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The evolution of decision and experienced utilities

Arthur Robson
Department of Economics, Simon Fraser University

Larry Samuelson
Department of Economics, Yale University

Been Down So Long It Looks Like Up To Me—Richard Fariña.

Psychologists report that people make choices on the basis of “decision utili-
ties” that routinely overestimate the “experienced utility” consequences of these
choices. This paper argues that this dichotomy between decision and experienced
utilities may be the solution to an evolutionary design problem. We examine a
setting in which evolution designs agents with utility functions that must mediate
intertemporal choices, and in which there is an incentive to condition current util-
ities on the agent’s previous experience. Anticipating future utility adjustments
can distort intertemporal incentives, a conflict that is attenuated by separating
decision and experienced utilities.

Keywords. Evolution, decision utility, experienced utility, focussing illusion.

JEL classification. D11, D3.

1. Introduction

People who contemplate living in California routinely report that they expect to be sig-
nificantly happier there, primarily on the strength of California’s blissful weather. Peo-
ple who actually live in California are no happier than the rest of us (Schkade and Kah-
neman 1998). Far from being a California quirk, this “focussing illusion” is sufficiently
widespread as to prompt the conclusion that “Nothing . . . will make as much difference
as you think” (Schkade and Kahneman 1998, p. 345).1
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1The term “focussing illusion” (e.g., Loewenstein and Schkade 1999) refers to a tendency to overestimate
either the salutary or detrimental effects of current choices. This phenomenon was thrust into the spotlight
by Brickman et al.’s (1978) study of lottery winners and paraplegics, and has become the subject of a large
literature. See Loewenstein and Schkade (1999) for an introduction and Gilbert (2007) for an entertaining
popular account. Attention has also been devoted to the related prospect that people may exhibit a projec-
tion bias (Loewenstein et al. 2003, Conlin et al. 2007). An agent exhibits a projection bias if he expects his
future preferences to be more similar to his current preferences than is actually the case.
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Psychologists interpret these findings by drawing a distinction between decision util-
ity and experienced utility (e.g., Kahneman and Thaler 2006). Decision utilities are the
utilities that determine (or at least describe, in a revealed-preference interpretation) our
choices. For Schkade and Kahneman (1998), these are the relevant utilities when people
contemplate moving to California. Experienced utilities are the rewards we realize once
the choices are made. For Schkade and Kahneman, these are reflected in the satisfaction
reports from people living in California. The focussing illusion, in driving a wedge be-
tween these two utilities, raises the troubling possibility that people may make incorrect
decisions on the basis of utilities that systematically overestimate the consequences of
those decisions.

Experienced utilities are of no interest to a fiercely neoclassical economist—decision
utilities suffice to describe behavior. However, if we are to consider welfare questions,
the difference may be important. If experienced utilities do not match decision utilities,
should we persevere with the standard economists’ presumption that decision utilities
are an appropriate guide to well-being? Alternatively, should we exhort people to work
more diligently to discern their future experienced utilities, and then use these to over-
ride their decision utilities (as Schkade and Kahneman 1998 imply)? If the focussing
illusion is widespread, should we not embrace a crusade to “correct” the utilities that
shape decisions?

We adopt a positive perspective in this paper, answering the following question: Why
might we have both decision and experienced utilities in the first place? We take an evo-
lutionary approach. We assume that evolution has equipped agents with utility func-
tions designed to induce fitness-maximizing choices. An agent in our model must make
choices in each of two periods that (along with random events) determine his fitness.
Moreover, these choices give rise to an intertemporal trade-off, in the sense that the op-
timal second-period choice depends on the alternative chosen in the first period. The
first-period choice may determine the agent’s health or wealth or skill or status, for ex-
ample, which may in turn affect how aggressive the agent should be in seeking second-
period consumption. Evolution equips the agent with a first-period utility function, pro-
viding the decision utilities that shape the first-period choice. Evolution also equips the
agent with a second-period utility function. This is the agent’s experienced utility, but it
is also the relevant decision utility for the second period. It differs from the first-period
decision utility because it conditions on the first-period choice and on the resolution of
the first-period uncertainty.2 We show that, in general, the decision utility that shapes
the first-period choice does not match the resulting second-period experienced utility.
Evolution systematically misleads the agent as to the future implications of his choices.

Why should evolution build an agent to do anything other than maximize fitness,
without resorting to conflicting utility notions? Evolution’s design problem is compli-
cated by two constraints. First, there are limits on the size (how large and how small)

2It is relevant in this connection that Carter and McBride (2009) argue that experienced utility has em-
pirical properties similar to decision utility.



Theoretical Economics 6 (2011) Evolution of utilities 313

of the hedonic utilities evolution can give us.3 By themselves, bounds on utility pose
no obstacles. All that matters is that better alternatives get higher utilities, and we can
accommodate this no matter how tight the range of possible utilities. However, our sec-
ond assumption is that the agent is likely to make mistakes when utilities are too close.
When alternative 1 provides only a slightly higher utility than alternative 2, the agent
may mistakenly choose alternative 2. As a result, there is an evolutionary advantage to
having the utility function be as steep as possible, so that the agent is dealing with large
utility differences that seldom induce mistakes. This goal conflicts with the bounds on
utility. Evolution’s response is to make the utility function very steep in the range of de-
cisions the agent is most likely to face, where such steepness is particularly important
in avoiding mistaken decisions, and to make it relatively flat elsewhere. For this is to be
effective, the steep spot of the utility function must be in the right place. In the second
period, the “right place” depends on what happens in the first period. Evolution thus has
an incentive to adjust second-period “experienced” utilities in response to first-period
outcomes. But if this is to be done without distorting first-period decisions, the agent
must not anticipate this adjustment—the experienced utilities guiding second-period
decisions must not match the decision utilities shaping first-period decisions.

Robson (2001a) argues that utility bounds and limited discrimination between utili-
ties induce evolution to strategically position the steep part of the utility function. Rayo
and Becker (2007) develop this idea in a model that provides the foundation for our
work.4 Section 2.2 provides details.

Section 2 introduces the evolutionary environment. Section 3 examines decision
and experienced utilities in a simple special case, allowing us to clearly isolate the rele-
vant forces; the analysis is generalized in Section 4. Section 5 considers extensions and
implications.

2. The setup

2.1 The evolutionary environment

There are two periods. The agent makes a choice x1 in the first period and a choice x2 in
the second period. These choices would be multidimensional in a more realistic model,
but here are taken for simplicity to be elements of [0�1]. Whenever it is helpful to convey
intuition, we (temporarily) adopt particular interpretations of x1 and x2, such as levels of
first-period and second-period consumption or, somewhat less precisely, as a decision
to move to California (or not) and a subsequent decision of how much time to spend
surfing (whether in California or Iowa). We recognize that our stark one-dimensional
variables cannot capture all the subtleties of such decisions.

3In taking this position, we are following much of the current literature in behavioral economics in view-
ing utility maximization as a neurological process by which we make choices, rather than simply a descrip-
tion of consistent choices. In particular, our view is that utilities are induced by chemical processes within
our brains that are subject to physical constraints.

4Tremblay and Schultz (1999) provide evidence that the neural system encodes relative rather than ab-
solute preferences, as might be expected under limited discrimination. See Friedman (1989) for an early
contribution, and Netzer (2009) and Wolpert and Leslie (2009) for more recent work.
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The agent’s fitness is determined by his choices x1 and x2 as well as the realizations
s1 and s2 of environmental shocks in the first and second periods. For example, the
agent’s health may depend not only on effort he invests in procuring food, but also on
vagaries of the weather or the stock market that affect the productivity of these efforts.
The agent’s first-period choice x1 must be made in ignorance of the realization s1, while
x2 is chosen knowing s1 but not s2.

Evolution designs the agent to maximize total fitness. In the absence of any con-
straints, this design problem is trivial. The fitness-maximization problem has a max-
imizer (x∗

1�x
∗
2(·)), where x∗

2(·) is the optimal mapping from first-period outcomes to
second-period choices. Why does evolution not simply “hard-wire” agents to make this
optimal decision?

The point of departure for our analysis is the assumption that evolution cannot hard-
wire the alternative (x∗

1�x
∗
2(·)), as trivial as this sounds in the context of this model. Our

interpretation here is that what it means to choose a particular value of x1 or x2 changes
with the context in which the decision is made. The agent’s choice may consist of an in-
vestment in status that sometimes involves hiding food and other times involves acquir-
ing education, that sometimes involves cultivating social relationships with neighbors
and other times involves driving neighbors away. Moreover, the relevant context fluc-
tuates too rapidly for evolution to adapt. The dominant form of investment can change
from clearing fields to learning C++ too quickly for mutation and selection to keep pace.
As a result, evolution must recognize that the agent frequently faces problems that are
novel from an evolutionary perspective.5

To capture this constraint, we need to specify the technology by which the agent’s
decisions are converted into fitnesses. Our point of departure is the relationship

z = z1 + δz2�

defining the agent’s realized total fitness z as the sum of realized first-period fitness z1
and the discounted value of realized second-period fitness z2, with the discount factor δ
perhaps reflecting a nonunitary survival probability. At this point, however, we note that
it requires only a change in the units in which z and z1 are measured to normalize the
discount factor to be unity, and hence to rewrite this equation as z = z1 + z2. This signif-
icantly simplifies the subsequent notation, so we adopt this convention throughout. We
then write

z = z1 + z2 (1)

= [f1(x1)+ s1] + [γz1 + f2(x1�x2)+ s2]� (2)

5Rayo and Becker (2007) similarly confront the question of why evolution cannot hard-wire agents to
make optimal choices. They assume that the evolutionarily optimal action depends on an environmental
state and that there are so many possible values of this state that it is prohibitively expensive for evolution
to hard-wire the agent to condition actions on every value. Our assumption that the state is entirely novel
is equivalent, differing from Rayo and Becker primarily in emphasis. Rayo and Becker explicitly include the
state variable within their model, while, to simplify the notation, we sweep it into the background, simply
assuming that evolution cannot dictate optimal choices. Their simplest model, which corresponds to our
basic model, then makes the analysis more tractable by assuming that the state variable affects optimal
actions but not maximal fitness.
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The first line presents our normalized accounting of fitness. The second line indicates
that first-period fitness is a quasilinear function of the first-period action x1 and realiza-
tion s1. For example, x1 may reflect an investment in skills and z1 denote the resulting
expertise, or x1 may reflect actions taken in pursuit of status and z1 denote the resulting
place in the social order. Second-period fitness is similarly a quasilinear function of the
second-period action x2 and realization s2, and also is a function of both the first-period
action x1 and fitness z1. A relatively large value of x1 may reflect a first-period invest-
ment that enhances the productivity of x2 in the second period. In addition, a relatively
large first-period fitness z1 may carry over directly into a higher second-period fitness,
regardless of how z1 is achieved. An agent who is better nourished in the first period
may enjoy the salutary effects of good health in the second. Section 5.2 describes how
quasilinearity can be generalized.

