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Contract, renegotiation, and holdup: Results on the technology
of trade and investment

Kristy Buzard
Department of Economics, University of California, San Diego

Joel Watson
Department of Economics, University of California, San Diego

This paper examines a class of contractual relationships with specific investment,
a nondurable trading opportunity, and renegotiation. Trade actions are modeled
as individual and trade-action-based option contracts (“nonforcing contracts”)
are explored. The paper introduces the distinction between divided and unified
investment and trade actions, and it shows the key role this distinction plays in
determining whether efficient investment and trade can be achieved. Under a
nonforcing dual-option contract, the party without the trade action is made the
residual claimant with regard to the investment action, which induces efficient
investment in the divided case. The unified case is more problematic: here, effi-
ciency is typically not attainable, but the dual-option contract is still optimal in a
wide class of settings. More generally, the paper shows that, with ex post renegoti-
ation, constraining parties to use “forcing contracts” implies a strict reduction in
the set of implementable value functions.

Keywords. Contract, renegotiation, holdup, forcing contracts, nonforcing con-
tracts, specific investment, technology of trade, mechanism design.

JEL classification. C70, D23.

The holdup problem arises in situations in which contracting parties can renegoti-
ate their contract between the time they make unverifiable relation-specific investments
and the time at which they can trade.1 The severity of the holdup problem depends
critically on the productive technology and on the timing of renegotiation opportuni-
ties. This paper contributes to the literature by examining how the nature of the “trade
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action” in a contractual relationship influences the prospects for achieving an efficient
outcome. We introduce a new distinction—whether the party who invests also is the one
who consummates trade—that plays an important role in determining the outcome of
the contractual relationship.

So that we can describe our modeling exercise more precisely, consider an example
in which contracting parties Al and Zoe interact as follows. First Al and Zoe meet and
write a contract that has an externally enforced element. Then one of them makes a pri-
vate investment choice, which influences the state of the relationship. The state is com-
monly observed by the contracting parties, but is not verifiable to the external enforcer.
Al and Zoe then send individual public messages to the external enforcer. After this, they
have an opportunity to renegotiate their contract: this is called ex post renegotiation be-
cause it occurs after messages. Finally, the parties have a one-shot opportunity to trade
and they also obtain external enforcement. Trade is verifiable to the external enforcer.

Because the investment is unverifiable, the investor cannot be directly rewarded for
choosing the efficient investment level. Instead, incentives hinge on how the terms of
trade can be made sensitive to the investment choice. Typically a conflict arises between
the parties’ joint interests prior to investment and their joint interests following invest-
ment and messages. In particular, investment incentives may be strengthened by spec-
ifying an inefficient trade action ex post in some off-equilibrium-path contingencies.
But parties then would have the joint incentive to renegotiate and divide the surplus
according to their bargaining power (holdup). Because parties rationally anticipate the
renegotiation, the incentives to invest are distorted.

The description above obviously leaves the mechanics of trade and enforcement am-
biguous. In reality, the parties have individual actions that determine whether and how
trade is consummated. Let us suppose that Al selects the individual trade action, which
we call a. This could be a choice of whether to deliver or to install an intermediate good,
for example. We then have an individual-action model, whereby Al chooses a and the
external enforcer compels a transfer t as a function of a and the messages that the par-
ties sent earlier. In contrast, a public-action model (or external-action model) combines
the trade action and the monetary transfer into a single public action (a� t) that is as-
sumed to be taken by the external enforcer. With this modeling approach, the contract
specifies how the public action is conditioned on the parties’ messages.

Although the public-action model may typically be a bit unrealistic, it is simple and
lends itself to elegant mechanism-design analysis (for example, as in Maskin and Moore
1999 and Segal and Whinston 2002). Alternatively, Watson (2007) demonstrates that
analysis of the individual-action model can be straightforward as well. He also shows
that the public-action model is equivalent to examining individual trade actions, but
constraining attention to “forcing contracts” in which the external enforcer induces a
particular trade action as a function of messages sent by the parties (so the trade action
is constant in the state). Watson (2007) provides an example in which the restriction to
forcing contracts has strictly negative efficiency consequences.

We deepen the examination of nonforcing contracts by investigating their efficacy
in the context of different technologies of trade and investment. Specifically, we intro-
duce the distinction between divided and unified investment and trade actions. In the
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divided case, the investment and trade actions are chosen by different parties (Al takes
the trade action and Zoe makes the investment). In the unified case, the investment and
trade actions are selected by the same party (Al does both). We show that the prospects
for inducing efficient investment and trade are very different in the divided and unified
cases. In fact, the efficient outcome can always be achieved in the divided case (as-
suming investment has no immediate benefits), but typically cannot be achieved in the
unified case.

Our analysis also highlights a simple contractual form that we call a dual-option con-
tract. With the dual-option, Zoe sends a message that can be interpreted as a requested
trade action or declaration of the state, and Al’s subsequent trade action also serves as
an option. We show that a dual-option contract is optimal in a large class of contractual
relationships. For instance, it can be used to make Al’s payoff constant in the state, gross
of any investment costs, so that Zoe becomes the residual claimant with respect to the
investment choice. This implies the efficiency result for the divided case. The dual op-
tion is also useful in the unified case, even though the efficient outcome typically cannot
be achieved; specifically, we show that in a class of settings with a deterministic state, the
dual-option contract is optimal.

Our analysis utilizes mechanism-design techniques. With both the individual-
action and public-action modeling approaches, analysis of the contractual problem
centers on calculating the set of implementable value functions from just after the state
is realized (before messages are sent). Formally, an implementable value function is
the state-contingent continuation value that results in equilibrium for a given contract.
We provide simple tools to calculate the “punishment values” that determine the im-
plementable sets for the class of relationships we analyze here. We use these tools to
characterize optimal contracts and to find bounds on the set of implementable value
functions.

In addition to the results on the divided and unified cases and dual-option contracts,
we provide a general result on the comparison of forcing and nonforcing contracts,
which shows that Watson’s (2007) conclusions are robust over a large class of contractual
relationships. In particular, in the important setting of ex post renegotiation described
above, limiting attention to forcing contracts reduces the set of state-contingent contin-
uation values. This does not mean that a more efficient outcome can always be achieved
when actions are modeled as individual (because efficiency depends on what region of
the implementable value set is relevant for giving appropriate investment incentives),
but it underscores the importance of modeling trade actions as individual.

This is particularly salient for the setting of cross/cooperative investment (Che and
Hausch 1999), where the investment by one party increases the benefit to the other party
of subsequent trade. The literature has regarded cross-investment settings as especially
prone to the holdup problem. Che and Hausch (1999) show that the optimal forcing con-
tract is often “null” and leads to underinvestment. Our results establish that nonforcing
contracts offer a significant improvement in efficiency, and our distinction between uni-
fied and divided investment and trade actions gives a basis for deeper analysis.

In the class of trade technologies that we study here, a single player (player 1, Al
above) has the trade action. Examples of real settings with this property are contrac-
tual relationships in which the seller provides a service or good that does not require
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the buyer’s involvement (such as consulting, advertising, and some types of construc-
tion). In these settings, the seller has the trade action. Other settings with unilateral
trade actions are ones in which the seller is the investor, production is inherent in the
seller’s investment, and trade is determined by whether the buyer installs or otherwise
adopts the intermediate good; an example is specialized software. In these settings, the
buyer has the trade action. We discuss the extension to multilateral trade actions in the
Conclusion (Section 6).

The only assumption required for our first result, on making player 2 (Zoe) the resid-
ual claimant, is that investment does not confer a direct gain for some minimal trade
action (an assumption satisfied by the most prominent models in the holdup literature).
The key economic assumption behind our other results is that player 1’s utility is super-
modular as a function of the state and the trade action. That is, this player’s marginal
value of the trade action is monotone in the state. Our other assumptions are mainly
weak technical conditions that guarantee well defined maxima, nontrivial settings, and
the like. We argue that these conditions are likely to hold in a wide range of applications
and that they are consistent with typical assumptions in the literature. Our result about
the optimality of the dual-option contract in the unified case requires some additional
assumptions on the technology of investment and trade.

The rest of the paper proceeds as follows. In the next section, we provide the de-
tails of the model. Section 2 presents an example that illustrates our main results. Sec-
tion 3 contains our general results on optimal contracts and outcomes in the divided
and unified cases. Readers interested in getting all of the basic ideas without the techni-
cal details can proceed from Section 3 straight to the Conclusion. Section 4 provides an
overview of the basic tools for general analysis, which mostly restates material in Watson
(2007). Section 5 contains our result on the difference in implementable sets based on
variations regarding when renegotiation can occur and whether one restricts attention
to forcing contracts. The Conclusion contains more discussion about the holdup prob-
lem and cross investment, as well as notes on the case of durable trading opportunities
and multilateral trade actions. Most of the technical material and all of the proofs are
contained in the Appendices.

1. The theoretical framework

We look at the same class of contracting problems and use the same notation as in
Watson (2007), except that we add a bit of structure on the trade technology to focus our
analysis. In particular, we examine the case in which a single player has a trade action.
Throughout the paper, we use the convention of labeling the player with the trade action
as player 1, and we call the other player 2. These two players are the parties engaged in
a contractual relationship with a nondurable trading opportunity and external enforce-
ment. Their relationship has the following payoff-relevant components, occurring in
the order shown.

The state of the relationship θ. The state represents unverifiable events that are as-
sumed to happen early in the relationship. The state may be determined by in-
dividual investment decisions and/or by random occurrences, depending on the
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Figure 1. Timeline of the contractual relationship.

setting. When the state is realized, it becomes commonly known by the players;
however, it cannot be verified to the external enforcer. Let � denote the set of
possible states.

The trade action a. This is an individual action chosen by player 1 that determines
whether and how the relationship is consummated. The trade action is commonly
observed by the players and is verifiable to the external enforcer. Let A be the set
of feasible trade actions.

The monetary transfers t = (t1� t2). Here ti denotes the amount given to player i for
i = 1�2, where a negative value represents an amount taken from this player.
Transfers are compelled by the external enforcer, who is not a strategic player,
but, rather, who behaves as directed by the contract of players 1 and 2.2 Assume
t1 + t2 ≤ 0.

We assume that the players’ payoffs are additive in money and are thus defined by a
function u :A×�→ R

2. In state θ, with trade action a and transfer t, the payoff vector is
u(a�θ)+ t. DefineU(a�θ)≡ u1(a�θ)+u2(a�θ), which is the joint value of the contractual
relationship in state θ if trade action a is selected. We assume that, in each state θ, the
joint value has a unique maximizer a∗(θ). We let γ(θ) denote the maximal joint payoff
in state θ, so we have

γ(θ)≡U(a∗(θ)�θ)= max
a∈A

U(a�θ)� (1)

In addition to the payoff-relevant components of their relationship, we assume that
the players can communicate with the external enforcer using public, verifiable mes-
sages. Let m= (m1�m2) denote the profile of messages that the players send and let M1

and M2 be the sets of feasible messages. The sets M1 and M2 are endogenous in the
sense that they are specified by the players in their contract.

Figure 1 shows the timeline of the contractual relationship. At even-numbered
dates through date 6, the players make joint observations and they make individual
decisions—jointly observing the state at date 2, sending verifiable messages at date 4,

2That the external enforcer’s role is limited to compelling transfers is consistent with what courts do in
practice.
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and selecting the trade actions at date 6. At date 8, the external enforcer compels
transfers. At odd-numbered dates, the players make joint contracting decisions—
establishing a contract at date 1 and possibly renegotiating it later.

The contract has an externally enforced component consisting of (i) feasible mes-
sage spaces M1 and M2 and (ii) a transfer function y :M × A → R

2 that specifies the
transfer t as a function of the verifiable items m and a. That is, having seen m and a,
the external enforcer compels transfer t = y(m�a). The contract also has a self-enforced
component, which specifies how the players coordinate their behavior for the times at
which they take individual actions. Renegotiation of the contract amounts to replacing
the original transfer function y with some new function y ′, in which case y ′ is the one
submitted to the external enforcer at date 8.

