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Search, choice, and revealed preference

Andrew Caplin
Department of Economics, New York University

Mark Dean
Department of Economics, Brown University

With complete information, choice of one option over another conveys prefer-
ence. Yet when search is incomplete, this is not necessarily the case. It may in-
stead reflect unawareness that a superior alternative was available. To separate
these phenomena, we consider nonstandard data on the evolution of provisional
choices with contemplation time. We characterize precisely when the resulting
data could have been generated by a general form of sequential search. We char-
acterize also search that terminates based on a reservation utility stopping rule.
We outline an experimental design that captures provisional choices in the pre-
decision period.

Keywords. Revealed preference, search theory, incomplete information, framing
effects, status quo bias, bounded rationality, stochastic choice, decision time.

JEL classification. D11, D83.

1. Introduction

In principle, incomplete information can explain apparent deviations from utility-
maximizing behavior: decision makers (DMs) may choose an inferior over a superior al-
ternative if they are not aware that the superior one is available. Yet traditional decision
theory focuses exclusively on situations in which choice of one option over another re-
flects an underlying preference. This “revealed preference” approach breaks down when
information is incomplete.

In contrast with decision theory, search theory is premised on incomplete informa-
tion (Stigler 1961). Given the tension between the principle of revealed preference in
standard decision theory and search theory, it is understandable that there are few link-
ages between them.

We develop a unified theoretical and experimental framework to help bridge the
gap between search theory and the principle of revealed preference by characterizing
models of choice that incorporate the process of information search. We first consider
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a model of “alternative-based” search (ABS), in which the DM searches sequentially
through the available options, comparing searched options in full according to a fixed
utility function. We consider also “reservation-based” search (RBS), a refinement of ABS
under which the DM searches until an object is identified with utility above a fixed reser-
vation level.

While ABS and RBS represent important classes of search behavior, neither provides
testable restrictions for standard choice data. Without additional ad hoc assumptions,
any pattern of final choice is rationalizable with either model. We therefore consider
a richer data set, which we call choice process data, with which to test the models.
These data convey not only the final option that the DM selects, but also how his choice
changes during the period of contemplation prior to making the final selection.1 By
so enriching the data, we are able to characterize whether incomplete information and
search can explain apparent violations of utility maximization.2

The key to the axiomatic characterization of the ABS and RBS models is understand-
ing what type of behavior implies a revealed preference in the context of each model. In
neither case does final choice of one object over another necessarily indicate preference,
as the decision maker may be unaware of the unchosen object. However, in both cases,
a DM who changes his choice from one object to another is interpreted as preferring the
later-chosen object. The necessary and sufficient condition for the ABS model to hold is
that this information must be “consistent” in the sense of being acyclic. Under the RBS
model, there may be additional revealed preference information in the final choice it-
self, as in a set comprising objects all of which are below reservation utility, search must
be complete.

The ABS and RBS models both treat search order as unobservable. This makes it
natural to develop stochastic variants, given that search order is not a priori fixed and
that there is no reason to believe that search from a given set will always take place in
the same order. The stochastic versions of ABS and RBS are developed in Section 4.
While stochasticity adds to the technical intricacy of the model, there is no conceptual
difference between the deterministic and the stochastic cases: the stochastic results are
precise analogs of their deterministic counterparts.

The process of information search provides one particular channel by which choice
can be affected by seemingly unimportant features of the environment, such as the po-
sitioning of objects on the screen or in a shop. This in turn could lead to behavioral
phenomena such as framing effects, status quo bias, and stochastic choice. Our mod-
els imply that when driven by search, these phenomena will have distinctive patterns.
For example, if stochastic choice is driven by RBS and random search order, choice is
random among choice sets consisting of above-reservation items, but deterministic in
sets containing only below-reservation items. Characterizations in this spirit of framing
effects, status quo bias, and stochastic choice are given in Section 5. To be clear, our
approach to these phenomena does not well describe several of the most well studied
cases.

1These data previously were considered by Campbell (1978).
2Block and Marschak (1960) explicitly anticipated the need to enrich standard choice data to separate

utility-based from information-based sources of randomness in choice.
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The unified approach to theory and experiment that we take in this paper rests on
two key premises.

Premise 1. ABS and RBS represent broad styles of search that may be undertaken in a
wide variety of different decision making environments.