Technically, the key distinction is that, while evolution cannot attach utilities to the
agent’s choices x1 and x2, it can attach utilities to total fitness z.6 That is, Nature “recog-
nizes” the fitness consequences of the choices of x1 and x2, but is not familiar with these
choices directly and also cannot then “understand” how these choices induce such fit-
ness consequences via the functions f1(·) and f2(·). Nature must then delegate novel
aspects of the problem to the agent, while retaining the power to set the way in which
fitness is rewarded. Times have changed too quickly for evolution to attach utility to
passing through the drive-through breakfast line in the morning, but it can reward the
attendant slaking of hunger.

We assume the expected fitnesses f1 and f2 are strictly concave. This ensures the ex-
istence of unique expected fitness maximizers x∗

1 and x∗
2(x1), which we take to be inte-

rior. We assume that s1 and s2 are realizations of independent random variables s̃1 and s̃2

with zero means and with differentiable, symmetric unimodal densities g1 and g2 on
bounded supports, with zero derivatives only at 0. Our results go through unchanged,
and with somewhat simpler technical arguments, if s̃1 and s̃2 have unbounded supports.

Finally, we should be clear on our view of evolution. We adopt throughout the lan-
guage of principal–agent theory, viewing evolution as a principal who “designs” an in-
centive scheme so as to induce (constrained) optimal behavior from an agent. However,
we do not believe that evolution literally or deliberately solves a maximization problem.
We have in mind an underlying model in which utility functions are the heritable fea-
ture that defines an agent. These utility functions give rise to frequency-independent
fitnesses. Under a simple process of natural section that respects these fitnesses, ex-
pected population fitness is a Lyapunov function, ensuring that the type that maximizes
expected fitness will dominate the population (cf. Hofbauer and Sigmund 1998). If the
mutation process that generates types is sufficiently rich, the outcome of the evolution-
ary process can then be approximated by examining the utility function that maximizes
expected fitness, allowing our inquiry to focus on the latter.

6Fitness may be a function of factors such as status or food that have long evolutionary pedigrees in
improving reproductive outcomes, though such goods are still only intermediate to the final production of
offspring. See Robson (2001b).
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2.2 Utility functions

Evolution can endow the agent with nondecreasing utility functions V1(z) and V2(z|z1).
In the first period, the agent considers the realized total fitness z produced by the agent’s
first-period and anticipated second-period choice, reaping utility V1(z). In the second
period, the agent’s choice induces a realized total fitness z and, hence, corresponding
utility V2(z|z1). Notice, in particular, that evolution can condition second-period utilities
on the realization of the first-period intermediate fitness z1. Through the technology
given by (1)–(2), V1 and V2 implicitly become utility functions of x1, x2, s1, and s2.7

To interpret these utility functions, let us return to our moving-to-California deci-
sion. We think of V1(z) as representing the first-period utility the agent contemplates
should he move to California, taking into account his projections of how much surf-
ing he will do once there; V2(z|z1) is the second-period utility the agent uses to make
second-period choices, once he has moved to California. We think of the former as the
decision utility mediating the first choice, and think of the latter as the resulting experi-
enced utility. If these functions are identical, we have no focussing illusion.

In the absence of any additional constraints (beyond the inability to write utilities
directly over x1 and x2), evolution’s utility-function design problem is still trivial; it needs
only to give the agent the utility functions

V1(z) = z

V2(z|z1) = z�

As straightforward as this result is, we believe it violates crucial evolutionary constraints
that we introduce in two steps. Our first assumption is that evolution faces limits on
how large or small a utility it can induce. Our view here is that utilities must be pro-
duced by physical processes, presumably the flow of certain chemicals in the brain. The
agent makes choices leading to a fitness level z and receives pleasure from the resulting
cerebral chemistry. There are then bounds on just how strong (or how weak) the result-
ing sensations can be. Without loss, we assume that utilities must be drawn from the
interval [0�1].8

The constraint that utilities be drawn from the unit interval poses no difficulties by
itself. Essentially, evolution needs simply to recognize that utility functions are unique
only up to linear transformations. In particular, in this case, evolution needs only to
endow the agent with the utility functions

V1(z) = A+Bz

V2(z|z1) = A+Bz�

7We could suppose that the agent does not initially know the functions f1 and f2. Instead, he simply
learns which values of x1 and x2 lead to high utilities, in the process coming to act “as if” he “knows” the
functions f1 and f2.

8Evidence for bounds on the strength of hedonic responses can be found in studies of how the firing
rate of neurons in the pleasure centers of the brain responds to electrical stimulation. Over an initial range,
this response is roughly linear, but eventually high levels of stimulation cause no further increase. See, for
example, Simmons and Gallistel (1994).



Theoretical Economics 6 (2011) Evolution of utilities 317

where A and B are chosen (in particular, with B sufficiently small) so as to ensure that
utility is drawn from the unit interval, no matter what the feasible values of x1, x2, s1,
and s2 are.

We now add a second constraint to evolution’s problem: there are limits to the abil-
ity of the agent to perceive differences in utility. When asked to choose between two
alternatives whose utilities are very close, the agent may be more likely to choose the
alternative with the higher utility, but is not certain to do so. This is in keeping with our
interpretation of utility as reflecting physical processes within the brain. A very slightly
higher dose of a neurotransmitting chemical may not be enough to ensure the agent
flawlessly chooses the high-utility alternative, or there may be randomness in the chem-
ical flows themselves.9 In particular, we assume that there is a possibly very small εi > 0
such that in each period i, the agent can be assured only of making a choice that brings
him within εi of the maximal utility. We are then especially interested in the limits as the
utility errors εi → 0. It may well be, of course, that such errors are not small in practice.
However, we are interested in the role of utility constraints in driving a wedge between
decision and experienced utilities, and are especially interested in the possibility that
such a wedge arises despite arbitrarily small errors.

We refer to V1(z) as the agent’s first-period decision utility, since it mediates the
agent’s decision in the first period. We refer to V2(z|z1) as the agent’s second-period
decision utility, since it again mediates the agent’s decision (this time in the second pe-
riod), but we also refer to this as the agent’s experienced utility, since it is the utility with
which the agent ends the decision making process. How do we interpret these utilities?
Earlier in this section, we motivated the constraints on utilities as reflecting physical
constraints on our neurochemistry. We ascribe to the common view in psychology that
humans are ultimately motivated by physically rooted favorable or unfavorable brain
sensations, referred to as hedonic utilities.

In the first period, we might think of V1(z) as the agent’s anticipated utility, given his
actions. Is anticipated utility itself hedonic? Does anticipating utility V1(z) induce anal-
ogous brain processes to those generated by actually securing utility V1(z)? If it does,
what is the means by which anticipated utility is kept distinct from utility that reflects
current pleasure? If anticipated utility is not hedonic, how does it provide incentives? Is
it a purely intellectual calculation of future hedonic utilities?

Notice that precisely the same issues arise when thinking about the second-period
utility V2(z|z1), although the time scale is somewhat abbreviated. Utility V2(z|z1) is the
utility the agent anticipates, given his second-period action. The action x1 and the real-
ization s1 are now known. However, second-period decisions must still be made before
s2 is realized and z is finally determined, and hence must be guided by anticipation of
the resulting utility V2. Indeed, decisions about what to consume, in general, precede

9Very small utility differences pose no problem for classical economic theory, where differences in utility
indicate that one alternative is preferred to another, with a small difference serving just as well as a large
one. However, it is a problem when utilities are induced via physical processes. The psychology literature
is filled with studies documenting the inability of our senses to reliably distinguish between small differ-
ences. (For a basic but vivid textbook treatment, see Foley and Matlin 2009.) If the difference between two
chemical flows is arbitrarily small, we cannot be certain that the agent invariably chooses the larger.
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the consumption itself, even if the delay is small. The consumption itself may pay off
with a flow of hedonic utility, but the decision must be made in anticipation of this flow.

Although neuroscience is currently unable to explain in full detail how anticipated
outcomes (over spans of more than a few seconds) affect brain activity and behavior, we
adopt the hypothesis that both V1 and V2 are anticipated hedonic utilities. Accordingly,
the values of these functions are bounded. Furthermore, we assume their expectations
are subject to limits on the power to make fine distinctions.

We allow V1(z) and V2(z|z1) to be unequal. However, as we explain in Section 3.4, the
two utilities are optimally closely related. Outcomes that lead to larger values of V1(z)

also tend to lead to larger expected values of V2(z|z1). However, our interest lies in the ex-
tent to which this correlation is not perfect. An agent motivated to make first-period in-
vestments in anticipation of high second-period utilities may indeed obtain some high
utilities, but they will, in general, be smaller than expected, as evolution capitalizes on
the agent’s first-period decisions to set more demanding second-period utility targets.

