p∗
N > p̄N and use the risky arm below. The cooperative value function is continuous,

concave, and nondecreasing; except for a kink at p∗
N , it is once continuously differentiable.

Proof. Continuity and concavity of the cooperative value function have already been
established in Section 2.

For arbitrary but fixed p̂ in the open unit interval, consider the following profile of
cutoff strategies: all players use the safe arm whenever p > p̂ and use the risky arm
otherwise. Let up̂ denote the players’ corresponding common cost function. For the
common cutoff p̂ to be collectively optimal, up̂ must be continuous at p̂. We wish to
show that a unique such p̂ exists and that the corresponding strategy profile solves the
cooperative problem.

The mapping p̂ �→ up̂(p̂) is continuous with limit λ1h as p̂ tends to 1. For p̂ = pm,
we have

upm(pm) = E
[∫ ∞

0
re−rt min{s�λ(pt)h}dt

]
�

where the expectation is taken over the process {pt} induced by the given strategy profile
for initial belief p0 = pm. As min{s�λ(p)h} < s + �λh(p− pm)/2 for p �= pm, the martin-
gale property of posterior beliefs implies upm(pm) < s. By the intermediate-value theo-
rem, therefore, there exists a p̂ with pm < p̂ < 1 such that up̂(p̂) = s; let p∗

N denote the
smallest such belief and let u∗ denote the corresponding common cost function.

For p ≤ p∗
N , we have s ≥ u∗(p) = s + c(p) − Nb(p�u∗) and thus b(p�u∗) ≥ c(p)/N .

For p>p∗
N , we have b(p�u∗) = 0 < c(p)/N as p>pm. So u∗ solves the Bellman equation

(1), with the minimum being achieved by the actions specified in the proposition. Thus,
u∗ = U∗

N , the cooperative value function, and the stated common strategy is optimal.

17In the statement of this proposition, we use the same notation for the optimal cutoff as in Proposition 1,
although these cutoffs are not identical, of course. More precisely, p∗

N should be thought of as a function
of λ0 (holding all other model parameters fixed), with λ0 = 0 leading to the expression given in Proposi-
tion 1. The same remark applies to the threshold beliefs p†

N and p̃N in Proposition 2 and its counterpart,
Proposition 5 below.
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If there were another cutoff p̂ > p∗
N such that up̂(p̂) = s, the corresponding cost

function would also coincide with the value function by the arguments just given. As
this is impossible, p∗

N is uniquely pinned down by the continuous-pasting condition
up̂(p̂) = s.

On [0�p∗
N ], the intensity of experimentation equals N , so u∗

N is continuously differ-
entiable in this interval by the statements in Section 2. As U∗

N = s on [p∗
N�1], moreover,

concavity implies that U∗
N increases on [0�p∗

N ].
To establish that there is a kink at p∗

N , we note that on the interval ]j−1(p∗
N)�p∗

N [, U∗
N

solves the ODE

�λp(1 −p)u′(p)+
[
r

N
+ λ(p)

]
u(p) = λ(p)

[
rh

N
+ s

]
� (3)

which is obtained from the identity u(p) = s+N{c(p)/N−b(p�u)} by setting u(j(p)) = s

in b(p�u) and rearranging. Letting p tend to p∗
N from below, we see that u′(p∗

N−) has
the same sign as λ(p∗

N)[rh/N + s]−[r/N+λ(p∗
N)]s = rc(p∗

N)/N . This is positive because
p∗
N > pm.

The general solution to (3) is

u(p) =
(
rh

N
+ s

)[
Nλ1

r +Nλ1
p+ Nλ0

r +Nλ0
(1 −p)

]
+C(1 −p)

(
1 −p

p

)(r+Nλ0)/(N�λ)

� (4)

where C is a constant of integration. As the value function is at least weakly concave and
the constant C multiplies a strictly convex function, we must have C ≤ 0. Therefore, p∗

N

cannot be smaller than the belief at which the linear part of (4) equals s. This establishes
p∗
N ≥ p̄N .

To prove the strict inequality, suppose that p∗
N = p̄N (and hence C = 0). Then U∗

N

coincides on [j−1(p∗
N)�p∗

N ] with the expected cost function associated with the (non-
Markovian) strategy of having all players switch to the safe arm upon the first break-
down. As these costs tend to

Nλ0

r +Nλ0

(
rh

N
+ s

)
> λ0h

as p tends to zero, this strategy is strictly suboptimal for small p. As such small p are
reached with positive probability under this strategy when we start from a belief in
[j−1(p∗

N)�p∗
N ], U∗

N must be strictly smaller than the linear part of (4) on this interval—
a contradiction. �

The intuition for the lack of smooth pasting at the socially optimal cutoff is exactly
the same as in the case of conclusive breakdowns.

