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Implementation of communication equilibria by correlated
cheap talk: The two-player case

Péter Vida
Department of Economics, University of Mannheim

Françoise Forges
Université Paris-Dauphine and Institut Universitaire de France

We show that essentially every communication equilibrium of any finite Bayesian
game with two players can be implemented as a strategic form correlated equi-
librium of an extended game, in which before choosing actions as in the Bayesian
game, the players engage in a possibly infinitely long (but in equilibrium almost
surely finite), direct, cheap talk.

Keywords. Bayesian game, cheap talk, communication equilibrium, correlated
equilibrium, preplay communication.

JEL classification. C72, D70.

1. Introduction

Consider a standard Bayesian game in which the players simultaneously choose actions
as a function of their type. Assume that, before making their decision, the players can
exchange as many costless messages as they wish, possibly with the help of a mediator.
A generalized revelation principle holds: the set of all Nash equilibrium outcomes of all
games that extend the Bayesian game by allowing such communication is characterized
as the set of all canonical communication equilibria (see Forges 1986 and Myerson 1986,
1991, Chapter 6). Canonical communication equilibria are very tractable but rely on
a specific kind of mediator, who invites every player to fully reveal his type and then
privately recommends an action to every player. Plain conversation between the players
is much more natural and does not require a benevolent third party who becomes aware
of the players’ private information. Hence the following question:
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Can all canonical communication equilibrium outcomes be implemented by means
of cheap talk, i.e., as Nash equilibrium outcomes of an appropriately designed extended
game in which the players can just talk to each other before making their decision?

Partially or even fully positive answers have been given in finite Bayesian games with
at least three players.1 However, for two players, the answer is, in general, negative. For
instance, in finite sender–receiver games (namely, two-person Bayesian game with a sin-
gle informed player, whose actions are not payoff relevant), Forges (1985, 1990a) shows
that there may exist communication equilibrium outcomes that cannot be implemented
as Nash equilibrium outcomes of any long cheap talk game.2

In this paper, we show that the communication equilibrium outcomes of any two-
person game can be implemented as correlated equilibrium outcomes (in the sense of
Aumann 1974, 1987) of a long cheap talk game. In other words, we assume that, be-
fore they start to talk, the players can privately observe some signal, a sunspot, that is
totally extraneous to the game (i.e., independent of the players’ types and without any
direct effect on the payoffs).3 The players are not subject to any deadline and cannot
use any common device (like urns, envelopes, or recording machines) while they talk
(but each player is of course free to use any personal device to make his own choices).
In a tractable representation, the signal of each player before the talking phase is a rec-
ommendation on how to talk and how to make a decision at the end of the cheap talk
phase.

Our main result can be stated as follows. Fix any finite two-person Bayesian game
� and any (strictly individually rational) communication equilibrium outcome of �. We
design a long cheap talk extension ext� of �, with finitely many messages at every stage,
together with a correlation device for the cheap talk game ext�, with the following prop-
erties: (i) no player can gain by unilaterally deviating from the recommendation of the
correlation device in ext� and (ii) the outcome, namely the conditional probability dis-
tributions generated by the correlation device and strategies in ext� over actions given
types, are exactly the same as in the communication equilibrium. In this construction,
the size of the finite set of messages depends on the parameters of the Bayesian game
and on the underlying communication equilibrium. By considering a countable set of
messages, we can get at once all (strictly individually rational) communication equilib-
rium outcomes of any Bayesian game as correlated equilibrium outcomes of a universal
cheap talk game, as in Forges (1990b) for games with at least four players.4 Our cheap

1Game theoretical references involve, e.g., Bárány (1992), Forges (1990b), Ben-Porath (1998, 2003, 2006)
and Gerardi (2004), Forges (2009) provides a survey. See, e.g., Halpern (2008) for references in computer
science.

2As another particular case, if every player has a single type (complete information), communication
equilibria coincide with Aumann’s (1974, 1987) correlated equilibria, but in a plain conversation, both play-
ers know all the messages that they exchange, so that they cannot simulate the private recommendations
of a mediator.

3As in Forges (1988), we do not reserve the term “sunspot” to a common, public, extraneous signal. The
interpretation is that every player observes the sunspots in his own way.

4Forges (1990b) also proposes a cheap talk game with a continuum of messages that is universal for all
three-person games.
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talk game ext� is possibly infinitely long in the sense that its length is not fixed in ad-
vance, in a deterministic way, but depends endogenously on the messages exchanged
by the players.

Our result extends Forges (1985), which focuses on the case of a single informed
player and a single decision maker. One stage of cheap talk suffices then to implement
all communication equilibrium outcomes. Recently, Blume (2010) established a simi-
lar result in the context of Crawford and Sobel’s (1982) sender–receiver game.5 Forges’s
(1985) construction goes through if payoff relevant actions are added for the single in-
formed player. However, the general case, where both players are privately informed and
make decisions, remains open until Vida (2007b) proposes a first solution.6

Some papers propose a different approach to implement communication equilib-
rium outcomes in two-person games without the help of a mediator. Dodis et al. (2000)
and Urbano and Vila (2002) assume that the computational ability of the players is lim-
ited. Under this assumption, they show that the correlated equilibrium outcomes of any
two-person game with complete information can indeed be implemented as (ε-) Nash
equilibrium outcomes of a cheap talk extension of the game. Ben-Porath (1998) does
not rely on any cryptographic tool, but obtains a similar result by allowing the players
to make use of urns or envelopes while they talk. Generalizations to games with incom-
plete information are proposed by Krishna (2007) and Izmalkov et al. (2011) for the latter
approach, and by Urbano and Vila (2004) for the cryptographic approach. The common
feature of these solutions (as opposed to ours) is that at every stage, cheap talk is re-
laxed in some way: limited computational ability or physical hard devices are used to
exchange messages at every stage.

When trying to implement a given communication equilibrium by correlated cheap
talk in a two-person game in which both players have private information and must
take actions, the main problem is to guarantee that no player learns useful information
before the other. Full detection of possible deviations during the cheap talk phase can
be of no help if it happens too late. Indeed, there may be no way to “punish” a deviator
once he possesses the desired information. To solve the problem, the basic idea is that
the correlation device selects a relevant stage t∗ of the cheap talk phase, without telling
it directly to the players. How do the players figure out when they reach it? At the end of
every stage t of cheap talk, they simultaneously discover from their exchanged messages
whether stage t was relevant (i.e., t = t∗). Useful information is exchanged only at the
relevant stage t∗, but the players realize this at the end of the stage. In addition, at every
stage, each player can check whether the other’s message was legitimate. If the stage is
not relevant, the players’ information is not updated so that illegitimate messages can
give rise to punishments.

As indicated in the previous paragraphs, our construction makes use of possibly in-
finitely long cheap talk. To what extent does our implementation result rely on an in-
finite horizon? We prove that, at the correlated equilibrium that implements a given

5Crawford and Sobel’s (1982) model involves types and actions in a real interval and thus does not pertain
to the finite setup of this paper.

6The main result in this paper can already be found in Vida’s (2007b) unpublished doctoral dissertation
(see also Vida 2007a). The proof proposed in this paper is a simplification of the original.
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communication equilibrium, cheap talk lasts for finitely many stages almost surely. We
also propose an example (in Section 5) in which an efficient communication equilib-
rium outcome cannot be achieved as a correlated equilibrium outcome, in any cheap
talk game with a bounded number of stages. Nonetheless, if the underlying game �

has a strictly individually rational Bayesian-Nash equilibrium (a condition that holds
in the previous example), every (strictly individually rational) communication equilib-
rium payoff can be approximated by a correlated equilibrium payoff of a sufficiently long
cheap talk game (Proposition 1 in Section 4).

The brief sketch above also suggests that our construction makes use of punish-
ments. This should not be surprising in view of the literature on the implementation
of a mediator by cheap talk (see Bárány 1992 for an early example, Heller et al. 2012 for
a recent one, Ben-Porath 2003, 2006 and Gerardi 2004 for discussions and solutions to
the problem, and Forges 2009 for a survey). Are these punishments credible? To for-
mulate this question more precisely, recall that, according to our result, every commu-
nication equilibrium of a Bayesian game � can be implemented as a Nash equilibrium
of an extended game (ext�)μ, in which a correlation device μ sends private signals to
the players before they talk. Can we refine this Nash equilibrium so as to capture the
players’ sequential rationality, e.g., into a perfect Bayesian equilibrium? Proposition 2
(Section 4) gives sufficient conditions for a positive answer.

We implement communication equilibria of a given Bayesian game as correlated
equilibria of the game preceded by cheap talk. Hence we replace the communication
device by a correlation device, that is to say, replace a mediator by another! What do
we really gain from our construction? As argued by Forges (1985, 1988, 1990b) and re-
cently by Blume (2010), the mediators implicitly involved in the two solution concepts
are very different from each other. In a (canonical) communication equilibrium of the
original game, the mediator gets to know the whole information of every player. How-
ever, in a correlated equilibrium of the cheap talk game, the mediator does not receive
any information from the players. He makes recommendations on how to exchange
messages, but remains fully ignorant of the players’ types. With such a mediator, players
can preserve their privacy.

