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We study games endowed with a pre-play phase in which players prepare the ac-
tions that will be implemented at a predetermined deadline. In the preparation
phase, each player stochastically receives opportunities to revise her actions, and
the finally revised action is taken at the deadline. In two-player “common inter-
est” games, where there exists a best action profile for all players, this best action
profile is the only equilibrium outcome of the dynamic game. In “opposing in-
terest” games, which are 2 × 2 games with Pareto-unranked strict Nash equilibria,
the equilibrium outcome of the dynamic game is generically unique and corre-
sponds to one of the stage-game strict Nash equilibria. Which equilibrium pre-
vails depends on the payoff structure and on the relative frequency of the arrivals
of revision opportunities for each of the players.
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1. Introduction

This paper studies a situation in which players prepare their actions in a pre-play phase
before the actions are taken at a predetermined deadline. As the deadline approaches,
each player has the opportunity to prepare an action at stochastically determined (Pois-
son) times. At the deadline, the actions most recently prepared are taken and the play-
ers’ payoffs are determined only by these actions. In this framework, called the revision
game, Kamada and Kandori (2010) show that the addition of pre-play phase can widen
the set of achievable payoffs. This paper uncovers another role that the pre-play phase
can play. We show that it can narrow down the set of achievable payoffs.

We study this problem in two classes of games where coordination is an issue. The
first is common interest games, in which there is an action profile that all players strictly
prefer to all other profiles. For this class of games, we show that, in two-player games,
this “best profile” is the unique outcome of the revision game. The second class of games
is that of opposing interest games, which are 2×2 games with two Pareto-unranked strict
Nash equilibria. In this class of games, we show that generically there is a unique out-
come of the revision game, which corresponds to one of the strict Nash equilibria. Which
equilibrium prevails in the revision game depends on the payoff structure and the rel-
ative arrival frequency of revision opportunities for each player. We prove these results
by using a type of backward-induction argument in continuous time.

Three assumptions, in addition to the assumption that revision opportunities are
stochastic, are crucial to our results. The first one is observability. If a player is unable
to observe what the other player has prepared, then the revision phase has no bind-
ing force, and so the equilibrium outcomes of revision games are identical to those of
static games. The second is asynchronicity. If all revision opportunities are synchronous,
then any repetition of static Nash equilibria is subgame perfect. Hence, uniqueness
does not hold if there are multiple static Nash equilibria. However, if opportunities
are asynchronous, each player’s preparation must be contingent on the opponent’s cur-
rent action (by observability). Thus a player can induce the opponent to prepare some
particular action by using as a threat the possibility that she may not be able to re-
vise her own action before the deadline. The third key ingredient is finite actions and
strict incentives. As we will argue, uniqueness is implied by backward induction. If
there are only finitely many actions and the static game best replies to pure actions
are strict, then each player has a single best reply near the deadline (by asynchronicity)
in the revision game, and this constitutes the starting point of our backward induction
argument.

These assumptions seem natural in real-life and economic contexts where coordina-
tion is crucial. For example, such a situation arises in the daily practice of some finan-
cial markets, such as Nasdaq or Euronext, for example, where half an hour before the
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opening of the market, participants are allowed to submit orders, which can be with-
drawn and changed until opening time. These orders and the resulting (virtual) equi-
librium trading price are publicly posted during the whole “pre-opening” period. Only
orders that are still posted at the opening time are binding and, hence, executed. In this
framework, it is natural to assume that orders are submitted asynchronously and that
traders do not always manage to withdraw old orders or submit new orders instanta-
neously because it takes a certain random time to fill in the new order faultlessly. Ob-
servability holds as the posted orders are displayed on the screen, and the number of
payoff-relevant orders is practically finite.1,2

The rest of the paper is organized as follows. Section 2 reviews the related litera-
ture. Section 3 introduces the model. Section 4 presents a simple but useful lemma
that allows us to implement a backward-induction argument in continuous time. Sec-
tion 5 considers common interest games and Section 6 studies two-player opposing in-
terest games. Section 7 discusses further results. Some of the proofs are relegated to the
Appendix.

2. Literature review

Cheap talk

It is important to make a distinction between our model and cheap-talk models such
as those in Farrell (1987), Rabin (1994), and Aumann and Hart (2003). In these models,
players are allowed to be involved in pre-play nonbinding communication. In contrast,
in our model, at each moment of time, the prepared action will become the final payoff-
relevant action with a strictly positive probability. For this precise reason, the outcome
can be affected by the addition of a revision phase in our model.

Equilibrium selection

It is instructive to compare our selected outcome with those in the equilibrium selec-
tion literature. In many works on equilibrium selection, the risk-dominant equilibria of
Harsanyi and Selten (1988) are selected in 2×2 games. In our model, however, a different
answer is obtained: a strictly Pareto-dominant Nash equilibrium is taken even when it is
risk-dominated. Roughly speaking, since we assume perfect and complete information
with nonanonymous players, there is only a very small “risk” of miscoordination when
the deadline is far. There are three lines of the literature in which risk-dominant equilib-
ria are selected: models of global games, stochastic learning models with myopia, and

1Given this application, Calcagno and Lovo (2010) call the revision game a pre-opening game.
2Biais et al. (2014) present an experiment that simulates pre-opening in a financial market where the

actual play is preceded by (only) one round of pre-play communication, which is either completely bind-
ing or completely nonbinding. In both specifications, players choose their actions simultaneously and
there are multiple subgame perfect equilibria (SPE). Consistently, they find both Pareto efficient and Pareto
inefficient outcomes are observed in the experiment.



412 Calcagno, Kamada, Lovo, and Sugaya Theoretical Economics 9 (2014)

models of perfect foresight dynamics.3,4 Since the model of perfect foresight dynamics
seems closely related to ours, let us discuss it here.

Perfect foresight dynamics

Perfect foresight dynamics are studied by Matsui and Matsuyama (1995) in evolutionary
models in which players are assumed to be patient and “foresighted.” That is, they value
the future payoffs and take best responses given (correct) beliefs about the future path
of play.5 A continuum of agents is randomly and anonymously matched over an infi-
nite horizon according to a Poisson process. In this setup, they select the risk-dominant
action profile in 2×2 games with two Pareto-ranked (static) Nash equilibria. The key dif-
ference is that they assume anonymous agents while we assume nonanonymous agents.
For the “best action profile” to be selected in our model, it is important for each player to
expect that if she prepares an action corresponding to the best profile, then that prepa-
ration can affect the other player’s future preparation. This strategic consideration is
absent when players are anonymous.

Common interest games and asynchronous moves

Farrell and Saloner (1985) and Lagunoff and Matsui (1997) are early works on the topic
of obtaining the unique outcome in common interest games.6  Dutta (2012) shows con-
vergence to the unique outcome and Takahashi (2005) proves uniqueness of subgame
perfect equilibria when players move asynchronously. One difference is that we as-
sume a stochastic order of moves while they consider a fixed order. Also, we obtain a
uniqueness result more generally than do Lagunoff and Matsui (1997) due to the finite
horizon.

3The literature on global games was pioneered by Rubinstein (1989), and analyzed extensively in
Carlsson and van Damme (1993), Morris and Shin (1998), and Sugaya and Takahashi (2009). They show
that the lack of almost common knowledge due to incomplete information can select an equilibrium. The
type of incomplete information they assume is absent in our model. Stochastic learning models with my-
opia are analyzed in Kandori et al. (1993) and Young (1993). They consider a situation in which players
interact repeatedly, and each player’s action at each period is stochastically perturbed. The key difference
between their assumptions and ours is that in their model players are myopic while we assume that players
prepare actions anticipating their opponents’ future moves. In addition, the game is repeated infinitely in
their models, while the game is played once and for all in our model.