The twin building blocks of our analysis—that utilities are constrained and imper-
fectly discerned—appear in Robson (2001b) and, more formally, in Rayo and Becker
(2007). Rayo and Becker’s model is essentially static, while at the heart of our model
are the intertemporal links in the fitness technology. In Rayo and Becker, evolution is
free to adjust utilities in response to information about the environment without fear of
distorting incentives in other periods. In our case, the agent’s period-1 choice has im-
plications for both period-1 and period-2 fitnesses, and depends on both period-1 and
period-2 utilities. Evolution thus adjusts period-2 utilities to capitalize on the informa-
tion contained in period-1 outcomes, in the process creating more effective period-2
incentives, only at the cost of distorting period-1 incentives, giving rise to a more com-
plicated utility-design problem.

3. A simple case

3.1 Separable decisions

We start with a particularly simple special case, allowing us to isolate the origins of the
difference between decision and experienced utilities. Suppose that realized fitness is
given by

z = z1 + z2 (3)

= f1(x1)+ s1 + [γz1 + f2(x2)+ s2]� (4)

where s1 and s2 are again realizations of random variables. The key feature here is that
the optimal value of x2 is independent of x1 and z1. Nothing from the first period is rele-
vant for determining the agent’s optimal second-period decision. That is, second-period
fitness depends on x2 through the function f2(x2), rather than through the f2(x1�x2)

that appears in (2). This simplifies the derivation considerably. Notice, however, that
second-period fitness still depends on the first-period outcome, and this suffices for a
focussing illusion.
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3.2 The second period

It is natural to work backward from the second period. The agent enters the second
period having made a first-period choice x1 and realized a first-period fitness of z1.

The agent chooses x2 to maximize the second-period utility function V2(z|z1). How-
ever, the agent is not flawless in performing this maximization. In particular, the agent
cannot distinguish utility values that are within ε2 of one another. As a result, when
evaluating the utilities that various alternatives x2 might produce, the agent cannot be
assured of choosing the maximizer x∗

2 of Es̃2V2(z1 + (γz1 +f2(x2)+ s̃2)|z1). Instead, when
evaluating actions according to the utilities they engender, he views as essentially equiv-
alent any action x2 yielding an expected utility within ε2 of the maximum, i.e., any x2

with the property that

Es̃2V2
(
z1 + (γz1 + f2(x

∗
2)+ s̃2)|z1

) −Es̃2V2
(
z1 + (γz1 + f2(x2)+ s̃2)|z1

) ≤ ε2�

This gives rise to a satisficing set [x2�x2], where x2 < x∗
2 < x2 and

Es̃2V2((1 + γ)z1 + f2(x2)+ s̃2|z1) = Es̃2V2((1 + γ)z1 + f2(x2)+ s̃2|z1) (5)

= Es̃2V2((1 + γ)z1 + f2(x
∗
2)+ s̃2|z1)− ε2� (6)

To keep things simple, we assume the agent chooses uniformly over this set.10

It would be more realistic to model the utility perception error ε2 as being propor-
tional to the maximized expected fitness, rather than as an absolute error. Doing so
has no substantive effect on our analysis. In particular, we can interpret ε2 as the “just
noticeable difference” in utilities induced by the equilibrium of the proportional-errors
model, and then simplify the notation by writing the constraints as in (5)–(6), while re-
taining the proportional interpretation of the errors.

Evolution chooses the utility functions V2 to maximize fitness, subject to (5)–(6). We
summarize the result of this maximization process with the following lemma.

Lemma 1. There exists a function Ẑ2(z1) such that the optimal second-period utility func-
tion satisfies

V2(z|z1) = 0 for all z < Ẑ2(z1)

V2(z|z1) = 1 for all z > Ẑ2(z1)�

In the limit as ε2 → 0, Ẑ2(z1) → (1 + γ)z1 + f2(x
∗
2) and the agent’s second-period choice

x2 approaches x∗
2.

We thus have a bang–bang utility function, equal to 0 for small fitnesses and equal
to 1 for large fitnesses. The bang–bang limiting character of this utility function may ap-
pear extreme, dooming the agent to being either blissfully happy or woefully depressed.
Notice, however, that the expected utilities with which the agent evaluates his choices

10More generally, we need the agent to choose from the satisficing set in a sufficiently regular way that an
increase in x2 and the associated decrease in x2 increase the expected fitness induced by the agent’s choice.
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do not have this property. The expected utility function Es̃2V2((1 + γ)z1 + f1(x2)+ s̃2|z1)

is a continuous function of x2 (given x1 and z1).
The striking feature of this utility function is that the value Ẑ depends on z1. This

allows evolution to adjust the second-period utility function so as to exploit its lim-
ited range most effectively, minimizing the incidence of mistaken decisions. If the first-
period value of z1 is especially high, then the values of z over which the agent is likely
to choose in the second period will similarly be relatively large. Evolution accordingly
adjusts the second-period utility function so that variations in relatively large values of
fitness give rise to relatively large variations in utility. If instead z1 is small, the values of
z over which the agent will choose in the second period will similarly be relatively small,
and evolution again adjusts the utility function, this time attaching relatively large vari-
ations in utility to variations in relatively small fitness levels. Intuitively, this allows evo-
lution to adjust the steep part of second-period expected utility to occur in the range
of decisions likely to be relevant in the second period, in the process strengthening the
second-period incentives. This lays the foundation for a focussing illusion.

To prove Lemma 1, we note that in the second period, the agent chooses from the
satisficing set [x2�x2]. The agent’s second-period fitness is higher the smaller is the sat-
isficing set [x2�x2] or, equivalently, the larger are f2(x2) and f2(x2).

Let f 2 be the expected fitness the agent reaps from a choice at the boundary of this
set (and hence f 2 = f2(x2) = f2(x2), where the second equality follows from (5)–(6) and
the fact that Es̃2V2 is strictly increasing in f2). Let f ∗

2 be the expected fitness from the
biologically optimal choice, so that f ∗

2 = f2(x
∗
2).

The problem is then one of maximizing f 2, subject to the constraints given by (5)–(6).
The constraints given by (5)–(6) can be written as11

ε2 =
∫

V2(z|z1)
[
g2

(
z − [(1 + γ)z1 + f ∗

2 ]) − g2
(
z − [(1 + γ)z1 + f 2]

)]
dz� (7)

Now let us fix a candidate value f 2 and ask if it could be part of an optimal solution.
If we choose a utility function V2(z|z1) so as to make the right side of (7) exceed ε2,
then the candidate value f 2 gives us slack in the constraints (5)–(6), and the utility func-
tion in question, in fact, induces a larger value of f 2 than our candidate (since the right
side of (7) is decreasing in f 2). This implies that our candidate value does not corre-
spond to an optimal utility function. Hence, the optimal utility function must maximize
the right side of (7) for the optimal value f 2, in the process giving a maximum equal
to ε2. We now need to note only that (7) is maximized by setting the utility V2(z|z1)

as small as possible when g2(z − [(1 + γ)z1 + f ∗
2 ]) − g2(z − [(1 + γ)z1 + f 2]) < 0 and

by setting the utility V2(z|z1) as large as possible when this inequality is reversed, and
hence the optimal utility function must have this property. Because g2 has a sym-
metric, unimodal density with nonzero derivative (except at 0), there is a threshold

11We can reduce (5)–(6) to a single constraint because f2(x2) = f2(x2) = f 2. To arrive at (7), we first
expand the expectations in (5)–(6) to obtain

ε2 =
∫

V2((1 + γ)z1 + f ∗
2 + s2|z1)g2(s2)ds2 −

∫
V2((1 + γ)z1 + f 2 + s2|z1)g2(s2)ds2�

A change of the variable of integration from s2 to z then gives (7).
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Ẑ2(z1) ∈ [(1 +γ)z1 + f 2� (1 +γ)z1 + f ∗
2 ] such that these differences are negative for lower

values of z and positive for higher values of z. This gives us a utility function V2(z|z1)

that takes a jump from 0 to 1 at Ẑ2(z1). As ε2 → 0 and hence the agent’s satisficing set
shrinks, Ẑ2(z1) converges to (1 + γ)z1 + f ∗

2 and the agent flawlessly maximizes f2(x2) by
choosing x∗

2. This establishes Lemma 1.
To acquire some intuition, notice that the optimal utility function exhibits features

that are familiar from principal–agent problems. In particular, consider a hidden-action
principal–agent problem with two effort levels. A standard result is that the optimal
payment attached to an outcome is increasing in the outcome’s likelihood ratio or (in-
tuitively) in the relative likelihood of that outcome having come from high versus low
effort. Much the same property appears here. Evolution prefers expected utility to fall
off as rapidly as possible as the agent moves away from the optimal decision x∗

2, thereby
“steepening” the utility function and reducing the possibility of a mistakenly suboptimal
choice. Evolution does so by attaching high payments to fitnesses with high likelihood
ratios or (intuitively) outcomes that are relatively likely to have come from an optimal
rather than a suboptimal choice.

The key property in characterizing the utility function in our case is then a single-
crossing property, namely that the relevant likelihood ratios fall short of 1 for small fit-
nesses and exceed 1 for large fitnesses. The likelihood comparison appears in difference
rather than ratio form in (7), but the required single-crossing property is implied by the
familiar monotone likelihood ratio property that g2(z − α)/g2(z) is increasing in z for
α> 0.

3.3 The first period

Now let us turn attention to the first period. For simplicity, while examining our special
case, we take the limit ε2 → 0 before considering the optimal first-period utility function.

