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Expressible inspections

Tai Wei Hu
Kellogg School of Management, Northwestern University

Eran Shmaya
Kellogg School of Management, Northwestern University

A decision maker needs predictions about the realization of a repeated experi-
ment in each period. An expert provides a theory that, conditional on each fi-
nite history of outcomes, supplies a probabilistic prediction about the next out-
come. However, there may be false experts who have no knowledge of the data-
generating process and who deliver theories strategically. Hence, empirical tests
for predictions are necessary. A test is manipulable if a false expert can pass the
test with a high probability. Like contracts, tests have to be computable to be im-
plemented. Considering only computable tests, we show that there is a test that
passes true experts with a high probability yet is not manipulable by any com-
putable strategy. In particular, the constructed test is both prequential and future-
independent. Alternatively, any computable test is manipulable by a strategy that
is computable relative to the halting problem. Our conclusion overturns earlier
results that prequential or future-independent tests are manipulable, and shows
that computability considerations have significant effects in these problems.

Keywords. Computability, expert testing, calibration tests, zero-sum games.

JEL classification. C44, D81, D83.

1. Introduction

Forecasting is crucial for economic planning. In many cases, such as weather or macroe-
conomic variables, the underlying data-generating process is stochastic instead of de-
terministic. Indeed, probabilistic predictions have been widely adopted in forecasting
precipitation and economic variables. Although it is easy to test deterministic forecasts
empirically, it is less obvious whether a stochastic forecast is useful or even meaning-
ful. There is a literature that frames this problem in the context of testing experts: does
there exist a test, which specifies situations where the expert is rejected, such that a true
expert who knows the underlying process is not rejected by the test while a false expert
who has no such knowledge but can make predictions strategically is rejected?

The answer to this question depends on the nature of the test. In the most general
setup, the expert is required, before any outcome is realized, to provide predictions for
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each period contingent on all possible histories before that period, and the test makes
a decision based on these predictions and the realized sequence of outcomes. In this
general setup, without imposing other requirements, there exist tests that accept the
true expert but reject strategic false experts (Dekel and Feinberg 2006, Shmaya 2008,
Olszewski and Sandroni 2009a).

However, this result does not hold if some natural requirements are imposed on the
test. One such requirement is that a decision to reject the expert can be made only
at a finite time. Another requirement is to ask the expert to provide prediction only
along the actual sequence of outcomes without giving counterfactual predictions. In
the literature, tests that satisfy the first requirement are referred to as rejection tests
(Olszewski and Sandroni 2009a); and the second requirement is called prequentiality
(Dawid 1985).1 The general finding (Olszewski and Sandroni 2008, Shmaya 2008) is that,
against any rejection test satisfying prequentiality, a false expert has a strategy that al-
lows him to pass it with a high probability against every realization of outcomes. The
literature refers to such tests as manipulable, meaning that they are vulnerable to ma-
nipulation of predictions from a false expert.

Here we propose a new property, expressibility, that a test should satisfy, along with
the rejection-test requirement and prequentiality. As discussed in Olszewski and San-
droni (2008, Section 4), a test can be regarded as a contract between the expert and
those who make use of his predictions. In the corresponding contract, the principal of
the forecasting service keeps the right to charge the expert with contract violation dur-
ing the entire service. To implement such a contract, there should be a finite procedure
that determines whether the expert fails the test for any finite history of predictions and
outcomes. However, a precise definition of expressible tests is lacking in the extant liter-
ature despite the fact that many tests in the literature are expressible.

We formalize this notion by Turing computability: a test is expressible if there is a
Turing machine that implements the test. A Turing machine is a finite sequence of in-
structions that corresponds to an algorithm: hence, for each expressible test there is a
well defined procedure that determines whether the expert has failed the test for any
given finite history of predictions and realizations. Moreover, it is widely believed, ac-
cording to the Church–Turing thesis, that any procedure that can be expressed in words
and can be implemented mechanically corresponds to a Turing machine. Thus, any
contract that can be written as finitely many instructions and has a well defined pro-
cedure to implement it corresponds to an expressible test according to our definition.
Indeed, all practical tests considered in the literature are expressible, including all tests
proposed in the calibration literature (Foster and Vohra 1998, Lehrer 2001, Sandroni
et al. 2003).

The goal of this paper is to study manipulability of expressible tests (assuming the
rejection-test requirement and prequentiality). Our main results pin down the exact
complexity requirements on forecasting strategies to make expressible tests manipu-
lable. The extant literature already gives some hints about our findings. The abstract

1Another property, future independence in Olszewski and Sandroni (2008), is implied by these two
properties.
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manipulability results cited previously already imply a negative result: any expressible
test is manipulable. However, it does not give any information about the complexity of
the manipulating strategies. We find some answers to this problem from the calibration
literature: for each calibration test, an algorithm of the polynomial-time class has been
devised to implement a forecasting strategy that manipulates the test. Nevertheless, be-
cause the class of all calibration tests is only a subclass of all expressible tests, it is not
clear whether forecasting strategies of the polynomial-time class can manipulate any
expressible test.

Alternatively, Fortnow and Vohra (2009) obtain positive results by considering the
computational complexity of forecasting strategies, where tests of the polynomial-time
class are constructed to be nonmanipulable against forecasting strategies with time- or
space-complexity constraints. Their results suggest that some expressible tests are not
subject to manipulation if the expert has limited computational power, but the exact
requirement on such power has not been pinned down for expressible tests. A natural
starting point is to consider the set of computable forecasting strategies, that is, strate-
gies that can be implemented with Turing machines without restrictions on computa-
tion resources or time.