4As an exception, Young (1998) shows that in the context of contracting, his evolutionary model does not
necessarily lead to the risk-dominant equilibrium (p-dominant equilibrium in Morris et al. 1995). But he
considers a large anonymous population of players and repeated interaction, so the context he focuses on
is very different from the one of this paper.

5See also Oyama et al. (2008).
6Dutta’s (1995) result implies that this result in Lagunoff and Matsui (1997) is due to the lack of full di-

mensionality of the feasible and individually rational payoff set. See also Lagunoff and Matsui (2001), Yoon
(2001), and Wen (2002). Rubinstein and Wolinsky (1995) show that even when the discount factor is arbi-
trarily close to 1, the set of SPE payoff vectors of the repeated games that result from the repetition of the
extensive form game may not coincide with those that result from the normal form game if the individually
rational payoffs are different or full dimensionality is not satisfied.
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War of attrition with incomplete information

The intuition behind the result for opposing interest games is similar to that for the “war
of attrition with incomplete information.”7 Although the structure of the equilibria in
war of attrition is similar to the structure of the equilibria in our model, the reasoning
is different: in our model, players use the probability of not having future revision op-
portunities as a “commitment power” while the literature in the war of attrition assumes
the existence of “commitment types” a priori.

Switching cost

Our model assumes that no cost is associated with revision. Several papers consider
a finite-horizon model with switching cost and show that a unique outcome prevails
in their respective games. Typically, the existence of switching cost results in different
implications on equilibrium behavior. See, for example, Lipman and Wang (2000) and
Caruana and Einav (2008) for details.

Revision games

Kamada and Kandori (2010) introduce the model of revision games. They show that,
among other things, non-Nash “cooperative” action profiles can be taken at the deadline
when a certain set of regularity conditions is satisfied. Hence, their focus is on expanding
the set of equilibria when the static Nash equilibrium is inefficient relative to non-Nash
profiles. We ask a very different question in this paper: we consider games with multiple
efficient static Nash equilibria and ask which of these equilibria is selected.8 What drives
this difference is that the action space is finite in our paper, whereas it is not in Kamada
and Kandori (2010). Kamada and Sugaya (2010b) consider a revision game model in
which the players have finite action sets in the context of an election campaign. The
main difference with our paper is that they assume once a player changes her action,
she cannot revise it further. Thus the characterization of the equilibrium is essentially
different from the analysis in the present paper because in our model, when another
opportunity arrives, a player can always change her prepared action to the previously
prepared action.9

Further results

Finally, further results beyond what we have in this paper can be found in either or both
Calcagno and Lovo (2010) and Kamada and Sugaya (2010a). We refer to these papers
whenever appropriate.

7For example, among others, see Abreu and Gul (2000) and Abreu and Pearce (2007).
8See also Ambrus and Lu (2009) for a variant of the revision games model of bargaining in which the

game ends when an offer is accepted.
9van Damme and Hurkens (1996) analyze a related model of “timing games,” in which players can choose

the timing of their move out of two periods and they cannot switch back.
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3. The model

We consider a two-player normal-form finite game ((Xi)i=1�2� (ui)i=1�2) (the component
game) where Xi is the finite set of player i’s actions with |Xi| ≥ 2 and ui :X → R is player
i’s utility function. Here, X = X1 × X2 is the set of action profiles. We use a female
pronoun for player 1 and a generic player i, and use a male pronoun for player 2.

Before players take actions, they need to “prepare” their actions. We model this sit-
uation as in Kamada and Kandori (2010): time is continuous, t ∈ [−T�0], and the com-
ponent game is played once and for all at time 0. The revision game proceeds as follows.
First, at time −T , the initial action profile is exogenously given.10 In the time interval
(−T�0], each player independently obtains opportunities to revise her prepared action
according to two random Poisson processes p1 and p2 with arrival rates λ1 and λ2, re-
spectively, where λi > 0, i = 1�2. As the Poisson processes p1 and p2 are independent,
the probability that the two players revise their actions simultaneously is zero. In other
words, almost certainly only asynchronous revision opportunities arise.11 At t = 0, the
action profile that has been prepared most recently is actually taken and each player
receives the payoff that corresponds to the payoff specification of the component game.

So as to define the strategy space of the revision game, suppose the game has
reached time t. We assume here that each player i at any time t has perfect informa-
tion about all past events. In particular, she knows whether i has a revision opportunity
at t but does not know whether the opponent gets an opportunity at t. Formally, for
any given t ∈ (−T�0], let Hn

i (t) and Hr
i (t) denote the subset of all possible histories for

player i such that she does not have a revision opportunity at t and that she does have
a revision opportunity at t, respectively. Thus, the set of all possible histories for player
i is Hi := ⋃

t∈[−T�0]Hn
i (t) ∪ Hr

i (t). A history for player i at t ∈ (−T�0] takes either of the
following two forms, depending on whether i receives an opportunity at t:

hi(t) = ((tk1 �x
k
1 )

k1
k=0� (t

k
2 �x

k
2 )

k2
k=0) ∈Hn

i (t)

if player i does not have a revision opportunity at t and

hi(t) = ((tk1 �x
k
1 )

k1
k=0� (t

k
2 �x

k
2 )

k2
k=0� t) ∈Hr

i (t)

if she does, where t0
i := −T , ki is a nonnegative integer for i = 1�2, −T < t1

i < t2
i < · · · <

t
ki
i < t for i = 1�2, and xki ∈Xi for i = 1�2. The interpretation is that x0

i is the exogenously
given action for player i at time t0

i = −T , ki is the number of revision opportunities that
i has received in the time interval (−T� t), tki is the time at which player i received her
kth revision opportunity, and xki is the action player i prepared at tki .

A strategy for player i is a mapping σi :Hi → {∅} ∪ �(Xi), where σi(hi(t)) = ∅ if
hi(t) ∈Hn

i (t) and σi(hi(t)) ∈ �(Xi) if hi(t) ∈Hr
i (t).

10As we will see, the uniqueness results in Sections 5 and 6 become even sharper if players simultane-
ously choose actions at time −T .

11We refer to Section 7 for a discussion of the role played by this assumption. See Calcagno and
Lovo (2010) and Ishii and Kamada (2011) for more general processes that underlie the arrival of revision
opportunities.
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For any given history hi(t), let xi(t) := x
ki
i ∈ Xi be player i’s prepared action that

resulted from his last revision opportunity (strictly) before t. We denote by x(t) :=
{xi(t)}i=1�2 the last prepared action profile (PAP) before time t. Note that xi(t) is player
i’s payoff-relevant action at t = 0 in the event i receives no further revision opportunities
in the time interval [t�0].

Our main results concern subgame perfect equilibrium (SPE) of the revision game
for the case when T is large. However, we note that the model with arrival rate (λ1�λ2)

and horizon length T is essentially equivalent to the model with arrival rates (aλ1� aλ2)

and horizon length T/a, for any positive constant a.12 Hence, all our results obtained for
T large enough and fixed revision frequencies (λ1�λ2) can be obtained by keeping fixed
the horizon T and having revisions frequent enough.

To avoid ambiguity, in the rest of the paper, we use the term revision equilibrium
for a SPE of the whole revision game and (strict) Nash equilibrium for a (strict) Nash
equilibrium of the component game.

4. Backward induction in continuous time

The proofs of our main results rely on the idea of backward induction. The standard
backward-induction argument starts by proving a statement for the last period and then,
given the statement is true, proves the statement for the second-last period and so forth.
However, this argument is not immediately applicable to our continuous-time setting,
as there is no obvious definition of “second-last period.” In this section, we present a
lemma that allows us to implement a type of backward-induction argument in continu-
ous time. The proof is given in Appendix A.1.

Lemma 1. Suppose for every t ∈ (−T�0], there exists ε > 0 such that statement At ′ is true
for all t ′ ∈ (t − ε� t] if statement At ′′ is true for every t ′′ > t. Then, for every t ∈ (−T�0],
statement At is true.