We initially assume—and maintain throughout Sections 2 and 3—that the players
can freely renegotiate at dates 3, 5, and 7. Renegotiation at date 5 is called ex post rene-
gotiation. At date 3 it is called interim renegotiation.3

The players’ individual actions at dates 2, 4, and 6 are assumed to be consistent with
sequential rationality; that is, each player maximizes his expected payoff, conditional
on what occurred earlier and on what the other player does, and anticipating rational
behavior in the future. The joint decisions (initial contracting and renegotiation at odd-
numbered periods) are assumed to be consistent with a cooperative bargaining solution
in which the players divide surplus according to fixed bargaining weights π1 and π2 for
players 1 and 2, respectively. The bargaining weights are nonnegative, sum to 1, and
are written π = (π1�π2). The negotiation surplus is the difference between γ(θ) and
the joint value that would result if the players fail to reach an agreement, where the dis-
agreement point is given by an equilibrium in the continuation in which the externally
enforced component of the contract has not been altered.4

The effect of the renegotiation opportunity at date 7 is to constrain transfers to be
“balanced,” that is, satisfying

t ∈ R
2
0 ≡ {t ′ ∈ R

2 | t ′1 + t ′2 = 0}�
Thus, we simply assume that transfers are balanced and then otherwise ignore date 7.
Also, as we explain later, the opportunity for ex post renegotiation implies that there is
never any renegotiation surplus at date 3, so we can ignore interaction at date 3.

Much of our analysis does not depend on the details of date 2 interaction, but some
of our key results concern the relation between the investment and the trade technolo-
gies, and for these we need to formally distinguish between different investment tech-
nologies. We assume that a single player makes an investment choice at date 2. This
gives us two cases to consider:

3In Sections 4 and 5, we provide some analysis for the setting in which renegotiation is possible at date 3
but not at date 5.

4The generalized Nash bargaining solution has this representation. The rationality conditions identify a
contractual equilibrium; see Watson (2006) for notes on the relation between “cooperative” and “noncoop-
erative” approaches to modeling negotiation. The players obtain the joint value γ(θ) because, at the time
of renegotiation, they know the state θ and can select a contract that forces the action a∗(θ), as described
in the next subsection.
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• Unified case. Player 1 has both the date 2 investment action and the date 6 trade
action.

• Divided case. Player 2 has the date 2 investment action, whereas player 1 has the
date 6 trade action.

We assume that the investment influences the state. In the deterministic subcase,
one of the players directly selects θ at date 2. More generally, the state may also depend
on the outcome of a random variable.

Public-action modeling and forcing contracts

Because the trade action a is assumed to be taken by player 1, we have specified here an
individual-action model. A public-action model, in contrast, abstracts by treating the
trade action a as something that the external enforcer directly selects. Watson (2007)
shows that specifying a public-action model is equivalent to examining the individual-
action model but limiting attention to a particular class of contracts called forcing con-
tracts, which, for any given message profile, prescribe that player 1 selects a particular
trade action.

More precisely, a forcing contract specifies a large transfer from player 1 to player 2
in the event that player 1 does not take his contractually prescribed action. This trans-
fer is sufficiently large to give player 1 the incentive to select the prescribed action in
every state. Thus, the induced trade action is constant in the state, conditional on the
messages sent earlier.

For example, holding the message profile fixed, the transfer function ŷ defined as fol-
lows forces player 1 to select action â and imposes the transfer t̂ (as though the external
enforcer chose these in a public-action model):

Let L be such that L> supa�θ u1(a�θ)− infa�θ u1(a�θ). Then define ŷ(â)≡ t̂ and,
for every a �= â, set ŷ(a)≡ t̂ + (−L�L).

We use the term forcing for any transfer function that, given the message profile, induces
player 1 to select the same trade action over all of the states.5 We use the term non-
forcing for transfer functions that induce player 1 to select different actions in at least
two different states.

Continuation value functions

A (state-contingent) value function is a function from � to R
2 that gives the players’ ex-

pected payoff vector from the start of a given date, as a function of the state. Such a
value function represents the continuation values for a given outstanding contract and
equilibrium behavior. We adopt the convention of not including any sunk investment

5One could add a public randomization device to the model for the purpose of achieving randomiza-
tion over trade actions using forcing contracts. Allowing such randomization does not expand the set of
implementable value functions here.
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costs from date 2 in the function u or in the representation of continuation values from
later dates.

The continuation values from the start of date 3 are important to calculate, because
they determine the players’ incentives to invest at date 2. Thus, our chief objective is to
characterize the set of implementable value functions from the start of date 3. A value
function v is implementable if there is a contract that, if formed at date 1, would lead to
continuation value v(θ) in state θ from the start of date 3 for every θ ∈�.

Related literature

Much of the recent contract-theory literature focuses on public-action mechanism-
design models. For instance, Che and Hausch (1999), Hart and Moore (1999), Maskin
and Moore (1999), Segal (1999), and Segal and Whinston (2002) have basically the same
setup as we do except that their models treat trade actions as public (collapsing together
the trade action and the enforcement phase), so they focus on forcing contracts.6 In
some related papers, the verbal description of the contracting environment identifies
individuals who take the trade actions, but the actions are effectively modeled as pub-
lic due to an implicit restriction to forcing contracts. In some cases, such as with the
contribution of Edlin and Reichelstein (1996), simple forcing contracts (or breach reme-
dies) are sufficient to achieve an efficient outcome and so the restriction does not have
efficiency consequences.7

Examples of individual-action models in the literature, among others, are the articles
of Hart and Moore (1988), MacLeod and Malcomson (1993), and Nöldeke and Schmidt
(1995). Also relevant is the work of Myerson (1982, 1991), whose mechanism-design
analysis nicely distinguishes between inalienable individual and public actions (he uses
the term “collective choice problem” to describe public-action models).

Most closely related to our work is that of Evans (2006, 2008), who emphasizes how
efficient outcomes can be achieved by conditioning external enforcement on costly in-
dividual actions. Evans (2006) examines general mechanism-design problems; Evans
(2008), which we discuss more in the Conclusion, examines contracting problems with
specific investment and durable trading opportunities. Related as well is the work of
Lyon and Rasmusen (2004), which shares the theme of Watson (2007), and the recent
work of Boeckem and Schiller (2008) and Ellman (2006).8

6Aghion et al. (1994) is another example. The more recent entries by Roider (2004) and Guriev (2003)
have the same basic public-action structure. Demski and Sappington (1991), Nöldeke and Schmidt (1998),
and Edlin and Hermalin (2000) examine models with sequential investments in a tradeable asset; in these
models, as in Maskin and Tirole (1999), transferring the asset is essentially a public action.

7Stremitzer (forthcoming) elaborates on Edlin and Reichelstein (1996) by examining the informational
requirements of standard breach remedies (specifically, partially verifiable investments).

8Also related are some studies of delegation in principal–agent settings with asymmetric information,
where implementable outcomes depend on whether it is the principal or the agent who has the productive
action. As Beaudry and Poitevin (1995) show, ex post renegotiation imposes less of a constraint in the
case of “indirect revelation” (where the agent has the productive action). Thus, if it is possible to transfer
“ownership” of the productive action to the agent, the threat of ex post renegotiation provides one reason
for doing this.
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In classifying the related literature, another major distinction to make is between
models with cross investment and models with “own investment.” In the latter case,
investment enhances the investing party’s benefit of trade. We discuss this distinction
in more detail in the next two sections. Since the holdup problem is more problematic
in the case of cross investment, and there the distinction between forcing and nonforc-
ing contracts (public- versus individual-action modeling) is critical, we concentrate on
settings with significant cross investment.

2. Example

In this section, we provide a simple example of specific investment and holdup to illus-
trate our results. We continue to call player 1 Al and player 2 Zoe. One of the players
is the investor at date 2 (Al in the unified case, Zoe in the divided case). The investor
selects θ ∈ [0�9] at immediate cost c(θ) = 3θ. That is, the investor takes an action that
determines the state. At date 6, Al selects a trade action a ∈ [0�9], which we interpret as
a quantity of an intermediate good that he delivers to Zoe. Payoffs are given by

u1(a�θ)= 4
√
aθ− 4a and u2(a�θ)= 4

√
aθ�

As we assume throughout, the sunk investment cost is not included in these functions
and in the value functions computed below. Assume that the players have equal bar-
gaining weights.

The joint value of the relationship in state θ is U(a�θ) = 8
√
aθ− 4a, which is maxi-

mized at a∗(θ)= θ. Therefore, the maximal joint value in state θ is γ(θ)=U(a∗(θ)�θ)=
4θ. Regardless of who makes the investment, we see that the efficient level of investment
maximizes 4θ− 3θ. Thus the optimal investment level is θ∗ = 9.

Note that, for any fixed trade action, Al’s and Zoe’s payoffs increase equally in θ.
Thus, regardless of who is the investor, this example exhibits elements of both cross in-
vestment and own investment. Own investment refers to the investment boosting the
investor’s gain from trade, whereas cross investment refers to increasing the gain of the
other party.9 The cross-investment element is particularly problematic, as the literature
shows, because there are contingencies (typically out of equilibrium) in which the non-
investing party can extract surplus from the investor by threatening to hold up trade.
This can distort the investor’s incentives and lead to inefficient investment.10

In fact, Che and Hausch (1999) conclude that with significant cross investment, the
“null contract”—forcing no trade, regardless of the messages—is best. These authors
formulate a public-action model, which limits attention to forcing contracts. Indeed,
it is straightforward to show that the null contract is the best forcing contract for our

9Che and Hausch (1999) use the term “cooperative investment” for cross investment.
10The literature demonstrates that forcing contracts can usually prevent the holdup problem in the

own-investment case, where the investing party obtains a large share of the benefit created by the invest-
ment. See, for example, Chung (1991), Rogerson (1992), Aghion et al. (1994), Nöldeke and Schmidt (1995),
and Edlin and Reichelstein (1996). An exception is the “complexity/ambivalence" setting studied by Segal
(1999), Hart and Moore (1999), and Reiche (2006).
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Figure 2. Value function and investment cost.

example, regardless of which player is the investor.11 Unfortunately, the null contract
leads to an inefficient level of investment. To see this, note that the players always rene-
gotiate to take the ex post efficient trade action in each state. In our example this implies
that in state θ, the renegotiation surplus equals the joint value 4θ. Since the investor re-
ceives half of the surplus (recall that the bargaining weights are 1/2), the investor’s value
from date 3 is 2θ. This value and the investment cost are illustrated in part (a) of Fig-
ure 2. At date 2, the investor therefore chooses θ ∈ [0�9] to maximize 2θ− 3θ, and so the
inefficiently low level θ= 0 is chosen.

Implementation with a dual-option contract

We next demonstrate that by using nonforcing contracts, a more efficient outcome can
be achieved (Watson’s 2007 point) and that the unified and divided cases behave quite
differently. Our analysis features a particular nonforcing contract that we call a dual
option, which turns out to be an optimal contractual form in a wide range of settings.
With the dual-option contract, Zoe sends a message at date 4 and then Al is forced to
choose between two different trade actions at date 6, one of which depends on Zoe’s
message. Thus, Zoe’s option is message-based, whereas Al’s option later is his choice of
the trade action.12

11The tools developed in Sections 4 and 5 can be used to show that if v is implemented by a forcing
contract, then, for any θ�θ′ with θ > θ′, v1(θ) − v1(θ

′) and v2(θ) − v2(θ
′) are bounded above by 2(θ − θ′).

The null contract achieves this bound. See Appendix B for more details.
12The literature emphasizes the importance of option contracts for aligning incentives. By laying out

the details of the trade technology, we are able to differentiate between message-based and trade-action-
based option components. Our dual-option contract is a novel addition to the theoretical literature be-
cause it has both of these components. By comparison, papers in the related literature examine either (i)
one-sided or two-sided message-based contracts, or (ii) action-based options without messages. Che and
Hausch (1999) were first to demonstrate the advantages of a sequential, two-sided message-based contract
in a setting without renegotiation (where trade-action-based options offer no special advantage); Segal and
Whinston (2002) examine general two-sided message contracts with renegotiation; Nöldeke and Schmidt
(1995) look at action-based contracts without messages; Hart and Moore (1988) and MacLeod and Malcom-
son (1993) also have action-based contracts but with partial verifiability (which we further discuss in the
Conclusion). Demski and Sappington (1991) briefly discuss a contract with both message- and trade-based
option components, but they do not formally study this form.
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Consider the following dual-option contract that is parameterized by a number
α ∈ [0�9]. At date 4, Zoe must send a message â ≥ 0, which we interpret as a requested
quantity for Al to deliver. Then Al is forced to choose between a = â and a = α at
date 6, by having him pay Zoe a large amount if he selects any other trade action. That
is, if the contract remains in place by date 8 and Al selects some a /∈ {α� â}, then the
enforcer compels a large transfer (say, 100) from Al to Zoe. If Al selects a = α, then
there is no transfer, whereas if Al selects a = â, then the enforcer compels a transfer
of u1(α� â)− u1(â� â)= 4

√
αâ− 4α from Zoe to Al.

