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Mechanism design and communication networks

Ludovic Renou
Department of Economics, University of Essex

Tristan Tomala
Department of Economics and Decision Sciences, HEC Paris

This paper studies a mechanism design model where the players and the designer
are nodes in a communication network. We characterize the communication net-
works (directed graphs) for which, in any environment (utilities and beliefs), every
incentive compatible social choice function is partially implementable. We show
that any incentive compatible social choice function is implementable on a given
communication network, in all environments with either common independent
beliefs and private values or a worst outcome, if and only if the network is strongly
connected and weakly 2-connected. A network is strongly connected if for each
player, there exists a directed path to the designer. It is weakly 2-connected if each
player is either directly connected to the designer or indirectly connected to the
designer through two disjoint paths, not necessarily directed. We couple encryp-
tion techniques together with appropriate incentives to secure the transmission
of each player’s private information to the designer.

Keywords. Mechanism design, incentives, Bayesian equilibrium, communica-
tion networks, encryption, secure transmission.

JEL classification. C72, D82.

1. Introduction

The revelation principle is the cornerstone of mechanism design and its applications.
It asserts that the outcome of any communication system can be replicated by a direct
revelation mechanism, in which agents directly and privately communicate with a de-
signer, and truthfully report all their information (Gibbard 1973, Dasgupta et al. 1979,
Myerson 1979, 1982, Harris and Townsend 1981). As a technical result, the revelation
principle is a blessing. It allows one to abstract away from the very details of commu-
nication systems and to focus on the social choice functions to be implemented. At
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Figure 1. Two communication networks.

the same time, it is slightly disturbing, as it implies that no decentralized communi-
cation system, however sophisticated, can dominate the centralized (direct) communi-
cation system. Yet, real-world organizations (firms, administrations, armies, terrorist
networks, organized crime) seldom take the form of centralized communication sys-
tems. The aim of this paper is to characterize the communication systems that replicate
the incentive properties of centralized communication and, thus, to show that incentive
considerations alone can already explain the existence of a large variety of real-world
organizations.1

Communication systems are naturally modeled as networks (graphs), in which the
nodes represent the players and the designer. A player can directly communicate with
another player if an edge exists from that player to the other. We then associate commu-
nication networks with social environments that represent the preferences and beliefs
of the players, and we characterize the topology of communication networks for which,
in any environment, every incentive compatible social choice function is partially im-
plementable. We first focus on acyclic directed networks and then show how our results
extend to any network.

The connectivity of communication networks is at the center of our analysis. A di-
rected network is strongly 1-connected if for each player, there exists a directed path from
this player to the designer. This is a minimal requirement that ensures that the designer
can receive information from each player. A directed network is weakly 2-connected
if each player is either directly connected to the designer or has two disjoint paths to
the designer in the associated undirected graph. Figure 1 gives two examples of weakly
2-connected networks. Our analysis shows that in a large class of environments, both
networks have the very same incentive properties.2

Our main results state that any incentive compatible social choice function is par-
tially implementable on a given communication network, in all environments with ei-
ther common independent beliefs and private values or a worst outcome, if and only if

1There is recent literature labeled algorithmic mechanism design that focuses on communication com-
plexity and mechanism design (see Nisan et al. 2007 for an excellent exposition and Nisan and Segal 2006
and Van Zandt 2007 for economic applications). Unlike this literature, we abstract from complexity consid-
erations and entirely focus on incentives.

2Other features are therefore needed to discriminate among these networks, e.g., their span of control
(Williamson 1967 and Calvo and Wellisz 1978) or their associated cost of communication (Bolton and De-
watripont 1994 or Radner 1993).
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the network is weakly 2-connected and strongly 1-connected. (In the sequel, we omit the
condition of strong 1-connectedness.) The intuition for this result is as follows.3 A so-
cial choice function is incentive compatible if no player has an incentive to lie about
his own private information when he expects the others to tell the truth. Importantly,
players use their prior beliefs to form their expectations. However, in a general commu-
nication network, players receive messages from their neighbors and thus their incen-
tives to tell the truth may be altered (since their posterior beliefs may differ from their
prior beliefs). To circumvent this problem, we couple encryption techniques and in-
centives to transfer “securely” each player’s private information to the designer through
the network. Our encoding technique guarantees that no player learns anything about
the types of the other players and, therefore, posterior beliefs are equal to prior beliefs.
To illustrate, assume that the network is strongly 2-connected, that is, each player is
either directly connected to the designer or has two disjoint directed paths of communi-
cation to the designer. A player can thus send a private “encoding” key to the designer
through one path and his type encoded with the key, a “cypher type,” through the other
(disjoint) path. However, this is not sufficient: players must also have an incentive to
truthfully forward the messages they receive. Our technique precisely guarantees this.
Last, incentive compatibility ensures that players also have an incentive to truthfully re-
port their own private information. Our connectivity conditions are necessary. If the
network is not strongly 1-connected, then there exists at least one player who has no
outgoing edges, i.e., this player cannot send information. It is thus impossible to im-
plement a social choice function that depends on this player’s type. Alternatively, if the
network is not weakly 2-connected, then a pair of players (i� i∗) exists such that all paths
from player i to the designer go through player i∗, who has thus the ability to manipulate
all the information transmitted by i.

We now offer some motivations for our study. First, as in Bolton and Dewatripont
(1994), we implicitly assume that the communication network (the internal organiza-
tion of the firm) is established in a prior stage and that it is relatively costly to mod-
ify. Consequently, if the designer is uncertain about which incentive compatible social
choice functions he will actually have to implement, it is optimal to choose a network
in the class of weakly 2-connected networks. Alternatively, we can think of our study as
a worst-case analysis: If the communication network is not weakly 2-connected, incen-
tive compatible social choice functions exist that cannot be implemented on that net-
work. Second, the previous discussion suggests that the cost of forming a link between
any two agents is an important determinant in choosing among different networks (or-
ganizations). How costly is it to form such a link? To answer this question, we need
to carefully interpret what a link is in our model. A link between two agents is a per-
fectly secure channel of communication, i.e., no other agent can eavesdrop on, alter, or
intercept messages sent over the link, and any message sent is received with certainty.
Private face-to-face communication is probably the closest instance of such perfectly
secure communication in real life.4 Such links are relatively costly to establish as argued

3See the example in Section 2 for an illustration.
4E-mails, phone calls, or text messages are not examples of perfectly secure and reliable channels of

communication as the recent News of the World scandal demonstrates (Guardian, 14 July 2009). In fact, if
they were, there would be no need for encryption devices.
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by computer scientists; see e.g., Beimel and Franklin (1999). Furthermore, Friebel and
Raith (2004) argue that even if it were possible to create, at no cost, such perfectly se-
cure communication links between each agent and the designer in an organization, it
may not be optimal to do so. In their words, “requiring intra-firm communication to
pass through a ‘chain of command’ can be an effective way of securing the incentives
for superiors to recruit and develop the best possible subordinates.”

Related literature

The computer science literature on secure transmission of messages is closely related
to this paper. Section 4.3 provides an in-depth discussion of this literature and its rela-
tionships to our study. The use of coded messages in games of information transmis-
sion is common in the cheap talk literature (see Forges 1990, Bárány 1992, Ben-Porath
2003, and Gerardi 2004) and our techniques are akin to those found there. The pa-
per most closely related to our work is Monderer and Tennenholtz (1999), who study
a similar problem to ours. Our paper substantially generalizes their results in several di-
mensions. First, these authors consider undirected networks and environments with a
worst outcome, common independent beliefs, and private values. They show that 2-
connectedness of the network is a sufficient condition for the implementation of all
incentive compatible social choice functions. Crucially, in their model, edges are not
directed and thus can be used to communicate in both directions. It follows that the 2-
connectedness of the undirected network guarantees the existence of directed subnet-
works that are strongly 2-connected. Their protocol (mechanisms and strategies) heav-
ily exploits this fact and indeed breaks down if the undirected network does not have an
underlying strongly 2-connected network. We show that in environments with common
independent beliefs and private values, weak 2-connectedness—a substantially weaker
requirement than strong 2-connectedness—is a necessary and sufficient condition (the
assumption of a worst outcome is superfluous). Second, we show that in environments
with a worst outcome, weak 2-connectedness is again a necessary and sufficient con-
dition; no further assumption on the environment is needed. In particular, there is no
need for independent beliefs or private values. We need to resort to different encryp-
tion techniques than those used in Monderer and Tennenholtz (1999), which would fail
without common independent beliefs even on strongly 2-connected networks. Further-
more, with the very same techniques, we show that strong 2-connectedness and weak
3-connectedness is a sufficient condition for the implementation of all incentive com-
patible social choice functions in all environments. Again, the techniques of Monderer
and Tennenholtz (1999) would fail here.

2. A simple example

We now illustrate our main results within the context of a simple example. There are
three players, labeled 1, 2, and 3, two types for player 2, labeled θ and θ′, and two alter-
natives a and b. Player 2’s preferences over these alternatives depend on his type (in all
examples, preferences are strict). Player 2 prefers a to b if his type is θ and prefers b to a if
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Figure 2. Communication network N2.

his type is θ′. Player 1 always prefers a to b, while player 3 always prefers b to a. Note that
this is a private values environment: the preferences of players 1 and 3 do not depend
on player 2’s type. The designer aims to implement the social choice function f ∗ that
selects the preferred alternative of player 2 for each of his type: player 2 is dictatorial.

If player 2 can securely and directly communicate with the designer, f ∗ is clearly
implementable: the designer can simply ask player 2 to directly report his preferred al-
ternative. Suppose now that player 2 cannot directly communicate with the designer
and consider the communication network N2 in Figure 2 (player 0 is the designer).

With communication network N2, player 2 can indirectly communicate with the de-
signer through player 1. Moreover, player 3 has two disjoint paths of communication
to the designer with player 2 on one of them. Consequently, player 2 has two disjoint
paths to the designer, but one of them is not directed. The network N2 is thus weakly
2-connected. The idea is then to use the two disjoint paths from 3 to 0 to secure the
communication of player 2’s type to the designer, without revealing information to the
other players. So, suppose that players 1 and 3 believe that player 2’s type is θ with prob-
ability 1

3 , independently of their own types. The goal is to design a mechanism and an
equilibrium such that the designer implements a in state θ and b in state θ′.

The mechanism allows player 3 to send a real number in [0�1) to player 2 and an-
other real number in [0�1) to player 0. Similarly, player 2 (resp., player 1) can send a
real number in [0�1) to player 1 (resp., player 0). An informal description of the strate-
gies is as follows. Independently of his type, player 3 draws an “encoding key” y uni-
formly on [0�1) and sends it to both players 0 and 2. Player 2 of type θ (resp., θ′)
draws a “pseudo-type” x̃ uniformly on [0� 1

3) (resp., [ 1
3 �1)). The pseudo-type thus “re-

veals” θ, but its unconditional distribution is uniform on [0�1).5 Then player 2 encodes
his pseudo-type x̃ with the encoding key y received from player 3 to obtain the “cypher
type” x = (x̃ + y)mod0�1.6 Player 2 sends x to player 1. Player 1 has to correctly for-
ward the message of player 2 to the designer. Let (x̂� ŷ) be a pair of messages received by
the designer. The allocation rule is the following: If (x̂− ŷ)mod0�1 ∈ [0� 1

3), the designer
implements a and implements b, otherwise.

5More precisely, U[0�1/3) (resp., U[1/3�1)) denotes the uniform distribution on [0� 1
3 ) (resp., [ 1

3 �1)). The

unconditional distribution of x̃ is 1
3 U[0�1/3) + 2

3 U[1/3�1) = U[0�1), the uniform distribution on [0�1).
6For a real number r, r mod0�1 = r − �r�, with �r� the highest integer less or equal to r.
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If the players follow the prescribed strategies, ŷ = y, x̂ = x, and (x̂ − ŷ)mod0�1 = x̃.
Thus, the designer correctly learns player 2’s type and implements the desired social
choice function f ∗. In particular, players 1 and 3 expect the designer to implement a
with probability 1

3 and b with probability 2
3 . We now show that the players do not have

an incentive to deviate from the prescribed strategies. Suppose that player 1 deviates
and sends a message x̂ to the designer instead of x. The designer implements the alter-
native a if (x̂− y)mod0�1 ∈ [0� 1

3) and b, otherwise. Since y is uniformly distributed, so is
(x̂ − y)mod0�1 (see Lemma 2 in the Appendix). Accordingly, player 1 expects the de-
signer to implement a with probability 1

3 and b with probability 2
3 : Player 1’s expected

payoff does not depend on the message x̂ he sends. Player 1 has, therefore, no incentive
to deviate. A similar argument applies to player 3. As for player 2, he has no incentive to
deviate since f ∗ is incentive compatible.

It is worth stressing that the essential feature of the network is its weak 2-connected-
ness. For instance, if in addition to the links shown in Figure 2, player 3 has a link to
player 1, the result remains valid (the network remains weakly 2-connected). Indeed,
we can construct a “babbling equilibrium” in which player 3 sends an uninformative
message to player 1, and player 1 plays independently of player 3’s message. Alterna-
tively, and more simply, we may let the message space from player 3 to player 1 be a
singleton. In effect, we show that the weak 2-connectedness of the network is a neces-
sary and sufficient condition for the implementation of any incentive compatible social
choice functions in environments with independent common beliefs and private values.