Note that the ε in the statement of the lemma can depend on t. Hence, in particular,
the lemma goes through even though the required ε shrinks to zero as t approaches
some finite constant and then jumps discontinuously there.13

5. Common interest games

In this section, we consider a component game with an action profile that strictly Pareto-
dominates all other action profiles. Formally, we say that an action profile x∗ is strictly
Pareto-dominant if ui(x∗) > ui(x) for all i and all x ∈ X with x �= x∗. We say that a game
is a common interest game if it has a strictly Pareto-dominant action profile. Notice that
if x∗ is strictly Pareto-dominant, then it is a strict Nash equilibrium.

For example, the games in Figure 1 are common interest games. In each case, (U�L)

is strictly Pareto-dominant.
The first main result of this paper is the following.

12See the “arrival rate invariance” result discussed in Kamada and Kandori (2010).
13A version of the lemma that switches the order of quantifiers (so that ε cannot depend on t) appears in

Chao (1919).
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L R

U

D

2�2 −10�1
1�−10 1�1

L C R

U

M

D

2�2 1�0 −4�1
1�1�5 1�1 −3�1
1�0 0�1 0�0

Figure 1. Common interest games.

Theorem 1. Consider a common interest component game and let x∗ be the strictly
Pareto-dominant action profile. Then for any ε > 0, there exists T ′ > 0 such that for all
T > T ′, in all revision equilibria, x(0) = x∗ with probability higher than 1 − ε.

5.1 Intuition

The proof consists of two steps. First, we show that x∗ is absorbing in the revision game:
since the action space is finite, the difference between ui(x

∗) and i’s second best payoff
is strictly positive. Therefore, when the PAP is x∗, no player wants to prepare another
action, and to create a possibility that she cannot have further revision opportunities
and will be forced to take a second best or even worse action profile.

Second, given the first step, each player i knows that if her opponent −i has a revi-
sion opportunity while player i prepares x∗

i , then the opponent will prepare x∗
−i. Hence,

the lower bound of the equilibrium payoff for each player is given by always preparing
x∗
i whenever she receives a revision opportunity. If T is sufficiently large, then this strat-

egy gives her a payoff very close to ui(x
∗), which means x∗ should be taken with high

probability at the deadline in any revision equilibrium.

5.2 Proof of Theorem 1

Now we offer the formal proof. The two steps in the formal proof correspond to those in
the intuitive explanation above.

Step 1. Let m := mini�x �=x∗(ui(x∗)− ui(x)), the minimum across players of the differ-
ences between the best payoff and the second best payoff. Since X is finite and x∗ is
strictly Pareto-dominant, m is well defined and positive.

Fix t ≤ 0 arbitrarily. Suppose that for all time after t < 0, each player i has a strict
incentive to prepare x∗

i if the opponent −i’s prepared action is x∗
−i.

14 Suppose also that
player i obtains a revision opportunity at time t−ε and −i’s prepared action is x∗

−i. Then
the payoff from preparing x∗

i is at least

ui(x
∗)− (1 − e−(λi+λ−i)ε)M� (1)

where M := maxi�x �=x∗(ui(x∗) − ui(x)) < ∞, because with probability at least e−(λi+λ−i)ε,
no further revision opportunities arrive between t − ε and t, and the PAP at time t is x∗.
In such a case, action x∗ will be taken at the deadline by assumption. On the other hand,
the payoff from preparing an action xi �= x∗

i is at most

ui(x
∗)− e−λi(−t+ε)m� (2)

14For t = 0, this is vacuously true.
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because with probability e−λi(−t+ε), player i never has a revision opportunity again and
in such a case, the action profile at the deadline cannot be x∗.

Notice that expression (1) is strictly greater than expression (2) for ε = 0. Also by the
continuity of (1) and (2) with respect to ε, there exists ε′ > 0 such that for all ε ∈ (0� ε′),
expression (1) is strictly greater than expression (2).15 Hence, by Lemma 1, we have that
for any t < 0, each player i has a strict incentive to prepare x∗

i if her opponent −i prepares
x∗

−i.
Step 2. Since in any subgame perfect equilibrium, players can guarantee at least

the payoff that can be obtained by always playing the action x∗
i , it suffices to show that

the payoff of always preparing x∗
i converges to the strictly Pareto-dominant payoff as T

goes to infinity. This implies that the probability of the action being x∗ at the deadline
converges to 1, as desired.

By Step 1, the action profile x∗ is the absorbing state: each player has a strict incen-
tive to prepare x∗

i if her opponent −i prepares x∗
−i. In two-player games, since player i is

the unique opponent of player −i, player −i prepares x∗
−i if player i prepares x∗

i . There-
fore, the payoff of always preparing x∗

i guarantees a payoff that converges to ui(x
∗).

5.3 Remarks

Four remarks are in order at this stage.
First, if players choose their actions at −T , then we can pin down the behavior of

players on the equilibrium path. In fact, in Appendix A.2, we show that in a common
interest game defined as above, players prepare the strictly Pareto-dominant profile x∗
at all times t ∈ [−T�0] on the (unique) path of play in any revision equilibrium.

Second, notice that if there exist two strict Pareto-ranked Nash equilibria in a 2 × 2
component game, then the game is a common interest game. Hence, in such a case, the
Pareto-superior Nash equilibrium is the outcome of the revision game.16

Third, the outcome of the revision game is the strictly Pareto-dominant profile even
if it is risk-dominated by another Nash equilibrium. For example, in the left payoff ma-
trix in Figure 1, the action profile (U�L) is risk-dominated while it is the equilibrium
outcome of the revision game. The key is that whenever a player prepares x∗

i (the ac-
tion that corresponds to the Pareto-dominant profile), the opponent will move to the
Pareto-dominant profile whenever she can revise and they stay at this profile until the
deadline (Step 1 of the proof in the previous subsection). Therefore, if the remaining
time is sufficiently long, then the “risk of miscoordination” by preparing x∗

i is arbitrarily
small (Step 2).

Fourth, notice that we allow for the component game to be different from a pure
coordination game (i.e., a game in which two players have identical payoff functions).
This result is in stark contrast to the result of Lagunoff and Matsui (1997), which applies

15Note that here we again use the assumption that the action space is finite, so that the maximum payoff
difference is bounded.

16Note that Kamada and Kandori (2010) prove that if each player has a strictly dominant action when the
action space is finite, then it is taken in asynchronous revision games.



418 Calcagno, Kamada, Lovo, and Sugaya Theoretical Economics 9 (2014)

only to pure coordination games (see Yoon 2001). This difference comes from the dif-
ferent assumptions on the horizon: since their models have an infinite horizon, there
can be an infinite sequence of punishments. On the other hand, in our model, there
is a deadline so the incentives near the deadline can be perfectly pinned down as x∗ is
strictly Pareto-dominant. Hence, we can implement backward induction starting from
the deadline.

5.4 n-player case

In this subsection, we examine how the result in this section can be generalized to the
case of n players. The model setting and the strictly Pareto-dominant profile, denoted
x∗, are analogously defined. Let I be the set of players and denote by λi the arrival rate
of the revision opportunities for player i. Also, define ri = λi/

∑
j∈I λj . We assume |I| :=

n ≥ 2.
Step 1 of the proof is easily extended to the case of n players. However, Step 2 cannot

be extended. With more than two players, if each player i currently prepares an action
different from x∗

i , no single player can create a situation where it is enough for only one
player to change her preparation so as to go to x∗. Hence, the proof in Section 5.2 does
not work. Below we show that if there are more than two players, a unique selection re-
sult is obtained when the preferences of the players are similar, where the measurement
of similarity is given by the following definition.

Definition 1. A common interest game is said to be a K-coordination game if for any
i� j ∈ I and x ∈X ,

ui(x
∗)− ui(x)

ui(x∗)− ui
≤K

uj(x
∗)− uj(x)

uj(x∗)− uj
�

where ui = minx ui(x).