We answer this issue with two results. In the first result, we devise an expressible test
that is not manipulable by any computable forecasting strategies; in the second result,
we show that if the expert has more computational power than Turing computability
to implement forecasting strategies, then any expressible test is manipulable. The first
result overturns the negative results in the calibration literature and shows that some
expressible tests are immune to manipulability against computable forecasting strate-
gies. In fact, we show that there are such tests that can be implemented with algorithms
of the polynomial-time class. Our result then generalizes those in Fortnow and Vohra
(2009) in that we consider a larger class of forecasting strategies.2 This result is also
related to another strand of literature (Olszewski and Sandroni 2009b, Al-Najjar et al.
2010), which obtains nonmanipulability results by imposing restrictions on the class of
data-generating processes: a true expert passes the test only for processes in that class
and the false expert fails on some process in that class. In our setup, a true expert always
passes the test as long as the conditional distributions of the underlying processes admit
rational probability values (but the process may not be computable) and the false expert
is rejected on some computable process.

We now turn to our second result. Here we take the view that the false expert, when
implementing the forecasting strategies, does not have to be constrained by Turing com-
putability, while the test, which has to be written down as a contract, has to be ex-
pressible. Then we look for the exact complexity class of forecasting strategies against
which the nonmanipulability result holds for expressible tests. To this end, we use oracle
machines to model the complexity of forecasting strategies, and we classify forecasting
strategies according to the arithmetic hierarchy {�0

n}∞n=1. The lowest class, �0
1, consists

of all computable strategies, while the next class, �0
2, consists of strategies that can be

implemented by an oracle machine with the halting problem as the oracle. Our sec-
ond result states that, for any expressible test, there exists a forecasting strategy of class

2In fact, as in Fortnow and Vohra (2009), our test can be modified to run in linear time.
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�0
2 that manipulates it. Therefore, within the arithmetic hierarchy, expressible tests can

avoid the manipulation result only against forecasting strategies in the lowest class.
Those two results give the exact computational power requirement on the expert for

expressible tests to be nonmanipulable: it corresponds to the class of computable strate-
gies. This shows that expressible tests are more powerful than what one may infer from
the previous literature: there are expressible tests that can handle Turing-computable
forecasting strategies. It also shows that Turing-computability captures the full strength
of expressible tests—false experts with computational power that is one layer higher
than computability within the arithmetic hierarchy can manipulate any expressible test.

2. Tests and forecasting strategies

At each period n, an outcome sn from a finite set S is observed. Before the observation,
the principal asks the expert to deliver a probabilistic prediction, pn ∈ �(S). The expert
may use the partial history σ = (p0� s0� � � � �pn−1� sn−1) of predictions and outcomes be-
fore period n to determine his prediction. The set of all such partial histories is given by
(�(S) × S)<N = ⋃∞

n=0(�(S) × S)n, where (�(S) × S)0 = {e} and e is the empty sequence.
Similarly, elements in S<N = ⋃∞

n=0 S
n are called partial realizations.

A forecasting strategy is then a function

f : (�(S)× S)<N → �(�(S))�

with the interpretation that f (p0� s0� � � � �pn−1� sn−1) is the distribution according to
which the expert randomizes his prediction at period n, where pk and sk are the pre-
diction and outcome of period k for 0 ≤ k < n. The contract between the expert and the
principal is written as a test, which is a Borel subset T of (�(S)× S)<N.3 The expert fails
the test T if (p0� s0� � � � �pn� sn) ∈ T for some period n.

The data-generating process is governed by an S-valued stochastic process X =
(X0�X1� � � �). Given the process X , a forecasting strategy f : (�(S)×S)<N → �(�(S)), and
a test T ⊆ (�(S) × S)<N, we can compute the probability that the expert fails T over X .
That probability, denoted by R(T�f� X ), is given by

R(T�f� X ) = P((P0�X0� � � � �Pn�Xn) ∈ T for some n)�

where Pn, the predictions generated by f over X , are �(S)-valued random variables such
that the conditional distribution of Pn given P0� � � � �Pn−1 and X is f (P0�X0� � � � �Pn−1�

Xn−1).
A natural requirement on a test is not to fail the true expert, who knows the data-

generating process and makes predictions accordingly, with high probability. For an
S-valued stochastic process X = (X0�X1� � � �), let fX be the forecasting strategy that pre-
dicts according to X , i.e., fX (p0� s0� � � � �pn−1� sn−1) is the dirac atomic distribution on

3Our definition of test is more restrictive than what is used in some other papers because it implicitly
assumes the rejection-test property and prequentiality. More general definitions allow the outcome of the
test to depend on the infinite sequence of predictions and outcomes or on counterfactual predictions (that
is, predictions conditional on unrealized histories).
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the element pX �x ∈ �(S) that represents the conditional distribution of the process given
the partial realization x = (s0� � � � � sn−1), i.e.,

pX �x[s] = P(Xn = s|X0 = s0� � � � �Xn−1 = sn−1)� (1)

Then R(T�fX � X ) is the probability that T rejects the true expert when the truth is X .
We say that a test does not reject truth with probability 1 − ε if R(T�fX � X ) < ε for every
stochastic process X .

Here we give an example of a test that does not reject truth with probability 1 − ε.

Example 1 (Passing the true expert). Let S = {0�1}, so that elements of �(S) can be iden-
tified with elements p of [0�1], where p is the probability for the outcome 1. Let TN�α be
the test that rejects the expert on all histories (p0� s0� � � � �pn−1� sn−1) ∈ (�(S)×S)<N such
that n >N and

1
n

·
( ∑
k<n�pk<1/2

(−1)sk+1 +
∑

k<n�pk≥1/2

(−1)sk
)
>α

for some parameters N ∈ N and α> 0. ♦

The test TN�α works as follows. The expert gets a penalty point whenever the out-
come is far from his prediction (i.e., when pk < 1/2 but sk = 1 or pk ≥ 1/2 but sk = 0)
and gets credit otherwise. The test TN�α rejects the expert if, in the long run, the penalty
points exceed the credit points by a specific amount (normalized by the number of peri-
ods). The parameter α determines how strict the test is. For any α, if N is large enough,
then the test TN�α does not reject truth with probability 1 − ε.