Premise 2. It is conceptually and experimentally feasible to collect data on the evolu-
tion of “intended” choice with contemplation time.3

With regard to the first premise, we study ABS and RBS because we see them as broad
search modes that are of particular interest. We think that ABS-style search is a natural
way to model search behavior in many environments—particularly when there is a cost
of switching attention from one alternative to another, or if items can be understood
only in their entirety. It is also the canonical model of search within economics: search
is alternative-based in most labor market models, as well as Stigler’s (1961) model of
price search, and Simon’s (1955) boundedly rational model of search. In addition to its
central role in the theoretical canon, there is also experimental evidence suggesting that
ABS may be a good description of search in some environments (e.g., Reutskaja et al.
forthcoming and Payne et al. 1988, 1993). Similarly, we see RBS as a natural first model
of search termination. It is the stopping rule suggested by Simon (1955) in his work on
satisficing and it also bears an interesting relationship with optimal search in certain
environments.4

With regard to the second premise, in Section 6 we outline an experimental design
that captures data on the evolution of provisional choices with contemplation time.
Subjects are presented with a collection of objects from which they must choose. They
can select an option at any time by clicking on it and can change their selection as many
times as they like. The key to the experimental design is that the subject’s choice is not
recorded at the point at which they press the finish button, but at a randomly selected
time unknown to the subject. This ensures that it is in the interest of the subjects to al-
ways keep selected their currently preferred option. As detailed in Section 6, Caplin et al.
(forthcoming) conduct a proof-of-principle experiment in which both ABS and RBS are
broadly supported.

While important, ABS and RBS are not universally applicable. There are other modes
of search available, such as those in which objects are compared on an attribute-by-
attribute basis. Hence ABS may be more prevalent in environments in which there are
high costs to switching among searched objects (for example, if the items of search were

3There is a gap between the theoretically ideal data and the data our experiments generate. The model
assumes that we can identify not just one, but all best options at each point in time. In contrast, the experi-
ment considers only a single choice at each point in time. A similar gap is encountered in tests of standard
rationality axioms.

4While we do not explicitly derive ABS or RBS as resulting from optimal search, it is true that a
reservation-based stopping rule is optimal within the class of ABS search behavior for a DM who has fixed
costs of search and is not learning about his environment. Moreover, the optimal reservation level does not
depend on the size of the choice set the DM is choosing from, only the cost of search and the perceived
distribution of object values.
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in different physical locations) or where alternatives are best understood holistically (for
example, a written description of a financial contract). In contrast, if it is easy to com-
pare different alternatives on the same dimension, we might expect ABS to be a poor
description of behavior. ABS also appears less intuitively compelling when objects are
easy to identify, yet difficult to compare. In such less favorable contexts, our tests pro-
vide formal tools for understanding how the environment impacts search style, which
in turn may impact the nature and extent of incomplete information.

We see our approach as complementary to other attempts to use novel data to un-
derstand information search based on eye tracking or Mouselab (e.g., Payne et al. 1993,
Gabaix et al. 2006, Reutskaja et al. forthcoming). These approaches make aspects of the
search process observable, yet do not connect these intermediate acts of search with
their implications for choice. In comparison, choice process data miss out on poten-
tially relevant visual and other cues on search behavior, but capture the moment at
which the search that has been undertaken changes the DM’s assessment of the best
option thus far encountered.5 The connection of eye tracking and Mouselab data with
standard theories of choice has yet to be characterized.

In the theoretical literature, Rubinstein and Salant (2006) also focus on data enrich-
ment. They study choices made from sets presented in “list” order. In their main result,
they assume that the order of the list is known to an outside observer, effectively making
the order of search observable. In this setting, they characterize a choice procedure by
which the list order is used only to break ties in the case of indifference. The tie can be
broken either by choosing the first or last of the optimal objects in the list. By contrast,
we treat search order as unobservable and assume that people may not fully examine
the available set.

Ours is not the first or only effort to bridge the gap between decision theory and
search theory. An alternative approach is to identify restrictions on more standard
choice data deriving from particular search procedures. Masatlioglu and Nakajima
(2009) characterize choices that result when the search path that is adopted depends
only on an initial (externally observable) reference point. Ergin (2003), Manzini and
Mariotti (2007), and Ergin and Sarver (2010) also characterize the implications for stan-
dard choice of various decision making procedures that produce incomplete informa-
tion. Masatlioglu et al. (2009) identify objects that a decision maker is actively consid-
ering by assuming that the removal of unconsidered objects cannot affect choice. We
believe that these various approaches are all worth pursuing and that the intensification
of interest among decision theorists in incomplete consideration of options is overdue.6

5More broadly, prior experimental work on search and choice has made use of data that are less readily
related to choice: the time taken in arriving at a decision (Busemeyer and Townsend 1992, Rustichini 2008),
direct observation of the order of information search using Mouselab (Payne et al. 1993, Ho et al. 1998,
Johnson et al. 2002, Gabaix et al. 2006), eye movements (Wang et al. 2010), and verbal responses (Ericsson
and Simon 1984).