The minimum of K is 1 when the game is a pure coordination game, where the play-
ers have exactly the same payoff functions. As K increases, the preferences become less
aligned.

Let α = mini∈I ri (the smallest value of ri) and β = mini∈I�i �=j∗ ri where j∗ is an arbitrary
member of arg mini∈I ri (the second smallest value of ri).

Theorem 2. Suppose that a common interest game is a K-coordination game with the
strict Pareto-dominant action profile x∗ and

(1 − α−β)K < 1 −β� (3)

Then, for any ε > 0, there exists T ′ such that for all T > T ′, in all revision equilibria,
x(0) = x∗ with probability higher than 1 − ε.

The proof is given in Appendix A.3 and a detailed discussion can be found in Kamada
and Sugaya (2010a).
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Figure 2. A counterexample.

Several remarks regarding condition (3) are in order. The smaller K is, the more likely
this condition is to be satisfied. In particular, if the game is a pure-coordination game
(i.e., if K = 1), then it is always satisfied. In addition, for a fixed K and number of players,
if the relative frequency ri is more equally distributed, the condition is more likely to be
satisfied. Note also that if we let λi = λj for all i� j ∈ I and fix K > 1, then it is more likely
to be satisfied as the number of players becomes smaller. The condition is automatically
satisfied in two-player games since 1 −α−β = 0, so that Theorem 2 implies Theorem 1.

To understand the need for condition (3), consider the game in Figure 2, where λ1 =
λ2 = λ3 = λ.

Consider the Markov perfect strategy profile in which each player’s preparation de-
pends only on the PAP (not on time t), and she prepares a different action than her cur-
rent action if and only if the PAP includes exactly two a’s. It is straightforward to verify
that this strategy profile is a SPE, and induces different outcomes depending on the ex-
ogenously given action profile at time −T .17 The key is that when the PAP is (ai� aj� bk),
i prefers preparing bi, which guarantees the payoff of 0, to sticking to ai to bet on the
lottery among the payoffs 1, 0, and −1. This is because in this lottery, −1 is assigned a
higher probability than the other two payoffs due to the possibility of no one getting a
future revision opportunity. What is important is that the moves are stochastic, so there
is no event at which, at the PAP (ai� aj� bk), player i is sure that the next mover is k and,
hence, sticking to ai induces (ai� aj� ak). That is, player i is exposed to the risk of player
j switching to bj in the future and i getting the payoff −1.18 Note that player j would
not switch to bj if such a strategy would hurt her as well. But in this example, moving
from (ai� aj� bk) to (ai� bj� bk) gives opposite consequences to players i and j (bad for
player i but good for player j). That is, the fact that preferences are diverse is also impor-
tant, which is the reason why we need to restrict to a class of games like K-coordination
games.

Finally, we note that the above example implies that condition (3) is tight in the sense
that for any nonpositive number, we can find a pair that consists of a component game
and a profile of arrival rates such that the difference of left and right hand sides of con-
dition (3), (1 −β)− (1 −α−β)K, is equal to that number. In this game, for example, we
have K = 2 and ri = 1

3 for all i. Hence, the difference is zero.19

17Specifically, the outcome is the same as the given action profile x at −T unless x has exactly two a’s,
in which case it is either an action profile with three a’s or exactly one a, depending on who moves the first
revision opportunity.

18Such a player j does not exist in two-player games. This is why the unique selection result always holds
when n= 2.

19Notice that we can replace −1’s in the above example by −1 − l for any l > 0. This makes the left hand
side of the above inequality strictly negative (−l/3).
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Figure 3. Opposing interest games.
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u1(U�D)�u2(U�D) u1(D�R)�u2(D�R)

Figure 4. General opposing interest game.

6. Opposing interest games

In the previous section, we analyzed games in which a single action profile is best for
both players. Now we turn to the class of games in which different players have different
“best” action profiles. Examples of games that we consider in this section are given in
Figure 3.

Generally, we consider two-player component games as in Figure 4 with two strict
Nash equilibria (U�L) and (D�R) such that

u1(U�L) > u1(D�R) and u2(U�L) < u2(D�R)� (4)

The first inequality implies that player 1 strictly prefers (U�L) to (D�R) among pure
Nash equilibria while the second implies that player 2’s preference is opposite. Note
that since (U�L) and (D�R) are strict Nash equilibria of this component game, these
conditions imply that (U�L) gives player 1 a strictly better payoff than any other action
profile and that (D�R) gives player 2 a strictly better payoff than any other action profile.

Let

t∗1 = − 1
λ1 + λ2

ln
(
λ1

λ2

u1(D�R)− u1(U�R)

u1(U�L)− u1(D�R)
+ u1(U�L)− u1(U�R)

u1(U�L)− u1(D�R)

)
(5)

and

t∗2 = − 1
λ1 + λ2

ln
(
λ2

λ1

u2(U�L)− u2(U�R)

u2(D�R)− u2(U�L)
+ u2(D�R)− u2(U�R)

u2(D�R)− u2(U�L)

)
� (6)

Theorem 3. Suppose that the component game of the revision game satisfies condition
(4). If t∗1 �= t∗2 , then there exists a unique revision equilibrium for all T . As T → ∞, there
exist two scenarios:

(i) If t∗1 > t∗2 , then the equilibrium payoffs converge to ui(U�L).

(ii) If t∗1 < t∗2 , then the equilibrium payoffs converge to ui(D�R).
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Notice that t∗1 = t∗2 happens only for a knife-edge set of parameters. In this non-
generic case, the revision game has multiple equilibria.20

Theorem 3 states that for almost all parameter values, there is a unique revision equi-
librium payoff and the outcome at the deadline will form one of the strict Nash equilibria
in the component game with probability that converges to 1 as T increases. Which Nash
equilibrium is prepared depends on a joint condition on the payoff function (u) and the
ratio of arrival rates (λ1/λ2), as t∗1 and t∗2 depend on these parameters. In Figure 3, if
λ1 = λ2, then t∗1 > t∗2 in the left game and t∗1 = t∗2 in the right game. Hence if λ1 = λ2, then
(U�L) is the (limit) outcome in the left game, while the theorem does not cover the case
in the right game. However, if λ1 < λ2, then the theorem implies that in the right game,
the (limit) outcome is (U�L). Similarly, if λ1 > λ2, then the (limit) outcome is (D�R).

In the proof, we completely pin down the behavior at any time t in the unique revi-
sion equilibrium. In particular, players prepare the action that corresponds to the limit
payoff profile for a sufficiently long time on the path of play, and this action profile is
absorbing. This implies that if they were to choose actions simultaneously at −T and if
T were large enough, then they would choose these actions and never revise them on
the path of play.

In Section 6.1, we provide an interpretation of this result. Section 6.2 provides
the proof, and Section 6.3 fully describes the equilibrium dynamics, including off-path
plays.

6.1 Interpretation of Theorem 3

The first step of the proof of Theorem 3 shows that when t is close to zero, each player
strictly prefers to prepare a best response in the component game to the last prepared
action of her opponent. Hence, in the games of Figure 3, when the time is close to zero,
players will move away from PAP (U�R), to reach either (U�L) or (D�R) and then stay
there until the deadline.21 If t is further from 0 and we assume that after t each player
prepares a best response in the component game to her opponent’s last prepared ac-
tion, then player i’s expected continuation payoff from PAP (U�R) gets closer to a con-
vex combination of ui(U�L) and ui(D�R) since the probability that no players revise
their actions between t and 0 gets smaller. Hence, there is a finite time t∗ such that,
when the PAP is (U�R), one player, whom we call the strong player, becomes indifferent
at time t∗ between (a) preparing a best response in the component game to her oppo-
nent’s prepared action and (b) preparing the action necessary to form her preferred Nash
equilibrium in the component game. Strictly before t∗, the strong player strictly prefers
choice (b) in all PAPs. As the proof in the next subsection clarifies, t∗ = min{t∗1 � t∗2 } is the
time such that the strong player is indifferent between these two actions. In other words,
t∗1 > t∗2 means that player 1 can stick to non-Nash profiles longer than player 2 to induce
player 2 to coordinate on her own preferred Nash equilibrium. This is why we call player
1 the strong player.