A further and important feature of the proposed mechanism and strategies is that
players 1 and 3 learn nothing about player 2’s type. This is clearly true for player 3, as he
does not receive a message from player 2. As for player 1, we prove that the message x

(the cypher type) he receives is uniformly distributed on [0�1) and independent of player
2’s type. This feature is crucial for the implementation of incentive compatible social
choice functions that depend on the private information of all players. It guarantees that
posterior beliefs are equal to prior beliefs and, consequently, that players’ incentives to
truthfully reveal their own private information are not altered.

Another important aspect is that the mechanism and strategies are tailored to envi-
ronments with common independent beliefs and private values. First, let us consider
the assumption of common independent beliefs. For concreteness, suppose that player
3’s belief remains as above, but that player 1 believes that player 2’s type is θ with proba-
bility 2

3 . Players 1 and 3 have thus different beliefs. In the construction above, the parti-
tion of [0�1) into {[0� 1

3)� [ 1
3 �1)} is such that the Lebesgue measure of each subset exactly

matches the prior beliefs of player 3, but differs now from player 1’s prior beliefs. Con-
sider a deviation for player 1, whereby he sends the same message, regardless of the
message received from player 2. With this deviation, player 1 expects the designer to
decode player 2’s type as being θ with probability 1

3 , which is different from his prior
belief 2

3 . Consequently, player 1’s incentive to truthfully report his private information
might be altered and this player may profitably deviate.7 Note that different (interim)

7For instance, take �1 = �2 = {θ�θ′}, three alternatives a, b, c, and u1(a�θ) = 3
2 , u1(b�θ) = 1, and

u1(c�θ) = 0. Consider the social choice function f , which depends only on players 1 and 2’s types with
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beliefs of players 1 and 3 may derive from a common correlated prior on type profiles.
Thus, the importance of the common independent belief assumption is that it allows
the mechanism to be tuned simultaneously to the beliefs of all players.

Second, to understand the importance of the private value assumption, suppose
that player 1 prefers b to a when player 2’s type is θ and prefers a to b when player 2’s type
is θ′ (interdependent values). If player 1 truthfully forwards the message x he received
from player 2, the alternative a is implemented if and only if player 2’s type is θ, and the
alternative b is implemented if and only if player 2’s type is θ′. However, if he sends a
message x̂ independently of the message received from player 2, both alternatives a and
b are implemented with positive probability, regardless of player 2’s type—a profitable
deviation for player 1. In sum, the problem with more general environments is not only
to guarantee that no information is revealed, but to provide players with incentives to
truthfully communicate their private information and the messages they receive.

With more elaborate encryption techniques, our result remains valid in environ-
ments with a worst alternative (Theorem 2). The intuition is as follows. Consider again
the network N2. Player 3 draws a large number of independent encoding keys y1� � � � � yη
and sends them to players 0 and 2. Player 2 privately chooses one of these keys (with
equiprobability) and uses it to encrypt his type. He then sends to player 1 the encrypted
type and the unused keys, without telling him which key was used for coding. Player 1
has to correctly forward player 2’s message to the designer. The designer compares the
two vectors he receives. If these vectors differ in exactly one component η∗, he infers
that the key yη∗ transmitted by player 3 was used for coding and he decodes player 2’s
type accordingly. Otherwise, the designer implements the worst alternative. This en-
coding technique guarantees that players 1 and 3 learn nothing about player 2’s type
and allows the designer to detect unilateral deviations with arbitrarily high probability,
since the index η∗ is the private information of player 2. In turn, the threat to implement
the worst alternative upon detection of a deviation deters players from deviating.

3. Definitions

The primitives of the model consist of two essential ingredients: social environments
(players, outcomes, and preferences) and communication networks.

A social environment E is a tuple 〈N�A�(�i�Pi�ui)i∈N 〉, where N := {1� � � � � n} is the
set of players, A is the finite set of alternatives, and �i is the finite set of types of player
i ∈ N .8 Let � := ×i∈N�i and �−i := ×j∈N\{i}�j , with generic elements θ and θ−i, respec-
tively. Each player knows his own type and player i of type θi holds a probabilistic belief
Pi(·|θi) over �−i. Throughout the paper, we assume Pi(θ−i|θi) > 0 for all (θi� θ−i) ∈ �

and for all i ∈ N . Each player has a preference relation over alternatives that is repre-
sentable by the type-dependent utility function ui :A × � → R. Players are expected
utility maximizers. Three properties of an environment are of particular importance to
our analysis.

f (θ�θ) = a, f (θ′� θ) = f (θ�θ′)= c, and f (θ′� θ′) = b. This is incentive compatible for player 1 at state θ when
he believes that player 2’s type is θ with probability 2

3 , but not when he believes that player 2’s type is θ with
probability 1

3 .
8In Section 5, we extend our analysis to environments with infinite type spaces.
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• The environment has a common prior if there exists a probability distribution P on
� such that Pi(θ−i|θi) is the conditional distribution of θ−i given θi derived from P .
The common prior is independent if P is the product of its marginal distributions.

• The environment has private values if for each player i, his utility function does
not depend on the types θ−i of his opponents.

• The environment has a worst outcome if there exists an alternative a ∈A such that
for each player i, each type profile θ, and each alternative a ∈ A \ {a}, ui(a�θ) <
ui(a�θ).

A social choice function f :� → A associates with each type profile θ an alternative
f (θ) ∈ A. A social choice function is incentive compatible if for each player i ∈ N , for
each pair of types (θi� θ′

i) of player i, we have

∑
θ−i

ui(f (θi� θ−i)� θi� θ−i)Pi(θ−i|θi)≥
∑
θ−i

ui(f (θ
′
i� θ−i)� θi� θ−i)Pi(θ−i|θi)�

Note that our definition of a worst outcome is stronger than actually required; it
would be enough to consider an alternative worse than any alternative in the range of
the social choice function we aim to implement. Exchange economies with free dis-
posal are examples of environments with worst outcome: the zero allocation is a worst
outcome if preferences are strictly monotonic and the social choice function selects pos-
itive vectors of goods. Similarly, in quasilinear environments, the assumption of a worst
outcome is natural.

A communication network captures the possibilities of communication between the
players and the designer. A communication network is a directed graph with n + 1 ver-
tices representing the n players and the designer (henceforth, player 0). There is a di-
rected edge from player i to player j, denoted ij, if i can send a message to j. Formally,
the network, denoted by N , is defined as a set of edges N ⊆ (N ∪ {0})× (N ∪ {0}). We let
C(i) = {j ∈N ∪ {0} : ij ∈ N } denote the set of players to whom player i can directly send a
message. Similarly, we let D(i) = {j ∈ N ∪ {0} : ji ∈ N } denote the set of players who can
directly send a message to player i. A directed path in N is a finite sequence of vertices
(i1� � � � � im) such that ikik+1 ∈ N for each k = 1� � � � �m − 1. A communication network
N is strongly m-connected if for each player i ∈ N \ D(0), there exist m disjoint directed
paths (i.e., having no common vertex except i and 0) from player i to the designer. By
convention, the communication network is strongly n-connected if N \D(0) = ∅. A net-
work of particular importance is the star network N �, where the designer is the center
and D(i) = ∅, C(i) = {0} for all player i ∈ N . With the star network, each player commu-
nicates directly and privately with the designer; the star network is n-connected.

We make the following assumptions on the network. First, we assume that networks
are strongly 1-connected: for each player i ∈ N , there exists a directed path from i to 0.
This assumption ensures that the designer can receive information from each player.

Second, we assume for the time being that the graph is acyclic, that is, for each i ∈
N ∪ {0}, there is no path from i to himself. In particular, these two assumptions imply
that C(0) = ∅, i.e., the designer cannot send messages to the players. In other words, as
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Figure 3. Network N3 and a consistent extensive form GN3 .

in the classical model of mechanism design, the designer does not communicate with
the players: he merely collects information and implements outcomes accordingly.

Now, we describe the interaction between a social environment and a communica-
tion network. The important feature of our model is that players can only send messages
to players to whom they are directly connected. The interaction (the extensive form)
unfolds as follows.

• Each player i “reads” the messages he receives from players in D(i). Then he sends
messages to players in C(i) (he may send different messages to different players).

• The designer “reads” the messages he receives from players in D(0) and selects an
alternative.

Note that if N = N �, this corresponds to the classical model where each player commu-
nicates directly and privately with the designer.

Acyclicity and strong 1-connectedness of the graph imply that the interaction as de-
scribed above gives rise to a simple extensive form. With acyclicity, the communica-
tion rule stating that a player sends his messages after having received all his messages
generates a well defined timing structure, where each player i is assigned a stage t(i)

at which he sends his messages. This statement is proved in the Appendix, Lemma 1.
For instance, in Figure 3, player 3 can directly communicate with player 1, but not with
player 2 and the designer. In the associated extensive form, player 3 communicates first
with player 1 and, after observing player 3’s message, player 1 communicates with the
designer.

The assumption of directed and acyclic networks makes our problem of implemen-
tation the hardest (the designer is silent, and players speak only once and receive no
feedback on the messages they send). Yet, the methods we develop for acyclic directed
networks extend to any network. More specifically, Section 5.1 drops the assumption of
acyclicity and shows how to adapt our results to networks with cycles or to undirected
networks, i.e., two-way networks where linked players can converse.
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A mechanism is a pair 〈(Mij)ij∈N � g〉, where for each edge ij, Mij is the set of messages
that player i can send to player j, and g :×i∈D(0)Mi0 →A is the allocation rule. Note that
the allocation rule depends only on the messages the designer can receive. The next step
is to define the Bayesian game induced by a mechanism, a communication network, and
an environment.

Fix an environment 〈N�A�(�i�Pi�ui)i∈N〉, a communication network N , and a
mechanism 〈(Mij)ij∈N � g〉. Define MD(i) := ×j∈D(i)Mji as the set of messages that player
i can receive and MC(i) := ×j∈C(i)Mij as the set of messages that player i can send. A pure
strategy si for player i is a mapping from MD(i) ×�i to MC(i). We denote by Si the set of
player i’s pure strategies and by sij(mD(i)� θi) the message player i sends to player j ∈ C(i)

conditional on receiving the messages mD(i) and being of type θi. A behavioral strat-
egy σi for player i maps MD(i) × �i to 	(MC(i)), the set of probability distributions over
MC(i).9 We denote by Pσ�θ the probability distribution over profiles of messages (i.e.,
over ×ij∈N Mij) induced by the strategy profile σ = (σi)i∈N at state θ. The Bayesian game
GN induced by an environment, a mechanism, and a network is defined as follows.

• The set of players is N ; the set of player i’s types is �i and his beliefs are given by
Pi.

• The set of strategies of player i is Si.

• The payoff of player i is his expected utility conditional on his type and given that
the outcomes are selected by the allocation rule g.

Definition 1. The social choice function f is partially implementable on the commu-
nication network N if there exist a mechanism 〈(Mij)ij∈N � g〉 and a Bayesian–Nash equi-
librium σ∗ of GN such that for all θ ∈�, g((m∗

i0)i∈D(0))= f (θ) for all profiles of messages
(m∗

i0)i∈D(0) received by the designer in the support of Pσ∗�θ.

Let FN (E) denote the set of social choice functions partially implementable on the
communication network N when the environment is E . From the revelation principle,
FN (E) ⊆ FN �(E) for every environment E , and FN �(E) is precisely the set of incentive
compatible social choice functions. The aim of this paper is to characterize the commu-
nication networks N for which FN (E) = FN �(E) for every environment E .

Before presenting our main results, a final remark is in order. We present our results
for the solution concept of Bayesian equilibrium. Yet all our results remain valid with
the solution concept of perfect Bayesian equilibrium. Indeed, as will be apparent be-
low (see also the introductory example), the Bayesian equilibria we construct are such
that every profile of messages a player can receive is in the support of the equilibrium
strategies. Moreover, equilibrium strategies are such that we can apply a continuous
version of Bayes’ rule at every profile of messages a player can receive. We have chosen
to present our results for the concept of Bayesian equilibrium, so as to avoid specifying
the belief systems, namely the beliefs a player has about the types of his opponents and
the messages they have received, at each of his information sets.

9We also find it convenient to view a behavioral strategy as a measurable mapping from MD(i) ×�i ×Yi

to MC(i), where (Yi� Yi�μi) is a probability space independent of types and messages, i.e., a private ran-
domization device.
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Figure 4. Network N4 is weakly 2-connected; network N ′
4 is not.

4. The main results

This section presents our main results regarding the partial implementation of social
choice functions on communication networks. We introduce our main connectivity
condition. Recall that we consider strongly 1-connected and acyclic networks. An
undirected path in N is a finite sequence of vertices (i1� � � � � im) such that for each
k= 1� � � � �m− 1, either ikik+1 ∈ N or ik+1ik ∈ N .

Definition 2. The communication network N is weakly 2-connected if for each player
i ∈N \D(0), there exist two disjoint undirected paths from player i to the designer.

In words, a network is weakly 2-connected if for each player not directly connected
to the designer, there exist two disjoint paths—directed or undirected—from this player
to the designer. For instance, in Figure 4, the network N4 is weakly 2-connected, while
the network N ′

4 is not. Note that in both networks, player 2 has a unique directed path
to the designer and, therefore, neither network is strongly 2-connected.