4.2 Symmetric equilibrium

For conclusive breakdowns, we constructed the unique symmetric MPE by pasting to-
gether the candidate value functions corresponding to all players playing risky, using an
interior allocation, and playing safe, respectively. We did so in the manner of backward
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induction, moving from lower to higher beliefs p. With inconclusive breakdowns, this is
infeasible because the post-jump value u(j(p)) is no longer fixed at λ1h (the expected
total cost of a known bad machine), but must itself be determined in equilibrium.

We therefore adopt an alternative approach. Given a belief at which experimentation
takes off and taking the safe cost level as the initial condition to the right of this belief, we
solve the relevant differential-difference equation moving from higher to lower beliefs.
The equilibrium value function is then pinned down uniquely by the requirement that
it lie everywhere in between the single-agent and the cooperative value functions, and
hence tend to λ0h as p goes to zero.18

Proposition 5 (Symmetric MPE, λ0 > 0). If breakdowns are inconclusive, the N-player
experimentation game has a unique symmetric Markov perfect equilibrium with the com-
mon posterior belief as the state variable. The equilibrium strategy is continuous and
nonincreasing, and there are threshold beliefs p†

N < p̃N with p∗
1 < p̃N < p∗

N such that all

players play risky for p ≤ p†
N , use an interior allocation for p†

N < p < p̃N , and play safe
for p ≥ p̃N . The equilibrium value function is continuous, strictly increasing on [0� p̃N ],
and once continuously differentiable except for a concave kink at p̃N .

Proof. For any p̃ ∈ [p∗
1�p

∗
N ], let up̃ : ]0�1] →R be the unique solution of the differential-

difference equation

b(p�u) = max
{
λ(p)h− u(p)

N
�c(p)

}
(5)

subject to up̃ = s on [p̃�1].
We first show that up∗

1
> U∗

1 on ]0�p∗
1[. Noting that �λp∗

1(1 − p∗
1)(up∗

1
)′(p∗

1)/r =
b(p∗

1�up∗
1
) = c(p∗

1) = b(p∗
1�U

∗
1 ) = �λp∗

1(1 − p∗
1)(U

∗
1 )

′(p∗
1)/r, we see that (up∗

1
)′(p∗

1) =
(U∗

1 )
′(p∗

1). Immediately to the left of p∗
1, moreover,

�λp(1 −p)(up∗
1
)′(p)− λ(p)[s − up∗

1
(p)] = r[λ(p)h− s]

and

�λp(1 −p)(U∗
1 )

′(p)− λ(p)[s −U∗
1 (p)] = r[λ(p)h−U∗

1 (p)]�
so that the difference d = up∗

1
−U∗

1 solves

�λp(1 −p)d′(p)+ λ(p)d(p)= r[U∗
1 (p)− s]�

Differentiating both sides with respect to p and using the fact that d(p∗
1) = d′(p∗

1) = 0
as well as (U∗

1 )
′(p∗

1) > 0, we see that d′′(p∗
1) > 0 and, hence, d > 0 immediately to the

left of p∗
1. Now, suppose that there is a belief in ]0�p∗

1[ at which d ≤ 0. Then there exist
p′ < p′′ in this interval such that d(p′) = 0, d > 0 on ]p′�p∗

1[, and the restriction of d to

18This “shooting” method is the same as in Keller and Rady (2010) except for the complication that we are
trying to hit a point where the relevant differential equation is singular (the coefficient of the first derivative
vanishes at p = 0). We overcome it by first constructing a sequence of solutions on subintervals that get
closer and closer to p = 0, and then showing existence of a convergent subsequence. Earlier examples of
this approach can be found in Keller and Rady (1999, 2003) and Bonatti (2011).
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[p′�1] assumes a positive global maximum at p′′. As d′(p′′) = 0 and d(j(p′′)) ≤ d(p′′),
we have b(p′′�up∗

1
) ≥ b(p′′�U∗

1 ); as b(p′′�U∗
1 ) > c(p′′), moreover, (5) implies up∗

1
(p′′) =

λ(p′′)h−Nb(p′′�up∗
1
) ≤ λ(p′′)h− b(p′′�U∗

1 ) =U∗
1 (p

′′)—a contradiction.
Analogous steps establish that up∗

N
< U∗

N on ]0�p∗
N [. By continuous dependence of

up̃ on p̃, we can now find beliefs p̃� ∈]p∗
1�p

∗
N [ for � = 1�2� � � � such that u� = up̃�

sat-
isfies U∗

N(�−1) ≤ u�(�
−1) ≤ U∗

1 (�
−1). By the same argument as above, in fact, we have

U∗
N ≤ u� ≤ U∗

1 on [�−1�1]. Selecting a subsequence if necessary, we can assume that
the beliefs p̃� converge monotonically to some limit p̃∞. If p̃� decreases with �, we
set I� =]�−1�p∞[; otherwise we set I� =]�−1�p�[. In either case, I�+1 ⊃ I� for all � and⋃∞