The agent has a utility function V1(z) with V1 ∈ [0�1]. In addition, the agent cannot
distinguish any pair of choices whose expected utilities are within ε1 > 0 of each other.
This again leads to a random choice from a satisficing set [x1�x1], where (letting f1(x1) =
f1(x1) = f 1 and f ∗

1 = f1(x
∗
1))

Es̃1�s̃2V1
(
f 1 + s̃1 + [γ(f 1 + s̃1)+ f ∗

2 + s̃2]
)

=Es̃1�s̃2V1
(
f ∗

1 + s̃1 + [γ(f ∗
1 + s̃1)+ f ∗

2 + s̃2]
) − ε1�

(8)

In the first period, the agent randomizes uniformly over the set [x1�x1]. Evolution
chooses the utility function V1(z) to maximize expected fitness, subject to (8).

The first-period utility-design problem again leads to a bang–bang function in re-
alized utilities, with the expected utility function Es̃1�s̃2V1(f1(x1) + s̃1 + [γ(f1(x1) + s̃1) +
f ∗

2 + s̃2]) again being a continuous function of x1.

Lemma 2. There exists a value Ẑ1 such that the optimal first-period utility function is
given by

V1(z) = 0 for all z < Ẑ1

V1(z) = 1 for all z > Ẑ1�
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In the limit as ε1 → 0, we have Ẑ1 → (1 + γ)f ∗
1 + f ∗

2 and the agent’s first-period choice x1
approaches x∗

1.

We do not offer a proof here, as this result is a special case of Lemma 4, which is
proven in Section A.1. The ideas behind this result parallel those of the second period.
Evolution creates the most effective incentives by attaching utilities as large as possible
to those fitnesses that are relatively more likely to have come from the optimal first-
period choice, and attaching utilities as small as possible to fitnesses that are relatively
more likely to have come from a suboptimal first-period choice.

3.4 A focussing illusion

We now compare the agent’s decision and experienced utilities: Are the utilities guid-
ing the agent’s decision the same as those the agent will experience when the resulting
outcome is realized?

To answer this question, suppose the agent considers the possible outcome (x1� s1�

x2� s2). For example, the agent may consider moving to California (the choice of x1),
learning to surf (the choice of x2), finding a job (the realization s1), and enjoying a cer-
tain amount of sunshine (the realization s2). Let us create the most favorable conditions
for the coincidence of decision and experienced utilities by assuming the agent correctly
anticipates choosing x2 = x∗

2 in the second period. Then fix x1 and look at utility as s1 and
s2 vary. If the outcome considered by the agent gives (1 + γ)[f1(x1)+ s1] + f2(x2)+ s2 >

Ẑ1, then he attaches the maximal utility of 1 to that outcome. However, if the scenario
contemplated by the agent at the same time involves a value s2 < 0 (the agent con-
templates a good job realization and hence a success without relying on outstanding
weather), then his realized experienced utility will be 0, since then

z = (1 + γ)z1 + f2(x
∗
2)+ s2 < (1 + γ)z1 + f2(x

∗
2) �⇒ V2(z|z1) = 0�

The agent’s decision utility of 1 thus gives way to an experienced utility of 0.
Alternatively, if the agent considers a situation where (1 + γ)[f1(x1)+ s1] + f2(x2) +

s2 < Ẑ1, then this generates a decision utility level of 0. However, if, at the same time,
s2 > 0, his experienced utility will be 1.

The agent’s decision and experienced utilities thus sometimes agree, but the agent
sometimes believes he will be (maximally) happy, only to end up miserable, and some-
times he believes at the start that he will be miserable, only to turn out happy. The agent
is mistaken about his experienced utility whenever his utility projection depends more
importantly on the first-period choice than second-period uncertainty (i.e., anticipating
a good outcome because he is moving to a great location, regardless of the weather, or
anticipating a bad outcome because his location is undesirable, despite good weather).
The agent’s decision utilities fail to take into account that once the first-period choice
has been realized, his utility function adjusts to focus on the second period, bringing
second-period realizations to heightened prominence.

Could this focussing illusion in realized outcomes be washed out in the process of
taking expected values? Suppose we know simply that the agent contemplates a first-
period utility V1(z) for some specific z. What expectations should we have concerning
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Figure 1. First-period decision utility function V1(z) and expected experienced utility
Es̃1�s̃2{V2(z|z̃1)|z} as a function of z. Observations of small decision utilities, on average, give
way to larger experienced utilities, while large decision utilities, on average, give way to smaller
experienced utilities, giving rise to a focussing illusion.

this person’s second-period utility? Let us suppose the agent chose x∗
1 in the first period

and chooses x∗
2 in the second, both because we expect to observe people who have made

optimal choices (given their decision utilities) and because the continued existence of
the focussing illusion in the presence of optimal choices is of key interest. This leaves
us uncertain as to the likely values of s1 and s2. We can let Es̃1�s̃2{V2(z|z̃1)|z} represent
our expectation of the agents’ second-period utility, given the observation of z. Then, in
general,

V1(z) �= Es̃1�s̃2{V2(z|z̃1)|z}
= Pr{V2(z|z̃1) = 1|z}
= Pr{s̃2 ≥ 0|z}�

The larger is z, the more likely it is that s̃2 > 0. As a result, Es̃1�s̃2{V2(z|z̃1)|z} increases
from 0 to 1 as z increases from its minimum to its maximum value. Figure 1 illustrates
this. An agent’s view of the utilities guiding his first-period decisions thus gives way to a
more moderate view of second-period experienced utilities.

3.5 Generalization?

Section 4 extends the analysis to the more general technology given by (1)–(2). This
subsection motivates this extension.

We assume that evolution writes first-period and second-period utility functions of
the form V1(z) and V2(z|z1), i.e., that evolution must attach utilities to total fitnesses.
Given the separable technology in (3)–(4), this formulation is restrictive. If we are able to
make first-period utility a function of first-period fitness z1 (rather than total fitness z),
evolution can do no better than to give the agent the utility functions (in the limit as
ε1 → 0 and ε2 → 0)

V1(z1) = 0 for all z1 < ẑ1 = f ∗
1

V1(z1) = 1 for all z1 > ẑ1 = f ∗
1



324 Robson and Samuelson Theoretical Economics 6 (2011)

V2(z|z1) = 0 for all z < Ẑ2(z1) = (1 + γ)z1 + f ∗
2

V2(z|z1) = 1 for all z > Ẑ2(z1) = (1 + γ)z1 + f ∗
2 �

In particular, there is no need to trouble the agent with second-period implications
when the agent is making his first-period choice, as the first-period action x1 has no
second-period implications.

Do we still have a focussing illusion here? On the one hand, the second-period util-
ity cutoff Ẑ2(z1) adjusts in response to first-period realized fitness z1, ensuring that the
agent often encounters second-period fitness realizations that do not match his pre-
vious expectation of second-period utility. However, only first-period outcomes and
utilities shape the first-period choice. Although we still have a focussing illusion, it is
irrelevant for the choices that must be made.

This utility-design procedure does not work with the more general technology given
by (1)–(2) or indeed with any technology in which not only z1, but also the first-period
choice x1, enters the second-period fitness. It no longer suffices to simply design the
agent to maximize the expected value of first-period fitness z1, as the agent must trade
off higher values of z1 with the second-period implications of x1. In particular, maximiz-
ing total fitness may require settling for a lower value of expected first-period fitness, so
as to invest in a level of x1 that boosts expected second-period fitness. Evolution must
then make utility a function of total fitness if the agent is to effectively balance intertem-
poral trade-offs. We examine this more general model in the following section.

4. The general case

We now turn to the complete analysis, featuring the technology given by (1)–(2). The
ideas are familiar from Section 3, with some additional technical details.

4.1 The second period

Once again, the agent enters the second period having made a choice x1 and realized a
first-period fitness of z1. The agent cannot distinguish any pair of second-period choices
whose expected utilities are within ε2 > 0 of each other. Hence, instead of certainly
choosing the maximizer x∗

2(x1) of Es̃2V2(z1 + (γz1 + f2(x1�x2)+ s̃2)|z1) in the second pe-
riod, the agent may choose any x2 that yields an expected utility within ε2 of this level,
i.e., any x2 with the property that

Es̃2V2
(
z1 + (

γz1 + f2(x1�x
∗
2(x1))+ s̃2

)|z1
) −Es̃2V2

(
z1 + (γz1 + f2(x1�x2)+ s̃2)|z1

) ≤ ε2�

This gives rise to a satisficing set [x2�x2], where x2 < x∗
2(x1) < x2 and

Es̃2V2((1 + γ)z1 + f2(x1�x2)+ s̃2|z1)

= Es̃2V2((1 + γ)z1 + f2(x1�x2)+ s̃2|z1) (9)

= Es̃2V2
(
(1 + γ)z1 + f2(x1�x

∗
2(x1))+ s̃2|z1

) − ε2� (10)

Evolution chooses the utility functions V2 to maximize fitness, subject to (9)–(10).
We summarize the result of this maximization process with the following lemma.
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Lemma 3. There exist functions Z2(z1) and Z2(z1), with Z2(z1) ≤ Z2(z1), such that the
optimal second-period utility function satisfies

V2(z|z1) = 0 for all z < Z2(z1)

V2(z|z1) = 1 for all z > Z2(z1)�

In the limit as ε2 → 0, the agent’s second-period choice x2 approaches x∗
2(x1).

Notice that if ε1 > 0, then x1 arises out of random satisficing behavior in the first
period, but nonetheless the second-period choice (when ε2 → 0) is x∗

2(x1), for each real-
ization x1. Lemma 3 leaves open the question of how the utility function is specified on
the potentially nonempty interval (Z2(z1)�Z2(z1)). In the course of examining the first
period, we show that this gap shrinks to 0 as does ε1, the first-period utility-perception
error. In particular, the gap (Z2(z1)�Z2(z1)) arises because evolution faces uncertainty
concerning the agent’s first-period choice x1. As ε1 → 0, this uncertainty disappears,
and, in the process, Z2(z1) and Z2(z1) converge to the same limit. We thus approach a
bang-bang utility function, equalling 0 for small fitnesses and 1 for large fitnesses.