20See Kamada and Sugaya (2010a) for a characterization of the set of revision equilibrium payoffs for the
case t∗1 = t∗2 .

21Note that the incentive is strict at the deadline t = 0.
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To see how this “strength” is affected by the parameters of the model, we consider
two special cases. First, suppose that λ1 = λ2. In this case, t∗1 > t∗2 is equivalent to

u2(D�R)− u2(U�R)

u2(D�R)− u2(U�L)
>

u1(U�L)− u1(U�R)

u1(U�L)− u1(D�R)
�

The formula compares how strongly each player likes (U�R) relative to the two Nash
equilibria. If player 1 likes it more, then she suffers less from miscoordination at (U�R),
so as a consequence, the inequality is more likely to be satisfied. If player 1 likes (D�R)

less, then she expects less from moving away from (U�R) to (D�R), and so the inequality
is more likely to be satisfied if we decrease u1(D�R).22

Second, consider the case with symmetric payoff functions u1(U�L) = u2(D�R),
u1(D�R) = u2(U�L), and u1(U�R) = u2(U�R). In this case, t∗1 > t∗2 is equivalent to
λ1 < λ2. This means that λ1 < λ2 implies (U�L) is the outcome of the revision game and
that λ1 > λ2 implies (D�R) is the outcome of the revision game. More generally, |t∗1/t∗2 |
is increasing in λ1/λ2: if player 1’s relative frequency of the arrival of revision opportu-
nities compared to player 2’s frequency decreases, then player 1’s commitment power
becomes stronger, so (U�L) is more likely to be selected.

These results are reminiscent of findings in the bargaining literature. Player i’s bar-
gaining power increases in the disagreement payoff ui(U�R), decreases with the steep-
ness of preference over the two “agreement outcomes” (|u1(U�L)− u1(D�R)| for player
1 and |u2(D�R)− u2(U�L)| for player 2), and increases in the ability to commit 1/λi to a
proposal.

6.2 Proof of Theorem 3

In this subsection, we provide a proof of the convergence of the equilibrium payoff in
Theorem 3. The proof consists of the following three steps. In the first step, we show
that there is t∗ finite such that after t∗, each player strictly prefers preparing her best
response in the component game to her opponent’s action. Note that, starting from t∗,
players do not change their actions as soon as the PAP forms a strict Nash equilibrium.
In the second step, we consider the strategies before t∗. First we show that, before t∗,
the strong player prefers preparing the action consistent with her preferred strict Nash
equilibrium, irrespective of the prepared action of the weak player. Second, we show
that when the strong player’s prepared action is the one consistent with her preferred
Nash equilibrium, the weak player prefers to accommodate and prepares the action that
will form such a strict Nash equilibrium. In the third step, we show that when T is suf-
ficiently larger than |t∗|, there is enough time for the strong player to prepare the action

22Note that a risk-dominated Nash equilibrium in the component game may be the (limit) outcome of
the revision equilibrium. Consider the payoff matrix

L R

U

D

2 + ε�1 0�0
2ε�0 1�2

with ε > 0. The action pair (U�L) is risk-dominated by (D�R), while it is the (limit) outcome of the revision
equilibrium when λ1 = λ2.
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consistent with her preferred Nash equilibrium and for the weak player to accommo-
date so that the probability with which at t∗ the PAP forms such a Nash equilibrium can
be made arbitrarily close to 1 by increasing T . If this PAP is reached by t∗, players will
stick to it until the end of the game.23

Step 1. First, for each player i, we define t∗i to be the infimum of times t such that
given that each player prepares her best response in the component game to her op-
ponent’s action at any t ′ > t, i strictly prefers to prepare a best response in the compo-
nent game to any other action. Since the incentive to take a static best response in the
component game is strict at the deadline, this is true for t close enough to 0. By this
definition and continuity of the expected payoffs (with respect to probabilities and so to
time), player i must be indifferent between the two actions at t∗i given that (i) the PAP at
t∗i is (U�R) and that (ii) each player prepares a best response in the component game to
her opponent’s action at time t > t∗i . Then, from a straightforward calculation contained
in Appendix A.3, we show that for each i = 1�2, t∗i defined in this way coincides with t∗i
defined in (5) and (6).

Step 2. Suppose without loss of generality (w.l.o.g.) that t∗1 > t∗2 and fix t ∈ (−T�0].
Suppose that the following statements are true for any t ′ > t:

(i) We have t∗1 ≤ t ′ or player 1 strictly prefers preparing U at t ′ whatever her oppo-
nent’s current prepared action is.

(ii) We have t∗1 ≤ t ′ or player 2 strictly prefers preparing L at t ′ when player 1’s current
prepared action is U .

These two statements are trivially true for t ′ close enough to 0. We show that there
exists ε > 0 such that these two statements are true also for all t ′ ∈ (t −ε� t], which proves
that the statements are true for any t, by Lemma 1.

Step 2.1. First, consider player 1’s incentive when she obtains an opportunity at time
t < t∗1 (if t > t∗1 , the conclusion trivially holds; see Appendix A.4 for the case of t = t∗1 ).
Suppose first that player 2 is currently preparing L or has a chance to revise strictly after
time t but strictly before time t∗1 . If player 1 prepares action U , then statements (i) and (ii)
and Step 1 imply that the action profile at the deadline is (U�L), which gives player 1 the
largest possible payoff that she can obtain in this revision game. On the other hand, if
she prepares D, then there is a positive probability that she will obtain no other chances
to revise. In such a case, the action profile at the deadline is not (U�L). Hence, player 1
receives a payoff strictly less than her best possible payoff u1(U�L).

Suppose next that the current action of player 2 is R and he will not have any chance
to revise strictly after time t but strictly before time t∗1 . In this case, player 1’s expected
payoff is the same as the continuation payoff when player 2’s prepared action is R at
time t∗1 .24 Hence, player 1 must be indifferent between U and D at t∗1 by Step 1.

Overall, player 1 is strictly better off by preparing U at time t. Hence statement (i) is
true at time t.

23The intuition behind this proof idea is analogous to the one provided in Kamada and Sugaya’s (2010a)
“three-state example.” We thank an anonymous referee for suggesting the way to extend it.

24Note that the probability of player 2 getting a revision opportunity at t∗1 is zero.
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Step 2.2. Now consider player 2’s incentive when he obtains an opportunity at time
t < t∗1 (again, the case of t > t∗1 is trivial; see Appendix A.4 for the case of t = t∗1 ). Suppose
that player 1’s current action is U (note that statement (ii) concerns only such a case).
If player 2 prepares L, then statements (i) and (ii) and Step 1 imply that neither player
changes her action in the future. Hence, the action profile at the deadline is (U�L),
which leads to the payoff u2(U�L). On the other hand, suppose that he prepares R.
Player 2 prepares L if he obtains a revision opportunity strictly after time t but strictly
before time t∗1 , which results in the payoff of u2(U�L). If he does not obtain any revision
opportunity within that interval, then his expected payoff is the same as his continua-
tion payoff given action profile (U�R) at time t∗1 . The latter is strictly less than u2(U�L),
since, by the assumption that t∗2 < t∗1 , player 2 has a strict incentive to prepare L given
that player 1 is preparing U at all t > t∗1 .

Overall, player 2 is strictly better off by preparing L when player 1 prepares U at
time t. Hence, statement (ii) is true at time t.