6In addition to playing an essential role in search theory, the fact that decision makers effectively choose
among a small subset of potentially available options is familiar in the marketing literature. One of the cen-
tral challenges in marketing is how to get an option to be actively considered, rather than being rejected
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2. Alternative-based search: The deterministic case

2.1 The choice process

To characterize our models of search, we use an enriched data set we call choice process
data. Rather than record only the alternative that is finally chosen by the DM, choice
process data track how choice evolves with contemplation time. As such, choice process
data come in the form of sequences of observed choices. Let X be a nonempty finite set
of elements representing possible alternatives and let X denote nonempty subsets of X .
Let Z be the set of all infinite sequences from X with generic element Z = {Zt}∞1 , where
Zt ∈ X /∅ for all t ≥ 1. For A ∈ X , define ZA ⊂ Z to comprise all such sequences selected
from A,

ZA = {Z∈ Z | Zt ⊂A for all t ≥ 1}�

Definition 1. A (deterministic) choice process (X�C) comprises a finite set X and a
function, C : X → Z such that C(A) ∈ ZA ∀A ∈ X .

Given A ∈ X , choice process data assign not just final choices (a subset of A), but
a sequence of such choices that represent the DM’s choices after considering the prob-
lem for different lengths of time. We let CA denote C(A) and CA(t) ∈ A denote the tth
element in the sequence CA, with CA(t) referring to the objects chosen after contem-
plating A for t periods. Choice process data represent a relatively small departure from
standard choice data, in the sense that all observations represent choices, albeit choices
constrained by time.

2.2 ABS

Our first model captures the process of sequential search with recall, in which the DM
evaluates an ever-expanding set of objects, choosing at all times the best object thus far
identified. We say choice process data have an alternative-based search (ABS) repre-
sentation if there exists a utility function and a nondecreasing search correspondence
for each choice set such that what is chosen at any time is utility-maximizing in the
corresponding searched set. To define this, we introduce Z ND ⊂ Z , the nondecreasing
sequences of sets in Z :

Z ND = {Z∈ Z | Zt ⊂ Zt+1 for all t ≥ 1}�

Definition 2. Choice process (X�C) has an ABS representation (u�S) if there exists a
utility function u :X → R and a search correspondence S : X → Z ND, with SA ∈ ZA for
all A ∈ X , such that,

CA(t) = arg max
x∈SA(t)

u(x)�

sight unseen. The literature on “consideration sets” reflects this focus on product awareness as a neces-
sary prelude to product choice (e.g., Alba and Chattopadhyay 1985, Roberts and Lattin 1991). Eliaz and
Spiegler (forthcoming) study the behavior of a firm that can use costly marketing devices to manipulate the
consideration set of a consumer.
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The ABS model describes a DM who always chooses the best objects that he has
searched. At time t, objects are either searched, and so in SA(t), or not searched. All
objects that are searched are compared in full according to a fixed utility function. Since
the DM is assumed to recall all past searches, SA(t) is nondecreasing and the choice
made by the DM weakly improves over time. It is this assumption that gives the concept
of ABS empirical traction. Note that the ABS model makes no assumptions concern-
ing how or why a decision maker decides to stop searching—there is no restriction on
how the function S behaves in the limit. There is also no restriction on the first object
searched, since it may be the only object identified.

Given that final choice of x over y is unrevealing with incomplete search, the ABS
characterization relies on an enriched notion of revealed preference. To understand the
required enrichment, it is useful to consider behavioral patterns that contradict ABS.
To describe these patterns, we use the notation C(A) = B1;B2; � � � ;Bn! with Bi ⊂ A to
indicate that the sets B1� � � � �Bn are chosen sequentially from A, with Bn being the final
choice. We can readily identify four patterns of choice process data that contradict ABS.7

• Cα({x� y}) = x; y;x!.
• Cβ({x� y}) = x; {x� y}; y!.
• Cγ({x� y}) = y;x!; Cγ({x� y� z}) = x; y!.
• Cδ({x� y}) = y;x!; Cδ({y� z}) = z; y!; Cδ({x�z}) = x;z!.
Choice process Cα contains a preference reversal: the DM first switches to y from x.