Importantly, if a network is not weakly 2-connected, there exist two players, i and i∗,
such that all paths (directed or undirected) from player i to the designer go through
player i∗. As a consequence, for each player j = i who has a path (directed or undi-
rected) to i, all paths (directed or undirected) from j to the designer go through player i∗.
Player i∗ thus “controls” all the possible messages that player i can use to communi-
cate his private information. Player i∗ even controls the messages of all players who are
connected, directly or indirectly, to player i. For instance, on the network N ′

4, player 1
controls all messages that players 2 and 3 can send. These simple observations suggest
that there is no hope to implement all incentive compatible social choice functions on a
network that is not weakly 2-connected. We show that this is indeed the case.

4.1 Common independent beliefs and private values

We first consider environments with common independent beliefs and private values.
This assumption is common in several applications of the theory of mechanism design,
e.g., auction theory (Krishna 2002) or contract theory (Salanié 2005). Our first result
states that any incentive compatible social choice function is implementable on a net-
work N for all such environments if and only if N is weakly 2-connected.
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Figure 5. Communication network N5.

Theorem 1. Consider an acyclic network N . For all environments E with common
independent beliefs and private values, FN (E) = FN �(E) if and only if N is weakly 2-
connected.

Theorem 1 extends the work of Monderer and Tennenholtz (1999) in several dimen-
sions. Monderer and Tennenholtz consider environments and communication net-
works with the following properties: (1) types are independently and identically dis-
tributed, (2) a player’s payoff does not depend on the private information of others (pri-
vate values), (3) there exists a worst outcome (to abort the protocol), and (4) networks
are undirected and repeated communication is allowed, so that each edge is directed in
both ways and players may get feedback on the messages they sent. With these assump-
tions, they show that the 2-connectedness of the communication network is a sufficient
condition for the implementation of any incentive compatible social choice function.
First, we show that their result extends to weakly 2-connected directed networks and
that this condition is necessary. This result requires the construction of a substantially
more elaborate protocol (mechanisms and strategies) than that in Monderer and Ten-
nenholtz (1999). Indeed, their construction relies on the existence of an underlying di-
rected subgraph that is strongly 2-connected, so that a player can send his encrypted
type on one directed path and send the encryption key on the other disjoint directed
path. Unlike Monderer and Tennenholtz, our assumption of weakly 2-connected net-
works does not guarantee the existence of two disjoint directed paths from each player
to the designer. Second, we show that the crucial assumptions to extend their result
are common independent beliefs and private values. Neither the existence of a worst
outcome nor the possibility of multiple rounds of messages is essential. By contrast,
Theorem 2 below shows that in environments with a worst outcome, there is no need to
assume common and independent beliefs and private values. Moreover, it is important
to note that the mechanism and the strategies for Theorem 2 are quite different from
those for Theorem 1. Indeed, the mechanism and the strategies for Theorem 1 do not
work in more general environments.

The intuition for Theorem 1 is as follows. We consider the network N5 in Figure 5
and show how to implement the dictatorial social choice function of player 2. Note that
player 2 has a directed path of communication to the designer (through player 1) and
two disjoint undirected paths of communication to the designer. However, unlike the
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network N2 in Figure 2, there is no player who has a directed path to player 2 and two
disjoint directed paths to the designer. This feature is essential and makes the proof of
Theorem 1 quite involved for general weakly 2-connected networks (see the Appendix
for the general case).

As in Section 2, there are two alternatives a and b, and two types θ and θ′ for player 2.
Player 2 prefers a to b if his type is θ and prefers b to a if his type is θ′. Suppose that
players 1, 3, 4, and 5 share a common prior and believe that player 2’s type is θ with
probability 1

3 . The designer aims to implement the dictatorial social choice function f ∗
of player 2.

An informal description of the strategies to implement f ∗ is as follows. Player 3
draws an encoding key y uniformly on [0�1) and sends it to players 2 and 4. Simulta-
neously, player 5 draws another encoding key z uniformly on [0�1) and sends it to the
designer (player 0) and player 4. Then player 4 encrypts the key y received from player
3 with the key z received from player 5 to obtain w = (z + y)mod0�1, which he sends to
player 1. Player 2 of type θ (resp., θ′) draws a pseudo-type x̃ uniformly in [0� 1

3) (resp.,
[ 1

3 �1)) and sends the encrypted type x = (x̃ + y)mod0�1 to player 1. Thus, player 1 re-
ceives the encrypted type x from player 2 and the modified key w from player 4. Last,
player 1 transfers u = (w − x)mod0�1 to the designer. Let (û� ẑ) be a pair of messages
received by the designer. The allocation rule is the following: If (ẑ − û)mod0�1 ∈ [0� 1

3),
the designer implements a and otherwise implements b.

If the players follow the prescribed strategies, then w = (z + y)mod0�1 and u =
(w−x)mod0�1 = ((z+ y)mod0�1 −(x̃+ y)mod0�1)mod0�1 = (z− x̃)mod0�1. The designer
thus receives û = u = (z − x̃)mod0�1 from player 1 and ẑ = z from player 5. It follows
that (ẑ− û)mod0�1 = x̃ and the designer correctly learns player 2’s type and implements
the desired social choice function f ∗. In particular, all players but player 2 expect the
designer to implement a with probability 1

3 and b with probability 2
3 .

We now show that players do not have an incentive to deviate from the prescribed
strategies and focus on player 1. From the point of view of player 1, x̃, y, and z are
mutually independent and uniformly distributed. It follows that the two messages
(z + y)mod0�1 and (x̃ + y)mod0�1 received by player 1 are independent and uniformly
distributed (see Lemma 2 in the Appendix), and convey no information about z and x̃.
Suppose that player 1 deviates and sends the message û to the designer instead of
u = (z − x̃)mod0�1. The designer implements the alternative a if (z − û)mod0�1 ∈ [0� 1

3)

and b otherwise. Since, conditional on player 1’s information, z is uniformly distributed,
so is (z − û)mod0�1 (see again Lemma 2 in the Appendix). Accordingly, player 1 expects
the designer to implement a with probability 1

3 and b with probability 2
3 . It follows that

player 1’s expected payoff does not depend on the message û he sends and that player
1 has no incentive to deviate. Similar arguments apply to players 3, 4, and 5. As for
player 2, he has no incentive to deviate since f ∗ is incentive compatible.

The essential difference with the simpler example of Section 2 is that player 3 does
not have two disjoint directed paths of communication to the designer. Thus, player
3 cannot give an encryption key to player 2 and send this key to the designer without
player 1 learning both the encryption key and player 2’s encrypted type. It is precisely
at this point that the protocol of Monderer and Tennenholtz fails. The novel idea is then
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Figure 6. Communication network N6 is strongly 1-connected.

to let player 4 encrypt the encryption key that player 3 sends to player 2 with the key
received from player 5. Accordingly, player 1 receives an encrypted encryption key from
player 4 and, therefore, learns nothing about the type of player 2.

The proof of Theorem 1 extends these arguments to any weakly 2-connected net-
work10 (all proofs are relegated to the Appendix). In particular, we show that if the net-
work is strongly 1-connected and weakly 2-connected, then there exists a protocol such
that if all players abide by the protocol, the designer correctly learns the players’ types
and no player gets additional information about the types of his opponents. In the lan-
guage of computer science, we construct a protocol for the secret transmission of mes-
sages. We then show that the existence of such a protocol guarantees the existence of a
mechanism and strategies such that players are indifferent between correctly forward-
ing the messages they receive or lying. Thus, they indeed have an incentive to abide by
the protocol. In the language of computer science, our protocol is reliable.

Theorem 1 also states that the weak 2-connectedness is a necessary condition to im-
plement all incentive compatible social choice functions. To get some intuition for this
result, let us consider a simple example. There are two players, 1 and 2, two alternatives,
a and b, and two types, θ and θ′ for each player. Regardless of his type, player 1 prefers
a over b, player 2 of type θ prefers a over b, while player 2 of type θ′ prefers b over a.
Consider the social choice function f for which player 2 is dictatorial and the communi-
cation network N6 in Figure 6. The issue with this network, and more generally with any
communication network that is not weakly 2-connected, is that player 1 controls all the
information sent by player 2 and there is no way for the designer to detect a false report
by player 1.

Clearly, f is implementable on the star network N �, but not on N6. By contradic-
tion, suppose that f is implementable on N6 by the mechanism 〈M1�M2� g〉. There must
exist an equilibrium message m1 ∈ M1 such that g(m1) = b. However, regardless of his
type and message received, player 1 has no incentives to send any message m1 with
g(m1) = b, so that f cannot be implemented. The proof of Theorem 1 generalizes this
argument to any network that is not weakly 2-connected.

Two further remarks are worth making. First, our encoding technique extends to en-
vironments with continuous type spaces (see Section 5.4). Second, the strategies we
consider are behavioral strategies. In Section 5.5, we prove that our result does not
hold if we restrict ourselves to pure equilibria, a frequently used solution concept in
the mechanism design literature.

Before going further, it is worth stressing again that the encoding technique used
in the proof of Theorem 1 is tailored to environments with common independent be-
liefs and does not apply to more general environments (even with private values). See

10Note that the protocol (mechanism and strategies) of Monderer and Tennenholtz (1999) for undirected
networks does not work in general; there is a need to encrypt encryption keys. Their protocol works only if
the directed network is strongly 2-connected.
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the example in Section 2 for some intuition. With general beliefs, different encoding
techniques have to be used: this is the object of the next section.

4.2 Worst outcome

In many concrete applications of the theory of mechanism design, players hold differ-
ent and correlated beliefs about states of the world either because they have received
different signals (information) or on purely subjective grounds. Moreover, the payoff
of a player often depends on the private information of others. For instance, in auc-
tion models, bidders often have different information about the value of the goods for
sale (e.g., mineral or oil rights) and the private information of all players influences the
valuation for the good of each player. To handle these more general beliefs and payoff
functions, we resort to a different encoding technique. Our new technique consists of
coding the type of each player such that no information is revealed to the other players,
and if a player does not truthfully forward the messages he receives, the designer detects
it with arbitrarily high probability.

Theorem 2. Consider an acyclic network N . For all environments E with a worst out-
come, FN (E)= FN �(E) if and only if N is weakly 2-connected.

The main insight provided by Theorem 2 is that assuming a worst outcome allows us
to dispense with the assumptions of common independent beliefs and private values.

The intuition for Theorem 2 is as follows. We construct a mechanism such that
the true type of player i is transmitted to the designer, no player j = i gets information
about the type of player i, and a false report by player j is detected with arbitrarily high
probability. Consider again the network N5 and the dictatorial social choice function of
player 2.

An informal description of the strategies is the following. Player 3 sends a large num-
ber of encoding keys, all uniformly and independently drawn from [0�1) to players 2
and 4. Simultaneously, player 5 sends another large number of encoding keys, all uni-
formly and independently drawn from [0�1) to player 4 and the designer. Player 4 thus
receives a large number of keys from both player 3 and player 5. He adds them one-
by-one (addition is modulo [0�1)) and sends the resulting vector of keys to player 1.
Simultaneously, player 2 selects at random one of the keys received from player 3 and
encrypts his type with this key. He then substitutes the selected key with the cypher type
and sends it to player 1 along with all the other keys (without telling player 1 which key
was used to encrypt his type). Last, player 1 received a large vector of encrypted en-
cryption keys from player 4 and a large vector of encryption keys and the encrypted type
from player 2. Player 1 then subtracts these two vectors (subtraction is componentwise
modulo [0�1)) and forwards the resulting vector to the designer. The designer can then
detect a false report by comparing the two vectors of messages received from players 1
and 3. Namely, if player 1 truthfully forwards the message he receives, the two vectors
should differ by exactly one component. In such a case, the designer decodes the type of
player 2 according to this component and implements the appropriate outcome. Other-
wise, the designer implements the worst outcome. By construction, only player 2 knows
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the key selected to encrypt his type. Thus, any deviation by players 1, 3, 4, and 5 induces
the worst outcome with arbitrarily high probability: this deters them from lying.

An essential feature of Theorem 2 is the ability to punish a detected deviation with a
worst outcome. It is worth stressing, however, that our definition of a worst outcome is
stronger than necessary, since it does not depend on the social choice function we aim
to implement. It would be enough to find an outcome worse than any outcome in the
range of the social choice function.11

If such a worst outcome does not exist, the main difficulty for the designer is the
choice of an appropriate alternative to implement whenever a false report is detected.
A characterization of networks that allows implementation of all incentive compatible
social choice functions in all environments is left as an open problem. Yet we provide
sufficient conditions in Section 5.3. Naturally, weak 2-connectedness remains a neces-
sary condition.

4.3 Connections with computer science

An essential feature of our results is the use of encryption techniques to secure the trans-
mission of messages from players to the designer. As already alluded in the Introduction,
our work is closely related to the computer science literature on secure transmission of
messages, which we now review. We first discuss two important notions of security that
are commonly found in the computer science literature.

Message security Informally, the transmission of a message from a sender A to a re-
ceiver B is reliable if A can communicate with B and no adversary, i.e., a potentially ma-
licious third party (a hacker), can tamper with the content of the message. The transmis-
sion of a message is secret if no adversary can find out the content of the message sent.
Information transmission is said to be secure if it is both reliable and secret. To discuss
the notion of secrecy more precisely, let us assume that A and B have a reliable channel
of communication. There are two main approaches to message security in computer
science: cryptographic security and information-theoretic security.