Let us construct a value function that this dual-option contract implements. Note
that, given α and absent renegotiation at date 5, Al weakly prefers to choose a = α at
date 6 if and only if

u1(α�θ)≥ u1(â� θ)+ [u1(α� â)− u1(â� â)]�

Plugging in the values, this simplifies to

√
θ(

√
α−

√
â)≥

√
â(

√
α−

√
â)�

Note that if Zoe requests â = θ (the ex post optimal trade level for the realized state θ),
then Al is indifferent between trade actions θ and α at date 6. Let us assume that Al
selects a= θ in this contingency. Because a= θ is the efficient trade action in state θ, the
players would not renegotiate at date 5, so the payoffs from date 4 are u1(α�θ) for Al and
γ(θ)− u1(α�θ) for Zoe.

Observe that Zoe can do no better by deviating from â = θ at date 4. This is be-
cause Al can ensure himself a payoff of at least u1(α�θ) from date 6 by choosing a = α.
Renegotiation earlier can only add to Al’s pocket, so his continuation payoff from date 4
is bounded below by u1(α�θ). Since the opportunity for renegotiation implies that Zoe’s
continuation value is γ(θ)minus Al’s continuation value and since Zoe can hold Al down
to u1(α�θ) by choosing â= θ, it is optimal for Zoe to send this message. Thus, in state θ,
Zoe requests â = θ, there is no renegotiation, and Al delivers θ units. The contract im-
plements the value function given by

v(θ)= (u1(α�θ)�γ(θ)− u1(α�θ))= (4√
αθ− 4α�4θ− 4

√
αθ+ 4α)

for all θ ∈ [0�9]. Incentives are the same if we include a constant transfer τ from Zoe to
Al, in which case the implemented value function is given by

v(θ)= (4√
αθ− 4α+ τ�4θ− 4

√
αθ+ 4α− τ)�

We next investigate the implications of this dual-option contract for the divided and
unified cases.

Dual-option contract in the divided case

The implication of utilizing nonforcing contracts is dramatic in the divided case, where
Zoe makes the investment. In fact, it is easy to see that the dual-option contract can be
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used to make Zoe the residual claimant with respect to the post-investment joint value.
In particular, set α = 0 so that Al always has the option to deliver nothing and get no
transfer. Also set τ = 0. This dual-option contract implements

v(θ)= (0�γ(θ))= (0�4θ)

for all θ. Zoe obtains exactly the joint value of her investment, so at date 2 she maximizes
γ(θ) − c(θ). Her optimal choice is θ∗ = 9 and thus efficient investment and trade are
realized.13

Dual-option contract in the unified case

Next consider the unified case of the example, in which Al makes the investment. We
see that this case is more problematic, but that positive investment can still be induced.
Consider the dual-option contract with α= 9 and τ = 27. This contract implements

v1(θ)= u1(9� θ)+ 27 = 12
√
θ− 9

for all θ. The value function is shown in part (b) of Figure 2. At date 2, Al chooses
θ to maximize v1(θ) − c(θ) = 12

√
θ − 3θ − 9, and so his optimal investment choice is

θ = 4. Thus, the dual-option contract performs better than the null contract, but does
not induce efficient investment.

Consider next a version of the dual-option contract with an additional parameter
β ∈ [0�9], where (i) if Zoe’s message satisfies â≥ β, then Al is forced to deliver α units with
transfer τ, and (ii) if â < β, then the specifications are as described above. One can verify
that Zoe optimally selects â = θ as before, but now the parties renegotiate whenever
θ ≥ β. Setting α = 9 and τ = 27 once again, this dual-option contract implements the
value function given by

v
β
1 (θ)=

{
12

√
θ− 9 if θ < β

2θ+ 9 if θ≥ β,

with vβ2 (θ)= γ(θ)− vβ1 (θ). The value function is pictured in part (c) of Figure 2.
The results we provide in the next section establish that this dual-option contract is,

in fact, optimal for some β. The advantage of the cutoff β is that v1 jumps up at this
point (owing to the positive renegotiation surplus), giving player 1 an extra incentive to
invest at level β. The highest investment level supported by this type of contract is θ= 6,
which is achieved by setting β= 6. An implication is that the efficient investment level
cannot be achieved.

13One perspective on the related literature comes from considering how contractual elements act to ef-
fectively shift relative bargaining power away from the intrinsic level inherent in the exogenous bargaining
protocol. The dual option here produces the same outcome that arises under a contract that forces no
trade, if one were able to give Zoe all of the bargaining power in renegotiation. Thus, the action-based part
of the dual option sets a reservation payoff level for Al that allows Zoe to extract the full surplus by sending
the appropriate message. A similar type of intuition is at play in Aghion et al.’s (1994) use of a financial bond
to effectively shift bargaining weights, and it is also present in MacLeod and Malcomson’s (1993) use of an
outside option in the context of ongoing renegotiation with a durable trading opportunity.
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In summary, the example shows that by using nonforcing contracts, the parties can
achieve a more efficient outcome than is possible with forcing contracts. Furthermore,
the efficiency gain depends on the relation between the technology of trade and the
technology of investment. In the divided case, the dual-option contract induces effi-
cient investment and trade actions. In the unified case, the efficient outcome cannot be
attained, but a nonforcing contract still is preferred.

3. Investment incentives and residual claimancy

In this section we provide general versions of the results shown in the example. We
divide the analysis into two subsections, one dealing with the objective of giving in-
vestment incentives to player 2 (which is needed in the divided case) and one with the
objective of giving such incentives to player 1 (for the unified case).

Before proceeding, it is useful to define some additional notation. Regardless of
which player has the investment choice at date 2, let the investment be denoted x ≥ 0.
We normalize the investment variable so that the immediate cost of investment is ex-
actly x for the investor. The state θ is then drawn from a distribution G(x) that de-
pends on the investment choice.14 Recalling that γ(θ) = U(a∗(θ)�θ) is the maximum
joint value in state θ, we see that the efficient level of investment x∗ solves

max
x≥0

∫
γ(θ)dG(x)− x�

In the deterministic case in which there is no random element, we suppose that θ ≡ x

and so the investor selects θ directly; then we write θ∗ as the efficient investment choice,
which maximizes γ(θ)− θ.

Letting i denote the investing party, we want to implement a value function v so
that vi(θ) is increasing in θ to some particular extent. In this way, player i is rewarded
for investing. Ideally, it would be possible to implement a value function that satisfies
vi(θ)= γ(θ)− k for all θ ∈� and some fixed k, because this makes player i the residual
claimant with respect to his/her investment decision. Player i’s payoff from date 2 is
then ∫

vi(θ)dG(x)− x=
∫
γ(θ)dG(x)− x− k�

and so player i optimally selects x∗, leading to efficient investment and trade. The play-
ers select k to divide the joint value at date 1.

It may also be possible to achieve an efficient outcome without having vi = γ − k,
but this is not always the case. More generally, in some settings we can characterize
the optimal contract and the best (though inefficient) investment that can be induced.
Our proofs utilize a dual-option contract and thus further demonstrate the utility of this
simple contractual form.

14It is natural to assume that G is increasing in x in the sense of first-order stochastic dominance and
that U(a∗(θ)�θ) is increasing in θ, so that higher investments increase the expected gains from trade, but
these assumptions are not needed for Proposition 1 below.
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Investment incentives for player 2

We start by showing that, assuming that investment conveys no instantaneous (direct)
benefits, a dual-option contract can be used to make player 1’s value from date 3 con-
stant in the state. Player 2 then becomes the residual claimant. Thus, in the divided case
in which player 2 is the investor, player 2 can be given the incentive to invest efficiently
regardless of the distribution of the investment gains.

Assumption 1. There exists a trade action a0 ∈A such that u1(a
0� θ)= u2(a

0� θ)= 0 for
every θ.

This assumption is solely on the technology of trade. Think of a0 as the “no trade”
choice. The no-trade payoffs could be normalized to any level; we set them to zero here
for simplicity. Note that the example satisfies Assumption 1 with a0 = 0.

Theorem 1. Consider any contractual relationship that satisfies Assumption 1. Let k be
any real number and define the value function v by v1(θ)= k and v2(θ)= γ(θ)− k for all
θ ∈�. Then v is implementable.

Appendix A contains the proof of this theorem, which is constructive and runs along
the lines of the demonstration for the example. In particular, we show how to imple-
ment these value functions using a dual-option contract in which player 2 is required to
declare a state θ̂ at date 4 and then player 1 is forced to tender either trade action a∗(θ̂)
or trade action a0.

Considering the implication of making the investor the residual claimant, Theorem 1
leads immediately to the following economic result.

Proposition 1. Under Assumption 1 and in the divided case in which player 2 is the in-
vestor and player 1 has the trade action, optimal contracting induces efficient investment
and trade (the first-best outcome).

Note that this result makes no restrictions on which party stands to gain from the
investment. That is, the result holds for settings of cross investment, own investment,
and any combination of the two. The key is simply that the investment action and the
trade action are taken by different parties.

Investment incentives for player 1

Making player 1 the residual claimant with respect to the investment decision is consid-
erably more difficult than is making player 2 the residual claimant. In fact, in the case of
unified investment and trade actions, typically the efficient outcome cannot be induced.
Identifying an optimal contract is also a challenge, but is possible with some additional
assumptions and structure on the model. We present results along these lines below.
The proofs require a full analysis of the conditions for implementation, which in turn
requires the tools and results developed in Sections 4 and 5. Details of the analysis are
provided in Appendix B, where we also present some general results and notes.
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We begin with some intuition regarding the conditions for implementation. Suppose
that γ is increasing. Our objective is to implement a value function v1 that rises with γ,
so that player 1’s return on investment closely matches the joint return. The techni-
cal conditions for implementation imply upper bounds on the difference v1(θ)− v1(θ

′)
for θ > θ′. Observe that there are multiple such conditions involving each state. For
example, for three states θ, θ′, and θ′′ with θ > θ′ > θ′′, there are three conditions:
v1(θ)− v1(θ

′) ≤ ρ, v1(θ
′)− v1(θ

′′) ≤ ρ′, and v1(θ)− v1(θ
′′) ≤ ρ′′ for some numbers ρ, ρ′,

and ρ′′. We can call the first and second conditions local, or inside, conditions, whereas
the last one is an outside condition. Note that by summing the inside conditions, we
obtain a second bound on the difference v1(θ)− v1(θ

′′); this bound is ρ+ ρ′.
It turns out that, for a wide class of trade technologies, the outside condition is

tighter than is the sum of the inside conditions; that is, ρ′′ < ρ + ρ′. This means that
implementability cannot be characterized by the local conditions alone, and some of
these must hold with slack to ensure that the outside conditions are satisfied. As a re-
sult, it is not possible to implement a value function v1 that rises smoothly and steeply.
This is not such a big problem in the divided case, where we want v1 to be constant, but
recall that in the unified case we want v1 to rise with γ. We find that the best way to
give player 1 the incentive to invest is to implement a value function with some discrete
jumps. We establish conditions under which a dual-option contract optimally performs
in this way, as shown in the example.

We make several assumptions to structure the analysis. The first gives a set of mild
technical restrictions that hold in most applications. We maintain this assumption
throughout the rest of the paper.

Assumption 2. (a) The sets A and � are compact subsets of R and contain at least two
elements, and u1(·� θ) and u2(·� θ) are continuous functions of a for every θ ∈ �. Define
a ≡ minA, and a ≡ maxA, θ ≡ min�, and θ ≡ max�. (b) U(·� θ) is strictly quasiconcave
for every θ ∈�. (c) Player 1’s bargaining weight is positive: π1 > 0.

The next assumption is the main economic restriction that we impose hereinafter:
that player 1’s payoff is supermodular in the state and trade action.

Assumption 3. The function u1 is supermodular, meaning that u1(a�θ) − u1(a
′� θ) ≥

u1(a�θ
′)− u1(a

′� θ′) whenever a≥ a′ and θ≥ θ′.