The test TN�α is manipulable: a forecasting strategy f ε-manipulates a test T if a
false expert, by implementing f , can ignorantly pass the test T with probability greater
than 1 − ε regardless of the true data-generating process, that is, R(T�f� X ) < ε for every
stochastic process X . We give an example of a forecasting strategy that manipulates
TN�α.

Example 2 (Manipulating strategy). Let S = {0�1} as in Example 1 and let f be the strat-
egy given by

f (p0� s0� � � � �pn−1� sn−1)=
⎧⎨
⎩

R0

R0 +R1
δ1/4 + R1

R0 +R1
δ3/4 if R0 > 0

δ3/4 otherwise;
where

R0 = max
{|{k< n|pk ≥ 1/2� sk = 0}| − |{k< n|pk ≥ 1/2� sk = 1}|�0

}
R1 = max

{|{k< n|pk < 1/2� sk = 1}| − |{k< n|pk < 1/2� sk = 0}|�0
}
�

and δp is the dirac atomic distribution on p. For every α > 0 and ε > 0, the strategy f ε-
manipulates the test TN�α in Example 1 for sufficiently large N , that is, R(TN�α� f� X ) < ε

for every stochastic process X . ♦
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Remark 1. The fact that the strategy in Example 2 manipulates the test follows from
the standard no-regret argument using Blackwell’s approachability theorem. See Lehrer
(2003) for a substantially more general result using that argument.

It is desirable for the test not to be manipulable by a false expert. However, the pre-
vious literature, which studies a more general class of tests, shows that if it is a rejection
test and if it does not use counterfactual predictions, then it is manipulable. Because
our definition of tests already includes these two assumptions, we have the following
manipulability result, which follows from Olszewski and Sandroni (2008) and Shmaya
(2008).

Proposition 1. Every test that does not reject truth with probability 1 − ε is ε + δ-
manipulable for every δ > 0.

3. Expressible tests

Here we propose another requirement for tests: the contract (written as a test) between
the principal and the expert should be implementable with an algorithm. We call such
tests expressible tests and formalize this notion by Turing computability. In Section 4, we
study manipulability of expressible tests. We begin this section with some preliminaries
on computability and then formulate expressible tests formally.

3.1 Preliminaries on computability

A function f with natural arguments and values is computable if there exists an algo-
rithm that computes f , i.e., if n is in the domain of f , then the algorithm halts on input n
and produces output f (n), and if n is not in the domain of f , then the algorithm does not
halt on input n and runs forever. An algorithm corresponds to a computer program in
any programming language (say, the language C), running on a machine without mem-
ory or time restrictions. The formal definition is based on a model of computations
using Turing machines (see Odifreddi 1989 for details). The celebrated Church–Turing
hypothesis states that Turing computability captures our intuition of a finite procedure
or an algorithm, that is, a function can be computed by an algorithm if and only if it can
be computed by a Turing machine.

Here we make two remarks on computable functions. First, the domain of a com-
putable function can be a strict subset of N. We sometimes write f :⊂ N → N to em-
phasize that the domain of f is a subset of N. This is because an algorithm may run
into an infinite loop and never produce an output for some inputs. When the domain
is N, i.e., when f (n) is defined for every natural number n, we say that f is total. Sec-
ond, the notion of computability can be extended to functions with several variables,
corresponding to computer programs that get several natural numbers as input.

In fact, the generalization goes further. Many sets of mathematical objects, such
as Nk, Q, and N<N, can be effectively identified with N. There are ways to encode el-
ements of these sets as natural numbers, i.e., there exist computable one-to-one cor-
respondences, called codings, between these sets and the set N. Consider the set N2
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as an example. Every pair (m�n) of natural numbers can be encoded as the number
(n+m)(n+m+ 1)/2 +n, which is a computable function. Similarly, every rational num-
ber can be encoded as a pair of natural numbers, and therefore, as a natural number.
Given the coding, we can speak about computable functions to and from these sets. In
what follows, we apply the notion of computability to any set Z that can be effectively
identified with N, assuming a fixed coding but without constructing the specific codes
(which can be found in Odifreddi 1989).

The notion of computability can be applied to subsets of natural numbers as well.
Let Z be a set that can be effectively identified with N and let A be a subset of Z. We
say that A is computable, or decidable, if its characteristic function χA is computable.
By the Church–Turing thesis, a set A is decidable if and only if there is an algorithm
that determines the membership of the set A. Later we formulate a test as a subset of
a set that is effectively identified with N and formalize the notion of expressibility by
decidability.

Most sets and functions that one comes across are computable. Take, for example,
the function r :N2 → N such that r(n�m) = 1 if m divides n and r(n�m) = 0 otherwise.
Long division gives an algorithm for this function. A more complicated example is the
set of prime numbers. A number n is prime if and only if there exists no 1 <m< n such
that m divides n. The definition already gives rise to an algorithm to check whether
a number is prime: go over all those numbers m and check whether m divides n, i.e.,
for each such m check whether r(n�m) = 1; this is a computable operation because r is
computable. In what follows, we take the computability of a function for granted when
our definition of the function gives rise to an algorithm that computes the function.

The two examples above exhibit an important property of computability: if f is com-
putable and g can be computed by an algorithm that calls f at some points, then g is also
computable. In the above algorithm, checking whether a number is prime calls to the al-
gorithm that computes divisibility. Indeed, most programming languages support such
a construction by allowing the programmer to call existing functions to define new ones.
We return to this point later when we define oracle computation.

The existence of uncomputable functions can be easily shown by a counting argu-
ment. Because the set of computable functions, which has the same cardinality as the
set of computer programs (which are, after all, finite sequences of symbols), is count-
able, most functions are not computable. Related to this counting argument is the cel-
ebrated result in computability theory, the enumeration theorem (Odifreddi 1989, The-
orem II.1.5), which is used in our proofs. That theorem states the existence of a binary
computable function U :⊂ N2 → N such that, for every computable function f , there is
an m such that f =U(m� ·), i.e., such that f (n) is defined if and only if U(m�n) is defined,
and if either is defined, we have f (n) =U(m�n).