To establish Lemma 3, suppose first (temporarily) that evolution could condition the
second-period utility function on the agent’s first-period choice x1 as well as his first-
period fitness z1. In the second period, the analysis would then match that of Section 3,
except that the optimal value of x∗

2 would depend on x1. This would give us Lemma 3
(and more) were it not for our counterfactual assumption that evolution can “observe”
x1 as well as z1.

More generally, since second-period utilities cannot be conditioned on x1, evolu-
tion must form a posterior expectation over the likely value of x1 given the observa-
tion of z1.12 Evolution would then choose a utility function V2(z|z1) that maximizes the
agent’s expected fitness, given this posterior. In particular, for each possible value of
x1, the agent mixes over a set [x2(x1)�x2(x1)], which is the satisficing set correspond-
ing to (9)–(10) (for that value of x1). Evolution is concerned with the resulting expected
value of the total fitness (1 + γ)z1 + f2(x1�x2) + s2, where the expectation is taken over
the likely value of x1 (given z1), over the choice of x2 (from the resulting satisficing
set), and the draw of s2 (governed by g2). Evolution increases expected fitness by re-
ducing the size of the satisficing sets [x2(x1)�x2(x1)]. While this is, in general, a quite
complicated problem, the key observation is that there exists a value Z2(z1) such that
g2(z− [(1 +γ)z1 + f2(x1�x

∗
2)])− g2(z− [(1 +γ)z1 + f2(x1�x2)]) is negative for z < Z2(z1)

for every x1 in the first-period satisficing set, as well as a value Z2(z1) such that these
differences are all positive for all z > Z2(z1).13 It thus decreases the size of every possible
satisficing set to set V2(z|z1) = 0 for z < Z2(z1) and set V2(z|z1)= 1 for z > Z2(z1).

12We emphasize again that evolution does not literally form posterior beliefs over the agent’s actions and
then solve an optimization problem. The results follow from the observation that fitness is maximized by
the utility function that would be optimal given the appropriate posterior beliefs.

13This follows from the observation that f2 is bounded, and hence so are the values [(1 + γ)z1 +
f2(x1�x

∗
2(x1))] and [(1 + γ)z1 + f2(x1�x2(x1))] = [(1 + γ)z1 + f2(x1�x2)], over the set of possible satisficing

values of x1, with the former larger than the latter.
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This leaves us without a determination of what happens on the set [Z2(z1)�Z2(z1)],
and if there is a wide range of possible x1 values, this gap can be large. As ε1 gets small,
however, the first-period satisficing set shrinks, causing the gap [Z2(z1)�Z2(z1)] to dis-
appear (cf. Lemma 4). Finally, even for fixed (but small) ε1 > 0, it follows from the
fact that V2(z|z1) is increasing and the continuity of f2 that as ε2 approaches zero, the
agent’s second-period satisficing sets collapse on x∗

2(x1), for each realization x1 of the
first-period random satisficing choice.

4.2 The first period

Now we turn attention to the first period. For simplicity, we initially take the limit ε2 → 0
before considering the optimal first-period utility function, returning to this assumption
at the end of the section.

The agent has a utility function V1(z) with V1 ∈ [0�1]. In addition, the agent cannot
distinguish any pair of choices whose expected utilities are within ε1 > 0 of each other.
This again leads to a random choice from a satisficing set [x1�x1], where

Es̃1�s̃2V1
(
f1(x1)+ s̃1 + [

γ(f1(x1)+ s̃1)+ f2(x1�x
∗
2(x1))+ s̃2

])
=Es̃1�s̃2V1

(
f1(x1)+ s̃1 + [

γ(f1(x1)+ s̃1)+ f2(x1�x
∗
2(x1))+ s̃2

])
(11)

=Es̃1�s̃2V1
(
f1(x

∗
1)+ s̃1 + [

γ(f1(x
∗
1)+ s̃1)+ f2(x1�x

∗
2(x

∗
1))+ s̃2

]) − ε1� (12)

In the first period, the agent randomizes uniformly over the set [x1�x1]. Evolution
chooses the utility function V1(z) to maximize expected fitness, subject to (11)–(12).

Once again, we have a bang-bang function in realized utilities, with the expected
utility function Es̃1�s̃2V1(f1(x1)+ s̃1 +[γ(f1(x1)+ s̃1)+f2(x1�x

∗
2(x1))+ s̃2]) being a contin-

uous function of x1. Section A.1 uses arguments parallelling those applied to the second
period to prove the following lemma (letting f1(x

∗
1) = f ∗

1 and f2(x
∗
1�x

∗
2(x

∗
1)) = f ∗

2 ).

Lemma 4. There exists a value Ẑ1 such that the optimal first-period utility function is
given by

V1(z) = 0 for all z < Ẑ1

V1(z) = 1 for all z > Ẑ1�

In the limit as ε1 → 0, we have

Ẑ1 = (1 + γ)f ∗
1 + f ∗

2

as well as

Z2(z1) → (1 + γ)z1 + f ∗
2

Z2(z1) → (1 + γ)z1 + f ∗
2 �
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The final part of this lemma resolves a lingering question from the preceding analysis
of the second period, showing that the intermediate range [Z2�Z2], on which we did not
pin down the second-period utility function, disappears as ε1 tends to zero and hence
the randomness in the agent’s first-period choice disappears.

The ideas behind this result parallel those of the second period. The utility per-
ception error ε1 causes the agent to choose x1 randomly from a satisficing set [x1�x1],
and evolution’s task is to choose the utility function to reduce the size of this satisfic-
ing set. Total fitness is now affected by the random variable s̃1 as well as s̃2, and the
key to the result is to show that the subsequent distribution over total fitness exhibits a
single-crossing property, with larger total fitnesses relatively more likely to come from
the fitness-maximizing choice x∗

2 than from either of the choices x1 or x1.
By putting our two intermediate results together, we can show the following

proposition.

Proposition 1. In the limit as the “utility-perception errors” ε2 and then ε1 approach
zero, the optimal utility functions are given by

V1(z) = 0 for all z < Ẑ1 = (1 + γ)f ∗
1 + f ∗

2

V1(z) = 1 for all z > Ẑ1 = (1 + γ)f ∗
1 + f ∗

2

V2(z|z1) = 0 for all z < Ẑ2(z1)= (1 + γ)z1 + f ∗
2

V2(z|z1) = 1 for all z > Ẑ2(z1)= (1 + γ)z1 + f ∗
2 �

We thus have bang–bang utility functions in each period. As the utility-perception
errors ε1 and ε2 get small, the agent’s choices collapse around the optimal choices x∗

1
and x∗

2(x
∗
1).

Our argument can be adapted easily to establish Proposition 1 under the assump-
tion that ε2 goes to zero sufficiently fast relative to ε1 (as opposed to taking ε2 → 0 first).
Indeed, we can establish Proposition 1 under the joint limit as the utility-perception
errors ε1 and ε2 go to zero, using additional technical assumptions and a somewhat
more involved argument. To evaluate the utility consequences of his first-period ac-
tions, the agent must know what his subsequent second-period actions will be. Taking
ε2 to zero before examining the first period (as we do) simplifies the argument by al-
lowing the agent to unambiguously anticipate the choice x∗

2(x1) in the second period.
What does the agent anticipate if ε2 > 0? His second-period choice now is a random
draw from a satisficing set. An apparently natural assumption gives the agent rational
expectations about his second-period choice. However, the satisficing set is determined
by the second-period utility function, and under the separation of decision and expe-
rienced utilities, the agent does not correctly anticipate the second-period utility func-
tion governing the choice of x2.14 It is then conceptually problematic to assume rational
expectations.

14Notice that in the limit as ε2 → 0, it is necessary only that second-period expected utility be in-
creasing in fitness to ensure that x∗

2(x1) is chosen in the second period, making rational expectations
straightforward.
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Whatever rule evolution gives the agent for anticipating second-period choices, we
obtain the results given in Proposition 1 as long as random second-period choices do not
reverse first-period fitness rankings. In particular, the fitness-maximizing first-period
choice x∗

1 gives a distribution of total fitnesses that first-order stochastically dominates
the distribution induced by the suboptimal choices x1 or x2, when each is paired with
the corresponding optimal second-period choice x∗

2(·). For a general limit result, it suf-
fices that for ε2 > 0 (but small), the optimal choice x∗

1 still gives fitnesses that first-order
stochastically dominate those of x1 or x2, given the rule used by the agent to antici-
pate second-period choices.15 One obvious sufficient condition for this to hold is that
f2(x1�x2) must be separable in x1 and x2 (with the agent’s anticipated second-period
choice then naturally being independent of x1). Other sufficient conditions allow more
flexible technologies at the cost of more cumbersome statements.

4.3 Sophisticated agents?

An argument analogous to that in Section 3.4 confirms that we have a focussing illusion
in this general case. This illusion gives rise to the following question. Evolution here has
designed the agent to be naive (cf. O’Donoghue and Rabin 1999) in the sense that the
first-period decision is made without anticipating the attendant second-period utility
adjustment. Why not make the agent sophisticated? Why not simply let the agent make
decisions on the basis of experienced utilities?