A message transmission is cryptographically secure if it is computationally very hard
(typically NP-hard) for an adversary to find out the content of the message. This ap-
proach assumes that the adversary is computationally limited, that is, has no more com-
putational power than a Turing machine. The reader is referred to the seminal papers of
Diffie and Hellman (1976) and Rivest et al. (1978; RSA). In particular, classical encryp-
tion techniques with public and private keys adopt this notion of security. For instance,
the RSA encryption scheme with public keys rests on the idea that computing two large
prime numbers p and q when their product n = pq is known is computationally very
hard.

By contrast, information-theoretic security considers adversaries with unbounded
computational power and requires pieces of communication between A and B, which

11It is also worth noting that Theorem 2 remains true if we consider environments with a bad outcome,
i.e., an outcome a such that ui(f (θ)�θ) ≥ ui(a�θ) for all i ∈ N , for all θ ∈ �. For completeness, the proof is
given in the Appendix, Corollary 3.
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may be eavesdropped, to be probabilistically independent of the content of the mes-
sage. This concept was originally introduced by Shannon (1949) (see also, among
others, Goldwasser and Micali 1984, Dolev et al. 1993). A simple method to achieve
information-theoretic security is to map the message m to be sent to a number in, say,
{1� � � � � n}, and to add (modulo n) a uniformly distributed random key X . The encrypted
message (X + m) mod n is then uniformly distributed and independent of m: it can
be publicly disclosed without harming security. The probability of guessing m correctly
is 1/n and thus can be made arbitrarily small. Our encryption method (Lemma 2) is a
continuous version of this method such that the probability of guessing correctly is zero.

As a game-theoretic model, our work follows the latter approach: the agents we con-
sider are unboundedly rational players. They are very similar to the Byzantine adver-
saries considered in computer science, i.e., malicious players with unbounded compu-
tational power. The key difference, however, is that rational players respond to incen-
tives: they do not behave maliciously if it is not optimal for them to do so.

Security in networks Assume now that the sender A and the receiver B are some dis-
tant nodes in a network, so that there is no secure channel of communication between
them. The natural question then is how to characterize the networks that guarantee the
secure transmission of messages from A to B in the presence of Byzantine adversaries.
This is the object of the computer science literature on secure transmission of messages.
A seminal contribution is Dolev et al. (1993), who show that if the adversary controls at
most t nodes, then (2t + 1)-connectedness of the network is a necessary and sufficient
condition for the secure transmission of messages from A to B. Dolev et al. assume uni-
cast communication, i.e., a node can send different messages to its neighbors. Alterna-
tively, Franklin and Wright (2000) study broadcast communication: any message sent by
a node is automatically sent to all its neighbors. They show that (2t + 1)-connectedness
is again necessary and sufficient for perfect security.12

Unlike our approach, all these results assume undirected graphs and crucially use
the possibility of messages going back and forth from the sender to the receiver (re-
peated communication). Dolev et al. (1993) show that in one-way problems, i.e., if the
information flows only from the sender to the receiver, a necessary and sufficient con-
dition for the secure transmission of messages is the (3t + 1)-connectedness of the net-
work. Considering directed networks, Desmedt and Wang (2002) show how this bound
can be lowered if there are channels of communication from the receiver to the sender.
Namely, they show that if for u ≤ t, there are 2t + 1 − u disjoint directed paths from
the sender to the receiver and u disjoint directed paths from the receiver to the sender
(these u paths are also disjoint from the 2t + 1 paths from the sender to the receiver),
then secure transmission of messages is possible.

12Franklin and Wright (2000) also consider a weaker notion of security: security is almost perfect when
the adversary has an arbitrarily small probability of modifying the message content and learning the con-
tent of the message. They show that (t + 1)-connectedness is necessary and sufficient for almost-perfect
security (see also Renault and Tomala 2008).
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Our contribution to information security The above discussion suggests a reinterpreta-
tion of our results in the language of computer science. Starting from a communication
network, a social environment, and an incentive compatible social choice function f ,
we construct a mechanism that implements f as a Bayesian–Nash equilibrium of the
induced game. A necessary condition for this result is the possibility to construct a com-
munication protocol with the following properties: (i) the designer correctly learns the
profile of types, (ii) no player gets information beyond his own type, and (iii) no player
has an incentive to misexecute the communication protocol. Part (ii) corresponds to the
computer science requirement of secrecy, while parts (i) and (iii) are the counterparts of
reliability.

Before proceeding, it is worth emphasizing that the concept of Bayesian–Nash equi-
librium implies that the adversary is a single potential deviant player. Such an adver-
sary has unbounded computational power, responds to incentives, and controls at most
one node (t = 1). Our main results are then reinterpreted as information transmission
against this class of adversaries.

In Theorem 1, we assume common independent belief and private values, and con-
struct a mechanism such that each player forwards the messages he receives and gets
the same expected payoff regardless of the messages he forwards (see Section 2 and the
proof of Theorem 1). With this in mind, our implementation problem is rephrased as
the following problem of information transmission.

P1. Characterize the networks for which there exists a communication protocol such
that if all players abide by the protocol, the designer correctly learns the entire pro-
file of types and no player gets additional information.

In the presence of a worst outcome, the designer has the ability to punish all players
if he detects a deviation, and we construct a protocol such that any tampering with a
message is detected with arbitrarily high probability by the designer (see Section 2 and
the proof of Theorem 2). The implementation problem thus gives rise to the following
problem of information transmission.

P2. Characterize the networks for which there exists a communication protocol such
that no player gets additional information and if all but at most one player abide
by the protocol, then the designer either correctly learns the entire profile of types or
detects a deviation with arbitrarily high probability.

Our main contribution to the literature on secure transmission of messages in net-
works is thus to solve problems P1 and P2 for directed graphs and one-way problems:
the solutions are the weakly-2-connected graphs. Compared with the computer science
literature cited above, our approach through incentives allows us to get a much weaker
connectivity requirement. This statement is a by-product of the proofs of our main re-
sults, which are structured as follows. We first show that on any weakly 2-connected
graph, there exists a communication protocol such that if all players abide by the proto-
col, the designer correctly learns the entire profile of types and no player gets additional
information. Theorem 1 then easily follows: we use the common prior to make players
indifferent between all the messages they may forward. The proof of Theorem 2 uses
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Figure 7. Communication network N7.

a multiple key technique, akin to authentication schemes (see, e.g., Rabin and Ben-Or
1989), but requires no prior knowledge of any public or private key. To the best of our
knowledge, this technique is new.

Finally, let us remark that the use of continuous message spaces, while consistent
with mechanism design theory, is unappealing from a computer science perspective.
Theorem 1 remains valid with finite message spaces, provided that prior beliefs are ra-
tional numbers: encoding keys are then chosen in the integers modulo n, with n large.
Theorem 2 extends to finite messages spaces without restrictions on priors.

5. Extensions and robustness

This section discusses various aspects of our problem and offers some generalizations.

5.1 Active designer and two-way networks

A salient feature of our model is that the designer is not active in the communication.
However, in some situations, it is natural to assume that the designer can communicate
with the players. For instance, a CEO has the ability to communicate with his employees
either publicly or privately.

So, let us assume that the designer can communicate with some players, so that
C(0) = ∅. An important consequence of assuming an active designer is that the network
may then contain cycles. We therefore need to relax the assumption of acyclicity. Clearly,
the conditions of strong 1-connectedness and weak 2-connectedness remain necessary
for the implementation of all incentive compatible social choice functions. The main
insight is that these conditions are also sufficient. In other words, our results extend
naturally to networks with cycles.

Theorem 3. For all environments E with common independent beliefs and private val-
ues or with a worst outcome, FN (E) = FN �(E) if and only if N is weakly 2-connected.

To get an intuition for this result, consider the network N7 in Figure 7.
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The idea is simply to let the designer play the role of a provider of keys, as in the
proof of Theorem 1 or Theorem 2. To be more specific, let us consider the transmission
of player 3’s private information in the network N7 when there is a worst outcome. The
designer draws a large number of encoding keys and sends them to player 2. Player 2
forwards the encoding keys to player 3, who selects one key at random and uses it to
encode his type. He then sends the unused keys and the encoded type to player 1, who
should forward this message to the designer. Last, the designer compares the vector of
keys he sent to player 2 and the vector of keys he receives from 1, and decodes the type
of player 3 accordingly. As in the proof of Theorem 2, any deviation by player 1 or player
2 is detected with arbitrarily large probability, no information about player 3’s type is
revealed, and the designer correctly learns the type of player 3.

Theorem 3 admits as a special case two-way communication networks where players
can exchange messages back and forth along each edge. Such networks are naturally
represented by undirected graphs where there is an edge between i and j whenever i

and j can converse privately. For this class of networks, strong 2-connectedness and
weak 2-connectedness coincide, since one can choose any orientation of the edges. We
thus obtain the following corollary.

Corollary 1. For all environments E with common independent beliefs and private val-
ues or with a worst outcome, FN (E) = FN �(E) if and only if the two-way network N is
2-connected.

Finally, let us mention that the assumption of an active designer is important in gen-
eralized principal–agents models (Myerson 1982), where players also have to take an ac-
tion, thus creating a moral hazard problem in addition to the adverse selection problem.
In such models, the designer has to “securely recommend” an action to each player. We
believe that our results extend to this more general framework. Indeed, if the designer
has two disjoint paths of communication to each player (directed or undirected), then
he can follow our protocols to privately and reliably make a recommendation to each
player. A careful analysis of this issue awaits future research.

5.2 Direct mechanisms

Another central feature of our results is the use of encryption techniques to secure the
transmission of messages from the players to the designer. This is largely inescapable if
we want to implement all incentive compatible social choice functions (in Section 5.5,
we show that implementing all such functions in pure strategy equilibria is not possible
except on N ∗).

However, “direct” mechanisms—where players simply announce their types to their
neighbors and forward messages—might suffice if we restrict attention to specific en-
vironments or to some specific incentive compatible social choice functions. For in-
stance, consider the set of ex post incentive compatible social choice functions. A social
choice function f is ex post incentive compatible if for all i ∈ N and θ ∈ �, ui(f (θ)�θ) ≥
ui(f (θ

′
i� θ−i)� θ) for all θ′

i ∈�i.13

13Bergemann and Morris (2005) show that a social choice function is implementable on all type spaces
if and only if it is ex post incentive compatible.
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Figure 8. Communication network N8.

Proposition 1. If the communication network N is strongly 3-connected, then any
ex post incentive compatible social choice function is implementable on N by a direct
mechanism.

The intuition for Proposition 1 is simple. If a social choice function f is ex post in-
centive compatible, then every player has an incentive to truthfully reveal his private
information, even if he were to know the private information of some other players (e.g.,
his neighbors). There is, therefore, no particular need for encryption techniques: play-
ers can simply truthfully report their types on all paths to the designer. In the computer
science terminology, secrecy is not an issue. Yet it remains the issue of reliability: play-
ers must have the incentive to truthfully forward the messages they receive. However,
with three disjoint directed paths of communication from each player i ∈ N \ D(0) to
the designer, a simple majority argument guarantees that no player has an incentive to
misreport the messages he receives.

Furthermore, it is clear that not all ex post incentive compatible social choice func-
tions are implementable by direct mechanisms on weakly 2-connected networks, even
in environments with common independent beliefs and private values or a worst out-
come. For a counterexample, we refer the reader to the example in Section 2. So, weak
2-connectedness is not a sufficient condition.

In some environments, however, some ex post incentive compatible social choice
functions can be implemented by direct mechanisms, even on strongly 2-connected
networks. We illustrate this possibility with the help of two important economic ex-
amples: a second-price auction and the provision of a public good.

Consider an auction with three bidders, labeled 1, 2, and 3. There is a single object
to be allocated, bidder i values the object at θi, and bidder i’s payoff is θi − xi if he is
allocated the object at price xi and is zero otherwise. Consider the strongly 2-connected
network N8 in Figure 8.

The designer aims to allocate the object to the bidder with the highest valuation (if
there are several such bidders, choose one randomly). A simple and direct mechanism
to implement the social choice function is as follows. Bidder 3 is required to truthfully
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report his valuation θ3 to both bidders 1 and 2. Bidder 1 (resp., bidder 2) has to truthfully
report his valuation θ1 (resp., θ2) along with bidder 3’s valuation θ3 to the designer. Let
((θ̂1� θ̂

1
3)� (θ̂2� θ̂

2
3)) be a profile of messages received by the designer. The designer com-

putes the bid profile (θ̂1� θ̂2�max(θ̂1
3� θ̂

2
3)), allocates the object to the highest bidder, and

charges a price equal to the second-highest bid: a second-price auction.
Since a second-price auction implements the efficient allocation in weakly domi-

nant strategies (on the star network), no bidder has an incentive to misreport his own
valuation, regardless of the reports of the other bidders. We now argue that bidder 1
has no incentive to misreport bidder 3’s valuation. (A symmetric reasoning holds for
bidder 2.) Clearly, if bidder 1 reports θ̂1

3 < θ3, he does not affect the outcome since
max(θ̂1

3� θ3) = θ3. Alternatively, if bidder 1 reports θ̂1
3 > θ3, he does affect the outcome

of the auction. However, this is not a profitable deviation: it not only decreases his like-
lihood of winning the object, but also increases the price paid if he wins.