With this assumption, player 1’s marginal value of increasing his trade action rises
weakly with the state. In other words, higher trade actions are weakly more attractive to
him as the state increases. An implication is that, for any transfers specified as a func-
tion of the trade action, player 1’s preferences satisfy the single-crossing property and
he weakly prefers higher actions in higher states. This monotone structure helps us to
characterize incentives at date 6.

Many interesting applications studied in the literature satisfy these assumptions. For
instance, consider a buyer/seller relationship in which a is the number of units of an
intermediate good to be transferred from the seller to the buyer. The buyer’s benefit
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of obtaining a units in state θ is B(a�θ). The seller’s cost of production and delivery is
d(a�θ), and we letC(a�θ)= −d(a�θ). Suppose, as one typically does, thatB is increasing
and concave in a and that d is increasing and convex in a. If a is the buyer’s action (he
selects how many units to install, for example), then the buyer is player 1 and so we have
u1 ≡ B and u2 ≡ C. If the seller chooses a (she decides how many units to deliver, say),
then the seller is player 1 and so we have u1 ≡ C and u2 ≡ B. In either case, Assumption 2
is satisfied. Assumption 3 adds the weak supermodularity requirement on the payoff of
the player who selects a. Our example from the previous section satisfies Assumptions 2
and 3.

Note that, in a given application, if u1 is submodular, then one can redefine the trade
action to be −a and then Assumption 3 is satisfied. Also note that Assumption 3 is triv-
ially satisfied in the case of pure cross investment in which u1 does not depend on θ.

Our final assumption, which is needed only for the results in this subsection, per-
tains to the relative supermodularity and investment returns for u1 and u2.

Assumption 4. (a) The expression π2u1 − π1u2 is supermodular (π2u1 is relatively
more supermodular than π1u2). (b) For all θ�θ′ with θ > θ′, π1[u2(a�θ) − u2(a�θ

′)] ≥
π2[u1(a�θ)− u1(a�θ

′)].

Assumption 4 is clearly restrictive, limiting the class of trade technologies that we
evaluate here, but it facilitates the identification of an optimal contract. Part (a) of the
assumption contributes to a tight characterization of optimal punishments in the gen-
eral mechanism-design exercise. A sufficient condition for Assumption 4(a) is that u2

is submodular. Appendix B gives an alternative assumption—on the joint value at ex-
treme trade actions—that can be used in place of Assumption 4(a). Assumption 4(b) re-
quires that the cross-investment component is weakly larger than the own-investment
component at the highest trade action. It is easy to check that our example satisfies
Assumption 4.

These assumptions give us the following general result about implementation using
the dual-option contract introduced in the example.

Theorem 2. Consider any contractual relationship that satisfies Assumptions 2–4. For
any number β, define value function vβ by

v
β
1 (θ)≡

{
u1(a�θ) for θ < β
u1(a�θ)+π1R(a�θ) for θ≥ β

and vβ2 ≡ γ− vβ1 for all θ ∈�. Then vβ is implemented by a dual-option contract in which
(i) at date 4, player 2 sends a report θ̂ of the state; and (ii) if the report is at least β, then
player 1 is forced to select a = a at date 6, and otherwise player 1 is forced to choose be-
tween a∗(θ̂) and a.

The proof of Theorem 2 is provided in Appendix B, along with the proofs of Proposi-
tions 2 and 3 below. Note that we have not used Assumption 1 here.
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We next show that value function vβ achieves the best possible investment incen-
tives in the deterministic case where player 1’s investment choice is to directly select θ.
Thus, in this setting of unified investment and trade actions, the dual-option contract is
optimal. Recall that we normalize so that the cost of investment is θ, and thus player 1
selects θ to maximize v1(θ)− θ. The efficient choice θ∗ maximizes γ(θ)− θ.

Let us say that investment θ′ is supported by a contract if there is an implementable
value function v′ such that θ′ solves maxθ∈� v′

1(θ)− θ. Call θB the best achievable invest-
ment level if it maximizes γ(θ′)− θ′ among all supportable θ′.

Proposition 2. Under Assumptions 2–4, and in the deterministic and unified case in
which player 1 has both the investment and trade actions, the best achievable investment
level θB is supported by value function vθ

B
as defined in Theorem 2 (that is, settingβ≡ θB).

Our next result gives conditions under which the efficient investment level can be
supported; that is, when the best achievable investment level θB coincides with the effi-
cient investment level θ∗.

Proposition 3. Suppose Assumptions 2–4 hold. The efficient level of investment θ∗ is
supported in the deterministic and unified case if and only if

u1(a�θ
∗)+π1R(a�θ

∗)− θ∗ ≥ u1(a�θ)− θ (2)

for all θ < θ∗.

The condition from Proposition 3 ensures that we can induce a large enough dis-
continuity in the value function at the efficient state so that player 1 maximizes his gain
net of investment cost at θ∗. If this condition fails, efficiency cannot be attained in the
unified case.

To summarize the results of this section, we have conditions under which player 2
can be made the residual claimant with respect to the investment action, which solves
the contracting problem (yielding efficient investment and trade) in the divided case.
We learn that it is generally not possible to make player 1 the residual claimant, given
that player 1 has the trade action. As a result, the efficient outcome is typically not at-
tainable in the case of unified investment and trade actions. However, for the class of
trade technologies that satisfy Assumptions 2–4 and for the case of a deterministic state,
we are able to characterize an optimal contract and provide conditions under which the
efficient outcome can be achieved.

The results in this section are most pronounced when applied to settings of signif-
icant cross investment, where the optimal forcing contract is null and leads to an inef-
ficient outcome. In the divided case, the nonforcing dual-option contract induces effi-
cient investment and trade. In the unified case, a dual-option contract can outperform
the null contract and sometimes induces the efficient outcome. We continue this theme
in Section 5 by simply asking whether, in general, nonforcing contracts implement a
wider range of value functions than do forcing contracts.
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4. Implementable value functions

This section summarizes how to calculate implementable value functions in general.
Much of the analysis here repeats material in Watson (2007), so we keep this text brief
and ask the reader to see Watson (2007) for more details. The culmination of the basic
analysis here are some simple characterization results from Watson (2007), which we
build on in the subsequent section.

In previous sections we assumed that the players can freely renegotiate at dates 3
and 5, but now we also consider the case in which renegotiation is possible at date 3 only
(the interim phase). We let V EPF be the set of implementable value functions from date 3
for the case of ex post renegotiation and with the restriction to forcing contracts. We let
V EP be the corresponding set for the case of ex post renegotiation and no contractual
restrictions. Further, we let V I be the set of implementable value functions for the case in
which renegotiation can occur only at date 3.15 We can characterize the implementable
value functions by backward induction, starting with date 6 where player 1 selects the
trade action.

State-contingent values from date 6

To calculate the value functions that are supported from date 6, we can ignore the
payoff-irrelevant messages sent earlier (or equivalently, fix a message profile from
date 4) and simply write the externally enforced transfer function as ŷ :A→ R

2. That
is, ŷ gives the monetary transfer as a function of player 1’s trade action.

Given the state θ, ŷ defines a trading game in which player 1 selects an action a ∈A
and the payoff vector is then u(a�θ) + ŷ(a). Focusing on pure strategies, we let â(θ)
denote the action chosen by player 1 in state θ. This specification is rational for player 1
if, for every θ ∈ �, â maximizes u1(a�θ) + ŷ1(a) by choice of a. The state-contingent
payoff vector from date 6 is then given by the outcome function w :�→ R

2 defined by

w(θ)≡ u(â(θ)�θ)+ ŷ(â(θ))� (3)

Let W denote the set of supportable outcome functions. That is, w ∈W if and only
if there are functions ŷ and â such that â is rational for player 1 and, for every θ ∈ �,
(3) holds. Furthermore, let W F be the subset of outcomes that can be supported using
forcing contracts. It is easy to see that w ∈W F if and only if there is a trade action â and
a transfer vector t̂ such that w(θ)= u(â� θ)+ t̂ for all θ ∈�. We can compare individual-
action and public-action models by determining whether the restriction to forcing con-
tracts implies a significant constraint on the set of implementable value functions.

State-contingent values from date 5

We next step back to date 5. If there is no opportunity for ex post renegotiation, then
nothing happens at date 5 and so W and W F are the supported state-contingent value

15In the case of only interim renegotiation, a restriction to forcing contracts does not affect the imple-
mentable set.
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sets from the start of date 5 as well. On the other hand, if ex post renegotiation is al-
lowed, then at date 5 the players have an opportunity to discard their originally specified
contract y and replace it with another, y ′.

By picking a new contract y ′, the players are effectively choosing a new outcome
function w′ in place of the function w that would have resulted from the original con-
tract y. The players can freely select w′ from the set W or the set W F, depending on
whether they are restricted to forcing contracts. The players divide the renegotiation
surplus according to the fixed bargaining weights π1 and π2. Dividing the surplus in this
way is feasible becauseW andW F are closed under constant transfers.

Clearly, we have γ(θ)= maxw∈W F [w1(θ)+w2(θ)] because the trade action that solves
the maximization problem in (1) can be specified in a forcing contract to yield the de-
sired outcome. The renegotiation surplus is

r(w�θ)≡ γ(θ)−w1(θ)−w2(θ)�

The bargaining solution implies that the players settle on a new outcome in which the
payoff vector in state θ is w(θ)+πr(w�θ).

We define an ex post renegotiation outcome to be the state-contingent payoff vector
that results when, in every state, the players renegotiate from a fixed outcome in W .
That is, a value function z is an ex post renegotiation outcome if and only if there is an
outcome w ∈W such that z(θ)=w(θ)+πr(w�θ) for every θ ∈�. Let Z denote the set of
ex post renegotiation outcomes.16 If trade actions are treated as public (and so attention
is limited to forcing contracts), then the set of ex post renegotiation outcomes contains
only the value functions of the form z =w+πr(w� ·)with the constraint thatw ∈W F. Let
ZF denote the set of ex post renegotiation outcomes under forcing contracts. Although
the terminology is a bit loose, we refer to functions in Z andZF, in addition to functions
inW andW F, simply as “outcomes.”

State-contingent values from dates 4 and 3

Analysis of contract selection and incentives at date 4 can be viewed as a standard
mechanism-design problem. The players’ contract is equivalent to a mechanism that
maps messages sent at date 4 to outcomes induced in the trade and enforcement phase
(possibly renegotiated at date 5). The revelation principle applies, so we can restrict
attention to direct-revelation mechanisms defined by (i) a message space M ≡ �2 and
(ii) a function that maps �2 to the relevant outcome set that gives the state-contingent
value functions from the start of date 5. The outcome set is either W , W F, Z, or ZF, de-
pending on whether ex post renegotiation and/or nonforcing contracts are allowed. We
concentrate on Nash equilibria of the mechanism in which the parties report truthfully
in each state.17

Let us write ψθ1θ2 for the outcome that the mechanism prescribes when player 1
reports the state to be θ1 and player 2 reports the state to be θ2. Note that, in any given

16All elements of Z are efficient in every state; also, Z andW are generally not ranked by inclusion.
17The revelation principle usually requires a public randomization device to create lotteries over out-

comes (or that the outcome set is a mixture space), but it is not needed here.
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state θ (the actual state that occurred), the mechanism implies a “message game” with
strategy space �2 and payoffs given by ψθ1θ2(θ) for each strategy profile (θ1� θ2). For
truthful reporting to be a Nash equilibrium of this game, it must be that ψθθ1 (θ)≥ψθ̃θ1 (θ)

and ψθθ2 (θ)≥ψθθ̃2 (θ) for all θ̃ ∈�.
We proceed using standard techniques for mechanism design with transfers, follow-

ing Watson (2007). The key step is observing that, for any two states θ and θ′, the out-
come specified for the “off-diagonal” message profile (θ′� θ)must be sufficient to simul-
taneously (i) dissuade player 1 from declaring the state to be θ′ when the state is actually
θ and (ii) discourage player 2 from declaring θ in state θ′. Thus, we require

ψθθ1 (θ)≥ψθ′θ
1 (θ) and ψθ

′θ′
2 (θ′)≥ψθ′θ

2 (θ′)�

Because the outcome sets are closed under constant transfers, we can choose the out-
come to effectively raise or lower ψθ

′θ
1 and ψθ

′θ
2 while keeping the sum constant. Thus, a

sufficient condition for these two inequalities is that the sum of the two holds. Letting
ψ≡ ψθθ and ψ′ ≡ ψθ

′θ′
, we thus have the following necessary condition for implement-

ing outcome ψ in state θ and outcome ψ′ in state θ′:

There exists an outcome ψ̂ satisfyingψ1(θ)+ψ′
2(θ

′)≥ ψ̂1(θ)+ ψ̂2(θ
′).