Step 2.3. By continuity (of expected payoffs with respect to time), Steps 2.1 and 2.2
imply that there exists ε > 0 such that for all t ′ ∈ (t − ε� t], both statements (i) and (ii)
hold. Thus, by Lemma 1, we have the desired result.

Step 3. Statement (i) in Step 2 shows that at any t < t∗1 , player 1 prepares U . Hence,
for any t ′ < t∗1 , the probability that player 1’s prepared action is U at t ′ converges to 1 as
T increases. If player 1’s prepared action is U at t ′, then between t ′ and t∗, by statement
(ii), player 2 must prepare L, and by statement (i), player 1 keeps preparing U . Hence,
the probability that the PAP at t∗1 is (U�L) can be made arbitrarily close to 1 by setting T

large enough. Since the probability of revision at time t∗1 is zero, Step 1 implies that if the
PAP at t∗1 is (U�L), then the players keep preparing (U�L) until the deadline.

6.3 Equilibrium dynamics

The proof in the previous subsection characterizes the strong player’s equilibrium strat-
egy fully but the weak player’s equilibrium strategy only after the strong player prepares
the action that corresponds to the strong player’s preferred Nash equilibrium.25 Here we
provide a full characterization of the equilibrium dynamics, which implies that the equi-
librium strategy is unique. The proof of the result stated in this subsection is provided
in Calcagno and Lovo (2010) and Kamada and Sugaya (2010a).

The equilibrium dynamics are summarized in Figure 5 for the case t∗1 > t∗2 . The dy-
namics consist of three phases. In each phase, the arrow that originates from an ac-
tion pair x represents what players will prepare if they are given an opportunity to re-
vise during that phase when the PAP is x. More specifically, an arrow from (xi�x−i)

to (x′
i� x−i) means that if player i is given an opportunity to revise when the PAP is

x ∈ {(xi�x−i)� (x
′
i� x−i)}, then player i would prepare x′

i. If a player does not switch her
action, then there is no arrow that corresponds to that strategy. Hence, in particular, if

25If the players choose their actions simultaneously at −T , then it is common knowledge that the strong
player prepares the action that corresponds to the strong player’s preferred Nash equilibrium at −T . Hence,
the proof is sufficient to fully characterize the path of play in the revision equilibrium.
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Figure 5. Dynamics on and off the equilibrium path.

there are no arrows that originate from x, then no player would change actions if given
a revision opportunity.

When the deadline is close, each player prepares a best response in the component
game to the PAP (each player “equilibrates”). This phase is (t∗1 �0], which is shown in
the far-right panel of Figure 5, where t∗1 is given in Step 1 of the proof of Theorem 3.
Since t∗1 is the time at which player 1 is indifferent between U and D, given that player
2 is preparing R, in the next phase, the direction of the arrow that connects (U�R) and
(D�R) is flipped. This is shown in the middle panel.

The proof shows that the directions of the arrows in this figure stay unchanged for
all t < t∗1 , except the one that connects (D�L) and (D�R). Direct calculation in Calcagno
and Lovo (2010) and Kamada and Sugaya (2010a) shows that the direction of the arrow
changes at some t∗∗ and then stays unchanged for all t < t∗∗.

In summary, for large T , the dynamics start from the phase where both players try
to go to the (U�L) profile irrespective of the current PAP. When the deadline comes
closer, there comes the second phase where player 2 would choose R given that player 1
chooses D. Finally, when the deadline is close, each player prepares her best response in
the component game to the PAP. Since the strategies at time t < t∗∗ are perfectly pinned
down, it follows that if the players choose their actions at −T < t∗∗, then they immedi-
ately select (U�L) and on the equilibrium path, no player changes her actions.

7. Homogeneity and asynchronicity

In the previous sections, we assume that the Poisson processes are homogeneous across
time (the arrival rate λi is time-independent) and perfectly asynchronous. In this sec-
tion, we discuss the role of these assumptions.

First, consider the case in which Poisson processes are nonhomogeneous. That is,
the arrival rates for players are measurable (not necessarily constant) functions of time.
Note that the proofs of Theorems 1 and 3 do not use the fact that the arrival rates are con-
stant over time. Thus, as long as the Poisson processes are perfectly asynchronous, The-
orems 1 and 3 hold even for nonhomogeneous Poisson processes. The only difference
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is in the expression for t∗, the derivation of which is left as an exercise for the interested
reader.

Second, consider the effect of different degrees of asynchronicity. For this purpose,
in addition to the two independent processes specified in Section 3, consider another
independent Poisson process p12 with arrival rate λ12 > 0, at which both players re-
vise simultaneously. For simplicity, we assume the Poisson process is homogeneous.
At the time of decision that corresponds to each revision opportunity, player i does not
know whether such an opportunity is driven by the process pi or by p12. If λ1 = λ2 = 0
and λ12 > 0, then all revision opportunities are synchronous and it is straightforward
to show that any repetition of a Nash equilibrium is an equilibrium of the revision
game. The following result shows that a small degree of asynchronicity is not enough
to rule out multiple equilibria when the component game has multiple strict Nash
equilibria.

Theorem 4. Fix a component game ((Xi)i=1�2� (ui)i=1�2). There exists ε > 0 such that if
the arrival rates satisfy λ1�λ2 ∈ (0� ε) and λ12 > 1/ε, then for every strict Nash equilibrium
of the component game xN ∈ X and every horizon length T , there exists a revision equi-
librium in which each player i prepares action xNi at all revision opportunities at t ≤ 0.

The proof is given in Appendix A.6 and a detailed discussion can be found in
Calcagno and Lovo (2010). Note that ε in the theorem is required to be strictly posi-
tive. This means that a small degree of asynchronicity is not enough to eliminate multi-
ple equilibria. This raises the question of how much asynchronicity is needed to obtain
equilibrium uniqueness in a revision equilibrium. Ishii and Kamada (2011) characterize
the parameter regions such that multiplicity persists in common interest games.

Appendix

A.1 Proof of Lemma 1

Proof. Suppose that the premise of the lemma holds. Let t∗ be the supremum of t such
that At is false (if the supremum does not exist (i.e., it is negative infinity), we are done).
Then it must be the case that for any ε > 0, there exists t ′ ∈ (t∗ − ε� t∗] such that At ′ is
false. But by the definition of t∗, there exists ε′ > 0 such that statement At ′ is true for all
t ′ ∈ (t∗ − ε′� t∗] because the premise of the lemma is true. This contradiction proves the
result. �

A.2 A sharper result for the case when the players move at −T

Proposition 1. Suppose that the players choose their actions at −T and consider a com-
ponent game of a revision game with a strictly Pareto-dominant action profile x∗. Then
there exists T ′ such that for all T > T ′, in all SPE, x(0) = x∗ with probability 1.

Proof. Suppose without loss of generality that λ1 ≤ λ2. Consider first the case of
λ1 < λ2. Fix an SPE strategy profile where player 1 prepares x1 �= x∗

1 at −T < 0. In this
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case, player 1’s expected payoff at time −T is at most

u1(x
∗)− e−λ1Tm�

as with probability e−λ1T , player 1 has no further revision opportunities.26 On the other
hand, one possible deviation is to prepare x∗

1 for all [−T�0], and in that case her expected
payoff is

u1(x
∗)− e−λ2TM�

since by Step 1 in the proof of Theorem 1, it follows that player 2 will switch to x∗
2 as soon

as he has a chance to revise, and afterward the PAP never changes.27,28 However, the
assumption that λ1 < λ2 implies that for sufficiently large T , the latter value becomes
strictly greater than the former, implying that in any SPE, player 1 must prepare x∗

1 when
T is sufficiently large. Given this, player 2 has a strict incentive to prepare x∗

2 at −T as
that would give him the highest possible expected payoff in equilibrium, while preparing
some other action results in a strictly lower payoff because there is a strictly positive
probability that he has no chance to revise the action in the future.