As y has been chosen by the DM, it must be in the searched set when he chooses x,
implying that x is preferred to y. However, the DM then switches back to y, indicating
that y is preferred to x. Choice process Cβ involves y first being revealed to be indifferent
to x, as x and y are chosen at the same time. Yet later y is revealed to be strictly preferred
to x, as x is dropped from the choice set. In Cγ , the direction in which preference is
revealed to be between y and x changes between the two element and three element
choice set. Choice process Cδ involves an indirect cycle, with separate two element sets
revealing x as preferred to y, y as preferred to z, and z as preferred to x.

As these examples suggest, the appropriate notion of strict revealed preference in the
case of ABS is based on the notion of alternatives being replaced in the choice sequence
over time. A DM who switches from choosing y to choosing x at some later time is inter-
preted by the ABS model as preferring x to y. As search is nondecreasing, the DM must
be aware of y when he chooses x. Thus the choice of x over y indicates revealed pref-
erence. Similarly, if we ever see x and y being chosen at the same time, it must be that
the DM is indifferent between the two alternatives. We capture the revealed preference
information implied by the ABS model in the following binary relations.

Definition 3. Given choice process (X�C), the symmetric binary relation ∼ on X is
defined by x ∼ y if there exists A ∈ X such that {x� y} ⊂ CA(t) for some t ≥ 1. The binary

7We drop the braces around singleton sets: x; y;x! conveys selection of choice sets {x}, {y}, and {x}.
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relation 	C on X is defined by x 	C y if there exists A ∈ X and s� t ≥ 1 such that y ∈CA(s)

and x ∈ CA(s + t), but y /∈ CA(s + t).

For a choice process to have an ABS representation it is necessary and sufficient for
the revealed preference information captured in 	C and ∼ to be consistent with an un-
derlying utility ordering. Our characterization of ABS therefore makes use of Lemma 1,
a standard result that captures the conditions under which an incomplete binary rela-
tion can be thought of as reflecting some underlying complete pre-order.8 Essentially,
we require the revealed preference information to be acyclic.

Lemma 1. Let P and I be binary relations on a finite set X , with I symmetric, and define
PI on X as P ∪ I. There exists a function v :X → R that respects P and I,

x P y �⇒ v(x) > v(y)

x I y �⇒ v(x) = v(y)�

if and only if P and I satisfy only weak cycles (OWC): given x1�x2�x3� � � � � xn ∈ X with
x= x1 PI x2 PI x3 · · · PI xn = x1, there is no k with xk P xk+1.

Armed with this result, we establish in Theorem 1 that the key to existence of an ABS
representation is for 	C and ∼ to satisfy OWC.9 This OWC condition is closely related to
the standard strong axiom of revealed preference. It is readily testable, and various met-
rics have been developed to measure how close a data set is to satisfying such conditions
(see Dean and Martin 2009 for a review). Corollary 1, which is essentially immediate,
characterizes equivalent representations of a choice process for which 	C and ∼ satisfy
OWC.

Theorem 1. Choice process (X�C) has an ABS representation if and only if 	C and ∼
satisfy OWC.

Proof. By Lemma 1, the result is equivalent to establishing that (X�C) admits an ABS
representation if and only if there exists a function v :X → R that respects 	C and ∼ in
the sense of the lemma. Certainly, if an ABS representation (u�S) exists, x ∼ y implies
u(x) = u(y) since both achieve the same maximum, while if x 	C y, then u(x) > u(y)

follows from y ∈ CA(s) ⊂ SA(s) ⊂ SA(s + t) with t ≥ 1 in which u(x) is maximal, while

8Note that Lemma 1 is a direct corollary of Theorem 2.6 in Bossert and Suzumura (2009).
9While their paper has a different set up, there is a natural relation between our OWC condition and

the dominating anchor axiom in Masatlioglu and Nakajima (2009). Under a natural translation between
the two settings, OWC implies the dominating anchor axiom but not vice versa. Masatlioglu and Nakajima
(2009) consider extended choice problems that map choice sets and a reference point to final choice. The
dominating anchor axiom states that, for any set S, there exists a “best” option x such that if x is the refer-
ence point and some element from S is chosen from set T , that element must be x itself. Our axiom implies
this if we assume that the starting point is always searched. Under this condition, a violation of the dom-
inating axiom would also lead to a violation of our OWC condition (as every item in the set S would have
been revealed inferior to some other element in S). However, the dominating anchor axiom does not imply
our OWC condition, as it has nothing to say about intermediate (i.e., nonfinal) choices.
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u(y) is not. Conversely, if a function v :X → R exists that respects 	C and ∼ on X , we
can define the expanding correspondence S∗ : X × N → X by