This condition, applied to all ordered pairs (θ�θ′), is necessary and sufficient for imple-
mentation. The sum ψ̂1(θ)+ ψ̂2(θ

′) is called the punishment value corresponding to the
ordered pair (θ�θ′). The punishment value plays a central role in our analysis. Lower
punishment values imply a greater set of implementable outcomes.

Interim renegotiation has the effect of requiring each “on-diagonal” outcome to be
efficient in the relevant state; that is, for each θ, we need ψθθ to be efficient in this state.
In the case of ex post renegotiation, allowing interim renegotiation entails no further
constraint because every outcome in Z is efficient in every state. It is also the case that
without ex post renegotiation, W and W F yield the same set of implementable value
functions from date 3. Therefore, we have three settings to compare: unrestricted con-
tracts with ex post renegotiation, forcing contracts (public actions) with ex post renego-
tiation, and forcing contracts with interim (but not ex post) renegotiation.

Call a value function v efficient if v1(θ) + v2(θ) = γ(θ) for every θ ∈ �. The follow-
ing results summarize the characterization of V EP, V EPF, and V I and provide a general
comparison.

Result 1 (Watson (2007)). Consider any value function v :�→ R
2.

• Implementation with interim renegotiation. Value function v is an element of V I if
and only if v is efficient and, for every pair of states θ and θ′, there is an outcome
ŵ ∈W F such that v1(θ)+ v2(θ

′)≥ ŵ1(θ)+ ŵ2(θ
′).

• Implementation with ex post renegotiation. Value function v is an element of V EP

if and only if v is efficient and, for every pair of states θ and θ′, there is an outcome
ẑ ∈Z such that v1(θ)+ v2(θ

′)≥ ẑ1(θ)+ ẑ2(θ
′).
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• Implementation with ex post renegotiation and forcing contracts. Value function v
is an element of V EPF if and only if v is efficient and, for every pair of states θ and
θ′, there is an outcome ẑ ∈ZF such that v1(θ)+ v2(θ

′)≥ ẑ1(θ)+ ẑ2(θ
′).

Furthermore, the sets V EP, V EPF, and V I are closed under constant transfers.

Result 2 (Watson (2007)). The implementable sets are weakly nested in that V EPF ⊆
V EP ⊆ V I. Furthermore, V EPF = V EP if and only if, for every pair of states θ�θ′ ∈ � and
every ẑ ∈ Z, there is an ex post renegotiation outcome z̃ ∈ ZF such that z̃1(θ)+ z̃2(θ

′)≤
ẑ1(θ)+ ẑ2(θ

′). Likewise, V EP = V I if and only if, for all θ�θ′ ∈� and every ŵ ∈W F, there
is an ex post renegotiation outcome ẑ ∈Z such that ẑ1(θ)+ ẑ2(θ

′)≤ ŵ1(θ)+ ŵ2(θ
′).18

To summarize, we have thus far analyzed the players’ behavior at the various dates
in the contractual relationship, leading to a simple characterization of implementable
value functions from date 3. The characterization is in terms of the minimum punish-
ment values for each pair of states, which yields a way to relate the implementable sets
for the cases of interim renegotiation, ex post renegotiation, and ex post renegotiation
and forcing contracts. We next turn to investigate the relation more deeply.

5. A robustness result for non-forcing contracts

The example from Watson (2007) and our example in Section 2 provide illustrations of
V EPF �= V EP �= V I. Our main objective in this section is to examine the robustness of this
conclusion. We consider the wide class of contractual relationships that satisfy Assump-
tions 2, 3, and 5 (which follows).

Assumption 5. There exist states θ1� θ2 ∈� such that θ1 > θ2, a∗(θ1) > a, a∗(θ2) < a and
either U(a�θ2) < U(a�θ2) or U(a�θ1) > U(a�θ1).

This is a weak assumption that removes a knife-edge case concerning the relative
joint values of the extreme trade actions in the various states. For instance, if � has
more than two elements and U(a�θ) �=U(a�θ) for some θ strictly between θ and θ with
interior optimal actions, then Assumption 5 is satisfied.

We have the following robustness result.

Theorem 3. Consider any contractual relationship that satisfies Assumptions 2, 3, and 5.
The sets of implementable value functions in the cases of unrestricted contracts with ex
post renegotiation, forcing contracts with ex post renegotiation, and interim renegotiation
are all distinct. That is, V EPF �= V EP �= V I.

18Watson’s (2005) Lemma 1 provides some of the supporting analysis (which was not explained fully in
the relevant proof in Watson 2007). This lemma establishes that, for any given ordered pair of states θ and θ′
and any supportable outcome ψ, there exists an implementable value function v for which v1(θ)+ v2(θ

′)=
ψ1(θ)+ψ2(θ

′). Because the minimum punishment values exist, in each case we can letψ equal the outcome
that attains the minimum.
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The analysis underlying Theorem 3 amounts to characterizing and comparing the
minimum punishment values that can be supported for each of the settings of interest.
Recall that the punishment value for the ordered pair (θ�θ′) is the value ψ1(θ)+ψ2(θ

′),
where ψ is the outcome specified in the message game when player 1 reports the state
to be θ′ and player 2 reports the state to be θ. Lower punishment values serve to re-
lax incentive conditions, so to characterize the sets of implementable value functions
completely, we must find the minimum punishment values. We let PI, PEP, and PEPF

denote the minimum punishment values for the settings of interim renegotiation, ex
post renegotiation, and ex post renegotiation and forcing contracts, respectively:

PI(θ�θ′) ≡ min
w∈W F

w1(θ)+w2(θ
′)

PEP(θ�θ′) ≡ min
ẑ∈Z

ẑ1(θ)+ ẑ2(θ
′)

PEPF(θ�θ′) ≡ min
ẑ∈ZF

ẑ1(θ)+ ẑ2(θ
′)�

Our assumptions on the trade technology guarantee that these minima exist.
From Result 2, we know that Theorem 3 is equivalent to saying that there exist

states θ�θ′ ∈� such that PI(θ�θ′) < PEP(θ�θ′) and there exist (possibly different) states
θ�θ′ ∈ � such that PEP(θ�θ′) < PEPF(θ�θ′). Thus, to prove Theorem 3, we examine the
punishment values achieved by various contractual specifications in the different set-
tings. We develop some elements of the proof in the remainder of this section; Ap-
pendix C contains the rest of the analysis. We focus in this section on the relation be-
tween V EPF and V EP. The analysis of the relation between V EP and V I is considerably
simpler and is wholly contained in Appendix C.

We establish PEP <PEPF by comparing the punishment values implied by (i) the out-
come in which player 1 is forced to take the trade action that yields the lowest punish-
ment value among forcing contracts, and (ii) a related nonforcing specification in which
player 1 is given the incentive to select some action a in state θ and a different action a′
in state θ′. We derive conditions under which a and a′ can be arranged to strictly lower
the punishment value for (θ�θ′), relative to the best forcing case. We then find states θ1

and θ2 such that the conditions must hold for at least one of the ordered pairs (θ1� θ2)

and (θ2� θ1).
To explore the possible outcomes in the cases of ex post renegotiation, consider

player 1’s incentives at date 6. For any given transfer function ŷ, necessary conditions
for player 1 to select trade action a in state θ and action a′ in state θ′ are

u1(a�θ)+ ŷ1(a) ≥ u1(a
′� θ)+ ŷ1(a

′)
(4)

u1(a
′� θ′)+ ŷ1(a

′) ≥ u1(a�θ
′)+ ŷ1(a)�

Transfer function ŷ can be specified so that player 1 is harshly punished for selecting any
trade action other than a or a′. Then, in every state, either a or a′ maximizes player 1’s
payoff from date 6. Thus, we can state the following fact.
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Fact 1. Consider two states θ�θ′ ∈ � and two trade actions a�a′ ∈A. Expression (4) is
necessary and sufficient for the existence of a transfer function ŷ :A→ R

2
0 (defined over

all trade actions) such that player 1’s optimal trade action in state θ is a and player 1’s
optimal trade action in state θ′ is a′.

Summing the inequalities of expression (4), we see that there are values ŷ(a)� ŷ(a′) ∈
R

2
0 that satisfy (4) if and only if

u1(a�θ)− u1(a
′� θ)≥ u1(a�θ

′)− u1(a
′� θ′)� (5)

Assumption 3 then implies the following fact.

Fact 2. If θ > θ′, then a≥ a′ implies inequality (5). If θ < θ′, then a≤ a′ implies inequal-
ity (5).

Note that Fact 2 gives sufficient conditions. In the case in which u1(·� ·) is strictly
supermodular (replacing weak inequalities in Assumption 3 with strict inequalities),
player 1 can be given only the incentive to choose greater trade actions in higher states.

For any two states θ�θ′ ∈�, define

E(θ�θ′)≡ {(a�a′) ∈A×A | inequality (5) is satisfied}�

Also, for states θ�θ′ ∈� and trade actions a�a′ ∈A with (a�a′) ∈E(θ�θ′), define

Y(a�a′� θ�θ′)≡ {ŷ :A→ R
2
0 | condition (4) is satisfied}�

Condition (4), combined with the identity ŷ1 = −ŷ2, implies the next fact.

Fact 3. For any θ�θ′ ∈� and a�a′ ∈A, with (a�a′) ∈E(θ�θ′), we have

min
ŷ∈Y(a�a′�θ�θ′)

ŷ1(a)+ ŷ2(a
′)= u1(a

′� θ)− u1(a�θ)�

Using the definition of the set W (recall expression (3)), any given w ∈ W can be
written in terms of the trade actions and transfers that support it. We have

w(θ)= u(â(θ)�θ)+ ŷ(â(θ))

and

w(θ′)= u(â(θ′)�θ′)+ ŷ(â(θ′))�

where â gives player 1’s choice of trade action as a function of the state and ŷ is the
transfer function that supports w.

For any state θ̃ and trade action ã, define R(ã� θ̃) to be the renegotiation surplus if,
without renegotiation, player 1 would select ã. That is, R(ã� θ̃)=U(a∗(θ̃)� θ̃)−U(ã� θ̃).
Combining the expressions for w in the previous paragraph with Fact 1 and the defini-
tion of ex post renegotiation outcomes, we obtain Fact 4.
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Fact 4. Consider any two states θ�θ′ ∈� and let α be any number. There is an ex post
renegotiation outcome z ∈Z that satisfies z1(θ)+ z2(θ

′)= ρ if and only if there are trade
actions a�a′ ∈A and a transfer function ŷ such that (a�a′) ∈ E(θ�θ′), ŷ ∈ Y(a�a′� θ�θ′),
and

ρ= u1(a�θ)+ ŷ1(a)+π1R(a�θ)+ u2(a
′� θ′)+ ŷ2(a

′)+π2R(a
′� θ′)� (6)

In the last line, the first three terms are w1(θ) plus player 1’s share of the renegotia-
tion surplus in state θ, totaling z1(θ). The last three terms arew2(θ

′) plus player 2’s share
of the renegotiation surplus in state θ′, totaling z2(θ

′).
Finding the best (minimum) punishment value for states θ and θ′ means minimizing

ẑ1(θ)+ ẑ2(θ
′) by choice of ẑ ∈ Z. For now, holding fixed the trade actions a and a′ that

player 1 is induced to select in states θ and θ′, let us minimize the punishment value by
choice of ŷ ∈ Y(a�a′� θ�θ′). To this end, we can use Fact 3 to substitute for ŷ1(a)+ ŷ2(a

′)
in expression (6). This yields the punishment value for trade actions a and a′ in states θ
and θ′, respectively, written

λ(a�a′� θ�θ′)≡ u1(a
′� θ)+π1R(a�θ)+ u2(a

′� θ′)+π2R(a
′� θ′)� (7)

Next, we consider the step of minimizing the punishment value by choice of the trade
actions a and a′, which gives us a useful characterization of PEP(θ�θ′). Assumption 2(a)
guarantees that λ(a�a′� θ�θ′) has a minimum.