Suppose λ1 = λ2 ≡ λ. Fix a revision equilibrium and let V t
i (x) be player i’s value from

the revision equilibrium when the PAP is x at time t. Let vt1(x2) = maxx1 �=x∗
1
V t

1 (x1�x2)

be player 1’s maximum value at t when player 2 prepares x2 conditional on player 1 not
preparing x∗

1. It suffices to show that, for any x2 �= x∗
2, there exists t̄ such that V t̄

i (x
∗
1�x2) >

vt̄1(x2), that is, player 1 prefers preparing x∗
1 given player 2 preparing x2 at time t̄.

Let us explain why finding one t̄ for each x2 is sufficient (and t̄ can be different for
different x2, but must be independent of a particular equilibrium we fix). Suppose player
2 prepares x2 and player 1 receives a revision opportunity at time t < t̄. If player 2 has a
revision opportunity by t̄, then preparing x∗

1 at time t (and continuing to prepare x∗
1 until

t̄) gives player 1 the highest payoff u1(x
∗) by Step 1 of Theorem 1. On the other hand,

if player 2 does not have a revision opportunity by t̄, then player 2 will prepare x2 at
time t̄. Thus, in this case, preparing x∗

1 at time t (and continuing to prepare x∗
1 until t̄) is

strictly better than any other strategies since we have V t̄
i (x

∗
1�x2) > vt̄1(x2). In total, since

the probability that player 1 cannot move between t and t̄ is strictly positive, preparing
x∗

1 at time t is strictly better than any other strategies.
Given the above discussion, it suffices to derive a contradiction by assuming that

there exists x2 �= x∗
2 with

V t
i (x

∗
1�x2)≤ vt1(x2) for all t ≤ 0� (7)

Arbitrarily fix x2 �= x∗
2 such that (7) holds. Take any S < 0. By induction, we now show

that for all integer n ≥ 0,

vnS1 (x2)≤ u1(x
∗)− (n+ 1 − neλS)menλS� (8)

26Recall from the proof of Theorem 1 that m := mini�x�=x∗(ui(x∗)− ui(x)).
27Recall again from the proof of Theorem 1 that M := maxi�x�=x∗(ui(x∗)− ui(x)) < ∞.
28Here we use the fact that there are only two players. If there are two or more opponents, Step 1 cannot

be used to conclude that all the opponents will switch to actions prescribed by x∗.
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First, with n = 0, (8) is equivalent to

v0
1(x2) ≤ u1(x

∗)−m�

This inequality holds by the definitions of v0
1 and m, so (8) is true for n = 0.

Second, suppose that (8) holds for n = k. We show that (8) holds also for n = k + 1.
To see this, note that player 1’s value at time kS when player 2 prepares x2 is bounded
from above by vkS1 (x2) from (7). Therefore, v(k+1)S

1 (x2) can be bounded by

u1(x
∗)− eλS︸︷︷︸

Pr of 2 not moving by kS

× (u∗
1(x2)− vkS1 (x2))︸ ︷︷ ︸

from (7)�
this is the least loss compared to u1(x∗)

− (1 − eλS)︸ ︷︷ ︸
Pr of 2 moving by kS

× eλS︸︷︷︸
Pr of 1 not moving by kS

× mekλS︸ ︷︷ ︸
the least loss for x �=x∗

= u1(x
∗)− eλS × (k+ 1 − keλS)mekλS︸ ︷︷ ︸

by (8) with n=k

− (1 − eλS)me(k+1)λS

= u1(x
∗)− (k+ 2 − (k+ 1)eλS)me(k+1)λS�

which is (8) with n = k+ 1.
Therefore, (8) holds for all integers n ≥ 0. On the other hand, the lower bound of

player 1’s continuation payoff at t is

u1(x
∗)− eλtM�

since this is the expected payoff she gets when she sticks to x∗
1 after time t until the

deadline. This and (8) (and eλS < 1) imply that when n is sufficiently large, we have that

vnS1 (x2)≤ u1(x
∗)− (n+ 1 − neλS)menλS < u1(x

∗)− eλnSM ≤ V nS
i (x∗

1�x2)�

Since this is the desired contradiction, the proof is complete. �

A.3 Proof of Theorem 2

Let vti(k) be the infimum of player i’s payoff at t in subgame perfect equilibrium strate-
gies and histories such that there are at least k players who prepare the action corre-
sponding to x∗ and no player receives a revision opportunity at t. By mathematical in-
duction with respect to k = n� � � � �0, we show that limt→−∞ vti(k) = ui(x

∗) for all i ∈ I.
The proof for k= n. Step 1 of the proof of Theorem 1 is valid with an arbitrary number

of players if we replace player −i with the set J of players other than player i and replace
λ−i with

∑
j∈J λj . Hence, x∗ is the absorbing state with n players. Since x∗ is absorbing,

vti(n)= ui(x
∗) for all i and t, as desired.

Inductive argument. Suppose limt→−∞ vti(k + 1) = ui(x
∗) for all i ∈ I with k + 1 ≤ n.

Given this inductive hypothesis, we show that limt→−∞ vti(k) = ui(x
∗) for all i ∈ I. For

simple notation, let � := ∑
i∈I λi be the summation of the arrival rates, let α1 := mini∈I ri
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be the smallest ri, and let β := minj∈I�j �=j∗ rj with j∗ ∈ arg minj∈I rj (take one arbitrarily if
there are multiples) be the second smallest ri.29 In addition, let

K̄ = max
i�j∈I�x∈X�x �=x∗

ui(x
∗)− ui(x)

uj(x∗)− uj(x)
< ∞

be the maximum ratio of the range of utilities between the players. The denominator of
the maximand is always strictly positive since we assume |Xj| ≥ 2 for each j and x∗ is
strictly Pareto-dominant.

Take ε > 0 arbitrarily. Since limt→−∞ vti(k + 1) = ui(x
∗), there exists T0 such that for

all t ≤ T0 and i ∈ I, vti(k+ 1) ≥ ui(x
∗)−ε. Consider the situation where k players prepare

actions corresponding to x∗ at t = T0 + τ1 with τ1 ≤ 0, that is, t ≤ T0. Then, if player j

who is not preparing x∗
j at time t can move first by T0, then she yields at least uj(x∗)− ε

by preparing x∗
j . This implies each player i will at least yield

ui(x
∗)− K̄ε� (9)

Therefore,

vti(k) ≥ α1(1 − eτ1�)(ui(x
∗)− K̄ε)+ (1 − α1(1 − eτ1�))ui (10)

for all i ∈ I. Note that α1(1 − eτ�) is the minimum probability that player j, who is not
preparing x∗

j at t, can move first by T0 and that we assume that if such player j does not
move, the worst payoff ui realizes.

Taking τ1 sufficiently large (in absolute value) in (10), there exists T1 such that for all
τ2 ≤ 0,

vti(k) ≥ α1ui(x
∗)+ (1 − α1)ui − K̄ε (11)

for all i ∈ I, where t = T0 + T1 + τ2 ≤ T0 + T1.
Consider vti(k) with t = T0 + T1 + τ2. Then we can compute lower bounds of player

i’s payoff in different cases as follows.

• If player j, who is not preparing x∗
j at t, will move first by T0 + T1, then a lower

bound is ui(x∗)− K̄ε by the same argument as in (9).

• If player i herself will move first by T0 + T1, then a lower bound is α1ui(x
∗) +

(1 − α1)ui − K̄ε since there are two possibilities:
– If player i is preparing x∗

i at t, then by staying at x∗
i , player i keeps the situa-

tion that there are k players preparing the actions corresponding to x∗. In this
case, by (11), player i’s payoff is bounded by α1ui(x

∗) + (1 − α1)ui − K̄ε for τ2

sufficiently large in absolute value.