The second example is about the provision of a public good and is adapted from
Bergemann and Morris (2009). Assume that there are three players and that �i ⊆ [0�1)
for each player i ∈ {1�2�3}. The utility to player i is (θi + γ

∑
j =i θj)x0 + xi, where x0

is the level of public good provided and xi is the monetary transfer to player i (γ ≥ 0).
The cost of providing the level of public good x0 is ( 1

2)(x0)
2. The designer aims to im-

plement the efficient level of public good, i.e., (1 + 2γ)(θ1 + θ2 + θ3), at the type pro-
file (θ1� θ2� θ3). Again, consider the network N8 in Figure 8. As in the previous exam-
ple, the players are required to truthfully report their types along with any message they
might have received. Let ((θ̂1� θ̂

1
3)� (θ̂2� θ̂

2
3)) be a profile of messages received by the de-

signer. The designer then computes the type profile (θ̂1� θ̂2� θ̂3) with θ̂3 := min(θ̂1
3� θ̂

2
3),

produces the level x0 = (1 + 2γ)(θ̂1 + θ̂2 + θ̂3) of public good, and establishes the trans-
fer xi = −(1 + 2γ)[γθ̂i ∑j =i θ̂j + ( 1

2)θ̂
2
i − 2γ

∑
j =i θ̂j] to each player i. Note that up to the

term (1 + 2γ)2γ
∑

j =i θ̂j , independent of player i’s type, the transfers are identical to the
generalized Vickrey–Clarke–Groves transfers of Bergemann and Morris (2009). In par-
ticular, they guarantee that the social choice function is ex post incentive compatible
(on the star network). However, and unlike the first example, the mechanism does not
implement the social choice function in dominant strategies, even on the star network
(unless γ = 0). Player 1 (resp., player 2) might, therefore, have an incentive to misreport
his own type whenever his report of player 3’s type leads to θ̂3 being different from player
3’s true type.14 We argue nonetheless that no player has an incentive to misreport in that
example. To do so, we compute the difference δ1((θ̂1� θ̂

1
3)|θ) in player 1’s ex post payoff

between a truthful report (θ1� θ3) and the report (θ̂1� θ̂
1
3) at the type profile θ:

δ1((θ̂1� θ̂
1
3)|θ)= 1

2(θ1 − θ̂1)
2 + [θ1 + γ(θ2 + θ3 − θ̂1)+ 2γ](θ3 − θ̂3)�

with θ̂3 := min(θ̂1
3� θ3), the minimum between player 1’s report about player 3’s type

and player 2’s (true) report about player 3’s type. Since θ̂3 ≤ θ3 and θ ∈ [0�1)3,
δ1((θ̂1� θ̂

1
3)|θ)≥ 0 for all θ, and thus player 1 has no profitable deviation. A similar rea-

soning applies to player 2. As for player 3, he clearly has no profitable deviation since
the social choice function is ex post incentive compatible.

14Remember that ex post incentive compatibility guarantees that no player has an incentive to misreport
his own type for all truthful reports of his opponents (but not necessarily for all reports of his opponents).
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Both examples generalize to any number of players provided that the communi-
cation network is strongly 2-connected. Last, note that a common feature of both ex-
amples is the existence of a “sufficient statistic” to aggregate conflicting reports about
player 3’s type, with the additional property that this aggregate statistic deters players 1
and 2 from lying about player 3’s type. We suspect that this property can be generalized
and leave it as an open issue.

5.3 All environments

We give sufficient conditions on the network for implementing all incentive compatible
social choice functions, regardless of the environments.

Recall that a network is strongly m-connected if for each player i ∈N \D(0), there ex-
ist m disjoint directed paths from player i to the designer. Likewise, a network is weakly
m-connected if for each player i ∈N \D(0), there exist m disjoint undirected paths from
player i to the designer.

Theorem 4. If the communication network N is strongly 2-connected and weakly 3-
connected, then FN (E) = FN �(E) for all environments E .

The intuition is the following. We first prove that for each strongly 1-connected and
weakly 2-connected network, there exists a mechanism such that any false report of
messages is detected with probability 1 and no additional information about the types
is revealed (the construction is in the Appendix, Lemma 8).

Next, consider a strongly 2-connected and weakly 3-connected network, and fix a
player i ∈ N \ D(0) who wants to transfer his type to the designer. Notice that for each
player j = i, j = 0, the subnetwork N \ {j} (obtained from N by deleting j) is strongly
1-connected and weakly 2-connected. From the above, there exists a “submechanism”
on this subnetwork that detects deviations with probability 1. A simple “majority” argu-
ment then ensures that no player has an incentive to lie. More precisely, any unilateral
deviation of player j = i is almost surely detected, while the submechanism on N \ {j} is
truthfully executed and allows the designer to correctly decode the type of player i.15

5.4 A continuum of types and alternatives

Many applications of mechanism design theory, e.g., contract theory and auction the-
ory, assume a continuum of types and alternatives. While we have cast our results in
finite settings, they naturally extend to environments with continuous type and alterna-
tive sets.16

We now explain how to extend Theorem 1. A key feature of the proof of Theorem 1
is that player i transforms his type θi into a pseudo-type x̃i, which reveals his type and
is unconditionally uniformly distributed in [0�1). The pseudo-type is then transmit-
ted through the network by a communication protocol. It is thus enough to show how

15We thank Thomas Voice for suggesting this argument to us.
16Appropriate measurability and integrability assumptions have to be made.
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to construct the pseudo-type in the continuous setup. Let each player’s type space �i

be a subset of [0�1) and let types be independently distributed. Let P be the common
prior and let Gi be the cumulative distribution function of the marginal Pi over �i. As-
sume that Gi is continuous. The key observation to make is that Gi(θi) is uniformly
distributed on [0�1) and, therefore, can be used as a pseudo-type. If Gi has atoms, let θ∗

i

be an atom of Gi, i.e., limθi↑θ∗
i
Gi(θi) := G−

i (θ
∗
i ) < G+

i (θ
∗
i ) =: limθi↓θ∗

i
Gi(θi). Let Ĝi(θ

∗
i )

be the realization of a uniform draw on [G−
i (θ

∗
i )�G

+
i (θ

∗
i )). Let Ĝi(θi)= Gi(θi) if θi is not

an atom. Then Ĝi(θi) is uniformly distributed (unconditionally on θi) and reveals the
value of θi, thus is a valid pseudo-type. The mechanism construction of Theorem 1 then
extends verbatim.

As for Theorem 2, it extends straightforwardly to a continuum of types and alterna-
tives. In sum, all our constructions naturally extend to the continuous case.

5.5 Pure equilibria

With the notable exception of Serrano and Vohra (2010), the literature on implemen-
tation in Bayesian environments has entirely focused on the implementation of social
choice functions in pure equilibria (see Jackson 2001 for a survey). By contrast, the re-
course to equilibria in mixed strategies is essential for our results. In effect, to transmit
their types to the designer securely, it is essential for the players to encrypt their types
with randomly generated keys (mixing). Although the use of randomly generated keys
seems natural in our context, and indeed is used in daily life (internet banking, online
shopping, etc.), we might legitimately wonder whether similar results hold in environ-
ments where only pure equilibria are considered. The next theorem states that the set of
social choice functions partially implementable on N in pure equilibria coincides with
the set of incentive compatible social choice functions, irrespective of the utility func-
tions, if and only if every player is directly connected to the designer. There is a sharp
divide between implementation in pure equilibria and mixed equilibria. Let Fpure

N (E)
denote the set of social choice functions (partially) implementable on N in pure equi-
libria when the environment is E .

Theorem 5. The set Fpure
N (E) = F

pure
N � (E) for all environments E with common indepen-

dent beliefs and private values or a worst outcome if and only if each player is directly
connected to the designer, i.e., D(0) = N .

The intuition is simple.17 If player i is not directly connected to the designer and if
the social choice function depends on his type, then he must send an informative mes-
sage to at least one other player, say player j. Given his updated beliefs, player j might
then have no incentive to truthfully report his own private information. This reasoning
is valid regardless of how many disjoint paths there are from player i to the designer.

While intuitive, Theorem 5 has remarkable implications for the topology of com-
munication networks and implementation in pure equilibria. All but one player, say

17See Renou and Tomala (2010) for a formal proof.
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player 1, might be directly connected to the designer, player 1 might have n− 1 disjoint
paths of communication to the designer, and yet there exist incentive compatible social
choice functions that are not implementable on that network in pure equilibria. While
some theorists might feel uncomfortable with equilibria in mixed strategies, the mixing
through encoding techniques, as considered in this paper, seems quite natural.

6. Conclusion

This paper completely characterizes the communication networks for which, in any en-
vironments (utilities and beliefs) with either common independent priors and private
values or with a worst outcome, every incentive compatible social choice function is
(partially) implementable. We show that any weakly 2-connected communication net-
work can replicate the incentive properties of the direct revelation mechanism. Impor-
tantly, our constructions couple encryption techniques together with incentives to se-
cure the transmission of each player’s private information to the designer.

Appendix

A.1 Timing Structure

In this section, we prove that the communication rule stating that “a player sends
his messages after having received all his messages” generates a well defined timing
structure.

Lemma 1. Let N be a strongly 1-connected and acyclic network. There exists an integer T
and a timing function t :N → {1� � � � �T } such that t(i) is the stage at which player i sends
his messages. Moreover, ij ∈ N ⇒ (i) < t(j).

Proof. Let V1 = {i ∈ N :D(i) = ∅} be the set of players who cannot receive messages.
This set is clearly nonempty, for otherwise, there exists a cycle in N . If V1 = N , then
N = N ∗ and the proof is complete. If V1 = N , let V2 = {i : i /∈ V1 and D(i) ⊆ V1}.

Claim 1. If V1 =N , then V2 is nonempty.

Proof. Define W1 = ⋃
i∈V1

C(i) as the set of players with whom the players in V1 can
communicate. By construction, if j is in W1, then D(j) is nonempty and, therefore,
j /∈ V1. Consider then a directed path π of maximal length among the directed paths
from a player in W1 to the designer (such a path exists by strong 1-connectedness). Let
j be the starting point of this directed path. We claim that j is in V2. By contradiction,
suppose that there exists k ∈ D(j) with k /∈ V1. There exists then a directed path from
some point m in V1 to k, denoted τ = m → l → ·· · → k → j. It follows that l is in W1 and
τπ contradicts the maximality of π. �

If V1 ∪ V2 =N , the construction ends. If V1 ∪ V2 = N , let

V3 = {i : i /∈ V1 ∪ V2 and D(i) ⊆ V1 ∪ V2}�
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We continue this construction by induction. Assume that for some k ≥ 2, the set Vs has
been defined, s ≤ k. If

⋃
s≤k Vs =N , the construction ends. If

⋃
s≤k Vs =N , let

Vk+1 =
{
i : i /∈

⋃
s≤k

Vs and D(i) ⊆
⋃
s≤k

Vs

}
�

Claim 2. If
⋃

s≤k Vs =N , then Vk+1 is nonempty.

Proof. Let Wk+1 = {j /∈ ⋃
s≤k Vs :∃i ∈ ⋃

s≤k Vs� j ∈ C(i)}. Since
⋃

s≤k Vs = N , Wk+1 is
nonempty. Consider then a directed path π of maximal length among the directed paths
from a player in Wk+1 to the designer (such a path exists by strong 1-connectedness).
The starting point j of this path is in Vk+1. By contradiction, suppose that there exists
k ∈ D(j), k /∈ ⋃

s≤k Vs. There exists then a directed path from some point m in
⋃

s≤k Vs
to k. The follower of m on this path is in Wk+1 and this contradicts the maximality of π. �

The sequence (
⋃

s≤k Vs)k is a weakly increasing sequence of sets and is strictly in-
creasing as long as

⋃
s≤k Vs = N . Since N is finite, there exists k such that

⋃
s≤k Vs = N .

The timing function is then defined as t(i)= s if i ∈ Vs. �

A.2 Probabilistic encryption

We present three important properties about the modular manipulations of real num-
bers in [0�1). For a real number x, we let �x� denote the greatest integer less than
or equal to x, and let xmod0�1 = x − �x� denote the fractional part of x. For (x� y) ∈
[0�1)× [0�1), we denote x⊕ y = (x+ y)mod0�1 and x� y = (x− y)mod0�1.

Lemma 2. (i) For each (x� y) ∈ [0�1) × [0�1), (x ⊕ y) � y = x. More generally, [0�1) is a
commutative group for ⊕.

(ii) Let Y be a random variable in [0�1) and let x ∈ [0�1). If Y is uniformly distributed,
then so are x⊕Y and x�Y .

(iii) Let X�Y be independent random variables in [0�1). If Y is uniformly distributed,
then so are Z = X ⊕Y and W = X �Y . Furthermore, (X�Y�Z) (resp., (X�Y�W ))
are pairwise-independent.

Proof. (i) Consider any pair (x� y) ∈ [0�1) × [0�1). If x + y ≤ 1, the statement is clear.
If x + y > 1, then (x + y)mod0�1 = x + y − 1. Thus (x + y)mod0�1 −y = x − 1 and
(x− 1)mod0�1 = x.

(ii) For each z ∈ [0�1), we have

P(x⊕Y ≤ z) = P((x+Y) ≤ z�Y ∈ [0�1 − x])+ P(x+Y − 1 ≤ z�Y ∈ (1 − x�1])

=
{
z − x+ x if z ≥ x

z + 1 − x− (1 − x) if z < x

= z�
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Figure 9. Blocks attached at 0.