S∗
A(t) =

⋃
s≤t

CA(s)�

To show that (v�S∗) forms an ABS representation of (X�C), we show that CA(t) com-
prises all elements that are maximal in S∗

A(t) according to v :X → R. Note that if
x ∈ CA(t), then x 	C y or x ∼ y for all y ∈ S∗

A(t), whereupon v(x) ≥ v(y) follows from
the fact that v respects 	C and ∼ on X . Conversely, suppose that we can find x ∈ S∗

A(t)

satisfying v(x) ≥ v(y) for all y ∈ S∗
A(t) but with x /∈ CA(t). In this case, all y ∈ CA(t) satisfy

y 	C x, implying that v(y) > v(x), which contradiction completes the proof. �

Corollary 1. Utility function v :X → R and search correspondence S : X → Z ND form
an ABS representation of (X�C) if

(i) v respects 	C and ∼
(ii)

⋃
s≤t CA(s) ⊆ SA(t) ⊆ CA(t)∪ {x ∈X | v(x) < v(y)� y ∈ CA(t)} for all A ∈ X , t ∈ N.

Note from Corollary 1 that there are strong limits to what can be said about search
order. It characterizes representations as involving a utility function v that respects 	C

and ∼ on X , a search correspondence S that must include at least all objects that have
been chosen from all sets A at times s ≤ t, and that may also contain any additional
elements that have utility strictly below that associated with chosen objects according
to v. Hence all that can be asserted definitely is that items rejected along the path were
searched, while those revealed preferred to the currently chosen objects were not. Items
that are never chosen may or may not have been searched. This implies that the more
switches there are between objects in the choice process data, the more restricted is the
search order.10

Given that a utility function v :X → R can form the basis for an ABS representation,
note that any strictly increasing transform of v will still form an ABS representation in
combination with precisely the same set of search correspondences. However, we can
also change the function v in nonmonotonic ways that do not contradict the informa-
tion in 	C and ∼. For example, if X = {a�b� c} and 	C contains only {(a�b)� (c�b)}, while
∼ is empty, the consistent utility functions do not restrict the ranking of a against c, so
that nonmonotonic changes to the utility function may still form part of an ABS repre-
sentation. However, Corollary 1 states that the upper bound on what may be contained
in SA(t) is determined by the set of objects that have utility lower than those being cho-
sen from A at time t. Thus, nonmonotonic changes in the utility function may change
the set of permissible search functions.

10A reasonable prior, e.g., that search is in list order (Salant and Rubinstein 2008), may enrich the infer-
ences one can make from choice process data. This theory of search order would be supported if chosen
options were only replaced by items higher in the list. Support would be even stronger if the selected op-
tions were the successive maxima in list order.



Theoretical Economics 6 (2011) Search, choice, and revealed preference 27

3. Reservation-based search: The deterministic case

Since the ABS model says nothing about the stopping rule for search, we augment it
with a simple “reservation utility” stopping rule in that search continues until an object
is found that has utility above some fixed reservation level, whereupon it immediately
ceases.11 We believe that RBS is an interesting model in its own right, as many of the
search models currently used within economics fall into this category. These include
search models in labor economics and industrial organization, as well as the satisficing
procedure first introduced by Simon (1955).

The key to the empirical content of RBS is that one can make inferences as to objects
that must have been searched even if they are never chosen. Specifically, in any set in
which the final choice has below-reservation utility, it must be the case that all objects in
the set are searched. Hence final choices may contain revealed preference information.

Intuitively, an RBS representation is an ABS representation (u�S) in which a reser-
vation level of utility ρ exists, and in which the above- and below-reservation sets
X

ρ
u = {x ∈ X | u(x) ≥ ρ} and X\Xρ

u play critical roles. Specifically, search stops if and
only if an above-reservation item is discovered, so that search is complete if there
are no above-reservation items available. To capture this notion formally, we define
CL
A = limt→∞CA(t) as the final choice the DM makes from a set A ∈ X as well as limit

search sets SLA ≡ limt→∞ SA(t) ∈ X . Note that for finite X , the existence of an ABS repre-
sentation guarantees that such limits are well defined.