The main insight from the enumeration theorem is that there exists an effective en-
coding of all computer programs, say m being the code for the program pm, and the
function U corresponds to an algorithm that takes the codes as input and simulates the
behavior of each program pm when given input m. Indeed, the development of operat-
ing systems is based on this insight that the master program can manage all application
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programs (cf. Davis 2001). The function U is called a universal machine and the se-
quence φ0 = U(0� ·)�φ1 = U(1� ·)� � � � is called a computable enumeration of computable
functions. The enumeration theorem also gives rise to an example of a undecidable
set: the set H = dom(U), which consists of all pairs (m�n) such that U(m�n) is defined
(i.e., such that the program pm halts on input n), is undecidable. The set H is usually
called the halting problem. In a more colloquial language, the halting problem cannot
be solved by a Turing machine.

Finally, we introduce the notion of a oracle machine, which is a Turing machine that
has access to a black box, called an oracle. In the previous example of the program that
decides whether a number is a prime number, the program calls to the function r, which
acts as an oracle in the sense that whenever the program calls to r, it returns values that
are used by the program but are not directly computed by the program. Oracle ma-
chines generalize this idea and allow the oracle to be the characteristic function of an
arbitrary subset of natural numbers (see Odifreddi 1989 for details). As such, each ora-
cle can be identified with a subset of natural numbers. If a function f can be computed
with an oracle machine with set A as the oracle, then we say that the function f is com-
putable from A. If A is decidable, then the set of functions computable from A is the
set of Turing-computable functions. However, the function χH , as well as any Turing-
computable function, is computable from H. In fact, many other uncomputable func-
tions are computable from H. Nevertheless, because an oracle machine consists only of
finitely many instructions, the set of functions computable from a fixed oracle is still a
countable set.

In the literature, there are various ways to classify the oracles, or, equivalently, sub-
sets of natural numbers, into different complexity classes. Here we adopt the arithmeti-
cal hierarchy, described by �0

n sets (see Odifreddi 1989, Section IV). This classification
is based on the complexity structure of quantifiers necessary to describe each subset of
natural numbers as a predicate. This hierarchy respects the strength of oracles in terms
of functions computable from them; more precisely, if f is computable from A for some
A ∈ �0

n, then f is computable from any set B ∈ �0
n+1. The set �0

1 consists of all decidable

sets. A set A ∈ �0
2 if and only if χA is computable from the halting problem H (Odifreddi

1989, Proposition IV.1.16). In this sense, the halting problem is among the least uncom-
putable functions.

3.2 Expressible tests

Here we formalize the notion of expressible tests via computability. A test is express-
ible if and only if it can be implemented by a Turing machine or, by the Church–Turing
thesis, if and only if there is an algorithm to implement the test. This definition, how-
ever, requires modifications of previous definitions of tests and forecasting strategies,
because computability applies only to functions over natural numbers or subsets of nat-
ural numbers, while tests, as defined in Section 2, involve real numbers from the expert’s
predictions.

For this modification, we assume that the predictions made by the experts are al-
ways in rational numbers. We can relax this restriction to allow computable real num-
bers (which may be more natural in our context), but that requires more notation and
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technical details, but does keep the results intact. Because we restrict the expert to use
only rational probability values and because we require the true expert to report the true
data-generating process, we also restrict our attention to data-generating processes that
involve only rational probability values. To discuss the complexity of forecasting strate-
gies, we require the false expert’s randomization over his predictions to involve only ra-
tional numbers.

To formalize these modifications, we define admissible distributions over an abstract
finite or countable set Z as follows: a distribution μ over Z is admissible if and only if
μ[z] ∈ Q for every z ∈Z and μ[z] = 0 for all but finitely many z’s. The set of all admissible
distributions over Z is denoted by �a(Z). Notice that if Z can be effectively identified
with N or if Z is finite, then �a(Z) can be effectively identified with N as well, since
Q can be effectively identified with N and finite sequences of N can also be effectively
identified with N.

Now we are ready to modify the definition of tests and forecasting strategies. As-
suming that the experts can only make predictions in rational numbers, we define an
admissible test as a subset T of (�a(S) × S)<N. Notice that the set (�a(S) × S)<N can be
effectively identified with N and hence T can be regarded as a subset of N. As a result,
it is then legitimate to ask whether an admissible test T is decidable. Similarly, define
an admissible forecasting strategy to be a function f : (�a(S) × S)<N → �a(�a(S)), with
the interpretation that f (p0� s0� � � � �pn−1� sn−1) is the distribution according to which
the expert randomizes the prediction at period n, given the previous predictions pk and
outcomes sk, k ≤ n − 1. Notice that, again, both (�a(S) × S)<N and �a(�a(S)) can be
effectively identified with N, and hence an admissible forecasting strategy can be re-
garded as a function over natural numbers. Hence it is also legitimate to ask whether an
admissible forecasting strategy f is computable and, for any given oracle, whether f is
computable from that oracle.

Finally, we restrict the underlying data-generating process to be admissible as well
(again, as mentioned earlier, our results do not change if we allow computable real num-
bers). We say that an S-valued stochastic process X0�X1� � � � is admissible if the con-
ditional distribution, pX �x, is an admissible distribution for every partial realization x,
where pX �x is given by (1). Notice that if a stochastic process X is admissible, then fX as
defined in Section 2 is an admissible forecasting strategy.

As in Section 2, we consider only tests that do not reject true experts, but restrict
our attention to admissible data-generating processes only: we say that a test T does
not reject admissible truth with probability 1 − ε if R(T�fX � X ) < ε for every admissible
stochastic process X . Here we assume that the true expert always makes predictions ac-
cording to the true data-generating process, even if it is not computable. This assump-
tion is consistent with the previous literature. However, it implies that the true expert’s
forecasting is not bounded by complexity constraints, while the false expert may be. Al-
ternatively, we could require the test to pass computable truth only. Both of our results
still hold under this alternative assumption.