Thus, X ⊕Y is uniformly distributed. Similarly, for each z ∈ [0�1),

P(x�Y ≤ z) = P(x−Y ≤ z�Y ∈ [0�x])+ P(x−Y + 1 ≤ z�Y ∈ (x�1])

=
{
x+ 1 − (x+ 1 − z) if z ≥ x

z + 0 if z < x

= z�

Thus, x�Y is uniformly distributed.
(iii) We show only that X and Z are independent, the rest being similar. For each

z ∈ [0�1), P(Z ≤ z|X = x)= P(x⊕Y ≤ z) = z from (ii). �

A.3 Information transmission in weakly 2-connected network

In this section, we describe the structure of directed paths in weakly 2-connected net-
works and deduce that messages can be secretly transmitted from each player to the
designer. These results are building blocks for the proofs of our main theorems.

Throughout, all networks (directed graphs) are assumed to be acyclic, strongly 1-
connected, and weakly 2-connected. Given a (directed) network N , we let N u denote
the associated undirected network: ij ∈ N u if and only if ij ∈ N or ji ∈ N .

Our definition of weakly 2-connected networks is closely related to the definition
of 2-connectedness for undirected graphs. An undirected graph is 2-connected if for
each pair of distinct vertices i and j, there are two disjoint paths from i to j. There are
several equivalent statements for 2-connectedness of undirected graphs and the reader
is referred to Bollobás (1998, Chap. III.2). For instance, define a cut vertex as a vertex i

such that deleting i and all its adjacent edges yields a disconnected graph. The graph is
2-connected if and only if there is no cut vertex. Equivalently, for each distinct vertex i,
j, and k, there is a path from i to j that does not contain k.

In our model, the designer (player 0) plays a special role, so that the network N is
weakly 2-connected if and only if no player i ∈ N is a cut vertex of N u. The designer,
however, can be a cut vertex. In such case, let a block be a maximal 2-connected sub-
graph of N u. The undirected network N u is a collection of blocks attached at 0. See
Figure 9 for an example. In the sequel, we assume for simplicity that N u is the only
block, so that N u is 2-connected. (If there are several blocks, all our arguments remain
valid block-by-block.)
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Figure 10. Loop L(a2� b2) is a successor of L(a1� b1).

In the sequel, we use the letters a, b, etc. to denote nodes (players) in the network.
This must not be confused with alternatives.

We define a loop, denoted L(a�b), in N as a pair of directed paths with the same
origin a and endpoint b, and no vertex in common except for the origin a and the
endpoint b. The loop L(a2� b2) is a successor of the loop L(a1� b1) if a2 /∈ L(a1� b1),
b2 /∈ L(a1� b1), and the intersection L(a1� b1) ∩ L(a2� b2) is a path that contains at least
one edge and the vertex b1. See Figure 10 for an example.

We use the following notation: we write i → k for a directed path (i0 = i� i2� � � � �

iR = k) from player i to player k and write i → k → l for a directed path from i to l

through k, etc. We say that two directed paths (i0 = i� i2� � � � � iR) and (j0 = i� j2� � � � � jQ)

cross each other if there exist r∗ and q∗ such that jq∗ = ir∗ .
To prove our main results, we use the following decomposition of directed graphs

into successive loops. We assume that there are at least three player (if n = 2, the only
strongly 1-connected and weakly 2-connected network is such that D(0) =N).

Proposition 2. Let n ≥ 3. For each i ∈ N \ D(0) and each j ∈ C(i), there exists a finite
sequence of loops L(a1� b1)� � � � �L(aM�bM) such that the following statements hold.

(i) The edge ij belongs to L(a1� b1).

(ii) For each m = 1� � � � �M − 1, L(am+1� bm+1) is a successor of L(am�bm) and am+1 /∈⋃
q≤mL(aq�bq).

(iii) Endpoint bM = 0.

See Figure 11 for an illustration.

Proof of Proposition 2. This is trivially true if n = 3. Assume that n ≥ 4. The proof
rests on several lemmas.

Lemma 3. Let N u be a 2-connected undirected graph. Let A be a nonempty set of vertices,
and let b and c be two distinct vertices that do not belong to A. There exists a∗ ∈ A and a
path from a∗ to c that has no vertex in (A \ {a∗})∪ {b}.
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Figure 11. A sequence of loops.

Proof. Since N u is 2-connected, for each a ∈ A, there exists a path from a to c that
does not contain b (otherwise, b would be a cut vertex). This path must leave the set A
to reach c, thus the last point a∗ in A on this path has the desired properties. �

Lemma 4. Letting i ∈N \D(0) and j ∈ C(i), there exists a loop that contains the edge ij.

Proof. Remember that for each player k ∈N , there exists a directed path from k to 0 by
strong 1-connectedness and, thus, C(k) = ∅. Consider a player i ∈N \D(0) and j ∈ C(i).

Case 1. If C(i) contains another player k = j, then there exists a directed path from i

to 0 through the edge ij and a directed path from i to 0 through the edge ik. These paths
must cross each other (possibly at 0); thus we have found the desired loop.

Case 2. If C(i) = {j}, let D∞(i) denote the set of players who have a directed path to i.
From Lemma 3, there exists k ∈ D∞(i) and an undirected path (k0 = k�k1� � � � �kR = 0)
from k to 0 such that no player kr is in D∞(i) ∪ {i} for r > 0. It follows that edge kk1 is
directed from k to k1. We choose then a directed path from k1 to 0 to obtain the directed
path k → k1 → 0, on the one hand, and the directed path k → i → j → 0, on the other
hand. These paths must cross each other and, therefore, define a loop with origin k.
(The first crossing point defines the endpoint of the loop.) The endpoint of the loop
cannot be in D∞(i) ∪ {i} since k1 /∈ D∞(i). It follows that the edge ij is contained in this
loop. �

We now construct the desired sequence of loops. We start with i ∈ N \ D(0) and
j ∈ C(i).

First Step. Let L(a1� b1) be a loop containing ij and such that t(b1) is maximal among
all loops that contain ij (t(·) is the timing function constructed in Lemma 1). (Such a loop
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exists by the above lemma.) If b1 = 0, the construction ends. If b1 = 0, let c1 ∈ C(b1), and
let d1 and e1 denote the two predecessors of b1 on each path of L(a1� b1).

The construction then proceeds inductively. Assume that L(a1� b1)� � � � �L(aM�bM)

have been constructed for some M ≥ 1. If bM = 0, the construction ends. If bM = 0, let
cM ∈ C(bM), and let dM and eM denote the two predecessors of bM on each of the two
disjoint directed paths of L(aM�bM).

For each subset of players N ′, let D∞(N ′) denote the set of players j for whom there
exists a directed path from j to some player in N ′. Clearly, D∞(N ′ ∪ N ′′) = D∞(N ′) ∪
D∞(N ′′) and D∞(D∞(N ′)) =D∞(N ′).

Lemma 5. There exists a loop L(aM+1� bM+1) such that aM+1 /∈ ⋃
q≤M L(aq�bq) ∪ D∞(i)

and that contains either the path dM → bM → cM or the path eM → bM → cM . Further-
more, this loop is disjoint from

⋃
q≤M−1 D∞(L(aq�bq))∪D∞(i).

Proof. From Lemma 3, there exists uM ∈ ⋃
q≤M D∞(L(aq�bq)) ∪ D∞(i) and an undi-

rected path (λ0 = uM�λ1� � � � �λS = 0) from uM to 0 disjoint from (
⋃

q≤M D∞(L(aq�bq))∪
D∞(i) ∪ {bM}) \ {uM}. Assume that uM ∈ D∞(L(aM�bM)). There exists a directed path
from uM to bM that goes either through dM or through eM . Without loss of gener-
ality, assume that this path goes through dM . As before, the edge uMλ1 is directed
from uM to λ1, and we choose a directed path from λ1 to 0 to obtain the directed
path uM → λ1 → 0, on one hand, and the directed path uM → dM → bM → cM → 0,
on the other hand. These paths must cross each other and, therefore, define a loop
with origin uM . Since λ1 /∈ ⋃

q≤M D∞(L(aq�bq)) ∪ D∞(i), the path λ1 → 0 cannot go
through

⋃
q≤M D∞(L(aq�bq)) ∪ D∞(i), and thus the endpoint of the loop is not in⋃

q≤M D∞(L(aq�bq)) ∪ D∞(i) either. The path dM → bM → cM is thus contained in the
new loop.

Finally, uM cannot be in
⋃

q≤M−1 D∞(L(aq�bq)) ∪ D∞(i). Otherwise, the construc-
tion above provides a loop that contradicts the maximality property of bm for some
m<M ; that is, since t(bM+1) > t(bm), the newly constructed loop would have been used
at an earlier stage of the induction. Similarly, the origin aM+1 of the new loop cannot be
in

⋃
q≤M D∞(L(aq�bq))∪D∞(i). �

Inductive Step. Let L(aM+1� bM+1) be a loop containing dM → bM → cM or eM →
bM → cM and such that t(bM+1) is maximal among all loops that contain dM → bM → cM
or eM → bM → cM . If bM+1 = 0, the construction ends; otherwise, it continues inductively.

By construction, there is a directed path from bm to bm+1, thus t(bm) < t(bm+1) from
the definition of the timing structure. It follows that the construction stops after a finite
number of iterations. This completes the proof of Proposition 2. �

Proposition 2 is a building block for the construction of a protocol (mechanism
and strategies) that allows player i to secretly send a message to the designer. Let
us summarize our findings. Proposition 2 has the following implications: For each
player i ∈ N \ D(0) and j ∈ C(i), there exists a finite sequence of loops (L(am�bm))

M
m=1

such that (i) ij ∈ L(a1� b1), (ii) bM = 0, and (iii) the loop L(am+1� bm+1) is a successor
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of the loop L(am�bm), m = 1� � � � �M − 1, with the additional property that there exists
um ∈ L(am�bm)∩L(am+1� bm+1) such that the directed path from um to bm in L(am�bm)

is part of the directed path from um to bm+1 in L(am+1� bm+1). Moreover, the sequence of
loops defines a directed path from player i to the designer through all players b1 to bM−1.
To see this, note that player i belongs to the loop L(a1� b1) from player a1 to player b1 and
thus, belongs to one directed path to b1. Similarly, b1 belongs to the loop L(a2� b2) and,
thus, has a directed path to b2. Iterating this argument, we construct a directed path
from i to the designer through the players b1 to bM−1. We will use this directed path to
secretly transfer the private information of player i to the designer.

Proposition 3. Let v be a random variable in [0�1) that is privately known to player i.
There exists a protocol Mi (i.e., a mechanism and a profile of strategies) on N such that
whenever all players follow the prescribed strategies, the designer correctly learns the value
of v. Moreover, the messages received by any player j = i are probabilistically independent
from v.

Proof. If i ∈D(0), this is straightforward. Fix i ∈N \D(0) and consider the sequence of
loops constructed in Proposition 2. We divide players into several categories.

• A player who belongs to one loop is active. All other players are inactive. Inactive
players do not send or receive messages (their message sets are singletons).

Let us focus now on active players.

• A player am who is the origin of a loop is a provider.

• A player bm who is the endpoint of a loop is a lock-opener.

• The player um who is the first point on the intersection of the two successive loops
L(am�bm) and L(am+1� bm+1) is a lock-closer.

• Other active players are transmitters.

By construction, note that a provider has no active predecessor and exactly two ac-
tive successors. A lock-opener or a lock-closer has two active predecessors and one ac-
tive successor. Transmitters have exactly one active predecessor and one active succes-
sor. Finally, player i is either a transmitter or a provider. For each loop, we label the
path that contains the lock-closer as left (L) and label the other path as right (R). The
strategies for active players other than player i are as follows.

• Each transmitter truthfully forwards the message received from his active prede-
cessor to his active successor.

• Each provider am draws an encryption key Xm uniformly in [0�1) and sends it to
its two active successors.

• Each lock-closer um receives two numbers xm and xm+1 from his two predecessors.
He computes zm = xm ⊕xm+1 and sends zm to his active successor. Note that there
is no lock-closer uM+1 in the last loop L(aM�bM).
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Figure 12. Providers, lock-closers ⊕, and lock-openers �.

• Each lock-opener bm (with m<M) receives two numbers xLm and xRm from his left
and right predecessors. He computes wm = xLm � xRm and sends wm to his active
successor.

Player i’s strategy is as follows.

• If he is a transmitter, player i receives x1 from his active predecessor and sends
x1 ⊕ v to his active successor.

• If he is a provider, player i sends X1 ⊕ v to his active successor on the left path and
X1 to his active successor on the right path.

See Figure 12 for a heuristic illustration of the strategies.
First, we show that this protocol allows the designer to correctly learn the value of v.

To this end, let us assume that these strategies are effectively played and compute the
messages wm sent by the lock-openers.

The sequence of loops defines a directed path from player i to the designer. This path
contains all lock-openers (bm) and some lock-closers (um), and is uniquely defined if
player i is a transmitter. If player i is a provider, we choose the only such path that begins
with the left path of the first loop. Along this path, let us attach labels to players. All lock-
openers and player i are labeled � and the lock-closers are labeled ⊕. For instance, in
Figure 12, we have

i� → u⊕
1 → b�

1 → b�
2 → u⊕

4 → b�
3 → b�

4 = 0�
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Figure 13. Message w1 with player i on the left path.

This induces a sequence in the alphabet {��⊕}. Let ν(bm) be the number of occurrences
of two consecutive � appearing in the sequence before bm (including bm). For instance,
in the example above, ν(b1) = 0, ν(b2)= ν(b3) = 1, and ν(b4)= 2.