Definition 4. Choice process (X�C) has a reservation-based search (RBS) representa-
tion (u�S�ρ) if (u�S) forms an ABS representation and ρ ∈ R is such that, given A ∈ X ,
the following statements holds.

R1. If A∩X
ρ
u = ∅, then SLA = A.

R2. If A∩X
ρ
u �= ∅, then

(a) there exists t ≥ 1 such that SA(t)∩X
ρ
u �= ∅

(b) SA(t)∩X
ρ
u �= ∅ �⇒ SA(t) = SA(t + s) for all s ≥ 0.

Condition R1 demands that any set containing no objects above reservation utility
is fully searched. Condition R2(a) demands that search must at some point uncover an
element of the above-reservation set if present in the feasible set. Condition R2(b) states
that search stops as soon as reservation utility is achieved.

It should be noted that the RBS model refines only the behavioral implications of the
ABS model by demanding both R1 and R2. With R1 alone, the RBS model imposes no ad-
ditional behavioral restrictions, as any data that admit an ABS representation would also
satisfy R1 if we set the reservation utility ρ such that Xρ

u = X . Similarly, data that allow
an ABS representation can also trivially satisfy R2 alone by setting ρ such that Xρ

u = ∅.

11One can readily allow for reservation rules that condition on immediately observable features of the
choice set, such as its cardinality. Tyson (2008) considers the implications for final choice of a reservation
level that decreases as the choice sets get larger. However, Tyson assumes that the observable data are the
set of all above-reservation objects in a particular set.
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As with the ABS model, the key to characterizing the RBS model is to understand the
corresponding notion of revealed preference. As RBS is a refinement of ABS, it must be
the case that behavior that implies a revealed preference under ABS also does so under
RBS. However, the RBS model implies that some revealed preference information may
also come from final choice, with sets that contain only below-reservation utility objects
being completely searched.

The following cases that satisfy ABS but not RBS illustrate behaviors that must be
ruled out.

• Cα({x� y}) = x; y!; Cα({x�z}) = x!; Cα({y� z}) = z!.
• Cβ({x� y}) = x; y!; Cβ({x� y� z}) = x!.
In the first case, the fact that x was replaced by y in {x� y} reveals the latter to be

preferred and the former to be below reservation utility. Hence the fact that xwas chosen
from {x�z} reveals z to have been searched and rejected as worse than x, making its
choice from {y� z} contradictory. In the second, the fact that x is followed by y in the
choice process from {x� y} reveals y to be preferred to x, and x to have utility below the
reservation level (otherwise search must stop as soon as x is found). The limit choice
of x from {x� y� z} therefore indicates that there must be no objects of above-reservation
utility in the set. However, this in turn implies that the set must be fully searched in
the limit, which is contradicted by the fact that we know y is preferred to x and yet x is
chosen.

These examples indicate the additional revealed preference information inherent
in the RBS model. Under an RBS representation, when a unique final choice is made
from two objects x� y ∈ X , either of which has below-reservation utility, then we can
conclude that the chosen object is strictly preferred. To see this, suppose that y has
below-reservation utility. In this case, if it is chosen over x, it must be that x was searched
and rejected. Conversely, suppose that x is chosen over y. In this case, either x is above
reservation, in which case it is strictly preferred to y, or it is below reservation, in which
case we know that the entire set has been searched, again revealing x to be superior.

To use this insight to characterize when an RBS representation exists, we define a
class of binary relations 	L

D on X for any set D ∈ X . These binary relations capture the
revealed preference information that would be derived from final choice with D as the
set of below-reservation utility objects. These binary relations 	L

D on X are then united
with the information from 	C to produce the new binary relation 	R

D that captures the
revealed preference information from the RBS model under the assumption that D is
the below-reservation set.

Definition 5. Given a choice process model (X�C) and set D ∈ X , the binary relation
	L
D on X is defined by x 	L

D y if {x� y} ∩D �= ∅, and there exists A ∈ X with x� y ∈ A and
x ∈ CL

A, yet y /∈ CL
A. The binary relation 	R

D is defined as 	L
D ∪ 	C and �R

D is defined as
	R
D ∪ ∼.

To identify conditions for an RBS representation, we focus on identifying objects that
must be below-reservation utility in any possible representation. As a first step, we know
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that an object must have utility below the reservation level if we see a DM continue to
search even after they have found that object. We call such an object nonterminal.