Fact 5. The minimum punishment value in the setting of ex post renegotiation is char-
acterized as

PEP(θ�θ′)= min
(a�a′)∈E(θ�θ′)

λ(a�a′� θ�θ′)�

We obtain a similar characterization of the minimal punishment value for the setting
in which attention is restricted to forcing contracts. The characterization is exactly as
in Fact 5 except with the additional requirement that a = a′ because forcing contracts
compel the same action in every state.

Fact 6. The minimum punishment value for the setting of forcing contracts and ex post
renegotiation is characterized as

PEPF(θ�θ′)≡ min
a∈A

λ(a�a�θ�θ′)�

Recall that proving Theorem 3 requires us to establish that PEP(θ�θ′) < PEPF(θ�θ′)
for some pair of states θ�θ′ ∈�. Appendix C finishes the analysis by exploring how one
can depart from the optimal forcing specification in a way that strictly reduces the value
λ(a�a′� θ�θ′).
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6. Conclusion

In this paper, we report the analysis of contractual relationships for a large class of trade
technologies. We highlight the usefulness of nonforcing contracts (in particular, the
dual-option contract) and the key distinction between the divided and unified cases of
investment and trade actions. We show that the payoff of the party with the trade ac-
tion can be neutralized so that the other party claims the full benefit of the investment,
gross of investment costs, implying that the efficient outcome is achieved in the divided
case. Holdup remains a problem in the unified case, although the dual-option contract
is optimal in a class of settings and it can sometimes induce the efficient outcome. We
also provide general results on the relation between individual-action and public-action
models of contractual relationships, showing that limiting attention to forcing contracts
has significant implications for implementability and hence inefficiency.

Our results reinforce the message of Watson (2007) on the usefulness of modeling
trade actions as individual, particularly in settings of cross investment. The results sug-
gest revisiting some of the conclusions of public-action models in the existing literature.
In particular, settings with cross investment are generally not as problematic as previous
modeling exercises (Che and Hausch 1999, Edlin and Hermalin 2000, and others) find.
Efficient outcomes can be achieved in the case of divided investment and trade actions.
Our results show the importance, for applied work, of differentiating between the cases
of divided and unified investment and trade actions. This distinction may be just as im-
portant as the distinction between own and cross investment (on which the literature
has focused until now).

In our model, the trading opportunity is nondurable in that there is a single moment
in time when trade can occur. One might wonder if the results differ substantially in set-
tings with durable trading opportunities (where if trade does not occur at one time, then
it can still be done at a later date). This issue is explored by Evans (2008) and Watson
and Wignall (2009), both of whom examine individual-action models. Evans’ (2008) ele-
gant model is very general in terms of the available times at which the players can trade
and renegotiate. He constructs equilibria in which, by having the players coordinate in
different states on different equilibria in the infinite-horizon trade/negotiation game,
the holdup problem is partly or completely alleviated. Evans’ strongest result (in which
the efficient outcome is reached) requires the ability of the players to commit to a joint
financial hostage; that is, money is deposited with a third party until trade occurs, if ever.

Watson and Wignall (2009) examine a cross investment setting without the possi-
bility of joint financial hostages, and their model is more modest in other dimensions.
They show that the set of implementable post-investment payoff vectors in the setting
of a durable trading opportunity is essentially the same as in the setting of a nondurable
trading opportunity. This suggests that, in general, the results from the current paper
carry over to the durability setting. Watson and Wignall also show that, in the divided
case, there are nonstationary contracts that uniquely support the efficient outcome.

Our modeling exercise, combined with the recent literature, suggests some broad
conclusions about the prospect of efficient investment and trade in contractual rela-
tionships. First, the holdup problem is not necessarily severe, and efficient outcomes
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can often be achieved. Durability of the trading opportunity does not worsen the holdup
problem and may soften it in some cases, but it depends on the investment and trade
technologies. Inefficiency may be unavoidable in the following problematic cases.

• When there is cross investment and unified investment and trade actions, as iden-
tified herein.

• When trade involves “complexity/ambivalence” as described by Segal (1999), Hart
and Moore (1999), and Reiche (2006).

• When multiple parties make cross/cooperative investments.

• When the investment conveys a significant direct benefit (not requiring trade) on
the noninvesting party, in addition to any benefit contingent on trade.

On the last point, Ellman’s (2006) model provides intuition in terms of the notion of
specificity. Settings in which multiple parties make cross investments are similar in na-
ture to settings of team production (studied by Holmstrom 1982 and others).

In each of the cases above, the holdup problem would be reduced if the parties had
some way to create joint financial hostages, as explored by Evans (2008), Boeckem and
Schiller (2008), and Baliga and Sjöström (2009). Bull (2009) provides a cautionary note
on the inability of such financial arrangements to withstand side contracting.

Regarding extensions of our analysis here, future research would be useful on dif-
ferent classes of trade technologies, in particular those in which both parties take trade
actions (either simultaneously or sequentially). For instance, consider the setting with
trade action profile a = (a1� a2), where a1 ∈ [0� a] is the verifiable quantity of an inter-
mediate good that player 1 produces and delivers to player 2, and a2 ∈ {accept� reject}
is player 2’s verifiable choice of whether to accept or reject delivery. For simplicity, sup-
pose that the players choose their trade actions simultaneously; the case of sequential
choices works out similarly. Suppose that, for every state, “accept” is part of an ex post
efficient trade-action profile.19 Then a version of our results can be proved by utilizing
contracts that force player 2 to accept delivery and are dual options with respect to a1.

More precisely, if (0�accept) satisfies Assumption 1, then the conclusions of The-
orem 1 and Proposition 1 go through, so an efficient outcome can be achieved in the
divided case. Suppose further that, fixing a2 = accept and considering u as a function
of a1, Assumptions 2–4 hold. Then the conclusion of Theorem 2 is valid and the con-
clusions of Propositions 2 and 3 hold within the class of contracts that force player 2 to
accept delivery, and are otherwise arbitrary (nonforcing and message-based).

It is not always possible to make player 1 the residual claimant by building a dual-
option contract on player 2’s acceptance/rejection choice, because there is typically not
a single quantity a1 that figures in the ex post efficient outcome in every state. Thus,
we generally are not able to apply the argument for Theorem 1 to make player 1 the
residual claimant. However, in some cases, a nonforcing specification for a2 yields an
improvement on the contracts that force acceptance of delivery.

19For instance, if positive trade is inefficient in some state, then (0�accept) is an ex post efficient outcome
where player 1 delivers nothing and player 2 accepts.
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There are technologies of trade for which it is possible to make either player the
residual claimant with respect to the investment choice. Consider a setting with trade-
action profile a = (a1� a2) and, for any player i let j denote the other player. Here are
assumptions that imply that player i can be made the residual claimant using a dual-
option contract: Assume that there is a trade action âi for player i and a trade action a0

j

for player j such that, for every state θ, (i) âi is an efficient action with an appropriate
choice of aj and (ii) ui(a0

j � âi� θ)= uj(a0
j � âi� θ)= 0. In words, the first condition says there

is a trade action that player i can be forced to take, such that efficiency can be achieved
in each state for some selection of player j’s trade action. This condition is trivially sat-
isfied in the setting of one-sided trade actions that we study. The second condition is
Assumption 1 for j’s trade action. Under these assumptions, player i can be made the
residual claimant using the arguments behind Theorem 1. Clearly, it is possible for the
assumptions to hold for both i = 1 and i = 2, although this seems to be a rather special
case.

We have not begun an analysis of settings with more complicated multilateral trade
actions, but we expect it to be a fruitful line of future research. Evans’ (2008) model has
a dynamic version of the trade technology described above, where one player makes a
delivery choice and the other chooses whether to accept or reject delivery. It would also
be interesting to look at a wide range of settings with partially verifiable trade actions.
For example, a court may observe whether a particular trade was made but have trouble
identifying which party disrupted trade (in the event that trade did not occur).20

Finally, recall that in the modeling exercise here, we assume that each party’s pro-
ductive actions are exogenously given. However, in some settings it may be possible to
arbitrarily assign a particular task (such as delivering an object from one place to an-
other) to an individual player. Our model indicates that the parties would have pref-
erences over task assignment. Thus, it would be useful to determine whether physical
trade actions are assignable in some real settings and to develop a model of optimal as-
signment. One might imagine a theory of firm boundaries that is based on the optimal
assignment of different types of tasks over time.

Appendix A: Proof of Theorem 1

This appendix provides a proof of the first theorem. For any fixed k, consider the fol-
lowing contract. In the message phase (date 4), player 2 must declare the state. Let θ̂
denote player 2’s announcement. If player 1 subsequently selects action a∗(θ̂), then the
enforcer compels a transfer of t̂ = (k− u1(a

∗(θ̂)� θ̂)�u1(a
∗(θ̂)� θ̂)− k). If player 1 selects

action a0, then the transfer is t = (k�−k). If player 1 chooses any other trade action,
then the enforcer compels transfer (−τ�τ), where τ is set large enough so that player 1 is

20Hart and Moore’s (1988) model has this feature. It is straightforward to incorporate partial verifiabil-
ity into the modeling framework developed here. One can represent the external enforcer’s information
about the trading game as a partition of the space of action profiles. One can then simply assume that the
contracted transfers y must be measurable with respect to this partition. Note that MacLeod and Malcom-
son (1993) and De Fraja (1999) examine settings with partially verifiable trade actions (along the lines of
Hart and Moore 1988), although they make assumptions about the renegotiation protocol and the timing
of outside options that weaken the affect of renegotiation compared to the rest of the literature.
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forced to choose between a∗(θ̂) and a0. That is, regardless of θ̂, in no state does player 1
have the incentive to choose a /∈ {a∗(θ̂)� a0}.

Suppose that date 6 is reached without renegotiation and that the state is θ. Note
that, by Assumption 1, player 1 gets a payoff of k if he chooses a0. Alternatively, his
payoff is

u1(a
∗(θ̂)� θ)+ k− u1(a

∗(θ̂)� θ̂)

if he chooses a∗(θ̂). Thus, it is rational for player 1 to choose a∗(θ̂) if u1(a
∗(θ̂)� θ) ≥

u1(a
∗(θ̂)� θ̂) and to select a0 otherwise, which we suppose is how player 1 behaves.

Consider next how player 2’s payoff from date 4 depends on θ̂. Let θ be the actual
state and divide the analysis into three cases. First, if player 2 declares θ̂= θ, then, under
the original contract, player 1 chooses a∗(θ̂) at date 6 and there is nothing to be jointly
gained by renegotiating at date 5. In this case, the payoffs from date 4 are k for player 1
and

u1(a
∗(θ)�θ)+ u2(a

∗(θ)�θ)− k= γ(θ)− k
for player 2.

Second, if player 2 instead were to declare the state to be some θ̂ �= θ such that
u1(a

∗(θ̂)� θ) < u1(a
∗(θ̂)� θ̂), then the players anticipate that player 1 will select a0 at

date 6 under the original contract. Incorporating the impact of renegotiation at date 5,
player 1’s payoff from date 4 then is k+ π1R(a

0� θ), where R(a0� θ) is the renegotiation
surplus in state θ if, without renegotiation, the players anticipate that a0 will be the cho-
sen trade action. Since R(a0� θ) ≥ 0, player 1’s payoff from date 4 weakly exceeds k and
we conclude that player 2’s payoff is weakly less than γ(θ)− k.

Finally, suppose that player 2 declares the state to be θ̂ �= θ such that u1(a
∗(θ̂)� θ) >

u1(a
∗(θ̂)� θ̂). In this case, the players anticipate that player 1 will select a∗(θ̂) at date 6

under the original contract. Incorporating renegotiation at date 5, player 1’s payoff from
date 4 then is

u1(a
∗(θ̂)� θ)+ k− u1(a

∗(θ̂)� θ̂)+π1R(a
∗(θ̂)� θ)�

where R(a∗(θ̂)� θ) is the renegotiation surplus in state θ if, without renegotiation, the
players anticipate that a∗(θ̂) will be the chosen trade action. The first and third terms
sum to weakly more than zero, so the entire expression weakly exceeds k. This implies
that player 2’s payoff is weakly less than γ(θ)− k.

The foregoing analysis demonstrates that player 2 optimally tells the truth at date 4;
that is, she declares θ̂ = θ. The payoffs from date 3 are thus k for player 1 and γ(θ)− k
for player 2, which means that the contract implements the desired value function. �

Appendix B: Additional analysis and proofs for Section 3

In this appendix, we first provide necessary and sufficient conditions for making player 1
the residual claimant. We follow this with a note on when the conditions fail. We then
provide a characterization of the punishment values defined in Sections 4 and 5. We use
this characterization to examine the relation between the “inside conditions” and the
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“outside conditions” discussed in Section 3, which shows the difficulties of determining
the second-best contract in the general unified case. Analysis of the inside and outside
conditions for implementability motivates Theorem 2 and Propositions 2 and 3. This
appendix concludes with their proofs.