Lemma 6. If the players follow the above strategies, for each m= 1� � � � �M − 1, we have

wm = (−1)ν(bm)v ⊕Xm+1�

The two messages received by the designer are XM and wM−1.

Consequently, the designer can compute the value v of the private information of
player i, which is XM �wM−1 if ν(bM−1) is odd and wM−1 �XM if ν(bM−1) is even.

Proof of Lemma 6. We first compute w1 and then proceed by induction. Consider the
loop L(a1� b1). Player i is either on the left path of the loop L(a1� b1) or on the right path
of L(a1� b1). In the former case, the left path from i to b1 is i� → u⊕

1 → b�
1 and the right

path is i → b1. Player b1 thus receives X2 ⊕ X1 ⊕ v from the left and X1 from the right.
It follows that w1 = (X2 ⊕ X1 ⊕ v) � X1 = X2 ⊕ v. Note that in this case ν(b1) = 0. See
Figure 13 for an illustration.

In the latter case, the left path is a1 → u1 → b1 and the right path is i� → b�
1 . Player

b1 thus receives X2 ⊕X1 from the left and X1 ⊕ v from the right. Thus w1 = (X2 ⊕X1)�
(X1 ⊕ v) = X2 � v. Note that in this case ν(b1) = 1. See Figure 14 for an illustration. We
have thus proved the lemma for m = 1.

We proceed now by induction. Let us assume that for some m ≤ M − 1, wm−1 =
(−1)ν(bm−1)v⊕Xm and compute wm. Consider the loop L(am�bm). By construction, this
loop contains bm−1 and um, and the left path is the one that contains um. Thus, bm−1 is
either on the left path or on the right path. In the former case, the left path of this loop
is am → b�

m−1 → u⊕
m → b�

m and the right path is am → bm. Since there is also the path
am+1 → um → bm, the message received by bm from the left is Xm+1 ⊕ (−1)ν(bm−1)v⊕Xm

and the message received from the right is Xm. Thus,

wm = (Xm+1 ⊕ (−1)ν(bm−1)v ⊕Xm)�Xm =Xm+1 ⊕ (−1)ν(bm−1)v�
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Figure 14. Message w1 with player i on the right path.

Figure 15. Message wm with player bm−1 on the left path.

Note that in this case ν(bm) = ν(bm−1). See Figure 15 for an illustration.
In the former case, the left path is am → um → bm and the right path is am → b�

m−1 →
b�
m. Since there is also the path am+1 → um → bm, the message received from the left is

Xm+1 ⊕ Xm and the message received from the right is (−1)ν(bm−1)v ⊕ Xm. Thus wm =
(Xm+1 ⊕ Xm) � ((−1)ν(bm−1)v) = Xm+1 � (−1)ν(bm−1)v. Note that in this case ν(bm) =
ν(bm−1)+ 1. See Figure 16 for an illustration.

Finally, consider the last loop L(aM�bM), where bM = 0 is the designer. By construc-
tion, this loop does not contain a lock-closer uM+1. One path of this loop goes through
bM−1, i.e., we have aM → bM−1 → bM , and the other is aM → bM . Other players on this
loop are transmitters. The designer thus receives wM−1 from the first path and XM from
the other. The proof of Lemma 6 is thus complete. �

To complete the proof of Proposition 3, we argue that the message received by each
player j = i is probabilistically independent from v. This is clearly true for inactive play-
ers and for providers. More generally, the only messages that depend on v are those on
the directed path from player i to the designer as constructed above, so the statement
clearly holds for players outside of this path. Transmitters on this path receive messages
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Figure 16. Message wm with player bm−1 on the right path.

of the type X ⊕ v, where X is some random variable independent from v and uniformly
distributed. From Lemma 2(iii), this is independent from v. The very same reasoning
holds for lock-closers. For lock-openers, this is a consequence of the above computa-
tion: since Xm and Xm+1 are independent and uniformly distributed, so are the two
messages received by bm. �

Corollary 2. Let (vi)i∈N be independent random variables such that vi is known to
player i only. A protocol M exists on N such that, whenever all players abide by the pro-
tocol, the designer correctly learns the value of each vi. Moreover, the messages received by
any player j are probabilistically independent from (vi)i =j .

Proof. From Proposition 3, for each player i, there exists a protocol (mechanism and
strategies) Mi such that player i can secretly transfer his private information vi to the
designer without revealing information to the other players. The idea is then to con-
catenate all these protocols “in parallel”; that is, each player j plays a role in each Mi

(inactive, provider, lock-closer, lock-opener, or transmitter) and should play all the cor-
responding roles simultaneously. For instance, if he is transmitter in several Mi’s, he
should forward the corresponding messages on the corresponding links. Moreover, if a
player is a provider in one or several Mi’s, the random draws must be mutually inde-
pendent and independent of messages received. �

A.4 Proof of Theorem 1: Sufficiency

From Corollary 2, there exists a mechanism and a profile of strategies such that if all
players follow the prescribed strategies, the designer correctly learns the private infor-
mation of each player. We now show that in an environment with common independent
beliefs and private values, we can indeed provide the players with appropriate incentives
to follow the prescribed strategies. Roughly speaking, we make sure that each player is
indifferent between all the messages he may send. This is done as follows.
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Fix an environment E with common independent beliefs and private values, and an
incentive compatible social choice function f . Let Pi denote the marginal distribution of
the common belief P on �i, i.e., this is the common belief of any player j = i on �i. With-
out loss of generality, assume that �i := {1� � � � � ti� � � � �Ti} for each player i ∈ N and let

P
i
(ti) = ∑

θi≤t P
i(θi) denote the cumulative distribution function of Pi. Define a parti-

tion �i = {�i(1)� � � � ��i(Ti)} of [0�1) into Ti subsets with �i(ti) = [Pi
(ti − 1)�P

i
(ti)) (with

P
i
(0) = 0). Note that if X is uniformly distributed on [0�1), the event {X ∈ �i(ti)} has

probability Pi(ti).

Part I We first consider the problem of implementing the social choice function f ∗
i

for which player i is dictatorial, i.e., for any θi, define f ∗
i (θi) ∈ arg maxa∈A ui(a�θi) and

let f ∗
i (θi� θ−i) = f ∗

i (θi) for all θ−i. If i ∈ D(0), f ∗
i is clearly implementable. Assume that

i /∈ D(0). We claim that the protocol Mi implies the existence of a mechanism and strate-
gies such that player i has an incentive to truthfully reveal his type and no other active
player has an incentive to manipulate the transmission of information from player i to
the designer.

The mechanism and strategies are as follows.

• Player i of type ti draws a random number vi uniformly in �i(ti) and transmits it
to the designer by the protocol Mi.

• All other active players follow the strategies constructed in Mi.

• Let v̂i be the message decoded by the designer and denote θ̂i = ti if v̂i ∈�i(ti). (See
Lemma 6.) The designer implements the alternative f ∗

i (θ̂i).

First, observe that the protocol Mi implies that each active player sends a real num-
ber in [0�1). Second, observe that the unconditional distribution of vi is the uniform dis-
tribution on [0�1). To see this, let Xti

i denote a random variable uniformly distributed on

�i(ti) and observe that vi = ∑Ti
ti=1 1{θi=ti}X

ti
i . From Proposition 3, it follows that the de-

signer correctly learns the type of player i if all players abide by the protocol Mi, while
no player gets additional information about the type of player i (posterior beliefs are
equal to prior beliefs). So the expected payoff of any active player j = i of type θj is∑

θi
uj(f

∗
i (θi)� θj)P

i(θi).
Third, we show that no active player has an incentive to deviate. This is clearly true

for player i, as f ∗
i is incentive compatible. Consider player j = i and suppose that j

is a transmitter in the loop L(am�bm) for m = 2� � � � �M − 1. There are several cases to
consider.

Case 1. Player j is on the right path of the loop L(am�bm) from player am to player
bm and moves before the lock-closer um−1. Under Mi, he receives the message xm. Sup-
pose that he deviates and sends the message x′

m. It follows that the designer will receive
the messages (−1)ν(bM−1)(v ⊕ x′

m � xm) ⊕ XM and XM under the deviation, so that the
decoded message is v⊕x′

m �xm. Since v is uniformly distributed on [0�1), it follows that
the probability that v ⊕ x′

m � xm is in �i(ti) is Pi(ti), regardless of x′
m (see Lemma 2(ii)).

Player j is thus indifferent between sending xm and x′
m.
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Case 2. Player j is on the right path of the loop L(am�bm) from player am to player
bm and moves after the lock-closer um−1, but before the lock-opener bm−1. Under Mi,
player j receives the message xm ⊕ xm−1 from the lock-closer um−1. Suppose that he
deviates and sends the message x′

m. It follows that the designer will receive the messages
(−1)ν(bM−1)(v ⊕ x′

m � xm � xm−1) ⊕ XM and XM under the deviation. Since all random
variables are uniformly distributed on [0�1), so is their addition ⊕ or subtraction � (this
follows from Lemma 2), and, consequently, player j is indifferent between sending xm ⊕
xm−1 and x′

m.
Case 3. Player j is on the right path of the loop L(am�bm) from player am to player bm,

and moves after the lock-closer um−1 and the lock-opener bm−1. Under Mi, player j re-
ceives the message (−1)ν(bm−1)v⊕ xm. Note that j does not learn the value of xm and be-
lieves that it is a realization of Xm. Suppose that he deviates and sends the message x′

m.
It follows that the designer will receive the messages (−1)ν(bM−1)(x′

m � xm) ⊕ XM and
XM under the deviation. Since Xm and XM are uniformly distributed on [0�1), it follows
yet again that player j evaluates the probability of v̂i = x′

m � xm ∈ �i(ti) to be Pi(ti) and,
thus, is again indifferent between reporting the truth and deviating.

Case 4. Player j is on the left path of the loop L(am�bm) from player am to player bm
and moves before the lock-closer um. This case is similar to Case 1.

Case 5. Player j is on the left path of the loop L(am�bm) from player am to player bm
and moves after the lock-closer um. In that case, player j also belongs to the right path
of the loop L(am+1� bm+1) and the same arguments as in Case 1 apply.

Last, a similar reasoning applies if player j is a transmitter in the first or last loop. For
instance, if player j is on the right path of the last loop L(aM�bM) and moves before the
lock-closer uM , the same reasoning as in Case 1 applies since the designer receives the
message (−1)ν(bM−1)v ⊕ x′

M and XM .
Now, suppose that player j is the provider am in the loop L(am�bm) (m < M), and

suppose that he sends the message xLm on the left path of the loop and the message xRm
on the right path. If all other players abide by the strategies, it follows that the designer
receives the messages (−1)ν(bM−1)(v ⊕ xRm � xLm) ⊕ XM and XM . Since v and XM are
uniformly and independently distributed on [0�1), it follows that the probability that the
decoded type v̂i is in �i(ti) is Pi(ti) and, thus, player j is indifferent between following
the prescribed strategy or deviating.

Similar arguments apply to the lock-closers or lock-openers, so that the prescribed
strategies indeed form a Bayesian equilibrium. To summarize, incentive compatibility
of the social choice function implies that player i has indeed an incentive to abide by
the protocol Mi, while all other active players have no incentive to deviate, since the
protocol guarantees the same expected payoff to each active player other than player i,
regardless of the message he sends.

Part II Let f be a social choice function implementable on N �, i.e., f is incentive com-
patible. To implement f , consider the mechanism and strategies implied by the proto-
col M: each player i /∈D(0) of type ti draws a random number vi uniformly in �i(ti) and
transmits it to the designer according to the protocol Mi, while in his role of an active
player in a protocol Mj (j = i), he follows the prescribed strategy.
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From Corollary 2, it follows that the designer learns the true profile of types if all
players abide by this protocol, while no player gets additional information about the
type of his opponents. To complete the proof, note that as in Part I, no player has an
incentive to deviate. The expected payoff of a player i is independent of the messages he
sends about his opponents (since the assumption of independent beliefs implies that we
can consider each deviation as above). Incentive compatibility guarantees that player i
has indeed an incentive to abide by the subprotocol Mi. The proof of the sufficiency
part of Theorem 1 is thus complete.

A.5 Proof of Theorem 1: Necessity

Now, we prove the “only if” part of Theorem 1. The proof proceeds by contradiction. We
assume that N is not weakly 2-connected, and we construct an environment with com-
mon independent belief and private values and an incentive compatible social choice
function, which is not implementable on N .

If N is not weakly 2-connected, there exist two distinct players i and i∗ such that all
paths, directed or undirected, from i to the designer go through i∗. As a consequence,
for each player k who has a path to i, directed or undirected, all paths from k to 0 also
go through i∗. This implies that player i∗ is a cut vertex in the network. In particular, all
information regarding the players k who have a path to i is controlled by i∗.

Let us now construct the environment and the social choice function. Assume that
all players but player i have a single type and that player i has two types θi and θ′

i. Let a
and b be two alternatives. The utilities are ui(a�θi)= ui∗(a� ·) = 1, ui(b�θi)= ui∗(b� ·) = 0
and ui(a�θ

′
i)= 0, ui(b�θ′

i)= 1. All other players are indifferent (get a utility of 0) between
a and b. Any other alternative gives a utility of −1 to players i and i∗ regardless of their
types. The common prior is the uniform distribution on the set of types. The social
choice function is the dictatorial social choice function of player i.