Definition 6. Given choice process (X�C), define the nonterminal set XN ⊂ X ,

XN = {x ∈X | ∃A ∈ X s.t. x ∈ CA(t) and CA(t) �= CA(t + s) for some s� t ≥ 1}�

Using this concept, Proposition 1 characterizes the below-reservation sets that ad-
mit an RBS representation. The result establishes that below-reservation sets must sat-
isfy three properties. First, they must contain all nonterminal elements. Second, they
must be closed under �R

D: if x is below reservation and is revealed at least as good as y,
then y must also be below reservation. Third, 	R

D and ∼ must satisfy condition OWC. We
prove the proposition in Appendix 1.

Proposition 1. A choice process model (X�C) admits an RBS representation with
below-reservation set D if and only if

(i) XN ⊂ D

(ii) if x ∈D and x �R
D y, then y ∈D

(iii) 	R
D and ∼ satisfy OWC.

A necessary and sufficient condition for an RBS representation is therefore that there
is some set D that satisfies these conditions. Note that if the third condition is satisfied
for some set D, it will be satisfied for any D∗ ⊂ D: if D∗ ⊂ D, then 	R

D contains 	R
D∗ , so

that if 	R
D (along with ∼) satisfies OWC, then so will 	R

D∗ . Thus the relevant necessary
and sufficient condition is that the revealed preference information generated by the
smallest below-reservation set that satisfies (i) and (ii) satisfies OWC.

To identify such a set, we introduce the indirectly nonterminal set. This is the set of
objects in X that are either directly revealed as nonterminal or are revealed as inferior
to a nonterminal object.

Definition 7. Given choice process (X�C), define the indirectly nonterminal set
XIN ⊂X as

XIN =XN ∪ {x ∈X | ∃A ∈ X � y ∈XN with x�y ∈A and y ∈ CL
A}�

It is clear that any below-reservation set must contain XIN: if y ∈XN and y is chosen
from A, then the entire set must have been searched, revealing unchosen elements to be
worse than y. However, it is also true that if 	R

XIN and ∼ satisfy OWC, then XIN satisfies
conditions (i) and (ii). Thus, choice process data admit an RBS representation if and
only if 	R

XIN and ∼ satisfy OWC. Given its importance, we suppress the XIN subscript for
preference relations defined using this below-reservation set (i.e., 	R=	R

XIN ). We prove
Theorem 2 in Appendix 1.
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Theorem 2. A choice process (X�C) has an RBS representation if and only if 	R and ∼
satisfy OWC.

The following corollary characterizes the set of equivalent RBS representations.
First, one identifies all possible below-reservation sets through Proposition 1. Given
such a set, which must include XIN, one checks that the utility function respects the
resulting revealed preference information. Finally, the search correspondence is con-
structed as it was in the ABS model in the period before search stops, with no further
search allowed once an above-reservation element is identified.

Corollary 2. A utility function v :X → R, reservation level ρ, and S : X → Z ND form an
RBS representation of a choice process if and only if

(i) D = {x ∈X | v(x) < ρ} satisfies the properties of Proposition 1

(ii) v respects 	R
D and ∼

(iii)
⋃

s≤t CA(s) ⊆ SA(t) ⊆ CA(t)∪ {x ∈ X | v(x) < v(y)� y ∈ CA(t)} for all A ∈ X , t ∈ N

(iv) SA(t)∩X
ρ
v �= ∅ �⇒ SA(t) = SA(t + s) for all s ≥ 0

(v) A∩X
ρ
v = ∅ ⇒ SLA = A.

4. The stochastic model

The ABS and RBS models both treat search order as unobservable, and characterize the
extent to which it is recoverable from choice process data. This makes it natural to de-
velop stochastic variants, since there is no reason to believe that search from a given set
will always take place in the same order. We therefore generalize the deterministic mod-
els of Sections 2 and 3 to allow for stochasticity. This allows us to develop stochastic ver-
sions of the RBS and ABS models, in which choice is generated from the maximization
of a fixed utility function against a stochastic search sequence.

4.1 ABS

We introduce a probability space on Z , the class of infinite sequences from X . The prob-
ability model is built upon standard foundations using cylinder sets.