Let us turn to the organization of the paper. In the next section, we recall the con-
cepts of Bayesian game and communication equilibrium. Then, in Section 3, we de-
scribe the extension of the game in which the players can talk and we define correlated
equilibrium in that game. In Section 4, we state the main result as Theorem 1 and the
two propositions mentioned above; the reader familiar with our basic concepts can go
to the statements right away. Section 5 is devoted to an example that illustrates our re-
sults. Section 6 contains the proofs. Finally, Section 7 discusses some variants of the
model.

2. Basic game: Communication equilibrium

Let us fix a two-player finite Bayesian game � ≡ 〈{Li�Ai�gi}i=1�2�p〉: for every player
i = 1�2, Li is a finite set of possible types, Ai is a finite set of actions, and gi :L×A → R

is a von Neumann–Morgenstern utility function, where L = L1 × L2 and A = A1 × A2;
p ∈ �L is the players’ common prior over L.
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� starts with a move of nature, which selects l = (l1� l2) ∈ L according to p. Player i
is informed only of his own type li, i = 1�2. Then the players simultaneously choose
actions a1 ∈ A1 and a2 ∈ A2, respectively. Let a = (a1� a2). The respective payoffs are
g1(l� a) and g2(l� a).

A (canonical) communication device7 q for � is a transition probability from L to
A, q :L → �A, namely a system of probability distributions q(·|l) over A for every l ∈ L.
By adding a communication device q to the Bayesian game, one generates an extended
game �q, which is played as follows.

1. Every player i learns his type li as in �, i = 1�2.

2. Every player i sends a private message l̂i ∈ Li to the communication device q. Let
l̂ = (l̂1� l̂2).

3. The device q selects an action profile a = (a1� a2) with probability q(a|l̂).

4. The device q sends ai privately to player i, i = 1�2.

5. The players choose actions and receive payoffs as in �.

Some strategies are of special interest in �q: player i is sincere in �q if he reveals his
type to the communication device at stage 2, namely l̂i = li for every li ∈ Li; player i is
obedient if at stage 5, he follows the recommendation ai made by the communication
device at stage 4, whatever his type. When both players are sincere and obedient, the
expected payoff of player i of type li is8

Gi[q|li] =
∑
l−i

p(l−i|li)
∑
a

q(a|li� l−i)gi((li� l−i)� a)� li ∈Li� i = 1�2� (1)

Let G[q] = (Gi[q|li])li∈Li�i=1�2 be the pair of vector payoffs associated with q.

Definition 1. Let q be a (canonical) communication device for �. q is a (canonical)
communication equilibrium of � if and only if the sincere and obedient strategies form
a Nash equilibrium of �q, namely, if and only if

Gi[q|li] ≥
∑
l−i

p(l−i|li)
∑
ai�a−i

q(ai� a−i|l̂i� l−i)gi((li� l−i)� ri(ai)� a−i)

for i = 1�2, li� l̂i ∈ Li and for all ri :Ai → Ai. ME(�) denotes the set of communication
equilibrium9 payoffs of �, namely

ME(�) = {G[q] | q is a communication equilibrium in �} ⊂ R
|L1|+|L2|�

7See Forges (1986, 1990b) and Myerson (1986, 1991).
8When the index i refers to one of the two players, −i refers to the other one.
9We use the notation ME as a reminder of “mediated equilibrium”; we keep CE for “correlated

equilibrium.”
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Thanks to the general revelation principle recalled in the Introduction (see, e.g.,
Forges 1990b), ME(�) is the set of all payoffs that can be achieved at a Nash equilib-
rium of an arbitrary extension of � allowing the players to communicate (possibly with
infinitely many stages and relying on a mediator at every stage).

Definition 2. A payoff vector (xi(li))li∈Li ∈ R
|Li| is (strictly) interim individually ratio-

nal for player i = 1�2 (or interim supportable with (strict) punishment) in � if there is a
strategy of the other player in �, namely a transition probability y−i :L−i → �A−i, such
that for all li ∈Li,

xi(li)≥ (>) max
ai∈Ai

∑
l−i

p(l−i|li)
∑
a−i

y−i(a−i|l−i)gi((li� l−i)� ai� a−i)�

(S)INTIR(�) denotes the set of vectors in R
|L1|+|L2| that are (strictly) interim individually

rational for both players.

Observe that, in general, (S)INTIR(�) depends on the prior probability distribution
p in �. In games with complete information (i.e., when |L1| = |L2| = 1), the definition
reduces to the standard one, namely xi is (strictly) individually rational for player i if and
only if

xi ≥ (>) min
y−i∈�A−i

max
ai∈Ai

∑
a−i

y−i(a−i)gi(ai� a−i)�

The following lemma, which is used later, states that interim individual rationality
always holds at a communication equilibrium.

Lemma 1. ME(�) ⊆ INTIR(�).

Proof. Let q be a communication equilibrium and let li ∈ Li be a type of player i. For
any bi ∈Ai and l̂i ∈Li,

Gi[q|li] =
∑
l−i

p(l−i|li)
∑
a

q(a|li� l−i)gi((li� l−i)� a)

≥
∑
l−i

p(l−i|li)
∑
ai�a−i

q(ai� a−i|l̂i� l−i)gi((li� l−i)� (bi� a−i))

=
∑
l−i

p(l−i|li)
∑
a−i

q(a−i|l̂i� l−i)gi((li� l−i)� (bi� a−i))�

Hence, set y−i(a−i|l−i) = q(a−i|l̂i� l−i) for some l̂i ∈Li as punishment. �

Observe that in the previous proof, “punishment” is mostly a convenient terminol-
ogy. More precisely, consider the following strategy of player i in �q: at stage 2, he re-
ports type l̂i whatever his type; at stage 5, he plays an arbitrary action bi, independently
of the recommendation of the communication device. This strategy of player i can be
interpreted as “nonparticipation.” If player j = −i plays the strategy y−i in the previous
proof, player i’s payoff is the same as when he does not participate.
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3. Cheap talk game, correlated equilibrium

In this section, we first extend the basic game �≡ 〈{Li�Ai�gi}i=1�2�p〉 by means of a long
cheap talk phase. Then we define correlated equilibria in this extended game.

Let M be a finite set of messages. Let c (continue) and s (stop) be two additional
messages available to the players. We define the multistage game extM � as follows:

Stage 0. Every player i learns his type li as in �, i = 1�2.

Stage 1. The players simultaneously send the message c or s to each other. If they
both selected c, they simultaneously send a message in M to each other and they
proceed to stage 2. Otherwise, every player i chooses an action in Ai, payoffs are
given as in �, and the game stops.

Stage t (t = 2�3� � � �). If the game has not stopped at an earlier stage, the players si-
multaneously send the message c or s to each other. If they both selected c, they
simultaneously send a message in M to each other and they proceed to stage t + 1.
Otherwise, every player i chooses an action in Ai, payoffs are given as in �, and the
game stops.

The previous scenario fully describes the players’ possible moves in the game extM �

and the payoffs if the moves make the game stop at some stage t. The scenario also
allows the game to go on forever, which is unavoidable if the length of communication is
not fixed in advance (see, e.g., Forges 1990a, Gossner and Vieille 2001, Aumann and Hart
2003). We thus have to define the payoffs in the case of infinitely long cheap talk, even
if this event typically is off the equilibrium path. Since there is no particular outcome
to be identified in our general Bayesian game, we assume, as Gossner and Vieille (2001)
and Aumann and Hart (2003), that if communication goes on forever, the players make
their decisions “at infinity.”

Let Ht = (M × M)t−1, t = 1�2� � � � , be the set of all pairs of messages in M possibly
sent before stage t and let H∞ = (M × M)N. We provide these sets with a measurable
structure, in the standard way. Let Ht be the algebra over H∞ generated by cylinder sets
of the form ht−1 × H∞, where ht−1 is a sequence in Ht . Let H∞ be the σ-algebra over
H∞ generated by the algebras Ht , t = 1�2� � � � . Finally, N = {{1}� {2}� {1�2}} describes the
sets of players possibly choosing s at some stage.

A pure strategy σi for player i (i = 1�2) in extM � is a sequence of measurable map-
pings σi = [(δit�mi

t� d
i
t)t≥1� d

i∞], where

δit :Li ×Ht → {c� s}� mi
t :Li ×Ht → M� t = 1�2� � � �

dit :Li ×Ht ×N → Ai� t = 1�2� � � � � di∞ :Li ×H∞ →Ai�

These mappings are interpreted as follows: δit describes player i’s decision to continue
or stop at stage t if the game is still going on at that stage; mi

t describes which message
in M he sends if both players decide to continue at stage t; dit describes the action he
chooses according to which player(s) decide(s) to stop at stage t; di∞ describes the action
he chooses if communication goes on forever.
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Let σ = (σ1�σ2) be a pair of pure strategies in extM � and let l = (l1� l2) be a pair
of types chosen at stage 0. If, for these types l, σ induces the game to stop at stage t,
namely if σ leads one of the player to choose s at stage t, as a function of the past history,
then the payoffs associated with l and σ are computed using the mappings dit and the
utility functions gi. If for these types l, σ induces cheap talk to last forever, the payoffs
associated with l and σ are computed in a similar way, using the mappings di∞. Payoffs
in extM � are thus well defined and the definition of the game is complete.

As explained in the Introduction, the players cannot hope to implement all commu-
nication equilibrium outcomes of � by cheap talk, namely as equilibrium outcomes of
extM � for some set of messages M , without randomizing their strategies in a correlated
way.