Given these modified definitions, we can then speak of expressible tests and com-
plexity of forecasting strategies in terms of the arithmetic hierarchy. First we define ex-
pressible tests.
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Definition 1. An admissible test T ⊂ (�a(S) × S)<N is expressible if the set T is
decidable.

All tests considered in the calibration literature are expressible, including the test
TN�α in Example 1. It is immediate from Proposition 1 that expressible tests are manipu-
lable. We are interested, however, in identifying the complexity classes of the forecasting
strategies for which the manipulability result does or does not hold. The complexity of
an admissible forecasting strategy f is measured by the strength of the oracle necessary
to implement f with an oracle machine, and we employ the arithmetic hierarchy {�0

n}∞n=1
to classify the strengths of oracles. As mentioned earlier, the class of computable admis-
sible forecasting strategies correspond to the bottom hierarchy �0

1, and the class of ad-
missible strategies that are computable from the halting problem H corresponds to the
second lowest class �0

2. It turns out, as we show in the next section, that, for expressible
tests, these two are the relevant complexity classes for the manipulability result to hold
or not to hold.

4. Results

We begin with the nonmanipulability result. Theorem 1 states that there exists an ex-
pressible test such that for any computable forecasting strategy f , the test rejects the
false expert, who knows nothing about the underlying data-generating process, with
high probability for some data-generating process. Moreover, it states that this is true
for a computable data-generating process, where an admissible stochastic process X =
X0�X1� � � � is said to be computable if fX is computable. In Theorem 1, we require the
false expert to have access only to computable forecasting strategies and, correspond-
ingly, we show the nonmanipulable result against computable stochastic processes. No-
tice, however, that the test passes a true expert for all admissible stochastic processes,
not only computable ones.

Theorem 1. For every ε > 0, there exists an expressible test T that does not reject admissi-
ble truth with probability 1 − ε and such that for every computable strategy f , there exists
some computable S-valued stochastic process X for which R(T�f� X ) > 1 − ε.

Theorem 1 is similar to the results in Fortnow and Vohra (2009), with the difference
that the constructed tests there are all within the polynomial-time complexity class.
However, as Remark 4 shows, any expressible test can be modified to an equivalent test
(in the sense that against any realization, one test rejects the expert if and only if the
other test rejects) that is within the polynomial-time complexity class. Therefore, The-
orem 1 generalizes those results in the sense that it broadens the class of forecasting
strategies against which the nonmanipulability result holds for expressible tests. The
formal proof of Theorem 1 is given in Section 5, but we give an outline of it next.

Sketch of the proof of Theorem 1. The proof relies on a simple observation of
Dawid (1985): for a given countable set F = {f1� f2� � � �} of forecasting strategies, a test
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that does not reject truth with probability 1 − ε can be devised such that, for each strat-
egy fm, there is a partial realization xm against which fm is rejected. This is especially
easy to see if all strategies in F are deterministic: for fm, consider a deterministic se-
quence xm = (s∗0� s

∗
1� � � � � s

∗
n) such that s∗k is the least likely outcome (hence has probabil-

ity no greater than 1/2) conditional on (s∗0� � � � � s
∗
k−1) according to fm (i.e., according to

the data-generating process X such that fX = fm), and take the test Tm that rejects the
expert under xm and the predictions made by fm along xm. Moreover, we can choose the
length n of the partial realization xm to be so large that Tm rejects the truth with proba-
bility ε/2m. Let T = ⋃

m Tm be the test that rejects the expert if he fails in any of the tests
Tm’s. Then T rejects each fm against xm and still does not reject truth with probability
1 − ε.

Applying this technique to our theorem, given that the set of computable forecasting
strategies is a countable set, shows that (see the proof for accommodating randomiza-
tion in the above argument) there exists a nonmanipulable test for computable strate-
gies. However, we need to make sure that such a test is expressible. To this end, we
first show that the construction of the tests Tm involves only computable operations.
This is done in Lemma 1. However, this result does not guarantee that the ultimate test
T = ⋃

m Tm is decidable. The crucial observation that allows us to construct a decidable
T is the fact that we can enumerate all computable strategies in a computable manner,
according to the enumeration theorem mentioned in Section 3.1. �

As made clear in the above argument, it is the enumeration theorem that ultimately
ties the computability of the strategies available to the false expert to the computability
of the test we construct. Indeed, Theorem 1 would still hold if we consider tests that
are decidable relative to a fixed oracle A and the set of forecasting strategies that are
computable relative to the same oracle A. In particular, if the false expert is restricted
to forecasting strategies from the class �0

n, then there is a test in the class of �0
n that is

immune to manipulability for any n ≥ 1.
Theorem 1 shows that expressible tests can be used to deal with computable fore-

casting strategies, but it remains silent about how broad the class of forecasting strate-
gies can be for those tests to be immune to manipulations. Our second result, a manip-
ulability result, shows that all expressible tests are manipulable if we allow the expert to
use forecasting strategies that are more complicated than computable ones. More pre-
cisely, we show that for any expressible test, there is a forecasting strategy computable
from the halting problem H that passes the test with high probability against any un-
derlying data-generating process; those strategies lie in the next arithmetic hierarchy to
the computable strategies.

Theorem 2. Let T be an expressible test that does not reject admissible truth with prob-
ability 1 − ε. Then, for every δ > 0, there exists an admissible forecasting strategy f com-
putable from the halting problem H that (δ+ ε)-manipulates T .

The proof of Theorem 2 is in Section 5, and, as with the previous theorem, we give a
sketch of the proof here.
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Sketch of proof of Theorem 2. The proof is based on tracking the computability
restrictions in the proof of Olszewski and Sandroni (2008).