�=1 I� =]0�p∞[.
Next, we note that for each �, there exists a constant C� > 0 such that the following

holds for any function u : ]0�1] → R satisfying U∗
N ≤ u ≤ U∗

1 : if u solves (5) on I�, then
|u′| ≤ C� on this interval. In fact, the stated conditions imply both

�λp(1 −p)u′(p)≤ λ(p)
[
U∗

1 (j(p))−U∗
N(p)

] + r max
{
λ(p)h−U∗

N(p)

N
�c(p)

}

and

�λp(1 −p)u′(p) ≥ λ(p)
[
U∗
N(j(p))−U∗

1 (p)
] + r max

{
λ(p)h−U∗

1 (p)

N
�c(p)

}

in I�, from which the claim follows immediately.
This in turn implies that for any L = 1�2� � � � , the sequences {u�}�≥L and {u′

�}�≥L are
uniformly bounded and equicontinuous on IL. Repeatedly applying the Arzela–Ascoli
theorem and then selecting the diagonal subsequence, we obtain a sequence of func-
tions {uL}∞L=1 and a limit function ũ such that uL converges pointwise to ũ on ]0�1] and
u′
L converges uniformly on each closed subinterval of ]0� p̃∞[. On the latter interval,

therefore, ũ is once continuously differentiable and solves (5); on [p̃∞�1], we obviously
have ũ = s. As U∗

N ≤ ũ ≤ U∗
1 on ]0�1], finally, we can extend ũ continuously to the closed

unit interval by setting ũ(0) = λ0h.
From now on we write p̃N instead of p̃∞. In view of what was shown at the start of

this proof, we have p∗
1 < p̃N < p∗

N . Letting p tend to p̃N from below in (5), we see that
ũ′(p̃N−) has the same sign as c(p̃N), which is positive since p̃N > p∗

1 >pm.
We wish to establish that ũ is strictly increasing on [0� p̃N ]. Suppose that this is not

the case. Then there exist beliefs p′ > q′ in ]0� p̃N [ such that ũ(p′) − ũ(q′) ≤ 0 is the
minimum of ũ(p)− ũ(q) on {(p�q) ∈ [0�1]2 :p ≥ q}. As ũ′(p′)= 0, (5) yields

λ(p′)
[
ũ(j(p′))− ũ(p′)

] + r max
{
λ(p′)h− ũ(p′)

N
� c(p′)

}
= 0�

As ũ(p′) ≤ U∗
1 (p

′) < λ(p′)h, this implies ũ(j(p′)) < ũ(p′) and, hence, ũ(j(p′)) − ũ(q′) <
ũ(p′)− ũ(q′). As j(p′) > p′ > q′, this is a contradiction.

Now, let p†
N = inf{p : ũ(p) > s − (N − 1)c(p)} and set k̃(p) = 1 for p ≤ p†

N , k̃(p) =
[s − u(p)]/[(N − 1)c(p)] for p†

N < p < p̃N , and k̃(p) = 0 for p ≥ p̃N . This strategy is
nonincreasing and Lipschitz-continuous. It is straightforward to verify that all players
using this strategy constitutes a symmetric equilibrium with value function ũ.
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To establish uniqueness of the symmetric MPE, it is useful to note that the players’
common value function in any such equilibrium must solve the variational inequality

max
{
b(p�u)− max

{
λ(p)h− u(p)

N
�c(p)

}
�u(p)− s

}
= 0� (6)

To see that this is the case, suppose that all players using a strategy k constitutes a
symmetric MPE with equilibrium value function u, and consider the three cases that
are possible according to the characterization of best responses in Section 2. First, if
k(p) = 0 and u(p) = s, then (6) holds if and only if b(p�u) ≤ max{c(p)/N�c(p)}; as
b(p�u) ≥ 0, this inequality is tantamount to b(p�u) ≤ c(p), which must hold because
otherwise k(p) = 0 would not be a best response against the other N − 1 players us-
ing the safe arm exclusively. Second, if 0 < k(p) < 1 and u satisfies b(p�u) = c(p) with
s − (N − 1)c(p) < u(p) < s, then (6) holds because max{[λ(p)h− ũ(p)]/N�c(p)} = c(p).
Third, if k(p) = 1 and u(p) = s − Nb(p�u) + c(p) ≤ s − (N − 1)c(p), then (6) holds be-
cause b(p�u)≥ c(p) and max{[λ(p)h− u(p)]/N�c(p)} = max{b(p�u)� c(p)} = b(p�u).