– If player i is not preparing x∗
i at t, then by preparing at x∗

i , player i creates the
situation that there are k+ 1 players preparing the actions corresponding to x∗.
In such a case, the inductive hypothesis guarantees that vti(k) is at least ui(x∗)−
ε ≥ α1ui(x

∗)+ (1 − α1)ui − K̄ε.

29Note that α1 = α, defined right before the statement of Theorem 2.
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• If player j, who is preparing x∗
j at t, will move first by T0 + T1, then as in the first

subcase of the second case, player j can guarantee herself α1uj(x
∗)+ (1 − α1)uj −

K̄ε. By the definition of K, when player j gets at least α1uj(x
∗)+ (1 − α1)uj − K̄ε,

player i’s payoff ui should satisfy

ui(x
∗)− ui

ui(x∗)− ui
≤ K

uj(x
∗)− (α1uj(x

∗)+ (1 − α1)uj − K̄ε)

uj(x∗)− uj

= K(1 − α1)+ KK̄ε

uj(x∗)− uj
�

that is,

ui ≥ ui(x
∗)−K(1 − α1)(ui(x

∗)− ui)−KK̄
ui(x

∗)− ui
uj(x∗)− uj

ε

≥ (1 −K(1 − α1))ui(x
∗)+K(1 − α1)ui − K̄3ε�

In total, player i’s value satisfies

vti(k) ≥ α1(1 − eτ2�)(ui(x
∗)− K̄ε)

+ (β(1 − eτ2�)+ eτ2�)(α1ui(x
∗)+ (1 − α1)ui − K̄ε)

+ (1 − α1 −β)(1 − eτ2�)
(
(1 −K(1 − α1))ui(x

∗)+K(1 − α1)ui − K̄3ε
)
�

Taking τ2 sufficiently large, there exists T2 such that at t = T0 + T1 + T2 + τ3 with τ3 ≤ 0,

vti(k) ≥ (
α1 +βα1 + (1 − (α1 +β))(1 −K(1 − α1))

)
ui(x

∗)

+ (
1 − (

α1 +βα1 + (1 − (α1 +β))(1 −K(1 − α1))
))
ui − K̄3ε�

Defining

α2 := α1 +βα1 + (1 − (α1 +β))(1 −K(1 − α1))�

we have

vti(k) ≥ α2ui(x
∗)+ (1 − α2)ui − K̄3ε�

Recursively, for each M = 1�2� � � � , there exist T0�T1� � � � �TM such that at t ≤ T0 +T1 +
· · · + TM ,

vti(k) ≥ αMui(x
∗)+ (1 − αM)ui − K̄2M−1ε

with

αM = α1 +βαM−1 + (1 − (α1 +β))(1 −K(1 − αM−1))

or

(αM − 1)= (
β+ (1 − (α1 +β))K

)
(αM−1 − 1)�

By condition (3), αM is monotonically increasing and converges to 1. Taking M suffi-
ciently large and ε > 0 sufficiently small yields the result.
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A.4 Proof of Theorem 3: Derivation of t∗i
We provide a derivation of t∗1 . The value of t∗2 can be found in a symmetric manner. By
the definition of t∗1 , assuming that both players prepare best responses to the PAP at any
time strictly after t∗1 , the payoff from playing a best response against R at t∗1 and playing
otherwise must be equal. Thus, it must be the case that

u1(D�R) = e(λ1+λ2)t
∗
1u1(U�R)︸ ︷︷ ︸

nobody moves until 0

+ λ1

λ1 + λ2
(1 − e(λ1+λ2)t

∗
1 )u1(D�R)︸ ︷︷ ︸

player 1 moves first

+ λ2

λ1 + λ2
(1 − e(λ1+λ2)t

∗
1 )u1(U�L)︸ ︷︷ ︸

player 2 moves first

�

Solving this equation for t∗1 , we obtain the desired expression.

A.5 Checking the induction argument for the case t = t∗1
In Step 2 of the proof of Theorem 3, we referred to an appendix. Here we prove that when
t = t∗1 , there exists ε > 0 such that the statements (i) and (ii) hold for all t ′ ∈ (t − ε� t],
assuming that the statements hold for all time strictly after t.

First, the existence of such ε for statement (ii) is given by continuity: Given that both
players prepare static best responses strictly after t∗1 , we know that player 2 has a strict
incentive to prepare a static best response at t∗1 . By continuity, there exists some ε > 0
such that for all time in (t∗1 − ε� t∗1 ], player 2 has a strict incentive to prepare a static best
response against player 1’s currently prepared action, no matter what we assume about
player 1’s strategy in the time interval (t∗1 − ε� t∗1 ].

Second, consider statement (i). Take the ε that we took in the previous paragraph.
Suppose first that player 2 does not receive any revision opportunity in the time interval
(t ′∗1 ). In this case, player 1’s expected payoff is u1(D�R) irrespective of her preparation
at t ′ and at any time in (t ′∗1 ) by the definition of t∗1 (i.e., player 1 is indifferent between
two actions at t∗1 ). The remaining case is when player 2 receives at least one revision
opportunity in the time interval (t ′∗1 ). We divide this case in two subcases: (a) If player
1 does not receive any opportunity in that time interval, then her payoff is u1(U�L) if 1
prepares U at t ′ (as we have shown that player 2 prepares a static best reply at t ′) and
at most maxa2 u1(D�a2)e

(λ1+λ2)t
∗
1 + u1(U�L)(1 − e(λ1+λ2)t

∗
1 ) if she prepares D, which is

strictly smaller than u1(U�L). (b) If player 1 receives an opportunity, then preparing D

is better than U by at most u1(U�L)− mina u1(a) < ∞. Since the ratio of the probability
of subcase (b) to that of subcase (a) approaches zero as t ′∗1 , this shows the existence of
ε > 0 such that statement (i) holds for all time (t∗1 − ε� t∗1 ] assuming that statements (i)
and (ii) hold for all time strictly after t∗1 .

A.6 Proof of Theorem 4

Let PJ(t) denote the probability that from t on, players in set J ⊆ {1�2} have some re-
vision opportunities in (t�0] while players in {1�2} \ J have none. Note that given that
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after t, players’ continuation strategies consist in preparing xN , player i’s expected con-
tinuation payoff from PAP x(t) = x= (xi�x−i) is

π(x� t) := P∅(t)ui(x)+ P{1�2}(t)ui(xN)+ P{i}(t)ui(xNi �x−i)+ P{−i}(t)ui(xi�xN−i)� (12)

Now suppose player i has a revision opportunity at t. With probability λ12/(λ12 + λi),
player −i is simultaneously revising (and will prepare xN−i), and with probability
λi/(λ12 + λi), she is not. Thus, if at t, the PAP is x(t) = (x′

i� x−i), player i’s expected
continuation payoff from preparing xNi at t is

λ12

λ12 + λi
π(xN� t)+ λi

λ12 + λi
π((xNi �x−i)� t)� (13)

If instead she prepares xi �= xNi , her continuation payoff is

λ12

λ12 + λi
π((xi�x

N
−i)� t)+ λi

λ12 + λi
π((xi�x−i)� t)� (14)

Using expression (12), we have that (13) is strictly larger than (14) if and only if

P∅(t)

(
λ12

λ12 + λi
(ui(x

N)− ui(xi�x
N
−i))+ λi

λ12 + λi
(ui(x

N
i �x−i)− ui(xi�x−i))

)

+ P{−i}(t)
(

λ12

λ12 + λi
(ui(x

N)− ui(xi�x
N
−i))+ λi

λ12 + λi
(ui(x

N)− ui(xi�x
N
−i))

)
> 0�

Because xN is a strict Nash equilibrium, (ui(x
N) − ui(xi�x

N
−i)) > 0. Hence, because

P∅(t) > 0 and P{−i}(t) ≥ 0, if λ12/(λ12 + λi) < 1 is close enough to 1, then the previous
inequality is satisfied for all t.
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