Consider first the case of a finite test T that depends only on predictions and out-
comes made in a bounded horizon n ∈ N, i.e., if the expert does not fail in the first n

days, then he is off the hook. In this case, Sandroni (2003) proves that the test is manip-
ulable. Moreover, standard arguments that are used in the literature show that there is a
manipulating strategy that confines the expert’s forecast at every stage to a finite grid of
�(S), and it is also easy to extend the result so that the randomization employed by the
expert over elements of this grid is confined to probability values in the same grid. We
establish these results formally in Lemma 2.

Thus there is a finite set of strategies such that at least one of them manipulates
the test. Since checking whether a strategy manipulates the test is a computable oper-
ation (it involves going over all realizations of length n, and for each of them, checking
that the probability of failing is sufficiently small), it follows that every finite test has a
computable manipulating strategy.

Now consider any (potentially infinite) admissible test T . The false expert seeks a
strategy that guarantees that the chance of eventual failure is small. Equivalently, the
false expert seeks a strategy that has a small chance of failure in any of the finite tests
Tn, where Tn, the n-periods restriction of T , is the finite test in which the expert fails
if he fails T before period n and passes otherwise. Thus the expert faces a sequence
T0�T1�T2� � � � of tests of increasing difficulty and he seeks a strategy that passes all of
them simultaneously. Proving the existence of such a strategy calls for some compact-
ness argument (like the one used by Olszewski and Sandroni 2008 in their appeal to
Fan’s theorem). This is also where computability breaks down: at day 0, the expert is
already required an infinite foresight—he has to plan his prediction for that day to make
it compatible with a good manipulating strategy for all tests Tn. Checking whether a
certain plan fulfills this requirement requires an appeal to the halting problem as an or-
acle. To show that there exists a manipulating strategy that is computable relative to
the halting problem, we reduce that existence problem to a problem of finding an infi-
nite branch in a finitely splitting tree and use the Kreisel basis lemma (Odifreddi 1989,
Proposition V.5.31 and Proposition IV.1.16), the computable version of the Konig lemma,
which states that if a finitely splitting tree is infinite, then there is an infinite branch that
is computable relative to the halting problem.

The finitely splitting tree is constructed as follows: for each finite horizon n, the fore-
casting strategy can be written as a sequence of functions f n = (f0� � � � � fn−1), where fk
maps partial realizations of length k to a mixture of predictions. As mentioned earlier,
we can let fk be a distribution over a finite grid of predictions that use probability values
over a finite grid, and this makes the set of possible fk’s a finite set. The tree T contains
f n’s that manipulate the test Tn. If T has an infinite branch, which corresponds to an
infinite sequence f = (f0� f1� � � � � fn� � � �), then f n manipulates Tn for each n and hence
f manipulates T . The tree T is a decidable set because checking whether a finite strat-
egy manipulates a finite test is a computable operation; T is infinite because there is a
manipulating strategy for each n. Applying the Kreisel basis lemma, we obtain a strategy
that manipulates T and is computable relative to the halting problem. �
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Remark 2. Theorem 2 still holds if we require the test to pass a true expert only for
computable stochastic processes. This follows from the fact that the proof of Theorem 2
needs only the tests Tn to pass a true expert.

Remark 3. As with Theorem 1, Theorem 2 can be extended to computability relative to
a fixed oracle. For any test that is decidable relative to an oracle A, there is a manip-
ulating strategy that is computable relative to A′, where A′ solves the halting problem
relative to A. As a result, if the test belongs to the class �0

n, then there is a manipulating
strategy that belongs to the class �0

n+1 for any n ≥ 1.

5. Proofs

5.1 Proof of Theorem 1

Notation. For every q = (p0� � � � �pn−1) ∈ �a(S)
n and x = (s0� � � � � sn−1) ∈ Sn, let

ρ(q�x)=
n−1∏
k=0

pk[sk] (2)

be the probability that Nature produces outcomes x if she randomizes according to the
predictions q. In addition, for every admissible strategy f : (�a(S) × S)<N → �a(�a(S)),
let

π(f�x�q) =
n−1∏
k=0

f (p0� s0� � � � �pk−1� sk−1)[pk] (3)

be the probability that an expert who uses f produces predictions q along the partial
realization x. Both ρ and π are computable functions.

For every partial realization x∗ = (s∗0� � � � � s
∗
n−1) ∈ Sn and every rational ε > 0, let

T(x∗� ε) be the test that is given by the decidable set of all sequences σ = (p0� s0� � � � �

pn−1� sn−1) ∈ (�a(S) × S)n of predictions and outcomes such that sk = s∗k for every
0 ≤ k < n and ρ(q�x∗) < ε for q = (p0� � � � �pn−1). Thus, under T(x∗� ε), the expert is
rejected if the partial realization x∗ occurs and he gave this realization a low probability.
The test T(x∗� ε) then passes the true expert with probability 1 − ε.

By the enumeration theorem, there exists a computable enumeration, {ϕm}m∈N, of
all computable functions ϕm :⊂ (�a(S) × S)<N → �a(�a(S)). Moreover, the function
U(m�σ) = ϕm(σ) (equality here means that the values are equal when ϕm is defined
and both functions are undefined otherwise) is computable.

Lemma 1. Let ε > 0 be a fixed rational number. There exists a computable function θ :⊂
N → S<N such that, for all natural numbers m, if ϕm is a strategy (i.e., a total function),
then m ∈ dom(θ) and there exists some computable S-valued stochastic process X such
that R(T(θ(m)�ε/2m+1)�ϕm� X ) > 1−ε, i.e., the strategy ϕm fails the test T(θ(m)�ε/2m+1)

with probability at least 1 − ε over X .
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Proof. Let m ∈ N. We describe how to compute θ(m). Let k be a natural number such
that ε > 1/2k and let n = m+ 2k+ 1.