A correlation device consists of a probability space (	� B�μ), together with sub-σ-
algebras B1 and B2 of B. The probability space (	� B�μ) represents extraneous events
(“sunspots”), which happen independently of � (and extM �), in particular indepen-
dently of the types in L; Bi, i = 1�2, represents player i’s private information on the
extraneous events. To achieve our implementation goal, we make use only of simple
and well behaved correlation devices, typically describing discrete random variables.

By adding a correlation device [(	� B�μ)� B1� B2] to extM �, we get a new extended
game, (extM �)μ, in which, before stage 1 of extM �, every player i gets private informa-
tion in Bi on an extraneous event, selected in (	� B) according to μ. This lottery can take
place before or after stage 0, but is independent of the players’ prior p. In (extM �)μ,
every player i makes his strategic choices as a function of his extraneous information,
described by Bi (i = 1�2). Proceeding as in Aumann and Hart (2003), a pure strategy σ i

for player i (i = 1�2) in (extM �)μ is a sequence σ i = [(δi
t �mi

t �di
t)t≥1�di∞] of Li × Ht × Bi-

measurable mappings describing player i’s move at stage t (including ∞), where

δi
t :Li ×Ht ×	 → {c� s}� mi

t :Li ×Ht ×	 →M� t = 1�2� � � �

di
t :Li ×Ht ×N ×	 → Ai� t = 1�2� � � � � di∞ :Li ×H∞ ×	 → Ai�

Definition 3. A correlated equilibrium of extM � is a Nash equilibrium of (extM �)μ for
some correlation device [(	� B�μ)� B1� B2]. The set of all correlated equilibrium payoffs
of extM � is denoted as CE(extM �) which is a subset of R

|L1|+|L2|.

4. Implementing communication equilibria by cheap talk

In this section, we first state the main theorem, in terms of the standard correlated equi-
librium solution concept. After we deduce two immediate corollaries, we give a sketch
of the proof, which clarifies the use of unboundedly long cheap talk and indicates the
role of punishments. We then turn to “approximate implementation” with finitely long
cheap talk (Proposition 1). Finally, we give sufficient conditions for implementation in
sequentially rational strategies (Proposition 2).

The prior probability distribution p over L, the probability distribution μ of a corre-
lation device, and strategies (σ 1�σ 2) in (extM �)μ induce a probability distribution over
	×L×H∞ ×A, and thus also conditional probability distributions over A, given every
l ∈L.
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Theorem 1. Let � ≡ 〈{Li�Ai�gi}i=1�2�p〉 be a finite Bayesian game with two players and
let q be a communication equilibrium of � such that G[q] ∈ SINTIR(�). There exist a
finite set of messages M and a correlated equilibrium of extM �, the cheap talk extension
of � with messages in M , that induce the conditional probability distribution q(·|l1� l2)
over actions (i.e., over A1 × A2) for every pair of types (l1� l2) ∈ L1 × L2. In particular,
the payoff of the correlated equilibrium is G[q]. Moreover, the correlated equilibrium of
extM � is such that cheap talk lasts for finitely many stages almost surely.

In this statement, the set of messages depends on the parameters of � and of q.
If we allow for countably many messages, i.e., if we consider the extended cheap talk
game ext� in which M = N, we can get all strictly individually rational communication
equilibrium payoffs at once: ME(�) ∩ SINTIR(�) ⊆ CE(ext�). Recall that, by Lemma 1,
ME(�) ⊆ INTIR(�); the restriction imposed on communication equilibrium outcomes
is thus relatively mild. Conversely, by proceeding as in general versions of the revelation
principle, one can show that CE(ext�) ⊆ ME(�). Hence we get the following corollary.10

Corollary 1. ME(�)∩ SINTIR(�) = CE(ext�)∩ SINTIR(�).

Note that, once N is the set of messages, cheap talk in ext� is described in a universal
way, i.e., independently of the underlying Bayesian game �, as in Forges (1990b).

Corollary 1 can be interpreted as a characterization of the correlated equilibrium
payoffs of the long cheap talk game ext�, since it states that CE(ext�) and ME(�) es-
sentially coincide.11 To make the relationship between the two sets more precise, let us
denote the closure of CE(ext�) as CE(ext�).

Corollary 2. If ME(�)∩ SINTIR(�) = ∅, CE(ext�) = ME(�).

Proof. Given that ME(�) is closed, CE(ext�) ⊆ ME(�). To see the converse, we have to
show that if ME(�) ∩ SINTIR(�) = ∅, then ME(�) ⊆ ME(�)∩ SINTIR(�). Let x ∈ ME(�).
By Lemma 1, x ∈ INTIR(�). Let x∗ ∈ ME(�) ∩ SINTIR(�), let αn be a sequence in (0�1)
such that αn → 1, and let xn = αnx+ (1 − αn)x

∗. Since ME(�) is convex, xn ∈ ME(�) and
from the inequalities in Definition 2, it is readily checked that xn ∈ SINTIR(�). Finally,
xn → x. �

Sketch of the proof of Theorem 1. Let q be a communication equilibrium of �. We
gradually construct a set of messages M , a correlation device μ for extM �, and equi-
librium strategies in (extM �)μ that induce the transition probability q. The correlation
device μ first selects, independently for every l ∈ L, a pair of actions al = (a1

l � a
2
l ) ∈ A

10In this statement and the next ones, we do not recall that � is a finite two-person Bayesian game.
11Aumann and Hart (2003) show that even if only one of the players has private information in � (if, e.g.,

|L2| = 1), the characterization of the Nash equilibrium payoffs of the game ext� is fairly complex, as it relies
on the martingales generated by the long cheap talk. On the contrary, most correlated equilibrium payoffs
of ext� are characterized in a tractable way, as communication equilibrium payoffs of the original Bayesian
game �.
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according to q(·|l). If the players could reveal their types to each other, the correlation
device could send them (al)l∈L before the beginning of �.

To keep the correlated equilibrium conditions as close as possible to the commu-
nication equilibrium conditions, the correlation device μ selects permutations ηi of Li

(i = 1�2) to encrypt player i’s type li and permutations φi
η(l) of Ai (i = 1�2, l ∈ L) to en-

crypt player i’s recommended action aiη(l). Before the beginning of �, the device tells

player i how to encrypt his type (namely, ηi) and how to decrypt his recommended ac-
tion (namely φi

η(l), l ∈L). Every player’s encrypted, recommended action is transmitted
by the other player. More precisely, the correlation device tells the encrypted actions

b
j
η(l) =φ

j
η(l)(a

j
η(l)), l ∈L, to player i, j = i.

At the first stage of cheap talk, the players can simultaneously send their encrypted
type to each other; let η(l) be the pair of messages. Let us imagine that, at a second
stage of cheap talk, the players send simultaneously the corresponding encrypted ac-
tions b

j
η(l) to each other. The communication equilibrium conditions guarantee that a

player cannot gain in lying on his type at the first stage or on deviating (at the decision
stage) from the action (φi

η(l))
−1(biη(l)) that he decrypts at the second stage. In other

words, at this point, the correlation device mimics q.
However, the communication equilibrium conditions do not ensure that player i

correctly transmits the encrypted action b
j
η(l) of player j at the second stage. To fill this

gap, the correlation device μ chooses a “code” ki(η(l)�ai) in some large set, indepen-
dently and uniformly, for every pair of encrypted types η(l) and every possible action
ai, i = 1�2. The correlation device tells to player i the whole mapping ki, namely, the
code ki(η(l)�ai) associated with every encrypted, recommended action ai that player i
might receive from player j, but only kj(η(l)�b

j
η(l)), l ∈ L, for j = i, namely only the

codes of encrypted, recommended actions b
j
η(l) that player i himself must transmit to

player j for some l ∈ L. If, given a pair of messages η(l), player i transmits aj = b
j
η(l)

to player j, player i will, with high probability, not guess correctly the corresponding
code kj(η(l)�aj). In this case, player i is detected and punished by player j, who knows
the whole mapping kj , namely the codes of all the actions that might be transmitted to
him.12

The equilibrium strategies suggested in the previous paragraph raise two problems.
The first one, which is not typical of our construction (see, e.g., Bárány 1992 and Heller
et al. 2012), is that punishments may appear as incredible threats. We come back to this
below. The second and most important issue is that if player i unilaterally deviates at the
second stage of cheap talk and does not transmit the correct encrypted, recommended
action b

j
η(l) to player j, player i typically receives a correct recommendation at the same

stage. Player i may thus have updated his beliefs in such a way that player j cannot
maintain player i’s payoff below the communication equilibrium payoff.13

12Similar codes were used in Forges (1990b) to allow a player to check with high probability whether
another player correctly transmits information generated by a correlation device.

13Ben-Porath (2003) identifies this issue in games with three players or more, but does not provide a
thorough solution (see Ben-Porath 2006). We illustrate the difficulty on a two-person game in Section 5.
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To solve the second problem, we do not fix the number of stages of cheap talk in
extM �. Encrypted types are still exchanged only once at the first stage, but the corre-
lation device μ chooses a relevant stage t ≥ 2 according to a geometric distribution.
The previous encrypted, recommended actions, whose distribution is determined by
q, are selected for stage t only. For all stages t = t, the correlation device μ selects
encrypted, recommended actions uniformly. Codes are selected at every stage t, as de-
scribed above.