Making player 1 the residual claimant

To make player 1 the residual claimant, we need to implement a value function v that
satisfies, for some constant k, v2(θ) = k and v1(θ) = γ(θ) − k for all θ ∈ �. Consider
two states θ and θ′, and order them so that θ > θ′. The conditions for implementation
associated with these two states (for (θ�θ′) and (θ′� θ)) are

v1(θ)+ v2(θ
′)≥ PEP(θ�θ′) (8)

and

v1(θ
′)+ v2(θ)≥ PEP(θ′� θ)� (9)

Using Fact 5 from Section 5, these conditions are equivalent to the existence of trade
actions a, a′, b, and b′ such that (a�a′) ∈E(θ�θ′), (b′� b) ∈E(θ′� θ),

v1(θ)+ v2(θ
′)≥ λ(a�a′� θ�θ′)

and

v1(θ
′)+ v2(θ)≥ λ(b′� b�θ′� θ)�

Substituting for v1 and v2 using the identities v2(θ)= k and v1(θ)= γ(θ)− k, these two
inequalities become

λ(a�a′� θ�θ′)≤ γ(θ) (10)

and

λ(b′� b�θ′� θ)≤ γ(θ′)� (11)

The following lemma summarizes.

Lemma 1. Consider any contractual relationship that satisfies Assumptions 2(a) and 3.
Let k be any real number and define value function v by v2(θ) = k and v1(θ)= γ(θ)− k

for all θ ∈�. Then v ∈ V EP if and only if, for all pairs of states θ�θ′ with θ > θ′, there are
trade actions a, a′, b, and b′ such that (a�a′) ∈E(θ�θ′), (b′� b) ∈ E(θ′� θ), and inequalities
(10) and (11) hold.

One can use these conditions to establish whether efficient investment can be ob-
tained in specific examples with unified investment and trade actions, but sufficient
conditions are stronger than are the assumptions we make in this paper.

For an illustration of cases where the conditions of Lemma 1 fail, suppose that the
strict version of Assumption 3 is satisfied, meaning u1 is strictly supermodular. Further
suppose that Assumption 2 holds. Also suppose that U is strictly increasing in θ and
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that U(a�θ) > γ(θ). That is, the joint value of the highest trade action in the highest
state exceeds the maximal joint value in the lowest state (gross of investment cost).

Using (7), U = u1 + u2, and some algebra, we can rewrite inequality (11) as

π1[U(b�θ)−U(b′� θ′)] ≤ π2[γ(θ′)− γ(θ)] − [u1(b�θ
′)− u1(b�θ)]�

Examining the case of θ= θ and θ′ = θ, this becomes

π1[U(b�θ)−U(b′� θ)] ≤ π2[γ(θ)− γ(θ)] − [u1(b�θ)− u1(b�θ)]� (12)

Because u1 is strictly supermodular, b ≥ b′ is required. From Assumption 2(b), that
U(a�θ) > γ(θ), and that U is strictly increasing in θ, we conclude that the left side of
inequality (12) is strictly positive and bounded away from zero.21 We also have that the
first bracketed term on the right side is strictly negative.

Thus, if |u1(b�θ)− u1(b�θ)| is small relative to π2|γ(θ)− γ(θ)|, then inequality (12)
fails to hold and there is no way to implement value functions that make player 2’s payoff
constant in the state. In other words, in the case of unified investment and trade actions,
the first-best level of investment generally cannot be induced.

Optimal punishments and investment incentives

To construct the second-best contract in general, we first need to determine how to op-
timally punish deviations from truth-telling in the message phase (date 4). That is, we
must calculate the punishment values. Although there are two implementation condi-
tions for each pair of states, as shown above, we can focus on the one that bounds the
rise in v1 in the state. This condition corresponds to expression (11). Another way to
look at this condition is to start with inequality (9), substitute for v2(θ) = γ(θ)− v1(θ),
and rearrange terms to obtain

v1(θ)− v1(θ
′)≤ γ(θ)− PEP(θ′� θ) (13)

for θ > θ′. So lowering (improving) the punishment value for states (θ′� θ) relaxes the
constraint on how v1 may rise with the state. Incidentally, from inequality (8), we get the
corresponding bound for player 2:

v2(θ)− v2(θ
′)≤ γ(θ)− PEP(θ�θ′)�

These two inequalities are usefully employed to determine the limits of contracting in
applications. For instance, we used the forcing-contract version (with PEPF) to verify
that the null contract is the optimal forcing contract in our example.

Our next step is to calculate PEP(θ′� θ), the minimal punishment value, for any pair
of states (θ′� θ) with θ′ < θ. This turns out to be straightforward under our assumptions.
An alternative to Assumption 4(a) follows.

21To see this, consider two cases. If U(a�θ) ≥ U(a�θ), because U is strictly quasiconcave in a, every
point on the graph of U(·� θ) is above every point on the graph of U(·� θ) and so the result is immediate. If
U(a�θ) < U(a�θ), U strictly increasing in θ implies that the result holds over the range [a�a∗(θ)]. Over the
range [a∗(θ)�a], the problem reduces to the first case.
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Assumption 4. (a′) For all θ ∈ (θ�θ], U(a�θ)≥U(a�θ).

Lemma 2. Under Assumptions 2, 3, and either Assumption 4(a) or 4(a′), for any pair of
states (θ′� θ) with θ′ < θ, the optimal punishment involves inducing player 1 to select
a∗(θ′) in state θ′ and a in state θ. That is, PEP(θ′� θ)= λ(a∗(θ′)�a�θ′� θ).

Proof. From (7), the punishment value for (θ′� θ), λ(a′� a�θ′� θ), is given by

u1(a�θ
′)+π1R(a

′� θ′)+ u2(a�θ)+π2R(a�θ)�

which can be rewritten as

u1(a�θ
′)+π1U(a

∗(θ′)�θ′)−π1U(a
′� θ′)+π1u2(a�θ)+π2U(a

∗(θ)�θ)−π2u1(a�θ)�

The optimal punishment value is obtained by choosing a and a′ to minimize this objec-
tive function under the constraint that a≥ a′ (because of supermodularity of u1). Ignor-
ing the constant terms that do not contain a or a′, and substituting π2 = (1 − π1) and
π1u1(a�θ)+π1u2(a�θ)= π1U(a�θ), the objective function becomes

−[u1(a�θ)− u1(a�θ
′)] +π1U(a�θ)−π1U(a

′� θ′)� (14)

The number a′ affects only the last term; to minimize it (that is, maximize U(a′� θ′))
without consideration of the constraint a ≥ a′, it is optimal to set a′ = a∗(θ′). From su-
permodularity of u1, the negative bracketed term is minimized by choosing a = a. By
Assumption 4(a′), the final term is also minimized at a. Thus, λ(a′� a�θ′� θ) attains its
lowest value when a= a and a′ = a∗(θ′).

To see that the same result holds with Assumption 4(a) in place of Assumption 4(a′),
observe that if the minimizing values a and a′ satisfy a > a′ then it must be that a= a and
a′ = a∗(θ′). That a′ = a∗(θ′) is an implication of strict quasiconcavity ofU(·� θ′), for if a′ <
a and a′ �= a∗(θ′), then it must be that a∗(θ′) > a, but then raising a′ to a strictly increases
U(a′� θ′). The conclusion that a = a follows from strict quasiconcavity of U(·� θ) and
from supermodularity of u1, which imply that it is not optimal to set a ∈ (a′� a).

So we know that either it is optimal to have a= a and a′ = a∗(θ′), or a= a′ is optimal.
In the latter case, Assumption 4(a) implies that a= a′ = a is best. This is apparent by re-
arranging terms to show that, by substituting a= a′ into expression (14), the expression
becomes

π1[u2(a�θ)− u2(a�θ
′)] −π2[u1(a�θ)− u1(a�θ

′)]�
which is decreasing in a. This yields a contradiction because we can lower a′ to a∗(θ′) to
strictly decrease the objective function. �

A note about inside and outside constraints on value functions

Lemma 2 allows us to easily calculate the lowest possible punishment values for any uni-
lateral deviation from truth-telling, and with this in hand we can begin to evaluate how
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the conditions for implementability come together to constrain the value function. For
the unified case, we want to know whether we can implement a value function so that v1

increases at the same rate as does γ. One way to get at this is to examine constraints on
v1(θ)− v1(θ

′) at the margin where θ and θ′ are very close, and then chain together these
inside conditions to characterize the optimal implementable value function.

Unfortunately, there are also outside conditions to examine; they give constraints on
v1(θ)− v1(θ

′) for θ and θ′ that are far apart. We demonstrate that the outside conditions
are typically tighter than the sum of the inside conditions, so a triangle inequality fails.
Thus, one cannot rely on marginal analysis to calculate bounds on implementable value
functions (a cautionary note relative to Segal and Whinston 2002).

Consider any three states satisfying θL < θM < θH, such that the optimal trade ac-
tion in state θM is interior so that a∗(θM) ∈ (a�a). Also assume that the assump-
tions for Lemma 2 hold. Using inequality (13), we have three necessary conditions for
implementation:

v1(θ
M)− v1(θ

L) ≤ γ(θM)− PEP(θL� θM)

v1(θ
H)− v1(θ

M) ≤ γ(θH)− PEP(θM� θH)

v1(θ
H)− v1(θ

L) ≤ γ(θH)− PEP(θL� θH)� (15)

Summing the first two yields

v1(θ
H)− v1(θ

L)≤ γ(θH)− PEP(θM� θH)+ γ(θM)− PEP(θL� θM)� (16)

We want to know whether (16) is a weakly tighter bound than is (15), which would
mean that the inside conditions imply the outside conditions and allow implementabil-
ity to be characterized by marginal analysis. So we must establish whether the following
triangle inequality holds:

PEP(θL� θH)+ γ(θM)≤ PEP(θL� θM)+ PEP(θM� θH)�

Expanding terms using expression (7) and Lemma 2, we get

u1(a�θ
L)+ u2(a�θ

H)+π2R(a�θ
H)+ γ(θM)

≤ u1(a�θ
L)+ u2(a�θ

M)+π2R(a�θ
M)+ u1(a�θ

M)+ u2(a�θ
H)+π2R(a�θ

H)�

which simplifies to

γ(θM)≤ u2(a�θ
M)+π2R(a�θ

M)+ u1(a�θ
M)�

This is equivalent to

γ(θM)≤U(a�θM)+π2γ(θ
M)−π2U(a�θ

M)�

which simplifies to γ(θM) ≤ U(a�θM). This inequality, coupled with Assumption 2(b),
requires that a∗(θM)= a, which contradicts what we assumed earlier.
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Proof of Theorem 2

Consider the following contract: In the message phase (date 4), player 2 must declare the
state. Let θ̂ denote player 2’s announcement. If θ̂ ≥ β, then player 1 is forced to select
a at date 6. Otherwise, player 1 is forced to choose between a∗(θ̂) and a. In this case, if
player 1 selects action a∗(θ̂), then the enforcer compels a transfer of

t̂ = (
u1(a� θ̂)− u1(a

∗(θ̂)� θ̂)�u1(a
∗(θ̂)� θ̂)− u1(a� θ̂)

)
� (17)

and if player 1 selects action a, then the transfer is t = (0�0). The forcing arrangement is
achieved by specifying a transfer of (−τ�τ) if player 1 picks any other trade action, where
τ is set large enough to keep him from doing so.

We show that this contract implements the value function vβ defined in the text.
First note that, in any state θ, if at date 4 player 2 declares the state to be θ̂ ∈ [θ�β) and
the players do not renegotiate at date 5, then player 1 obtains at least u1(a�θ) because
he has the option of choosing a with no transfer. Further, if player 1 selects a∗(θ̂), then
(from expression (17)) he gets

u1(a
∗(θ̂)� θ)+ u1(a� θ̂)− u1(a

∗(θ̂)� θ̂)�

whereas he gets u1(a�θ) by choosing a. The latter payoff weakly exceeds the former if
and only if

u1(a�θ)− u1(a
∗(θ̂)� θ)≥ u1(a� θ̂)− u1(a

∗(θ̂)� θ̂)�

From the supermodularity of u1 and given that a≥ a∗(θ̂), we know that it is rational for
player 1 to choose a in the case of θ̂ < θ and it is rational for player 1 to choose a∗(θ̂) in
the case of θ̂ > θ. Player 1 is indifferent if θ̂= θ.