The utility functions presented in Proposition 1 do not elicit fitness-maximizing de-
cisions if the agent is sophisticated. Given optimal second-period choices and taking
the limit as the utility errors tend to zero, evolution induces the agent to make an appro-
priate first-period choice by having the agent select x1 to maximize

Es̃1�s̃2V1(z̃) = Pr
[
(1 + γ)s̃1 + s̃2 ≥ (1 + γ)f ∗

1 + f ∗
2 − (

(1 + γ)f1(x1)+ f2(x1�x
∗
2(x1))

)]
�

which is readily seen to be maximized at x∗
1. Suppose that, instead, evolution designed

the agent to maximize the expected value of the correctly anticipated, expected experi-
enced utility, or

Es̃1�s̃2V2(z̃|z̃1)= Pr
[
s̃2 ≥ f ∗

2 − f2(x1�x
∗
2(x1))

]
�

The agent’s decision utility captures two effects relevant to choosing x1, namely the ef-
fect on first-period fitness z1, with implications that carry over to the second period, and
the effect on expected second-period incremental fitness f2(x1�x

∗
2(x1)). In contrast, the

correctly anticipated experienced utility omits the first consideration. Expected experi-
enced utility thus leads the agent to consider only the second-period implications of his
decisions, potentially yielding outcomes that differ markedly from those that maximize
fitness. Making agents naive increases their fitness.

To illustrate this point, suppose that maxx2 f2(x1�x2) is independent of x1, though the
maximizer may yet depend on x1. Hence, the action the agent must take to maximize

15Total fitness then continues to exhibit the appropriate version of the single-crossing property given by
(16)–(17), with the agent’s belief about x2 as well as those about s̃1 and s̃2 now being random.
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second-period incremental fitness depends on the outcome of the first period, though
in each case the agent adds the same expected increment to fitness. In the limiting case
of no utility error, we have

Es̃1�s̃2V2(z̃|z̃1) = Pr
[
s̃2 ≥ f ∗

2 − f2(x1�x
∗
2(x1))

] = 1
2

for every value of x1. Correctly anticipated experienced utility now provides no incen-
tives at all, while first-period decision utilities still effectively provide incentives. Why
does making the agent sophisticated destroy incentives? The naive agent believes that a
suboptimal choice of x1 decreases utility. Should such a suboptimal choice x1 be made,
however, the agent’s second-period utility function (unexpectedly) adjusts to the first-
period choice x1 to still yield an expected experienced utility of 1

2 . From evolution’s point
of view, this adjustment plays the critical role of enhancing second-period incentives.
Should the agent be sophisticated enough anticipate it, however, first-period incentives
evaporate, with expected utility now being independent of the first-period choice.

The intuition behind this result is straightforward. Evolution must create incen-
tives in the first period, and naturally constructs decision utilities to penalize subop-
timal choices. However, once a first-period alternative is chosen, evolution must now
induce the best possible second-period choice. In the present model, evolution adjusts
the agent’s utility function in response to the first-period choice, causing the optimal
second-period choice to induce the same expected utility, regardless of its first-period
predecessor. Suboptimal first-period choices thus lead to the same experienced utility
in the second period as do optimal ones. The decision-utility penalty attached to sub-
optimal choices in the first period is removed in the second so as to construct better
second-period incentives.

5. Discussion

5.1 Extensions

We have highlighted the forces behind the focussing illusion by working with a stark
model. A number of extensions are of interest. Some of these are conceptually straight-
forward, even if they are analytically more tedious. For example, we are interested in
a model that spans more periods, allowing us to examine a richer collection of invest-
ment opportunities. As our model stands, a first-period investment x1 already yields its
gains in the second period. What about more prolonged investments? Acquiring an ed-
ucation may entail numerous periods of investment, during which time the agent may
become accustomed to a low-consumption level. This low-consumption acclimation
may in turn magnify the initial utility-enhancing consequences of the post-graduation
jump in consumption, though these utility gains subsequently are eroded away as the
agent adjusts to higher consumption.16

16The relevant measure of the length of a period is determined by the how quickly evolution can induce
our utility functions to adapt to our circumstances. A single fine meal is unlikely to be a preference-altering
event, but it may not take long for one to feel “settled” in their circumstances, prompting drift in the “steep
spot” of the utility function.
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Evolution must now construct a sequence of utility functions, each serving as a de-
cision utility for current actions and an experienced utility for past actions.

Similarly, it is interesting to allow z1 and z2 (as well as x1 and x2) to be multidimen-
sional. We derive utility from a variety of sources. Perhaps most importantly, we can
ask not only how evolution has shaped our utility functions, given their arguments, but
which arguments it has chosen to include. At first, the answer to this question seems
straightforward. The currency of evolutionary success is reproduction, and evolution
should simply instruct us to maximize our expected reproductive success. Even if we
could solve the attendant measurement issues,17 maximizing this goal directly is pre-
sumably beyond our powers.18 Instead, evolution rewards us for achieving intermedi-
ate targets, such as being well fed and being surrounded by affectionate members of the
opposite sex. But which intermediate targets should evolution reward? Clearly, our util-
ity functions should feature arguments that, to the extent possible, are directly related to
the ultimate goal of reproductive success and are sufficiently straightforward that we can
perform the resulting maximization. In addition, we suggest below that our utility func-
tions should contain arguments that are effective at implicitly conveying information to
evolution.

5.2 A more general technology

Quasilinearity is not needed at all for the second-period analysis. The critical step in
the first-period argument arises in examining the cumulative distribution function of
(1 + γ)s̃1 + s̃2. Letting G denote this distribution, we have

G
(
z − [

(1 + γ)f1(x1)+ f2(x1�x
∗
2(x1))

])
= Pr

[
(1 + γ)s̃1 + s̃2

] ≤ z − [
(1 + γ)f1(x1)+ f2(x1�x

∗
2(x1))

]
(13)

= Pr
[
(1 + γ)(f1(x1)+ s̃1)+ f2(x1�x

∗
2(x1))+ s̃2 ≤ z

]
�

Now letting g be the density of G, we can interpret g(z−[(1 +γ)f1(x1)+ f2(x1�x
∗
2(x1))])

as the “likelihood” that fitness z is the result of choices (x1�x
∗
2(x1)), which give rise

to expected fitness (1 + γ)f1(x1) + f2(x1�x
∗
2(x1)). Paralleling the second-period argu-

ment, it suffices for this distribution to have the single-crossing property that g(z −
[(1 + γ)f1(x

∗
1) + f2(x

∗
1�x

∗
2(x

∗
1))]) − g(z − [(1 + γ)f1(x1) + f2(x1�x

∗
2(x1))]) is negative for

small values of z (in which case V1(z)= 0) and positive for large values (giving V1(z) = 1),
for which it suffices that g exhibits the monotone likelihood ratio property. Intuitively,
higher realized fitness levels must be relatively more likely to come from actions that
yield higher expected fitness levels.19

17For example, how do we trade off the number of children versus their “quality,” presumably self-
referentially defined by their reproductive success? How do we trade off children versus grandchildren?

18Calculating the fitness implications of every action we take is overwhelming, while feedback (such
as the birth of a healthy child) is sufficiently rare as to make trial-and-error an ineffective substitute (cf.
Robson 2001b).

19Under the quasilinearity assumption (2), the cumulative distribution function of fitness in (13) is de-
rived immediately from the cumulative distribution function G of the relatively simple linear combination
(1 + γ)s̃1 + s̃2 of the random variables s̃1 and s̃2. This ensures (as we show in Section A.1) that the corre-
sponding density g exhibits the single-crossing property.
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Now suppose fitness is given by z = z1 + z2 = f1(x1� s1) + f2(z1�x2�x2� s2). This gen-
eral technology gives rise to an analogous utility function if the counterpart of (13) again
gives rise to a single-crossing property. However, now we must define the cumulative
distribution function of fitness directly as

Ĝ(z) = Pr
[
f1(x1� s̃1)+ f2

(
f1(x1� s̃1)�x1�x

∗
2(f1(x1� s̃1)�x1)� s̃2

) ≤ z
]
�

In this case, Ĝ is the cumulative distribution of a potentially complicated, nonlinear
function of s̃1 and s̃2. We can then no longer automatically count on Ĝ exhibiting the
requisite single-crossing property. Instead, this property is now a potentially compli-
cated joint assumption on the distributions of the random variables and the technology.
Simple sufficient conditions for this property are then elusive, though we have no rea-
son to doubt that higher realized fitnesses are again relatively more likely to emerge from
actions yielding higher expected fitnesses.

We believe there are good reasons to expect the desired single-crossing property to
hold, even if the primitive conditions leading to the requisite monotonicity property are
not easily identified in the general model. Bringing us back to ideas that we introduced
in Section 5, evolution not only designs our utility functions, but chooses the arguments
to include in those functions. We are chosen to have a taste for sweetness, whereas
we could just as easily be chosen to have different tastes. Among the many consider-
ations behind what gets included in our utility functions, we expect one to be that the
technology surrounding the variable in question exhibits the single-crossing properties
required for simple utility functions to deliver strong incentives. We thus expect the
single-crossing property to be one of the features that makes a variable a good candi-
date for inclusion in our utility function, and hence we think it is likely that the property
holds precisely because evolution has an incentive to attach utilities to variables with
this property. Once we have that, we immediately reproduce the results of Section 4.2 in
the more general setting.

5.3 Smooth utility functions

The optimal utility functions in our model assign only the utilities 0 and 1 to realized
outcomes. Can we obtain more realistic utilities that are not always 0 or 1? To demon-
strate one way to do this, we begin with the model of Section 3.1. The key new feature
is the addition of a shock r̃ that is observed by the agent before the first choice must be
made, but is unobservable to evolution. This shock captures the possibility that there
may be characteristics of the agent’s environment that affect the agent’s fitness, but that
fluctuate too rapidly for evolution to directly condition his behavior. The agent may
know whether the most recent harvest has been good or bad, or whether the agent is in
the midst of a boom or recession. Fitness thus varies with a state that is unobserved by
evolution (as in Rayo and Becker 2007). Suppose that realized fitness is given by

z = r + z1 + z2

= r + f1(x1)+ s1 + [γz1 + f2(x2)+ s2]�



332 Robson and Samuelson Theoretical Economics 6 (2011)

where the associated random variables s̃1, s̃2, and r̃ are independent.
Two assumptions significantly simplify the analysis. First, r̃ takes only a finite num-

ber of possible outcomes (r1� � � � � rK). Our second assumption, made precise after ac-
quiring the required notation, is that the dispersion in the values of r̃ is large relative to
the supports of s̃1 and s̃2. Intuitively, the new information in r̃ that the agent can observe
is relatively important.