The key is that the players only discover whether stage t (≥ 2) is relevant, i.e., whether
t = t, at the end of stage t, after exchanging messages. If player j detects an incorrect
code in player i’s message at the end of stage t, then, with high probability, t = t, so
that player i’s belief over L is still the prior p and player j can punish player i (strictly)
below his communication equilibrium payoff (which belongs to SINTIR(�)). Strict pun-
ishment takes care of the small probability that deviation luckily happens at t.

There remains to explain how the players discover whether t = t at the end of every
stage t ≥ 2. The correlation device μ selects “labels” λit such that λ1

t = λ2
t if and only if

t = t. By exchanging their labels at the same time as the encrypted, recommended ac-
tions and their codes, the players can recognize t. To prevent cheating on the labels,
codes are associated to the labels as well. For every t ≥ 2, the correlation device μ tells to
player i the code κi(t�λit) of his own label λit at stage t, together with the whole mapping
κj(t� ·). This completes the description of the correlation device μ. Regarding strate-
gies, if player j detects an incorrect label code in player i’s message, player j punishes
player i. �

Theorem 1 is proved in full details in Section 6. In particular, we show how to com-
pute precisely the size of the set of messages M and the parameter of the geometric
distribution choosing t.

Approximation with finite cheap talk

Theorem 1 is stated in terms of the infinitely long cheap talk game extM �. For T ≥ 2, let
us denote as extTM � the extension of � in which the players cannot talk for more than
T stages. In Section 5, we show in an example that there may exist a communication
equilibrium payoff that cannot be achieved as a correlated equilibrium payoff of extTM �,
for any T . A natural question is thus whether every communication equilibrium payoff
of a Bayesian game � can be approximated by a correlated equilibrium payoff of a suf-
ficiently long cheap talk game extending �. A positive answer is given in the following
proposition and is illustrated in Section 5. The result is formally established after the
proof of Theorem 1, in Section 6.

Proposition 1. Let us assume that � has a Bayesian-Nash equilibrium payoff that be-
longs to SINTIR(�). Let x = G[q] ∈ ME(�) ∩ SINTIR(�) and let δ > 0. There exist a finite
set of messages M , a finite number of stages T , and a payoff vector xδ that is δ-close to x

such that xδ ∈ CE(extTM �).
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Implementation in sequentially rational strategies

The proof of Theorem 1 makes use of punishment strategies that may not be “credible,”
in the sense that they apply to any communication equilibrium payoff in SINTIR(�) and
are thus akin to minmax strategies. A standard way to guarantee credible punishments
is to focus on communication equilibrium payoffs that are not only strictly individu-
ally rational, but even dominate a Bayesian-Nash equilibrium. Ben-Porath (2003, 2006)
studies the implementation of such particular communication equilibria in Bayesian
games with three players or more.

Definition 4. A payoff vector ((xi(li))li∈Li)i=1�2 ∈ R
|L1|+|L2| in � is Nash-dominating if

there is a Bayesian-Nash equilibrium payoff ξ = (ξi(li)li∈Li)i=1�2 in � such that

xi(li) > ξi(li) for every i = 1�2 and li ∈Li�

For Nash-dominating payoffs,14 Theorem 1 can be restated in terms of a version
of the perfect Bayesian equilibrium (PBE) solution concept, which we call semi-weak
PBE.15 More precisely, we require sequential rationality at every information set and
Bayesian updating on the equilibrium path as in the weak PBE (see, e.g., Mas-Colell
et al. 1995 and Myerson 1991, who refer to “weak” sequential equilibrium). We further
impose a natural restriction on the players’ beliefs over histories that are out off equi-
librium paths, in the vein of the condition of “action-determined beliefs” of Osborne
and Rubinstein (1994) (see also Fudenberg and Tirole 1991), which we define precisely
below, after the statement of Proposition 2.

Proposition 2. Let us assume that the prior p of � ≡ 〈{Li�Ai�gi}i=1�2�p〉 has full sup-
port and that x = G[q] ∈ ME(�) is Nash-dominating. There exist a finite set of messages
M and a correlation device [(	� B�μ)� B1� B2] for extM � such that x is a semi-weak perfect
Bayesian equilibrium payoff of (extM �)μ.

The reason for restricting to a prior p with full support is well explained in Gerardi
(2004). As his Example 1 illustrates, without full support of the prior p in �, there may
exist communication equilibria that can be achieved only by means of a communication
device recommending a strictly dominated action to one of the players when a type pro-
file of zero probability under p is reported. Such communication equilibria cannot be
implemented with sequentially rational strategies, even if the implementation process
does not rely on any punishment.

To make precise the condition on beliefs behind our semi-weak PBE, let σ be an
equilibrium of (extM �)μ and let ht−1 be a sequence of messages before stage t, i.e.,
ht−1 ∈ Ht = (M ×M)t−1; let mt = (m1

t �m
2
t ) be a pair of messages at stage t. Assume that

14Nash domination is by no means a necessary condition, as illustrated, for instance, by the sender–
receiver case (see Forges 1985 and Section 7.2).

15We limit ourselves to strengthening the rationality of the specific equilibrium strategies constructed in
the proof of Theorem 1, without addressing the question of an appropriate definition of refined correlated
equilibrium (see, e.g., Dhillon and Mertens 1996 for a discussion of this topic).
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the probability of ht−1 given li and Bi is positive under the distribution induced by p, μ,
and σ . Then the belief of player i over Lj given li, Bi, ht−1, and mt does not depend on
mi

t . This condition guarantees that, in the previous sketch of the proof of Theorem 1, a
“lucky deviator” (who does not transmit the correct encrypted action to the other player
at stage t, but correctly guesses its code and then discovers that t = t) updates his belief
on the other player’s type.

In Section 6.3, we establish Proposition 2 by using the same correlation device
[(	� B�μ)� B1� B2] and the same set M of messages as in the proof of Theorem 1.

5. An example

We consider a variant of the “secret sharing” problem, which is well known in computer
science (see, for instance, Abraham et al. 2008). We show that there is a communica-
tion equilibrium in which the players reach an efficient outcome by sharing the secret,
but that this outcome cannot be achieved as a correlated equilibrium outcome of any
cheap talk game involving a bounded number of stages. This illustrates the need for un-
boundedly long cheap talk in Theorem 1. We also show that Proposition 1 applies to the
example so that the efficient outcome can be reached approximately with sufficiently
long, bounded cheap talk.

The secret sharing game � is derived from an auxiliary game �̂, in which both players
have two equally likely possible types in S1 = S2 = {0�1}, which we refer to as payoff
types. The payoff types of the players are chosen independently of each other. Every
player has two possible actions: A1 = A2 = {0�1}. The payoff functions gi :S1 × S2 ×
A1 ×A2 → R, i = 1�2, are summarized in the following table:

g s2 0 1
s1 A 0 1 0 1

0
0 3� 3 6�−2 0� 0 −2� 6
1 −2� 6 0� 0 6�−2 3� 3

1
0 0� 0 −2� 6 3� 3 6�−2
1 6�−2 3� 3 −2� 6 0� 0

The interpretation is as follows. The secret is s = s1 + s2(mod 2). Given the secret s ∈
{0�1}, the “right” (resp., “wrong”) action is to play according to the secret, namely ai = s

(resp., ai = s). Both players have the same preferences: being the only one to take the
right action is preferred to both taking the right action, which is preferred to both taking
the wrong action, which is itself preferred to being the only one to take the wrong action.

In the game �̂, the pair of expected payoffs (3�3) can be achieved only as a com-
pletely revealing outcome, in which both players take the right action.16 But complete
revelation cannot be achieved at a communication equilibrium of �̂: every player can

16To see this, let q(·|l), l ∈ L, be conditional probability distributions over actions given types achiev-

ing the pair of expected payoffs (3�3) in the game �̂. Every q(·|l) is a distribution over the same payoffs
{(0�0)� (−2�6)� (3�3)� (6�−2)}, in which (3�3) is an extreme point.
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gain in lying unilaterally about his payoff type so as to be the only one to take the right
action.

We now modify �̂ into a more complex game �. In �, the payoff type of every player is
enriched into a “full type,” which is highly correlated to the full type of the other player.
More precisely, player i’s type in � is denoted as li and consists of a 4-tuple. The first
component of li is player i’s payoff type si. To define the other three components of
li, let E be a finite set and let |E| denote the number of elements in E. The set E is
interpreted as a set of “codes.” The sets of types in � are Li = {0�1} ×E ×E ×E, i = 1�2.
In �, nature first makes the following choices:

1. Choose a pair of payoff types (s1� s2), as in �̂.

2. Choose four codes e1
0, e1

1, e2
0, e2

1 in E, independently of each other, with probability
1/|E| each.

Player i’s type is li = (si� ei
si
� e−i

0 � e−i
1 ), i = 1�2, i.e., player i is informed of his payoff

type si, of the code ei
si

∈ E of his payoff type si, and of the codes e−i
0 and e−i

1 of the two
possible payoff types of the other player. Player i is not informed of the code of the other
possible payoff type he might have or on the payoff type of the other player, of course.
The action sets and the payoff functions in � are the same as in �̂, in the sense that
payoffs only depend on payoff types and actions.

If player i can talk to the other player j = −i and wants to reveal his payoff type si

to him, player i also sends the code ei
si

, so that player j, who knows the code of the two

possible payoff types of player i, namely, ei0 and ei1, can check that player i’s reported
payoff type is consistent with the codes. If player i wants to lie on his payoff type, he
has to guess the corresponding code, with a probability of 1 − 1/|E| of being detected by
player j.17

Even if no communication device is available, every player can detect the other’s lie
with high probability by checking the codes, but this typically happens after that useful
information has been transmitted. The situation is very different when there is a com-
munication device. In this case, the device does not release any information when it
detects cheating, which protects the honest player. This effect cannot be simulated at a
Nash equilibrium of a cheap talk game extending �.