Let μ ∈ �a((�a(S)× S)n) be given by

μ[q�x] = π(ϕm�x�q) · ρ(q�x)

for every q = (p0� � � � �pn−1) ∈ (�a(S))
n and x = (s0� � � � � sn−1) ∈ Sn, where ρ and π are

given by (2) and (3). Note that if f = ϕm is total, then the computation of μ halts on
m, and in this case μ is the stochastic process P0�X0� � � � �Pn−1�Xn−1 of predictions Pk

created by f and outcomes Xk randomized by Nature according to these predictions.
Let μX be the marginal distribution of μ over Sn and choose x∗ = (s∗0� � � � � s

∗
n−1) such

that

μX [x∗] =
∑

q∈�a(S)n

μ[q�x∗] ≤ 1/2n < ε2/2m+1� (4)

Then, in particular, it follows that if X =X0�X1� � � � is the admissible S-valued stochastic
process such that Xk = s∗k for every 0 ≤ k < n and Xn�Xn+1� � � � are independent and
identically distributed uniformly over S, then

R(T(x∗� ε)� f� X ) =
∑

q|ρ(q�x∗)<ε/2m+1

π(f�x∗� q) > 1 − ε�

where the inequality follows from (4) with f = ϕm. �

Proof of Theorem 1. Let T be given by T = ⋃
m≥0 T(θ(m)�ε/2m+1), where θ is the

computable function from Lemma 1 and T(θ(m)�ε/2m+1) = ∅ if θ(m) is undefined, so
that the expert fails T if and only if he fails one of the tests T(θ(m)�ε/2m+1). Since the
test T(θ(m)�ε/2m+1) fails the truth with probability less than ε/2m+1, it follows that T
fails the truth with probability less than

∑
m ε/2m+1 = ε. Finally, for every computable

strategy f , if m is such that f = ϕm, then by Lemma 1, f fails T(θ(m)�ε/2m+1) (hence also
T ) with probability at least 1 − ε over some computable S-valued stochastic process X .

The test T , however, may not be decidable. Here we modify it to an equivalent test
that is decidable. Let A be the algorithm that computes the function θ(m). First we
construct a decidable set T̃ ⊆ (�a(S)× S)<N × N × N as follows. The triplet (σ�m�n) ∈ T̃

if and only if the following conditions hold: (a) the algorithm A halts and gives output
θ(m) at input m within n steps; (b) σ ∈ T(θ(m)�ε/2m+1). The set T̃ is decidable because it
checks only whether A halts within a fixed number of steps instead of checking whether
it eventually halts. Then, for all σ ∈ (�a(S) × S)<N, σ ∈ T if and only if (σ�m�n) ∈ T̃ for
some (m�n) ∈ N2.

Now let T ∗ ⊆ (�a(S) × S)<N be the test such that σ = (p0� s0� � � � �pl� sl) ∈ T ∗ if
and only if l = (n+m)(n+m+ 1)/2 + n and (τ�m�n) ∈ T̃ for some initial segment
τ of σ .4 Then T ∗ is a decidable test: to decide whether σ ∈ T ∗ with |σ | − 1 = l =
(n+m)(n+m+ 1)/2+n, the algorithm goes over all initial segments τ of σ and for every

4Recall that for each l ∈ N, there is a unique pair (m�n) for this equality to hold; the number l is the code
for the pair (m�n).
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such τ, checks whether (τ�m�n) ∈ T̃ by calling the algorithm that decides the member-
ship of T̃ . Moreover, τ ∈ T if and only if σ ∈ T ∗ for some extension σ of τ. Therefore,
T and T ∗ are equivalent in the sense that they reject the expert over the same infinite
histories (p0� s0�p1� s1� � � �). �

Remark 4. For comparison with Fortnow and Vohra (2009), we note that the argument
in the last paragraph in the proof of Theorem 1 can be modified to make the test run in
polynomial time. The test T is polynomial if there exist a polynomial function ρ :N → N

and an algorithm A such that, for every σ = (p0� s0� � � � �pn� sn) ∈ (S × �(S))<N, A takes
at most ρ(n) steps over the input σ and decides whether σ ∈ T . Let T be an expressible
test, that is, there is an algorithm A′ that outputs 1 on σ if σ ∈ T and that outputs 0 on
σ otherwise. Consider the test T ∗ such that σ = (p0� s0� � � � �pn� sn) ∈ T ∗ if and only if A′
outputs 1 on (p0� s0� � � � �pk� sk) after at most l steps for some k� l ≤ √

n. The test T ∗ can
be implemented with the following algorithm A. Given input σ = (p0� s0� � � � �pn� sn),
run algorithm A′ on σk = (p0� s0� � � � �pk� sk) for k≤ √

n sequentially; if A′ halts on some
σk with output 1 within l steps for some l ≤ √

n, then A halts immediately and outputs 1;
otherwise A outputs 0. This ensures that A runs in polynomial time with ρ(n) = Cn for
some constant C. Moreover, T and T ∗ are equivalent in the sense that they reject the
expert over the same infinite histories (p0� s0�p1� s1� � � �).

5.2 Proof of Theorem 2

Fix, once and for all, a test T as in Theorem 2 and δ > 0. For every n, let Tn be the n-
periods restriction of T , i.e., the test that is given by all sequences (p0� s0� � � � �pk� sk) ∈ T

such that k< n. Since Tn ⊆ T , it follows that Tn also does not reject admissible truth with
probability 1 − ε. Since T = ⋃

n Tn, it follows that

R(Tn� f� X )−−−−→
n→∞ R(T�f� X ) (5)

for every S-valued stochastic process X = X0�X1� � � � and every strategy f :
(�(S) × S)<N → �(�(S)). We first give a lemma that shows that a manipulation strat-
egy can be modified to have probability values over a finite grid, which in turn is a
distribution over predictions over a finite grid. Let Z be a finite set. For every nat-
ural number M > 0, we denote by �M(Z) the set of distributions μ over Z such that
μ[z] ∈ {0�1/M�2/M� � � � �1} for every z.

Lemma 2. LetM�K :N → N be given byM(k) = �|S| · 2k/δ andK(k) = �|S|M(k)+1 · 2k/δ.
Then for every n, there exists a strategy f that ε + δ-manipulates Tn such that f (σ) ∈
�K(k)(�M(k)(S)) for every k and every sequence σ = (p0� s0� � � � �pk−1� sk−1) of past pre-
dictions and outcomes.