Clearly, ũ solves (6). Suppose that u is also a solution with u(0) = λ0h and u(1) = s.
Then a straightforward extension of the arguments given at the start of the proof shows
that u − ũ assumes neither a positive maximum nor a negative minimum. So we must
have u= ũ as claimed. �

The explanations for the kink of the equilibrium value function at p̃N , for smooth
pasting at p†

N , and for the encouragement effect (that is, p̃N > p∗
1) are the same as in the

case of conclusive breakdowns.
Immediately to the left of p̃N , (5) has the general solution

w(p) = s + r

λ1
(λ1h− s)p− r

λ0
(s − λ0h)(1 −p)+C(1 −p)

(
1 −p

p

)λ0/(�λ)

�

which is strictly convex if and only if C > 0. Under the value-matching condition
w(p̃N) = s, this is equivalent to

p̃N <
λ1

�λ

s − λ0h

s
�

As the right-hand side of this inequality tends to 1 as λ0 → 0, we see that the equilibrium
value function is strictly convex immediately to the left of p̃N at least for small λ0. As in
the case of conclusive breakdowns, therefore, a nonnegative value of information in the
large can coexist with a negative value of information in the small.

4.3 Asymmetric equilibria

The construction of asymmetric Markov perfect equilibria for inconclusive breakdowns
is considerably more difficult than for conclusive ones because we can no longer use
backward induction from the belief at which all players start using the risky arm. More-
over, asymmetric actions (and hence asymmetric total expected costs) on some interval
of beliefs I necessarily imply asymmetric post-jump continuation values on the interval
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of more optimistic beliefs j−1(I), and as more optimism translates into a higher intensity
of experimentation, the latter interval will be reached with positive probability.

In the scenario with inconclusive good news, by contrast, the beliefs in j−1(I) are
more pessimistic than those in I; if the interval I on which players take asymmetric ac-
tions is close to the belief at which all experimentation stops in equilibrium, the inter-
val j−1(I) is never reached. This allows Keller and Rady (2010) to construct asymmet-
ric equilibria for an arbitrary number of players in which actions and total payoffs are
symmetric everywhere except on some interval of beliefs where the players take turns
playing risky; see their Proposition 5.

On the path of play in these equilibria, the players always have symmetric contin-
uation values after a breakthrough. If the last experimenter is instead rewarded with a
higher payoff after a breakthrough, equilibrium experimentation can be sustained on a
larger range of beliefs, as Keller and Rady (2010) illustrate for λ0 close to zero by means
of numerically computed two-player equilibria in simple strategies; see their Section 7.
The method used to construct these equilibria carries over to the present framework
with two modifications: on the one hand, there is no need to require that λ0 be close to
zero; on the other hand, the construction is more involved in that we again have to solve
for the cost functions by shooting into the singularity at p = 0, which can be done as for
the symmetric MPE.

The details of this construction are available upon request. We do not present them
here because it is clear from our earlier arguments that these asymmetric equilibria
again exhibit a failure of smooth pasting at the belief where the first experimenter starts
using the risky arm.

5. Concluding remarks

The aim of this paper was to identify and explain the differences between the bad-news
and good-news versions of strategic experimentation with Poisson bandits. The most
striking of these differences concerns the validity of the smooth-pasting principle; oth-
ers appear most clearly in the special case of conclusive news and concern the encour-
agement effect, the value of information in the unique symmetric Markov perfect equi-
librium, and the welfare properties of asymmetric equilibria.

Given our interest in these differences, we did not address results that carry over un-
changed from good to bad news and can be proved exactly as in Keller et al. (2005) and
Keller and Rady (2010). These include the nonexistence of equilibria in cutoff strate-
gies and (for inconclusive news) the representation of equilibrium value functions in a
recursive closed form.

We maintained the assumption made in these earlier papers that the size of a lump-
sum payoff or cost conveys no information about the state of the world. If this size were
informative, it would no longer be exogenously predetermined whether a news event
makes the players more optimistic or more pessimistic. In such a model, it would be
impossible, therefore, to construct equilibrium payoff functions iteratively by moving
against the direction of jumps in beliefs, as we did in Section 4. The variational inequal-
ity (6) that we used to prove uniqueness of the symmetric equilibrium would still hold,
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however, and could provide a starting point for an existence and uniqueness proof based
on the theory of viscosity solutions, for example. This approach appears equally promis-
ing in a setting with more than two states of the world, where beliefs are elements of a
simplex of dimension two or higher. We intend to explore these extensions in future
work.
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