Let us show that the vector of conditional expected payoffs ((3�3)� (3�3)) is in ME(�).
For that, we describe a canonical communication device q :L → �A. Every player i,
i = 1�2, reports a type (ri� ei� ε−i

0 � ε−i
1 ) to the communication device q, which then rec-

ommends actions as follows:

1. If ei = εi
ri

and ej = ε
j

rj
, q computes r = r1 + r2(mod 2) and sets a1 = a2 = r.

2. Otherwise, q chooses an action profile (a1� a2) uniformly.

Let us check that q defines a communication equilibrium. Assume that player j is
honest and obedient, and consider player i = −j with type (si� ei

si
� e−i

0 � e−i
1 ). Suppose

17The technique of codes is also useful in the proof of Theorem 1. However, in the current example,
codes are not generated by a correlation device, but as part of the types in the Bayesian game.
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first that ri = si, namely that player i lies on his component of the secret. Player i has no
information on the code ei

ri
, which has been chosen with probability 1/|E| in E; he thus

guesses it correctly with probability 1/|E|. In this case, the device recommends actions
a1 = a2 = ri + sj . By playing against the recommendation of the device, player i gets the
highest possible payoff, 6. Otherwise, if player i does not guess ei

ri
correctly, the device

selects actions uniformly, and player i can as well play against the recommendation of
the device. His total expected payoff is 1/|E|×6+ (1−1/|E|)×[ 1

4 ×3+ 1
4 ×6+ 1

4 × (−2)],
which is <3 as soon as |E| ≥ 4. All other possible deviations of player i, e.g., involving
cheating in the other player’s codes, either give rise to a higher probability of being de-
tected and reduce his expected payoff or have no effect on the payoffs. As we already
observed above, while completely revealing in terms of the payoff types (in S1 × S2), the
communication equilibrium expected payoff (3�3) cannot be achieved as a Nash equi-
librium of a cheap talk game like extM �.

The vector of conditional expected payoffs ((3�3)� (3�3)) is in SINTIR(�): by play-
ing both actions with probability 1

2 , independently of his type, player j guarantees that
player i = −j’s payoff does not exceed 7

4 , whatever his type and his action.18 Obviously,
this punishment depends on the fact that player i does not know player j’s share of the
secret. By Theorem 1, ((3�3)� (3�3)) can thus be achieved as a correlated equilibrium of
a long cheap talk game extM � for some finite set of messages M . We show below that in
any extended cheap talk game in which the number of stages is fixed, the players cannot
reach ((3�3)� (3�3)).

Let us fix an extension extTM � of � in which the cheap talk phase cannot exceed T

stages. Every stage t = 0�1� � � � �T of extTM � can be described as in extM � for some set M
of messages, but the moves in {c� s} are not necessary: the game goes on for T + 1 stages,
with final decisions at stage T +1, whatever the history.19 Let us assume that extTM � has a
correlated equilibrium achieving the expected payoff (3�3), namely complete revelation
of the secret. At the last stage T , both players must know the secret on every possible
history on the equilibrium path. Without loss of generality, this does not happen at stage
T − 1; otherwise the deadline could be T − 1.

Thus, at the end of stage T − 1, there exists a history hT−1 = (l�ω�hT−1), where hT−1
is the sequence of messages up to stage T − 1, which has positive probability at equilib-
rium, for which at least one of the players, say player 1, does not know the secret, namely
player 1’s posterior probability that player 2’s type is 0 is not 0 or 1. Hence, on hT−1,
player 1 relies on player 2’s message at stage T to learn the secret. Note that the history
hT−1 involves the choice ω = (ω1�ω2) of the underlying correlation device, hence is not
necessarily fully identified by player 2. But player 2 can select his message uniformly,
independently of the past, at stage T . If player 2 deviates in this way (only at stage T ),
while player 1 does not deviate, player 2 learns the secret at stage T , on every possible
history, while player 1 does not learn it at least on hT−1. In the next paragraph, we com-
plete player 2’s deviation by describing how he chooses his action and we show that his
deviation is profitable.

18In fact, the strategies consisting of playing both actions with the same probability, independently of
the type, form a Bayesian-Nash equilibrium.

19Hence, on some histories, cheap talk may become vacuous from some stage on.



110 Vida and Forges Theoretical Economics 8 (2013)

At the end of stage T − 1, player 2’s information consists of his type l2, the private

extraneous signal from the correlation device ω2 and the messages exchanged at stages

1� � � � �T − 1. Given his information, player 2 determines the message m2
T he should send

at stage T as if he did not deviate. Since there is no deviation at any stage 1� � � � �T − 1,

player 1 sends his message m1
T at stage T as in equilibrium. Even if player 2 deviates

at stage T , he has the same information at the end of stage T as when he does not de-

viate. In particular, m1
T and m2

T are part of player 2’s information. We complete his

deviation as follows: after having sent his (uniformly selected) message m̃2
T to player 1

and having received player 1’s message m1
T , he chooses his action in A2 according to his

equilibrium strategy as if the messages at stage T were (m1
T �m

2
T ). This guarantees him a

payoff strictly higher than 3 if the history hT−1 identified above occurs and no less than

3 otherwise. Hence player 2’s deviation is profitable.

The constructive proof of Theorem 1 avoids the obstacles of a bounded cheap talk

phase by introducing extra uncertainty for the players about the time t at which they

reveal their part of the secret to each other. In such a construction, the number of con-

versation stages cannot be deterministically bounded. Nevertheless, in equilibrium, the

players stop talking with probability 1. The probability that a deviator can affect the

conversation in a way that it lasts forever can be made arbitrarily small. The main idea

is that, at every stage t, player i, say, does not know whether t = t, i.e., whether he will

receive useful information from player j = −i at that stage. Hence player i may not have

any incentive to send a message that differs from the one prescribed by the correlation

device. In particular, in our construction, with large probability, a deviation of player i

is detected by player j before that player i learns the secret, so that player j can stop the

conversation and punish player i in the initial Bayesian game �, with prior p.

To sum up, the proof of Theorem 1 confirms that, in the secret sharing game, the

players learn the secret with probability 1 after a random finite number t of stages of

correlated cheap talk (namely x = ((3�3)� (3�3)) ∈ CE(extM �)). We show that this result

cannot be true if t is imposed not to exceed a fixed, deterministic bound T , i.e., that

x /∈ ⋃
T≥1 CE(extTM �). The requirement that the players learn the secret with probabil-

ity 1 is essential to this observation, as follows from Proposition 1. To see that this propo-

sition applies to the secret sharing game, let us set ξ = ((2�2)� (2�2)). The payoff ξ is

associated with the Bayesian-Nash equilibrium in which one of the players chooses the

action 0, independently of his type, and the other player chooses the action 1, indepen-

dently of his type. Furthermore, ξ ∈ SINTIR(�), since as noticed above, every player can

guarantee that the other’s interim expected payoff does not exceed 7
4 . Thus, from Propo-

sition 1, for every δ > 0, there is a finite number of stages T such that the game extTM �

has a correlated equilibrium at which the players learn the secret with probability at least

1 − δ and thus get approximately the desired payoff x, i.e., for every δ > 0, there exist a

finite number of stages T and a payoff xδ that is δ-close to x such that xδ ∈ CE(extTM �).

Finally, observe also that the payoff x Nash-dominates ξ (or (( 7
4 �

7
4)� (

7
4 �

7
4))) so that, by

Proposition 2, it can be achieved with sequentially rational strategies.
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6. Proof of the results

6.1 Proof of Theorem 1

Let us fix a communication equilibrium q of �, such that G[q] ∈ SINTIR(�). We construct
a set of messages M and a correlated equilibrium of extM � that satisfy the requirements
of the theorem. The precise size of M is determined when we check the equilibrium con-
ditions. We start by describing a correlation device, namely a probability space (	� B�μ),
and private signals for every player, namely sub-σ-algebras B1 and B2. Then we define
the players’ strategies.

Items selected by the correlation device: (	� B�μ) We make a list of the items selected by
the correlation device. Unless specified otherwise, these items are selected uniformly in
the finite set to which they belong and they are all selected independently of each other.

The correlation device makes the following choices.

1. For i = 1�2, a permutation ηi of Li. Let η = (η1�η2) and η(l) = (η1(l1)�η2(l2)) for
every l = (l1� l2) ∈L.

2. A stage t ∈ {2�3� � � �}, according to a geometric distribution with success parameter
z > 0 to be specified later.

3. For every l ∈L, a pair of actions at�η(l) ∈A, according to q(·|l).

4. For every l ∈L and every t ∈ {2�3� � � �}, t = t, a pair of actions at�η(l) ∈A.

5. For i = 1�2, every l ∈ L, and every t ∈ {2�3� � � �}, a permutation φi
t�η(l) of Ai. Let us

set bit�η(l) =φi
t�η(l)(a

i
t�η(l)).

6. For i = 1�2, every l ∈ L, every action bi ∈ Ai, and every t ∈ {2�3� � � �}, a code
ki(t�η(l)� bi) ∈M .

7. For i = 1�2 and every t ∈ {2�3� � � �}, a pair of labels λit ∈ M such that λ1
t = λ2

t and
λ1
t = λ2

t if t = t.