We claim that for every mechanism on N , there is no equilibrium that implements
this social choice function. By contradiction, assume that there exists such an equilib-
rium σ . Fix a profile of messages m̄i∗ ∈ MD(i∗) for player i∗ in the support of Pθi�σ , i.e.,
this is a message compatible with θi and the equilibrium strategies. Consider the devia-
tion σ ′

i∗ for player i∗ that consists of playing σi∗(m̄i∗) regardless of his type and messages
received.

By construction of the deviation, σi∗(m̄i∗) is compatible with the messages sent by
players who have no path to player i, i.e.,

supp Pθ�σ ′
i∗ �σ−i∗ ⊆ supp Pθi�σ ∀θ ∈ {θi� θ′

i}�

Since the strategies are assumed to implement f , it follows that the outcome is almost
surely a under the deviation, regardless of the type of player i. Since player i∗ prefers a

to any other alternative, this deviation is profitable for player i∗.
It is worthwhile noting that weak 2-connectedness is also a necessary condition for

Proposition 3 to hold. Indeed, if i∗ is a cut vertex and if the designer learns the type of
player i, then i∗ must learn it as well.
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A.6 Proof of Theorem 2

The proof of the “only if part” is identical to the necessity part of the proof of Theorem 1
and is omitted. We turn to the “if” part and fix an environment with a worst outcome
and an incentive compatible social choice function f . Without loss of generality, let us
assume that f does constantly select the worst outcome (if so, the designer just has to
choose the worst outcome irrespective of the messages received). Also, without loss of
generality, assume that �i is a finite subset of the open interval (0�1) for each player
i ∈N . In the proof of Theorem 1, we took advantage of the environment to make players
indifferent between any message they can send. This is no longer possible in environ-
ments with correlated beliefs and/or common values. We thus modify the protocol in
such a way that deviations are detected with arbitrarily high probability by the designer.
The threat of the worst outcome then deters the players from deviating.

Let η be a large integer. We employ the terminology and notations from Proposi-
tion 3 and modify the protocol Mi as follows.

• Each transmitter forwards the message received from his active predecessor to his
active successor.

• Each provider am draws an η-vector of keys Xm = (X1
m� � � � �X

η
m), the components

of which are independently and uniformly distributed in [0�1), and sends it to its
two active successors.

• Each lock-closer um receives two vectors xm and xm+1 from his predecessors. He
computes zm = xm ⊕ xm+1 and sends it to his active successor, where ⊕ denotes
componentwise addition.

• Each lock-opener bm receives two vectors xLm and xRm from his predecessors. He
computes wm = xLm � xRm and sends it to his active successor.

Player i behaves as follows (recall that by construction, player i is either a transmitter or
a provider).

• If he is a transmitter, player i who receives x1 from his active predecessor uni-
formly draws a random integer η∗ in {1� � � � �η} and encodes his type θi with the
encoding key x

η∗
1 to obtain the cypher type y

η∗
1 (i) = θi ⊕ x

η∗
1 . Player i then sends

the vector (x1
1� � � � � x

η∗−1
1 � y

η∗
1 (i)�x

η∗+1
1 � � � � � x

η
1 ) to his active successor.

• If he is a provider, player i draws (uniformly) a random vector X1 and a random in-
teger η∗ in {1� � � � �η} and computes Yη∗

1 (i) = θi ⊕X
η∗
1 . Player i then sends the vec-

tor (X1
1 � � � � �X

η∗−1
1 �Y

η∗
1 (i)�X

η∗+1
1 � � � � �X

η
1 ) to his left active successor and sends

X1 to his right active successor.

The decision rule of the designer is the following. The designer receives a message
xRM from the path aM → bM−1 → bM = 0 and a message xLM from the other path of the
last loop aM → bM = 0.

• If the vectors xLM and xRM differ by exactly one component η∗, the designer decodes

θ̂i = x
η∗�R
M � x

η∗�L
M if ν(bM−1) is even and θ̂i = x

η∗�L
M � x

η∗�R
M if ν(bM−1) is odd.
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• Otherwise, the designer concludes that there was a deviation.

Note that no player j = i gains information about θi by this modified mechanism.
Indeed, player j observes only vectors of uniformly distributed numbers. If all players
abide by the mechanism, then the two vectors received by the designer differ only in the
component η∗, and the designer correctly decodes the type of player i from Lemma 6.
The key argument is that η∗ is the private information of player i. Thus, any deviation by
an active player is bound to change another component with probability at least 1−1/η.

Finally the mechanism for implementing f is the following.

• Each player i transmits his type to the designer using the modified protocol.

• If the designer concludes that there was no deviation, he implements f (θ̂1� � � � � θ̂n),
where θ̂i is the decoded type of player i.

• Otherwise, the designer implements the worst outcome.

Let us check the equilibrium condition. The expected payoff of j under the mecha-
nism is ∑

θ−j

uj(f (θj� θ−j)� θj� θ−j)Pj(θ−j|θj) := C�

Assume that player j deviates in at least one submechanism. His expected payoff is at
most

1
η
W +

(
1 − 1

η

)∑
θ−j

uj(a�θj� θ−j)Pj(θ−j|θj) := D�

where W is an upper bound on player j’s payoff. We have

C −D = 1
η
(C −W )+

(
1 − 1

η

)∑
θ−j

(
uj(f (θj� θ−j)� θj� θ−j)− uj(a�θj� θ−j)

)
Pj(θ−j|θj)�

Since a is a worst outcome, uj(f (θj� θ−j)� θj� θ−j) − uj(a�θj� θ−j) is nonnegative for all
type profiles and is strictly positive for at least one type profile, as f is not constantly
equal to a. Recall that we assumed throughout that beliefs have full support, i.e.,
Pj(θ−j|θj) > 0 for all type profiles. As a consequence, C−D is positive for η large enough
and player j has no incentive to deviate. Last, each player i has an incentive to transmit
his true type since f is incentive compatible.

A.7 Proof of Theorem 3

The proof is very similar to the proofs of Theorems 1 and 2. The proof that the condition
is necessary is the same. For sufficiency, the main task is to extend Proposition 3 to
weakly 2-connected networks with cycles. Once this is established, Theorem 3 follows
similarly as for Theorems 1 and 2, so this part of the proof is omitted.

We now explain how to extend Proposition 3. A important remark is that since the
network has cycles, the existence of the timing structure is no longer guaranteed; in
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fact, it simply fails. To define a mechanism, one has to specify a timing structure, i.e.,
who speaks first, who speaks second, and so on. To avoid this difficulty, we associate
to the network N , an augmented network N A, which is strongly 1-connected, weakly
2-connected, and acyclic. Thus, Proposition 3 holds true on N A. Then we show how the
protocol on N A induces the desired protocol on N .

Let us fix a strongly 1-connected and weakly 2-connected network N (but not nec-
essarily acyclic). Recall that a network is a set of edges. A subnetwork is thus a subset of
edges.

Lemma 7. There exists an acyclic and strongly 1-connected subnetwork N a of N .

Proof. For each i ∈ N , consider a shortest directed path from i to 0 in N . Such a short-
est directed path exists since N is strongly 1-connected. Let N a be the collection of all
these paths. We claim that N a has the required properties. By construction, it is strongly
1-connected. Let us show that it is acyclic. By contradiction, assume that N a contains
the cycle i1 → i2 → ·· · → iK → i1. By construction, N a is such that C(0) = ∅, i.e., there
is no edge 0i for some i ∈N in N a. It follows that the cycle does not contain the designer
(player 0). It then follows that there exists k ∈ {2� � � � �K} such that the shortest path from
ik to 0 does not follow the cycle (otherwise, 0 cannot be reached, a contradiction with
strong 1-connectedness). Thus, the edge ikik+1 is not on a shortest path from any player
j to 0, contradicting the construction of N a. �

With a slight abuse of notation, let N a be a maximal acyclic and strongly 1-
connected subnetwork of N (it exists by the preceding lemma), and let C = N \ N a be
the set of edges of N that do not belong to N a. Note that every edge of C belongs to
a cycle of N and that every cycle of N contains an edge in C . Let N A be the network
obtained from N by replacing each edge ij in C by two edges i(j)i and i(j)j, where i(j) is
a fictitious player who is a duplicate of player i; that is, for ij in C ,

i → j is replaced by i ← i(j) → j�

The edges of N a are unchanged. See Figure 17 for an example.

Claim 3. The network N A is strongly 1-connected, weakly 2-connected, and acyclic.

Proof. Each “regular” player i has a directed path to 0 in N a by construction. Since
the fictitious player i(j) is directly connected to i, he also has a path to the designer by
strong 1-connectedness of N . Weak 2-connectedness is clearly preserved by the trans-
formation. Let us show that N A is acyclic. Assume that N A contains a cycle. By our
construction, each fictitious player has only outgoing edges, thus cannot belong to a cy-
cle. This implies that the cycle was already a cycle in N and, therefore, it should contain
an edge that belongs to C . This is a contradiction because edges in C no longer appear
in N A. �

Now, we claim that Proposition 3 extends to strongly 1-connected, weakly 2-
connected networks with cycles. First, on the network N A, for each player i, there exists
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Figure 17. A cyclic network N and the associated acyclic network N A.

a protocol with the desired property by Proposition 3. We assume that each fictitious
player has no type and a constant payoff function. Second, on the network N , the play-
ers can replicate this protocol. The timing of the protocol is that given by the timing
structure of N A, which is well defined since N A is acyclic and strongly 1-connected. In
particular, each duplicated player i plays only twice: he plays as the fictitious player i(j)
the first time and as player i the second time.

Thus, Proposition 3 extends and Theorem 3 follows, similarly as for Theorems 1
and 2.

A.8 Detection with probability 1

Lemma 8. Let v be a random variable privately known by player i. If the network is weakly
2-connected, there exists a mechanism Mi on N such that if all players abide by the mech-
anism, then the designer learns the value of v, whereas each player j = i receives messages
that are probabilistically independent from v. Furthermore, the designer detects devia-
tions with probability 1.

The intuition is as follows. For each integer η, we can devise a test such that any
deviation is detected with probability at least 1 − 1/η. We may thus ask the players to
pass all such tests.18 There are several ways to construct such a test and we provide a
relatively simple one. We modify our protocol Mi as follows. For simplicity, we assume
that player i is not a provider.

• Providers. Each provider am draws two independent infinite sequences (Xm�H
η �

Xm�T
η )η≥1 of independently and identically (i.i.d.) distributed random variables,

with uniform distribution on [0�1) and sends these sequences.

• Player i. Independently of his type and of the message he receives, player i

draws an infinite sequence of i.i.d. fair coins cη ∈ {H�T }. Define (YH
η �YT

η )η≥1 as

(YH
η �YT

η ) = (X
1�H
η ⊕ θi�X

1�T
η ) if cη = H and as (YH

η �YT
η ) = (X

1�H
η �X

1�T
η ⊕ θi) if

18We thank Sylvain Sorin for suggesting this argument.
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cη = T . In words, for each η, player i chooses according to the toss of a fair coin

whether to encode his type θi with X1�H
η or with X1�T

η . Player i then sends the pair
of sequences (YH

η �YT
η )η≥1 to his active successor.

• Other players. The other active players (transmitters, lock-closers, and lock-
openers) behave as in the proof of Theorem 2, except that now vectors are
sequences.

• The designer. The designer receives two pairs of sequences (xL�Hη �xL�Tη )η≥1 and

(xL�Hη �xR�Tη )η≥1. If for each η, it holds true that (xL�Hη = xR�Hη and xL�Tη = xR�Tη )

or (xL�Hη = x
R�H
η and x

L�T
η = x

R�T
η ), the designer concludes that phase 1 of the test

succeeds. Then if xL�Tη = xR�Tη , he computes θ̂i = x
η∗�R�T
M � x

η∗�L�T
M if ν(bM−1) is

even and θ̂i = x
η∗�L�T
M � x

η∗�R�T
M if ν(bM−1) is odd. If xL�Hη = x

R�H
η , he computes

θ̂i = x
η∗�R�H
M � x

η∗�L�H
M if ν(bM−1) is even and θ̂i = x

η∗�L�H
M � x

η∗�R�H
M if ν(bM−1) is

odd. If all θ̂ηi have the same value θ̂i, the designer concludes that phase 2 of the test
succeeds, and regards θ̂i as the correct type of player i. If the test does not succeed
in either phase 1 or phase 2, the designer concludes that there was a deviation.

Under these strategies, the decoded type clearly coincides with the true type. It is
also clear that no player gets information about the message of player i. The sequence
of coins being privately known to player i, each other active player observes only se-
quences of i.i.d. uniformly distributed variables. Now we claim that any deviation is
detected almost surely. Indeed, if some active player j = i modifies the sequence, to
pass the test in phase 2, he must modify an entry of the double sequence for each η. But
then, to succeed in phase 1, he should modify only the component selected by player i.
Consequently, the probability of passing the test while changing the message is at most
the probability of guessing correctly an infinite sequence of fair coins, which is 0. Any
deviation is thus detected with probability 1.

Corollary 3. If the network is weakly 2-connected and if the environment has a bad
outcome, i.e., an outcome a such that ui(a�θ) ≥ ui(a�θ) for all i ∈ N , for all a ∈ A, for all
θ ∈�, then FN (E) = FN �(E).

The proof consists in adapting the construction of Theorem 2. Using the above
lemma, any deviation brings the bad outcome almost surely and is, therefore, not
profitable.
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