The agent is endowed with a second-period utility function V2(z|z1). This is non-
decreasing in fitness z, where V2(z|z1) ∈ [0�1]. Suppose that z1 is realized in the first
period and the agent observes realization rk of the random variable r̃. The agent
then chooses from a satisficing set of the form [xk2 (z1)�x

k
2 (z1)] 
 x∗

2, where (letting
f2(x

k
2 (z1)) = f2(x

k
2 (z1)) = f k2 and f2(x

∗
2) = f ∗

2 )

Es̃2V2((1 + γ)z1 + f ∗
2 + rk + s̃2)−Es̃2V2((1 + γ)z1 + fk2 + rk + s̃2) = ε2� (14)

Consider now evolution’s optimal choice of V2(z|z1). We can rewrite (14) as
∫

V2(z|z1)
[
g2(z − (1 + γ)z1 − f ∗

2 − rk)− g2(z − (1 + γ)z1 − fk2 − rk)
]
dz = ε2� (15)

Define Zk
2 (z1) by the requirement that

g2(Z
k
2 (z1)− (1 + γ)z1 − f ∗

2 − rk) = g2(Z
k
2 (z1)− (1 + γ)z1 − f k2 − rk)�

Since g2 is symmetric and unimodal (with nonzero derivative except at 0), there exists a
unique such Zk

2 (z1) ∈ [(1 + γ)z1 + fk2 + rk� (1 + γ)z1 + f ∗
2 + rk].

If we could fix the value of rk, we would then have precisely the problem of Sec-
tion 3.1. Evolution would set V2(z|z1) = 0 for z < Zk

2 (z1) and V2(z|z1) = 1 for z > Zk
2 (z1),

with Zk
2 (z1) → (1 + γ)z1 + f ∗

2 + rk as ε2 → 0. Now, however, we do not have just one
such problem, but a collection of k such problems, one corresponding to each possi-
ble value of rk. At this point, we simplify the interaction between these problems by
invoking our assumption that the successive values of rk are sparse, relative to the sup-
port of s̃1 and s̃2, so that for each value of z, there is at most one value rk that can make
g2(z − (1 + γ)z1 − f ∗

2 − rk) or g2(z − (1 + γ)z1 − f k2 − rk) nonzero. Equivalently, each
possible realization rk gives rise to a set of possible realizations of z̃ (conditioning on z1
throughout), each of which can arise from no other realization of r̃k. On this set of values,
evolution wants to set V2(z|z1) as low as possible for z < Zk

2 (z1) and as high as possible
for z > Zk

2 (z1). The implicit constraint behind the “if possible” in these statements is
that V2(z) must be nondecreasing. Hence, for example, setting V2(z|z1) relatively low for
a value z < Zk

2 (z1) relevant for the realization rk, while improving incentives conditional
on realization rk, constrains the incentives that can be provided for smaller realizations.

These observations immediately lead to the conclusion that, given z1 and ε2, there
is an ascending sequence of values (V 0

2 � � � � � V
K

2 ) such that

V2(z|z1) = V 0
2 = 0 for all z < Z1

2(z1)

V2(z|z1) = V k
2 for all z ∈ [Zk

2 (z1)�Z
k+1
2 (z1))�k = 1� � � � �K − 1

V2(z|z1) = V K
2 = 1 for all z ≥ ZK

2 (z1)�
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In the limit as ε2 → 0, we have Zk
2 (z1) → (1 +γ)z1 + f ∗

2 + rk and, hence a utility function
given by

V2(z|z1) = 0 for all z < (1 + γ)z1 + f ∗
2 + r1

V2(z|z1) = V k
2 for all z ∈ [(1 + γ)z1 + f ∗

2 + rk� (1 + γ)z1 + f ∗
2 + rk+1)�k = 1� � � � �K − 1

V2(z|z1) = 1 for all z ≥ (1 + γ)z1 + f ∗
2 + rK�

The remaining task is then to calculate the values V 1
2 � � � � � V

K−1
2 . It is straightforward

to write the programming problem these values must solve and to find conditions that
characterize the equilibrium. In general, however, it is difficult to find this equilibrium
explicitly. Section A.2 presents an example in which enough structure is imposed on the
problem to admit a simple closed-form solution.

The first-period situation is analogous to that provided above. Evolution’s criterion
is then E[(1 + γ)f1(x1) + s̃1 + f2(x

∗
2) + s̃2 + r̃] = (1 + γ)Ef1(x1) + f2(x

∗
2), given optimal

choice in the second period, but allowing for random satisficing behavior in the first. In
the limit where ε1 → 0, it then follows that

V1(z) = 0 for all z < (1 + γ)f ∗
1 + f ∗

2 + r1

V1(z) = V k
1 for all z ∈ [(1 + γ)f ∗

1 + f ∗
2 + rk� (1 + γ)f ∗

1 + f ∗
2 + rk+1)�k= 1� � � � �K − 1

V1(z) = 1 for all z ≥ (1 + γ)f ∗
1 + f ∗

2 + rK�

where the values V k
1 , k= 0� � � � �K, match those of the second period.

The utility functions V1 and V2 now increase in K steps, becoming nearly smooth
as K gets large. Once again, it is optimal to dissociate first-period utility V1(z) from
second-period utility V2(z|z1). Each utility function in the second period is a replica of
the utility function in the first period, being a horizontal translation of the first-period
utility function by the random shock (1 + γ)s̃1, whose mean is zero. It can be shown
that, in each neighborhood of each jump point, the first-period utility function V1(z) is
more extreme than the expected second-period function EV2(z|z̃1). Indeed, the argu-
ment is essentially identical to that used when utilities have a single jump. This gives us
a focussing illusion that we believe only becomes more pronounced in a more realistic
model in which the rk are not sparse, though this entails solving a significantly more
complicated inference problem.

5.4 Implications

Psychologists and classical economists tend to approach the concept of utility from dif-
ferent perspectives. Psychologists are more apt to give utility a direct hedonic inter-
pretation and to be comfortable with the idea of multiple forms of utility. Classical
economists are more inclined to think of utility as an analytical device and always to
work only with a single notion of utility. Recent advances in behavioral economics high-
light this apparent contradiction.

Our analysis suggests that if we interpret utility as having an evolutionary origin, in
the process embracing the hedonic interpretation, then we should expect a distinction
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between decision and experienced utility. Psychologists are prone to go further, arguing
that decisions would be improved if decision utility were replaced by expected experi-
enced utility. Our model provides no support for this view. Decision and experienced
utilities combine to produce fitness-maximizing choices. To an observer, the result-
ing choices exhibit all the characteristics of rational behavior, including satisfying the
revealed-preference axioms (as long as the utility errors are sufficiently small, and with
fitness as the underlying utility function), despite the seeming inconsistencies between
decision and experienced utilities. Replacing the resulting decisions with choices based
on experienced utilities can only reduce fitness.

Of course, maximizing fitness may not be the relevant goal. There is no compelling
reason why conscious beings should, as a moral imperative, strive to maximize the fit-
ness criterion implicitly guiding their evolution. Once we abandon fitness, however, we
are left with little guide as to what the appropriate welfare criterion should be and little
reason to think that emphasizing the fitness-maximizing experienced utilities should
yield a welfare improvement. One might respond by arguing that experienced utility
is the appropriate criterion, but we see little reason to single out one particular utility
function as the appropriate one.

What revealed-preference implications does our model have? Evolutionary explana-
tions of behavior are intriguing, but provide their most convincing payoff when pointing
to implications for observed behavior that would hitherto have gone unnoticed. In the
current model, we note that training people to place greater emphasis on experienced
utilities alters the incentives to make investments in future utility. In particular, suppose
we consider actions whose costs and benefits are unevenly spread over time. The ac-
tion may involve costly current effort that pays off in the form of future consumption
or involve current consumption requiring future compensatory effort. Our comparison
of naive and sophisticated agents in Section 4.3 suggests that in our two-period model,
making agents sophisticated causes them to emphasize the future utility impacts of their
actions, as they realize that the current utility gains or losses are ratcheted away by fu-
ture utility adjustments. Their decision making then relies more heavily on the future
implications of their choices. In essence, sophisticated agents are likely to appear to be
more patient.

Consider the following example. Let f1(x1) = −x2
1 and f2(x1�x2) = 8x1(x2 − x2

2). We
can think of x1 as an investment, with current cost −x2

1, that pays off in the form of
future fitness gains. A naive agent chooses x∗

1 = 1/(1 + γ).20 A sophisticated agent rec-
ognizes that any first-period utility impacts of x1 are offset by second-period utility ad-
justments and, hence, chooses x1 to maximize simply the second-period expected utility
f (x1�x

∗
2) = 8x1(

1
4), leading to pressure to choose the largest possible value of x1 = 1. This

agent thus gives the appearance of being “hyperpatient,” ignoring first-period consider-
ations altogether. Suppose, instead, we have f1(x1) = x1 and f2(x1�x2) = x2 −x2

2 −x2
1, so

that first-period fitness gains are purchased at the price of second-period costs. Training
the agent to rely on experienced utility again gives rise to hyper-patience, in this case in-
ducing the agent who ignores the potential first-period benefits to choose x1 = 0. Either

20The agent chooses x∗
2 = 1

2 in the second period. In the first period, given that the utility errors vanish,

the agent maximizes overall expected fitness (1 + γ)(−x2
1)+ 8x1(

1
4 ), giving x∗

1 = 1/(1 + γ).
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scenario involves potentially disastrous fitness consequences. A richer model in which
agents could be “partially sophisticated” might give rise to intermediate levels of en-
hanced patience, while models with more periods may give rise to more subtle impacts.