8. For i = 1�2, every l ∈ L, every t ∈ {2�3� � � �}, and every label λ ∈ M , a code
κi(t�λ) ∈M .

To sum up, only t in choice 2 and at�η(l), l ∈L, in choice 3 are selected according to
a specific, nonuniform probability distribution. The stage t is the only random variable
that is not finite. In choice 7, the labels λ1

t and λ2
t at stage t are not independent from

each other or from t. The parameter z represents the probability that t is the next stage;
z and the size of M are computed at the end of the proof (see the expression (4) below).

Private extraneous information: Bi, i = 1�2 The correlation device sends the following
private signal20 to player i, i = 1�2.

— The permutation ηi of Li selected in choice 1.

20It is understood that functions over L = L1 ×L2 are described as L1 ×L2 tables for a given order on L1

and L2.
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— The permutations φi
t�η(l) of Ai, l ∈L, t ∈ {2�3� � � �}, selected in choice 5.

— The (encrypted, recommended) actions (for the other player, −i) b−i
t�η(l) ∈A−i for

every l ∈ L, t ∈ {2�3� � � �} defined in choice 5, together with their associated code
k−i(t�η(l)� b−i

t�η(l)) selected in choice 6.

— The code functions ki(t�η(l)� ·) :Ai → M for every l ∈ L, t ∈ {2�3� � � �}, selected in
choice 6.

— The labels λit , t ∈ {2�3� � � �} selected in choice 7, together with their associated
code κi(t�λit) selected in choice 8.

— The code functions (of the other player, −i) κ−i(t� ·) :M → M for every t ∈
{2�3� � � �}, selected in choice 8.

We denote player i’s private signal as

ωi =

⎡
⎢⎢⎢⎢⎣

ηi

(φi
t�η(l))t≥2�l∈L

(b−i
t�η(l)�k

−i(t�η(l)� b−i
t�η(l))�k

i(t�η(l)� ·))t≥2�l∈L
(λit�κ

i(t�λit)�κ
−i(t� ·))t≥2

⎤
⎥⎥⎥⎥⎦ � (2)

At this point, the description of the game (extM �)μ is complete.

Equilibrium strategies (σ 1�σ 2) in (extM �)μ We first give a rough description of the
strategies (σ 1�σ 2) and of the way in which they combine with each other. The basic
idea is that the geometric random variable t describes the only relevant stage, in which
players determine the actions ait�η(l), i = 1�2, to be played in the Bayesian game. For
every l, the pair of actions at�η(l) selected in choice 3 is distributed according to q(·|l).
However, the players cannot fully reveal their types to each other or know more than
their own action. Hence permutations are applied both to the types (ηi, selected in
choice 1) and to the actions (φi

t�η(l), selected in choice 5). At stage 1, the players send

hidden types, ηi(li), i = 1�2, to each other. At stage t, every player i sends the mes-
sage b−i

t�η(l) to the other player. If player i indeed receives the message bit�η(l) from the

other player, he is able to evaluate his action as ait�η(l) = (φi
t�η(l))

−1(bit�η(l)) by applying

the inverse of the permutation φi
t�η(l)

, and this action is distributed as in the commu-
nication equilibrium. There remains to make every player able to identify t, only after
having transmitted his recommended action b−i

t�η(l) to the other player. This is the role
of the labels selected in choice 7. By construction, as in the communication equilib-
rium, player i does not gain by pretending another type at stage 1 or deviating from his
recommended action ait�η(l). But player i must transmit a recommended action b−i

t�η(l)

to the other player, which has no counterpart in the communication equilibrium. This
is the role of the codes21 selected in choice 6. To prevent cheating in the labels, further

21Restricted to two stages, t = 1 and t chosen deterministically equal to 2, the correlation device is a
variant of the one used in Forges (1990b) in the case of three players.
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codes are needed, selected in choice 8. We detail the equilibrium strategies in the next
paragraph.

Given his private extraneous signal ωi described above, player i’s equilibrium strat-
egy in extM � is as follows.

— At stage 1, player i chooses c. If both players select c, player i announces ηi(li)

if his type is li; otherwise, he plays a punishment action against the other player
and the game stops (recall that G[q] ∈ SINTIR(�), so that player i can select a
punishment22 according to some yi(·|li) ∈ �A−i). Let η(l) be the pair of an-
nouncements at the first stage (if (c� c) was chosen).

— At stage 2, player i chooses c.

— At every stage t ≥ 2, if both players select c, player i sends the message

b−i
t�η(l)� k−i(t�η(l)� b−i

t�η(l))� λit� κi(t�λit)�

— At stage 2, if (c� c) was not selected, player i punishes the other player, as in
stage 1.

— At every stage t ≥ 2, if (c� c) was selected, then, right after having received the
other player’s last message, player i checks whether the latter is consistent with
the codes, namely that player −i’s announcement (bit�k

i
t� λ

−i
t � κ−i

t ) satisfies

ki
t = ki(t�η(l)� bit)� κ−i

t = κ−i(t�λ−i
t )�

If these equalities do not hold at stage t, player i stops the cheap talk, that is, he
chooses s at the beginning of stage t + 1 and plays a punishment action against
the other player as above.

— At every stage t ≥ 2, if (c� c) was selected, player i also checks whether his label
λit coincides with the label sent by the other player, namely whether λit = λ−i

t . If
yes, and no deviation was detected, player i concludes that t = t; he chooses to
stop (namely s) at the beginning of stage t + 1, the cheap talk ends, and player i
determines his action ai by applying the inverse of the permutation φi

t�η(l) (which

he received from the correlation device) to the message bit (which he received
from the other player):

(φi
t�η(l))

−1(bit) = ai�

— If, at the beginning of some stage t ≥ 3, player i chooses c but the other player j
(= −i) chooses s, player i punishes player j as above.

— Should cheap talk last forever, di∞ (i = 1�2) could be defined in an arbitrary way.

To sum up, if both players follow the prescribed strategies, the conversation lasts for
at least two stages. Stage 1 is the only stage where the players send a type dependent

22To be consistent with our definition of strategies in (extM �)μ, in which all randomizations are made by
the correlation device, possible punishment strategies should in fact be selected by the correlation device.
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message, but posteriors are not updated until stage t is reached. Stages t ≥ 2 are used
for possible coordination. Coordination happens when λ1

t = λ2
t , namely when t = t; in

this case, final decisions are made at stage t + 1.
To check that the prescribed strategies form an equilibrium in the game (extM �)μ,

we assume for simplicity that player 2 does not deviate in (extM �)μ and consider pos-
sible deviations of player 1. Let l1 be his type and let ω1 be his extraneous signal, de-
scribed as in (2). Since player 1’s payoff G1[q] is individually rational, he cannot benefit
from choosing s at the beginning of stage 1 of (extM �)μ. Thus let η1(l̂1) be his further
message at stage 1, with l̂1 possibly different from l1. We distinguish between several
deviations of player 1. We start with deviations that are already feasible in the commu-
nication equilibrium and we show that they are unprofitable, namely that the correlated
equilibrium of (extM �)μ “mimics” the communication equilibrium.

Equilibrium conditions: Undetectable deviations Let us assume that from stage 2 on,
player 1 sends all his messages as prescribed by his correlated strategy. More precisely,
let t ≥ 2 be a stage t at which the conversation is still going on. Given our current as-
sumptions, it must be that λ1

r = λ2
r for every stage r such that 2 ≤ r < t. At the beginning

of stage t, player 1 has not learnt anything on t, player 2’s type, or recommended ac-
tions, since all items that player 1 can interpret in ω1 have been selected uniformly (this
holds in particular for every action b2

t�η1(l̂1)�η2(l2)
, including b2

t�η1(l̂1)�η2(l2)
, which is ob-

tained by applying a random permutation to a2
t�η1(l̂1)�η2(l2)

). Furthermore, at the begin-

ning of stage t, given ω1 and the sequence of moves in (extM �)μ up to stage t (including
his first move η1(l̂1)), player 1 anticipates that the pair of actions to be determined (but
not necessarily played) at the further stage t are

(φi

t�η1(l̂1)�η2(l2)
)−1(bi

t�η1(l̂1)�η2(l2)
)= ai

t�η1(l̂1)�η2(l2)
� i = 1�2� (3)

By construction, given player 1’s information at the beginning of stage t, this pair of
actions is distributed according to q(·|l̂1� l2). In other words, if player 2 does not devi-
ate and player 1 of type l1 sends η1(l̂1) at the first stage and all his other messages as
prescribed, the actions computed by the players at stage t, namely (3), are distributed
exactly as the actions recommended by the communication device q when player 1’s re-
ported type is l̂1 and player 2’s type is l2. Hence player 1 does not deviate at the first stage
by lying on his type and/or at t + 1 by choosing an action other than the one computed
in (3).

The previous paragraph also shows that if both players follow the prescribed strate-
gies at every stage, the conditional probability distribution over actions (i.e., over
A1 ×A2) given types (l1� l2) ∈ S1 × S2 is q(·|l1� l2); in particular, the expected payoffs
are G[q].

We consider further possible deviations of player 1.