To prove Lemma 2, we use three claims. The first claim states that every distribution
over a finite set Z can be approximated by a distribution with probability values on a
finite grid. We use the L1 metric: for any μ�ν ∈ �(Z), ‖μ− ν‖1 = ∑

z∈Z |μ[z] − ν[z]|. The
proof of the claim is easy and is omitted.
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Claim 1. Let Z be a finite set. Then for every μ ∈ �(Z) and every M , there exists μ′ ∈
�M(Z) such that ‖μ′ −μ‖1 < |Z|/M .

The proofs of Claims 2 and 3 below are omitted as well, since similar arguments
have already appeared in previous papers (Olszewski and Sandroni 2008, Shmaya 2008,
Lemma 1). Claim 2 states that if the expert gives prediction that are close enough to the
truth, he still passes a test that does not reject a true expert. Claim 3 states that a slight
perturbation of a strategy does not greatly change the probability of failing a particular
test.

Claim 2. Let δ > 0, let X = X0�X1� � � � be an S-valued stochastic process, and let f be a
forecasting strategy such that, for every sequence σ = (p0� s0� � � � �pk−1� sk−1), f (σ) is the
dirac atomic distribution on an element p ∈ �(S) such that ‖p − pX �x‖1 < δ/2k, where
x = (s0� � � � � sk−1) and pX �x is given by (1). Then R(T�f� X ) < ε+ δ.

Claim 3. Let δ > 0 and let f� f̃ : (�a(S) × S)<N → �(�a(S))
5 be two strategies such that

‖f (σ) − f̃ (σ)‖1 < δ/2k for every k ∈ N and every sequence σ = (p0� s0� � � � �pk−1� sk−1)

of predictions and outcomes. Then |R(T�f� X ) − R(T� f̃ � X )| < δ for every S-valued
stochastic process X .

Proof of Lemma 2 (Sketch). Fix n. Then for every stochastic process X , there exists by
Claim 1 a strategy f such that, for every sequence σ = (p0� s0� � � � �pk−1� sk−1) of predic-
tions and outcomes, f (σ) is the dirac atomic distribution on an element p ∈ �M(k)(S)

such that ‖p−pX �x‖1 < δ/2k (notice that for Claim 1 to be applicable, M(k) must satisfy
|S|/M(k)≤ δ/2k), where x= (s0� � � � � sk−1) and pX �x is given by (1). By Claim 2, it follows
that R(Tn� f� X ) < ε+ δ.

By a minmax argument as in Sandroni (2003), it follows from the last observation
that there is a prediction strategy f that ε + δ-manipulates the test Tn and such that
f (σ) ∈ �(�M(k)(S)) for every σ = (p0� s0� � � � �pk−1� sk−1). Notice that the minmax argu-
ment works because Tn can be used to construct a zero-sum game with a finite set of
strategies for each player.

By Claim 1, f can be approximated by a strategy f̃ such that f̃ (σ) ∈ �K(k)(�M(k)(S))

(notice that K(k) satisfies |S|M(k)+1/K(k) ≤ δ/2k) and |f̃ (σ)−f (σ)| < δ/2k for every σ =
(p0� s0� � � � �pk−1� sk−1), and by Claim 3, f̃ is a strategy that (ε+ 2δ)-manipulates Tn. �

Proof of Theorem 2. Let Rn = �M(0)(S) × S × · · · × �M(n−1)(S) × S be the set of all
possible sequences σ = (p0� s0� � � � �pn−1� sn−1) of the n-stage past predictions and out-
comes if the expert uses the strategy f as in Lemma 2, and let Fn = (�K(n)(�M(n)(S)))

Rn

be the set of contingent mixtures in day n given past history when the kth day’s mixture
is restricted to �K(k)(�M(k)(S)). Let T ⊆ ⋃

n≥0 F0 × · · · × Fn be the finitely splitting tree
of all elements f n = (f0� � � � � fn−1) ∈ F0 × · · · × Fn−1 such that the following condition is
satisfied: If g is an admissible strategy for which g(σ) = fk(σ) for every sequence σ ∈Rk,

5Notice that here we assume that both strategies are mixtures over rational predictions, but not neces-
sarily admissible.
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then g (ε+ δ)-manipulates Tn. We call such a strategy g an extension of f n. Notice that
f n does not define an admissible forecasting strategy—it does not define predictions for
many partial histories; however, it is also true that for any realization, one extension of
f n fails on Tn if and only if any other extension fails on Tn.

The set T is a tree, that is, if f n = (f0� � � � � fn−1) ∈ T , then f k = (f0� � � � � fk−1) ∈ T for
any k < n. This result follows from the fact that Tk ⊆ Tn and hence if any admissible
strategy g that extends f n (ε + δ)-manipulates Tn, then any admissible strategy g′ that
extends f k (ε + δ)-manipulates Tk. Note that to check whether an extension g of f n

manipulates Tn, it is sufficient to check that the probability that an expert who uses fk
to predict in day k (k= 0� � � � � n− 1) will be rejected by day n is less than (ε+ δ) for every
partial realization x= (s0� � � � � sn). Since the number of such partial realizations is finite,
it follows that T is a decidable set.

By Lemma 2, for every n, the tree T has a node of length n. Therefore, by the Kreisel
basis lemma, T admits an infinite branch (f0� f1� � � �) that is computable relative to the
halting problem. If g is the corresponding admissible strategy such that g(σ) = fk(σ) for
every sequence σ ∈Rk and g(σ) is the atomic dirac measure on the uniform distribution
for other σ ’s, then g is a strategy that (ε+δ)-manipulates Tn for every n. By (5), it follows
that g also (ε+ δ)-manipulates T . Also, g is computable relative to the halting problem
because the infinite branch (f0� f1� � � �) is. �
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