We can therefore prescribe the following behavior, for any state θ.

• If player 2 declares θ̂ ∈ [θ�β), then, absent renegotiation, player 1 chooses a∗(θ̂) at
date 6.

• For any other message (either θ̂ ≥ β or θ̂ < θ), absent renegotiation, player 1
chooses a.

It is clear that, given player 1’s behavior just specified, it is optimal for player 2 to
report truthfully at date 4. For instance, in a state θ < β, if player 2 reports honestly, then
there is no renegotiation and she gets γ(θ) − u1(a�θ). If she reports a different state,
then player 1 is expected to take an ex post inefficient trade action that gives him at least
u1(a�θ), so player 2 fares less well.

With the specified behavior for the players, in any state θ < β there is no renegotia-
tion and player 1 obtains the payoff u1(a�θ). In any state θ ≥ β, the players renegotiate
away from the anticipated action of a and player 1 gets u1(a�θ)+π1R(a�θ). Thus, value
function vβ is implemented. �
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Proof of Proposition 2

Consider any two states θ′ and θwith θ′ < θ. Using Lemma 2 for the pairing (θ′� θ), which
shows that the minimum punishment value for such a pair involves inducing player 1 to
select a∗(θ′) in state θ′ and a in state θ, we have that

PEP(θ′� θ)= u1(a�θ
′)+ u2(a�θ)+π2R(a�θ)�

We use this equality to substitute for PEP in the necessary condition (13). Rearranging
terms yields the following upper bound on the value difference between the two states
for player 1:

v1(θ)− v1(θ
′)≤ π1R(a�θ)+ u1(a�θ)− u1(a�θ

′)� (18)

Consider any contract that supports the best achievable investment level θB and
let vB be the implemented value function. By definition of θB, we know that θB solves
player 1’s investment problem of maximizing vB

1 (θ)− θ.
Define β≡ θB and consider the value function vβ defined in Theorem 2. To see that

vβ supports θB (that is, θB maximizes vβ1 (θ)− θ), first observe that for any state θ < θB,
we have

v
β
1 (θ

B)− vβ1 (θ)= u1(a�θ
B)+π1R(a�θ

B)− u1(a�θ)�

so vβ meets the upper bound on player 1’s payoff difference between θ and θB, as
identified in inequality (18). Since vB also must satisfy the bound (18), we conclude
that vβ1 (θ

B)− v
β
1 (θ) ≥ vB

1 (θ
B)− vB

1 (θ) for all θ < θB. This implies that the maximizer of

v
β
1 (θ)− θmust be no less than θB.

The final step is to consider the implications of θB not maximizing vβ1 (θ) − θ. In
this case, let θ̃ > θB denote an investment that player 1 strictly prefers. We then have
v
β
1 (θ̃)− θ̃ > vβ1 (θB)− θB. Plugging in the implemented values of vβ1 , this is equivalent to

u1(a� θ̃)+π1R(a� θ̃)− θ̃ > u1(a�θ
B)+π1R(a�θ

B)− θB�

Rearranging terms, we see that this is equivalent to

π1γ(θ̃)− θ̃− [π1γ(θ
B)− θB]>π2U(a�θ

B)−π2U(a� θ̃)+ u2(a� θ̃)− u2(a�θ
B)�

It is not difficult to verify that Assumption 4(b) implies that the expression on the right
side is weakly positive and thus the expression on the left side is strictly positive. This
further implies that γ(θ̃) > γ(θB), which means that

γ(θ̃)− θ̃− [γ(θB)− θB]> 0�

contradicting that θB is the best achievable investment level. Thus, we know that θB

maximizes vβ1 (θ)− θ. �
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Proof of Proposition 3

If θ∗ is supported, then Proposition 2 implies that it is supported by the value function
vθ

∗
from Theorem 2. We then know that θ∗ maximizes vθ

∗
1 (θ)− θ by choice of θ, which

implies that inequality (2) holds for all θ < θ∗. Thus, the condition of the proposition is
necessary. Sufficiency requires not only that inequality (2) hold for all θ < θ∗, but also
that player 1 prefer not to invest θ̃ > θ∗ when vθ

∗
is the implemented value function. This

follows from the argument in the final paragraph of the proof of Proposition 2, replacing
θB with θ∗ and “best achievable” with “efficient.” �

Appendix C: Proof of Theorem 3

In this appendix, we complete the proof of Theorem 3. We start with the comparison of
V EPF and V EP and then provide the analysis for the comparison of V EP and V I.

Completion of the proof that V EPF �= V EP

We pick up from the analysis at the end of Section 5. Consider a pair of states θ1 and θ2

that satisfies Assumption 5. That is, we have θ1 > θ2 and either U(a�θ2) < U(a�θ2) or
U(a�θ1) > U(a�θ1). Let b1 denote a solution to the forcing-contract problem

min
a∈A

λ(a�a�θ1� θ2)

and let b2 denote a solution to the forcing-contract problem

min
a∈A

λ(a�a�θ2� θ1)�

It is easy to show that b1 ≥ a∗(θ1) > a and b2 ≤ a∗(θ2) < a follow from Assumptions 2(b)
and 5. We use these facts below. We demonstrate that either PEP(θ1� θ2) < PEPF(θ1� θ2)

or PEP(θ2� θ1) < PEPF(θ2� θ1) or both, which implies that V EPF �= V EP.
Let us evaluate the minimum punishment value that corresponds to the ordered

pair of states (θ1� θ2). Specifically, compare the optimal forcing-contract punishment
(forcing player 1 to select b1 in both states) with a nonforcing specification in which
player 1 is induced to select b1 in state θ1 and a in state θ2. This is a valid nonforcing
contractual specification because, by Fact 2, θ1 > θ2 and b1 > a imply (b1� a) ∈E(θ1� θ2).

If V EP = V EPF, then it must be that λ(b1� b1� θ1� θ2) ≤ λ(b1� a�θ1� θ2). Applying the
definition of λ, this is

u1(b
1� θ1)+π1R(b

1� θ1)+ u2(b
1� θ2)+π2R(b

1� θ2)

≤ u1(a�θ
1)+π1R(b

1� θ1)+ u2(a�θ
2)+π2R(a�θ

2)�

Canceling the second term on each side and using the definition of R, we arrive at

u1(b
1� θ1)+ u2(b

1� θ2)−π2U(b
1� θ2)≤ u1(a�θ

1)+ u2(a�θ
2)−π2U(a�θ

2)�
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Substituting u2(·� θ2)=U(·� θ2)− u1(·� θ2) on both sides, we have

u1(b
1� θ1)+U(b1� θ2)− u1(b

1� θ2)−π2U(b
1� θ2)

≤ u1(a�θ
1)+U(a�θ2)− u1(a�θ

2)−π2U(a�θ
2)�

Finally, rearranging this expression a bit and using π1 + π2 = 1, we conclude that
λ(b1� b1� θ1� θ2)≤ λ(b1� a�θ1� θ2) is equivalent to

u1(b
1� θ1)− u1(a�θ

1)− [u1(b
1� θ2)− u1(a�θ

2)] ≤ π1[U(a�θ2)−U(b1� θ2)]� (23)

Similarly, ordering states θ1 and θ2 in the opposite way, we compare the optimal
forcing-contract punishment (forcing player 1 to select b2 in both states) with a non-
forcing specification in which player 1 is induced to select b2 in state θ2 and a in state
θ1. Note that θ2 < θ1 and b2 < a imply (b2� a) ∈ E(θ2� θ1). If V EP = V EPF, then it must
be that λ(b2� b2� θ2� θ1) ≤ λ(b2� a�θ2� θ1), which similar algebraic manipulation reveals
to be equivalent to

u1(a�θ
1)− u1(b

2� θ1)− [u1(a�θ
2)− u1(b

2� θ2)] ≤ π1[U(a�θ1)−U(b2� θ1)]� (24)

The foregoing analysis shows that if V EPF = V EP, then expressions (23) and (24)
hold. Assumption 3 then implies that the left sides of these inequalities are nonnegative,
which implies

U(a�θ2)≥U(b1� θ2) and U(a�θ1)≥U(b2� θ1)�

Using Assumption 2(b), and that b1 > a and b2 < a, we obtain the following fact.

Fact 7. If V EPF = V EP, then U(a�θ2)≥U(a�θ2) and U(a�θ1)≥U(a�θ1).

Assumption 5 and the contrapositive of Fact 7 provide the contradiction that proves
V EPF �= V EP.

Proof that V EP �= V I

We next prove the claim about the relation between V I and V EP. Since forcing contracts
are sufficient to construct V I, we can state the following fact.

Fact 8. The minimum punishment value in the setting of interim renegotiation is char-
acterized as

PI(θ�θ′)= min
a′′∈A

u1(a
′′� θ)+ u2(a

′′� θ′)�

Remember that, by Result 2, V I = V EP if and only if PEP(θ�θ′) = PI(θ�θ′) for all
θ�θ′ ∈ �. We can again compare the minimization problems to determine if this is the
case.
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Take θ1 and θ2 as satisfying Assumption 5. Consider any solution to the minimiza-
tion problem that defines PEP(θ1� θ2) and denote it (b�b′). That is, (b�b′) solves

min
(a�a′)∈E(θ1�θ2)

u1(a
′� θ1)+π1R(a�θ

1)+ u2(a
′� θ2)+π2R(a

′� θ2)�

Then PEP(θ1� θ2)= PI(θ1� θ2) is equivalent to

u1(b
′� θ1)+π1R(b�θ

1)+ u2(b
′� θ2)+π2R(b

′� θ2)= min
a′′∈A

u1(a
′′� θ1)+ u2(a

′′� θ2)�

BecauseR(·� ·)≥ 0, we see that PEP(θ1� θ2)= PI(θ1� θ2) only if b′ solves the minimization
problem on the right side of the above equation and also R(b�θ1)=R(b′� θ2)= 0.

By Assumption 2(b), R(b′� θ2)= 0 if and only if b′ = a∗(θ2). Combining this with the
requirement that b′ must minimize u1(·� θ1)+ u2(·� θ2), we derive that

u1(a
∗(θ2)�θ1)+ u2(a

∗(θ2)�θ2)≤ u1(a
′′� θ1)+ u2(a

′′� θ2)

for all a′′. In particular, the following inequality must hold:

u1(a
∗(θ2)�θ1)+ u2(a

∗(θ2)�θ2)≤ u1(a�θ
1)+ u2(a�θ

2)�

Using the identity u2 =U − u1 and rearranging terms, we see that this is equivalent to

u1(a
∗(θ2)�θ1)− u1(a�θ

1)− [
u1(a

∗(θ2)�θ2)− u1(a�θ
2)

]
≤U(a�θ2)−U(a∗(θ2)�θ2)�

(25)

Similarly, ordering states θ1 and θ2 in the opposite way, it is necessary that a∗(θ1)

must solve PI(θ2� θ1) so that PEP(θ2� θ1)= PI(θ2� θ1). In particular, we must have

u1(a
∗(θ1)�θ2)+ u2(a

∗(θ1)�θ1)≤ u1(a�θ
2)+ u2(a�θ

1)�

This inequality is equivalent to

u1(a�θ
1)− u1(a

∗(θ1)�θ1)− [
u1(a�θ

2)− u1(a
∗(θ1)�θ2)

]
≤U(a�θ1)−U(a∗(θ1)�θ1)�

(26)

By Assumption 3, the left sides of expressions (25) and (26) must be nonnegative,
which implies both U(a�θ2) ≥ U(a∗(θ2)�θ2) and U(a�θ1) ≥ U(a∗(θ1)�θ1). From As-
sumption 2(b), we see that this is only possible if a = a∗(θ2) and a = a∗(θ1). If this is
the case, Assumption 2(b) also implies that U(a�θ2)≥U(a�θ2) and U(a�θ1)≥U(a�θ1).
Thus we obtain our last fact.

Fact 9. If V I = V EP, then U(a�θ2)≥U(a�θ2) and U(a�θ1)≥U(a�θ1).

The contrapositive of Fact 9 combined with Assumption 5 provides the contradiction
that proves V I �= V EP. �
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