Equilibrium conditions: Deviations that are detectable with high probability Let l1, ω1,
and l̂1 be as above. As already observed for stage 1, if player 2 does not deviate, player 1
cannot gain in sending his messages as prescribed and choosing s at the beginning of a
stage at which he should choose c, since his payoff G1[q] is individually rational.
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As above, let us consider a stage t at which the conversation is still going on. Assume
that player 1 does not send (at least one of) the prescribed variables b2

t�η1(l̂1)�η2(l2)
and

λ1
t in his message to player 2. Since the codes are chosen uniformly in M , the corre-

sponding codes k2(t�η1(l̂1)�η2(l2)�b2
t�η1(l̂1)�η2(l2)

) and κ1(t�λ1
t ), are incorrect with prob-

ability (at least) 1 − 1/|M|, in which case player 2 detects an inconsistency, stops the
conversation, and chooses his action according to a punishment strategy y2(·|l2). If it
turns out that λ1

t = λ2
t , player 1 does not learn anything; in particular, his probability

distribution over L2 is still p(·|l1). In this case, player 2 can pick the strategy y2(·|l2)
in such a way that player 1’s payoff does not exceed G1[q|l1] − ε for some ε > 0, since
G1[q] is strictly individually rational in the original game � (whose parameters involve
the prior p). However, if λ1

t = λ2
t , so that t = t, player 1 acquires new information; the

effect of the punishment strategy becomes unclear, except for the fact that player 1’s
payoff cannot exceed the largest possible payoff in the game �, which we denote by α.
Finally, if player 1’s deviation is not detected, his payoff can also be bounded by α (in
this case, the conversation could be infinite). By recalling that, at every stage t at which
the game has not yet stopped, the probability that t = t is z, we compute the following
upper bound on player 1’s payoff G1

dev(l
1) when he deviates as described above:

G1
dev(l

1)≤ (1 − 1/|M|)(zα+ (1 − z)(G1[q|l1] − ε)
) + α/|M|� (4)

If the set M of messages23 is large enough and the probability z > 0 is small enough, the
previous bound does not exceed G1[q|l1], namely

G1
dev(l

1)≤G1[q|l1]�

We have thus shown that the correlated strategies described above form an equilibrium
of the game (extM �)μ that achieves the conditional probability distributions q(·|l) of
the communication equilibrium; in particular, the payoff G[q]. At equilibrium, given
the geometric distribution of t, the conversation ends with probability 1. �

6.2 Proof of Proposition 1

Let ξ be a Bayesian-Nash equilibrium payoff such that ξ ∈ SINTIR(�) and let x ∈ ME(�)∩
SINTIR(�). There exists ε > 0 such that player i (i = 1�2) has strategies yix and yiξ to

punish player j = −i in � at the payoff vectors (xj(lj) − ε)lj∈Lj and (ξj(lj) − ε)lj∈Lj ,
respectively.

Let δ be given. Let us choose ρ ∈ (0�1) such that

xδ ≡ (1 − ρ)x+ ρξ

is δ-close to x (i.e., ρ‖ξ− x‖ ≤ δ).

23The bound (4) reflects the required size of M as far as codes are concerned. The set M should of
course be also large enough to contain the other messages to be transmitted by the players (i.e., |M| ≥
max{|Li|� |Ai|� i = 1�2}).
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We temporarily fix T . Let the correlation device make its choices as in the proof
of Theorem 1; in particular, let t be chosen as in choice 2, according to a geometric
distribution with parameter z (which is also fixed for the moment) and let actions be
chosen as in choice 3, using q. Let player i’s prescribed strategy be as in the proof of
Theorem 1 as long as he does not detect any deviation and if he deduces that t ≤ T .
Let player i play the Bayesian-Nash equilibrium strategy associated with payoff ξ if he
detects no deviation until stage T and concludes that t > T .

If the players follow the previous strategies, the expected payoff of player j of type lj ,
just before stage t, i.e., conditionally on t ≥ t, is

x
j
t (l

j) = x
j
t (z�T)(l

j) ≡ (1 − (1 − z)T−t+1)xj(lj)+ (1 − z)T−t+1ξj(lj)� (5)

By the above properties of x and ξ, player i can punish player j = −i at the payoff vector
(x

j
t (l

j)− ε)lj∈Lj if player j deviates at stage t, for every t ≤ T , by playing yix with probabil-
ity 1 − (1 − z)T−t+1 and yiξ with probability (1 − z)T−t+1. Hence, by proceeding as in (4),
if player j deviates at stage t, his expected payoff cannot exceed

(1 − 1/|M|)(zα+ (1 − z)(x
j
t (l

j)− ε)
) + α/|M|�

We can choose |M| and z (as a function of ε) in such a way that, for every j, lj and
t ≤ T , this bound is less than or equal to x

j
t (l

j).24 This guarantees that no player can
gain in deviating at any stage t ≤ T . The corresponding equilibrium payoff is computed
from (5) at t = 1. More precisely, we choose z′ < z and T = T(z′) such that x1(z

′�T ) =
x1(z

′�T (z′)) = xδ, i.e., ρ = (1 − z′)T . �

Remark (The assumption ξ ∈ SINTIR(�) in Proposition 1). In the previous proof, it is
an essential assumption that ξ ∈ SINTIR(�). Intuitively, just before the last stage of the
game, i.e., when t = T , the players’ equilibrium expected payoff becomes xT (z�T) =
zx + (1 − z)ξ (omitting the indices j, lj). If ξ itself is in SINTIR(�), we can choose
the level of punishment to be xT − ε. When choosing z to be sufficiently small, the
difference between the equilibrium payoff and the punishment stays constant at ε. If
ξ ∈ INTIR(�)\SINTIR(�), by proceeding as in Corollary 2, xT (z�T) can still be supported
by strict punishment, namely by vT = z(x− ε)+ (1 − z)ξ. However, in this case, the dif-
ference xT (z�T) − vT = zε converges to 0 as z goes to 0. Hence choosing a smaller z

decreases the effectiveness of punishment, which in turn necessitates the choice of an
even smaller z.

6.3 Proof of Proposition 2

Let us fix a communication equilibrium q of � such that the associated payoff G[q] is
Nash-dominating, namely higher than the expected payoff of some Nash equilibrium
ζ = (ζ1� ζ2) of � for every type of every player. Let us consider the set of messages M and
the correlation device μ constructed in the proof of Theorem 1; μ induces a scenario,

24More precisely, ∀ε > 0 ∃|M| ∈ N, ∃0 < z < 1 such that for any feasible payoff γ in �, (1 − 1/|M|)[zα +
(1 − z)(γ − ε)] + α/|M| ≤ γ.
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namely a prescribed plan of actions for every player. As in the proof of Theorem 1, player
i’s strategy σ i in extM(�)μ first consists of following the prescribed plan of actions and
of punishing player j = −i if it appears that player j did not follow the plan (i = 1�2).25

Player i now plays ζi if he has to punish the other player, but we have to further com-
plete the description of strategies and beliefs to show that they form a semi-weak PBE.
Strategy σ i consists of stopping the game and choosing an action in � according to ζi at
basically all information sets such that the prescribed plan of actions was not followed
at some earlier stage, possibly by the player who has to move at that information set.26

Such a specification of σ i makes player i’s strategy sequentially rational provided that
player i’s belief over Lj is his prior and that he expects that player j will play ζj . There is
only one class of information sets out off the equilibrium path at which the underlying
player updates his belief over the other player’s type. In the next paragraph, we describe
these information sets for player i and how σ i operates at them.

Let t ≥ 2. Assume that player i followed the prescribed plan of actions at all stages
<t but does not follow it at stage t. Assume also that player i observed correct codes in
player j’s messages at all stages less than or equal to t and that player j’s reported label at
stage t, λjt , coincides with the label λit that player i received from the correlation device μ.
At such an information set, player j’s moves are exactly the same as on the equilibrium
path. Since our semi-weak PBE requires that player i’s beliefs on player j’s type lj do
not depend on player i’s own last move, player i must update his belief over Lj . We also
assume that player i believes that player j will detect his deviation and thus punish him
immediately by stopping the game at the beginning of stage t + 1 and playing ζj . Note
that semi-weak PBE does not restrict player i’s belief over ωj , so that player i can indeed
believe that his deviation is detected with probability 1, even if M is finite. So that player
i is sequentially rational at the described information set, σ i specifies that he stops the
game and plays a best response against ζj given his updated belief over Lj .

If at some stage, player i updates his belief in the way just described and the game
goes on, even for infinitely many stages, player i keeps his belief over Lj without mod-
ifying it any further. At all other information sets out of the equilibrium path, player i

does not update his belief over Lj , stops the game, and plays ζi. In particular, consider
the following situation: player i first deviates at some stage t, then concludes that t > t,
but the game nevertheless goes on until stage t ′ > t and player i again deviates at stage
t ′; even if the labels at stage t ′ lead player i to the conclusion that t = t ′, player i does
not update his beliefs over Lj at t ′, stops the game, and plays ζi.27

25Player i detects that player j has deviated from the plan typically when he receives an incorrect code.
If q is such that some actions of player i have zero probability given his type, player i may also detect a
deviation of player j from his computed action when he concludes that t has been reached. We focus on
the typical case, but the second one can be handled similarly.

26To be complete, we must also consider the case of information sets occurring at the second substage
of some stage t ≥ 2, after which both players chose “continue” while the prescribed plan of actions was not
followed at an earlier stage. In this case, σ i prescribes to choose a message uniformly and to stop at the
next stage.