Appendix: Proofs

A.1 Proof of Lemma 4

Taking ε2 → 0 ensures that, for any first-period choice x1, the agent anticipates x∗
2(x1)

as the second-period choice.
The first step of the proof now parallels that of the second period: rewrite the con-

straints as∫ ∫
V1

(
f1(x

∗
1)+ s1 + γ[f1(x

∗
1)+ s1] + f2(x

∗
1�x

∗
2(x

∗
1))+ s2

)
g1(s1)g2(s2)ds1 ds2

−
∫ ∫

V1
(
f1(x1)+ s1 + γ[f1(x1)+ s1] + f2(x1�x

∗
2(x1))+ s2

)
g1(s1)g2(s2)ds1 ds2

=
∫ ∫

V1
(
f1(x

∗
1)+ s1 + γ[f1(x

∗
1)+ s1] + f2(x

∗
1�x

∗
2(x

∗
1))+ s2

)
g1(s1)g2(s2)ds2

−
∫ ∫

V1
(
f1(x1)+ s1 + γ[f1(x1)+ s1] + f2(x1�x

∗
2(x1))+ s2

)
g1(s2)g2(s2)ds2

= ε1�

The next task is to execute the corresponding change of variable to rewrite these con-
straints as∫

V1(z)g
(
z − [

(1 + γ)f1(x
∗
1)+ f2(x

∗
1�x

∗
2(x

∗
1))

])
dz

(16)
−

∫
V1(z)g

(
z − [

(1 + γ)f1(x1)+ f2(x1�x
∗
2(x1))

])
dz

=
∫

V1(z)g
(
z − [

(1 + γ)f1(x
∗
1)+ f2(x

∗
1�x

∗
2(x

∗
1))

])
dz

−
∫

V1(z)g
(
z − [

(1 + γ)f1(x1)+ f2(x1�x
∗
2(x1))

])
dz (17)

= ε1�

where g is the density of the random variable (1 + γ)s̃1 + s̃2.
This ensures that a Ẑ1 exists with the property that V1(z) = 0 for z < Ẑ1 and V1(z)= 1

for z > Ẑ1 if we can show that g is symmetric and unimodal with zero derivative only
at 0. In addition, as ε1 → 0, Ẑ1 approaches (1 + γ)f1(x

∗
1)+ f2(x

∗
1�x

∗
2(x

∗
1)).

The next step is to establish that g indeed has the required properties. It is clear that
these properties are preserved under multiplication by a nonzero scalar, so it suffices
to show that if two arbitrary random variables s̃1 and s̃2, with densities g1 and g2, have
these properties, then so does their sum. Let s = s1 + s2 for feasible values of s and define

σ2(s) = max{s2� s − s1}
σ2(s) = min{s2� s − s1}�
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Notice that σ2(s) < σ2(s) and that, from symmetry, s1 = −s1 and s2 = −s2. Then letting
G be the cumulative distribution of the sum s, we have

G(s) =
∫ σ2(s)

s2

G1(s1)g2(s2)ds2 +
∫ σ2(s)

σ2(s)
G1(s − s2)g2(s2)ds2 +

∫ s2

σ2(s)
G1(s1)g2(s2)ds2

=
∫ σ2(s)

s2

g2(s2)ds2 +
∫ σ2(s)

σ2(s)
G1(s − s2)g2(s2)ds2�

We say that σ2 is relevant if σ2 > s2 (and irrelevant otherwise) and that σ2 is relevant if
σ2 < s2. Differentiating, we have (note that σ2 > s2 �⇒ G1(s − σ2) = 1 and σ2 = s2 �⇒
dσ2/ds = 0, which between them account for the second equality)

g(s) = g2(σ2)
dσ2
ds

−G1(s − σ2)g2(σ2)
dσ2
ds

+
∫ σ2(s)

σ2(s)
g1(s − s2)g2(s2)ds2

=
∫ σ2(s)

σ2(s)
g1(s − s2)g2(s2)ds2�

To see that this distribution is symmetric, we note that

g(−s) =
∫ σ2(s)

σ2(s)
g1(−s − s2)g2(s2)ds2 =

∫ σ2(s)

σ2(s)
g1(s + s2)g2(s2)ds2

=
∫ σ2(s)

σ2(s)
g1(s − s2)g2(−s2)ds2 =

∫ σ2(s)

σ2(s)
g1(s − s2)g2(s2)ds2 = g(s)�

Unimodality and the presence of a zero derivative only at 0 follow from taking another
derivative to obtain

G′′(s) = g1(s − σ2)g2(σ2)
dσ2

ds
− g1(s − σ2)g2(σ2)

dσ2
ds

+
∫ σ2(s)

σ2(s)
g′

1(s − s2)g2(s2)ds2�

It suffices to show that the sum of the first two terms is nonnegative and the third term
is positive when s < 0, with the reverse holding true when s > 0. We present the case for
s > 0; the case of s < 0 is analogous. Consider the sum of the first two terms. We note that
dσ2/ds = dσ2/ds = 1 if σ2 and σ2 are both relevant, and that an irrelevant term gives a
zero derivative. Because s > 0, it must be that either (i) only σ2 is relevant (in which case
the sum of the first two terms is nonpositive), (ii) neither σ2 nor σ2 is relevant (in which
case it is zero), or (iii) both are relevant (in which case g1(s − σ2) = g1(s1) = g1(s1) =
g1(s − σ2) and g2(σ2) < g2(σ2), with the sum of the first two terms then again being
nonpositive).

Consider the third term. This expression is obviously negative if s − σ2(s) > 0, so
assume s − σ2(s) < 0. Then we can write

∫ σ2(s)

σ2(s)
g′

1(s − s2)g2(s2)ds2

=
∫ −(s−σ2(s))

s−σ2(s)
g′

1(s1)g2(s − s1)ds1 +
∫ s−σ2(s)

−(s−σ2(s))
g′

1(s2)g2(s − s1)ds1�
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The final term on the right is clearly nonpositive, so we concentrate on the first term on
the right, for which we have

∫ −(s−σ2(s))

s−σ2(s)
g′

1(s1)g2(s − s1)ds1

=
∫ −(s−σ2(s))

0
g′

1(s1)g2(s − s1)ds1 +
∫ −(s−σ2(s))

0
g′

1(−s1)g2(s + s1)ds1

=
∫ −(s−σ2(s))

0
g′

1(s1)[g2(s − s1)− g2(s + s1)]ds1�

which is negative since g′
1(s1) is negative for s1 > 0 and g2(s − s1)− g2(s + s1) is positive

for s� s1 > 0, completing the argument that g has the desired properties.

A.2 Calculations for Section 5.3

We assume that the functions fi are given by

fi(xi)= −|x∗
i − xi|� i = 1�2� (18)

so that agents pay a linear penalty for straying away from the optimal choice.
Let p1� � � � �pK be the probabilities of r1� � � � � rK , respectively. We can perform the

integration in (15) to find that

G2(Ẑ
k
2 (z1)− (1 + γ)z1 − f2(x

k
2 )− rk)−G2(Ẑ

k
2 (z1)− (1 + γ)z1 − f2(x

∗
2)− rk)

= ε2

V k+1
2 − V k

2

� k= 1� � � � �K − 1�

where G2 is the cumulative distribution function of s̃2. Evolution’s problem is to choose
the nontrivial utilities {V k

2 }K−1
k=1 so as to maximize

K∑
k=1

pk	k�

where 	k is the expected fitness of an agent who observes rk and now chooses from a
uniform distribution over the set [xk2 �xk2 ].

The first-order conditions for evolution’s choice of the V k
2 are thus

pk
∂	k

∂V k
2

+pk−1
∂	k−1

∂V k
2

= pk
∂	k

∂f2(x
k
2 )

∂f2(x
k
2 )

∂V k
2

+pk−1
∂	k−1

∂f2(x
k−1
2 )

∂f2(x
k−1
2 )

∂V k
2

= 0� k= 1� � � � �K − 1�

Using the envelope theorem, we have

∂f2(x
k
2 )

∂V k
2

= −ε2

g2(Ẑ
k
2 (z1)− (1 + γ)z1 − f2(x

k
2 )− rk)(V

k+1
2 − V k

2 )2
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∂f2(x
k−1
2 )

∂V k
2

= ε2

g2(Ẑ
k−1
2 (z1)− (1 + γ)z1 − f2(x

k−1
2 )− rk−1)(V

k
2 − V k−1

2 )2
�

so the first-order conditions become

∂	k

∂f2(x
k
2 )

pk

g2(Ẑ
k
2 (z1)− (1 + γ)z1 − f2(x

k
2 )− rk)(V

k+1
2 − V k

2 )2

= ∂	k−1

∂f2(x
k−1
2 )

pk−1

g2(Ẑ
k−1
2 (z1)− (1 + γ)z1 − f2(x

k−1
2 )− rk−1)(V

k
2 − V k−1

2 )2

for k= 1� � � � �K − 1.

Now note that (18) implies that 	k(x
k
2 ) = γ

xk2 −x∗
2

2 + rk + (1 + γ)z1, so that ∂	k

∂f2(x
k
2 )

=
∂	k−1

∂f (xk−1
2 )

. In the limit as ε2 → 0, we have f2(x
k
2 ) → f2(x

∗
2) and Ẑk

2 (z1) → (1 + γ)z1 +
γf2(x

∗
2)+ rk. In this limit, then

V k+1
2 − V k

2

V k
2 − V k−1

2

=
√

pk

pk−1
�

It follows that

V k
2 =

k−1∑
�=1

(V �+1
2 − V �

2 ) =K

�−1∑
�=1

√
pm�

where

K = 1∑K
�=1

√
p�

�
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