27Player i’s beliefs over Lj at stage t ′ are not restricted by our semi-weak PBE, but are coherent with the
belief that player j detects player i’s first deviation at stage t, fails to punish player i, and chooses messages
uniformly from then on.
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Consider now the typical case where player i followed the plan of actions induced by
μ at all stages less than or equal to t for some t ≥ 2, and discovers, through the codes that
he receives from player j, that player j did not follow the plan at stage t. This must be
player j’s first observed defection, since otherwise player i, who followed the scenario,
would have stopped the game. As soon as player j deviates from the prescribed scenario,
no constraint must be imposed on player i’s belief over Lj , which can thus be kept at the
prior. In particular, even if only player j’s code on player i’s encrypted action is incor-
rect, while player j’s reported label λjt coincides with the label λit that player i received
from the correlation device, player i can believe that player j’s reported label λjt is, in
fact, incorrect and that player j luckily picked his label code. As a consequence, player
i can believe that player j did not update his belief over Li and expects that player j will
play ζj . Recall that, as detailed above, it is indeed sequentially rational for player j to
stop the game and play ζj after his deviation in this case. With these beliefs, player i is
sequentially rational by stopping the game at the beginning of stage t + 1 and punishing
player j using ζi.

The reasoning of the previous paragraphs can be applied to any information set oc-
curring after some finite stage t ≥ 2. Let us come to the case where cheap talk never
stops. If player i always followed the prescribed plan of actions, it means that he did not
detect any incorrect code, but could not identify t. Player j must thus have deviated
from the prescribed scenario, say at stage t ′, by not reporting the correct λjt ′ , and must
have been lucky in picking the associated code. Player i’s belief over Lj is still the prior
and, furthermore, player i can expect that player j will play ζj because player j himself
did not update his belief over Li. Indeed, player i can believe that player j’s first devi-
ation occurred at some stage t < t ′ such that, just after stage t, player j deduced that
t > t; player j expected to be punished by player i at stage t + 1 and having realized that
player i did not follow the plan, player j did not update his belief at stage t ′ (player i’s
belief is coherent with the fact that player j only updates his belief over Li at his first de-
viation, as explained above). Finally, assume again that cheap talk never stops and that
player i did not follow the plan at some stage t. If he updated his belief over Lj at the
corresponding information set as described above, he kept this belief since stage t and
plays a best response against ζj given this belief. Otherwise, he plays ζi. �

7. Discussion: Variants of the model

We start with a variant of the strategic form correlated equilibria considered up to now.
Then we consider two particular cases in which Theorem 1 takes a much simpler form.
Finally, we address a question mostly motivated by Ben-Porath (2003, 2006).

7.1 Extensive form correlated equilibria

The proof of Theorem 1 makes use of typical correlation devices for the long cheap talk
game extM �, which select, before the beginning of the game, an infinite sequence of
extraneous signals to be used gradually by the players. The corresponding correlated
equilibria can be denoted as strategic form correlated equilibria. What if the players



Theoretical Economics 8 (2013) Implementation of communication equilibria 119

do not have access to (or cannot generate28) infinite sequences of correlated extrane-
ous signals, at once, at the beginning of the game? One could then consider extensive
form, autonomous correlation devices that send one private signal to every player at ev-
ery stage of extM � (see Forges 1986 and Myerson 1986, 1991). Such devices generate
sunspots every day. They are independent of the cheap talk game, in the sense that
they do not receive any input from the players and do not get any information on the
players’ messages. They thus preserve the players’ privacy. The previous proof shows
that Theorem 1 still holds if “correlated equilibrium” is replaced by “extensive form, au-
tonomous correlated equilibrium using finitely many signals at every stage.” Corollary 1
also holds for the set C̃E(ext�) of extensive form, autonomous correlated equilibrium
payoffs, since CE(ext�)⊆ C̃E(ext�) ⊆ ME(�).

7.2 Sender–receiver games

As a particular case, let us assume that only player 1 possesses private information
(|L2| = 1) and that only player 2 makes a decision (|A1| = 1). Under these assumptions,
the cheap talk game becomes a sender–receiver game, in which the length of the players’
conversation is not fixed in advance (as in, e.g., Forges 1990a, Aumann and Hart 2003,29

Koessler and Forges 2008). We deduce from the proof of Theorem 1 that t can be cho-
sen in a deterministic way, as t = 1. Let us set L = L1 and A = A2, and let us consider a
correlation device as above, which selects

1. a permutation η of L

2. for every l ∈L, an action aη(l) ∈A, according to q(·|l)
3. for every l ∈L, a permutation φη(l) of A; let us set bη(l) = φη(l)(aη(l))

4. for every l ∈L and every action b ∈A, a code k(η(l)�b) ∈M .

The correlation device transmits

— to player 1, η and (bη(l)�k(η(l)�bη(l)))l∈L

— to player 2, (φη(l)�k(η(l)� ·))l∈L.

Given the signal from the correlation device and his type l, player 1’s equilibrium strat-
egy is to send η(l), bη(l), and k(η(l)�bη(l)) to player 2 at a single stage of informa-
tion transmission. Given his private signal (φη(l)�k(η(l)� ·))l∈L and player 1’s message

(l̂� b�m), player 2 checks whether the code is correct, namely that m = k(l̂� b). If it is
the case, he chooses the action (φ

l̂
)−1(b); otherwise, he chooses his action according

to q(·|l) for some arbitrary l ∈ L. By proceeding as above, one shows that these corre-
lated strategies form an equilibrium, which is equivalent to the communication equilib-
rium q. Forges (1985, Lemma 2) establishes a slightly stronger result, namely that every

28Players can simulate finite correlation devices by themselves by using simple machines (like Turing
machines; see Dodis et al. 2000 and Urbano and Vila 2002) or the AND signalling function (see Vida and
Āzacis (2012)).

29Aumann and Hart (2003) assume one sided private information, namely |L2| = 1, but allow both play-
ers to make decisions.
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communication equilibrium payoff (even not in SINTIR(�)) can be achieved as a corre-
lated equilibrium payoff of the cheap talk game. As already pointed out, Blume (2010)
proves an analog in Crawford and Sobel’s (1982) model.

7.3 Uniform punishments

The proof of Theorem 1 dramatically simplifies if the communication equilibrium payoff
of � to be implemented as a correlated equilibrium payoff of extM � is higher than a
punishment payoff that can be achieved for every probability distribution p ∈ �L. This
happens, for instance, if � has a “bad outcome” that every player can enforce, whatever
their types are.

More precisely, recalling expression (1), let G[q] = (Gi[q|li]li∈Li)i=1�2 ∈ ME(�) be a
communication equilibrium payoff for which there exist yi :Li → �Ai, i = 1�2, such that,
for every i = 1�2, l = (li� l−i) ∈L, ai ∈Ai,

Gi[q|li] ≥
∑
a−i

y−i(a−i|l−i)gi((li� l−i)� ai� a−i)�

Then, in the proof of Theorem 1, to achieve G[q] as a payoff in CE(extM �), t can be cho-
sen in a deterministic way, as t = 2. The correlation device can dispense with selecting
the labels and all items associated with t > 2. Indeed, if player i’s code k−i(2�η(l)� b−i

2�η(l))

at stage 2 is not correct, player −i can punish him by playing the strategy y−i in �, which
guarantees that player i’s payoff does not exceed Gi[q|li], independently of the informa-
tion that player i may have acquired at stage 2, i.e., even if player i learns the type l−i of
player −i.

However, in many interesting situations, when a player obtains further information
on the other’s type, it becomes impossible to punish him below his communication
equilibrium payoff. This is exactly what happens in the example in Section 5 once a
player knows the secret.

7.4 Cheap talk with delayed messages

The terminology “cheap talk” is used to cover more or less sophisticated forms of com-
munication between the players. In this paper, we just allow the players to talk for as
long as they like by sending simultaneous messages to each other. Bárány (1992) and
Ben-Porath (2006) consider more flexible procedures, like the safe recording, at some
stage t, of a message that can possibly be released at some further stage t ′, as a function
of the history at stage t ′.

If such a relaxed form of cheap talk is allowed in the framework of the current pa-
per, the proof of Theorem 1 can easily be modified so as to achieve every payoff in
ME(�) ∩ SINTIR(�) with only four stages of cheap talk. To see this, let us slightly modify
the correlation device of the proof of Theorem 1 by choosing t uniformly in some finite
set T and interpreting it as an index (rather than a stage). At the first stage of cheap talk,
the players exchange information η(l) on their types as before. Then every player i se-
cretly prepares |T | envelopes, with envelope t containing the encrypted recommended
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action b−i
t�η(l) of the other player, its code k−i(t�η(l)� b−i

t�η(l)), and player i’s code function

ki(t�η(l)� ·). At the second stage of cheap talk, the players exchange their extraneous
signals on the labels for all t ∈ T at once (namely (λit�κ

i(t�λit)�κ
−i(t� ·))t∈T ). If no devia-

tion is detected at this stage, they identify the index t. At the third stage of cheap talk,
they reveal to each other the content of all envelopes with index t = t and check that
the codes are consistent. If again no deviation is detected, they open the two envelopes
with index t.

The conclusion from this exercise is that allowing delayed messages in cheap talk is
by no means innocuous. Indeed, in Section 5, we exhibit a communication equilibrium
payoff that cannot be achieved as a correlated equilibrium payoff of any game in which
cheap talk lasts for a fixed number of stages and does not involve any delayed message.
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