Definition 8. Given T ≥ 1 and Y ⊂ X T , define the cylinder set H(Y�T ) by

H(Y�T ) = {Z ∈ Z | (Z1� � � � �ZT ) ∈ Y}�
Define the algebra G = ⋃∞

T=1{H(Y�T ) | Y ⊂ X T } ∈ 2Z , define F =σ(G) as the σ-algebra
generated by G , and define P as all probability measures on (Z� F), with generic element
P ∈ P .

We define the stochastic choice process as a mapping from sets A ∈ X to probability
distributions over ZA ⊂ Z .
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Definition 9. A stochastic choice process (SCP) (X� C̃) comprises a finite set X and a
function C̃ : X → P such that C̃A ≡ C̃(A) has support ZA ⊂ Z .

As in the deterministic case, a stochastic choice process has an ABS representation
if it can be viewed as resulting from maximization of a utility function in the context of
some process of search, with the searched set never shrinking. However, we allow the
search process to be stochastic. We will use S̃ : X → P ND to denote a stochastic search
function, where P ND ⊂ P identifies probability measures on (Z� F) with support Z ND,
the nondecreasing elements of Z . Given A ∈ X and F ∈ F , let C̃A(F) and S̃A(F), respec-
tively, denote the measure assigned to F by C̃(A) and S̃(A).12

Definition 10. Stochastic choice process (X� C̃) has a stochastic ABS representation
(u� S̃) if there exist u :X → R and S̃ : X → P ND such that C̃ is the stochastic choice
process derived by optimizing u against S̃,

C̄A(F) = S̃A

({
Z ∈ Z

∣∣ {
arg max

x∈Zt

u(x)
}∞
t=1

∈ F
})

for all A ∈ X �F ∈ F �

The theorem that characterizes the stochastic ABS representation is essentially iden-
tical to that in the deterministic case. It simplifies notation to define join and replace-
ment sets Jxy�Rxy ⊂ Z for x� y ∈ X , where Jxy is the set of choice processes in which x

and y are chosen at the same time, while Rxy are those in which y is replaced by x:

Jxy = {Z ∈ Z | {x� y} ⊂Zt for some t ≥ 1}
Rxy = {Z ∈ Z | y ∈Zs�x ∈Zs+t � y /∈Zs+t for some s� t ≥ 1}�

Measurability of Jxy�Rxy ⊂ Z is established in Appendix 2.
For purposes of establishing the stochastic ABS representation, we define x to be

revealed strictly preferred to y if Rxy has strictly positive measure and define x to be
revealed indifferent to y if the set Jxy has strictly positive measure.

Definition 11. Given stochastic choice process (X� C̃), the binary relation ∼C̃ on X is

defined by x ∼C̃ y if there exists A ∈ X with x�y ∈A and C̃A(J
xy) > 0. The binary relation

	C̃on X is defined by x	C y if there exists A ∈ X with x�y ∈ A and C̃A(R
xy) > 0.

As before, the condition for the characterization is that this revealed preference in-
formation is consistent with a fixed underlying utility function.

Theorem 3. Stochastic choice process (X� C̃) has a stochastic ABS representation (u� S̃)

if and only if 	C̃ and ∼C̃ satisfy OWC.

12That the set of Z ∈ Z with arg maxx∈Zt
u(x)∞t=1 ∈ F is measurable is demonstrated in Appendix 2.
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4.2 RBS

As in the deterministic case, the definition of a stochastic RBS representation requires
the analysis of limit behavior. Given B ∈ X , we define LB to be the F -measurable subset
of Z with limit B,

LB =
{
Z ∈ Z

∣∣ lim
t→∞Zt = B

}
�

In Appendix 2 it is shown that a stochastic choice process model (X� C̃) with stochastic
ABS representation (u� S̃) necessarily assigns full measure to the set in which limits exist,

C̃A

{ ⋃
B∈X

LB

}
= 1�

Hence, given a stochastic choice process model (X� C̃) with stochastic ABS representa-
tion (u� S̃) and A ∈ X , we can define limit choice and search probability measures C̃L

A

and S̃LA on X endowed with the discrete σ-algebra,

C̃L
A(B) = C̃A(L

B) and S̃LA(B) = S̃A(L
B) for any B ∈ X .

As in the deterministic case, the definition of stochastic RBS involves a utility func-
tion u :X → R and a level of reservation utility ρ that together identify above-reservation
set Xρ

u ≡ {x ∈ X | u(x) ≥ ρ}. Given Z ∈ Z , a key random variable in the stochastic RBS
representation is the first time that reservation utility is hit. To simplify notation in the
stochastic version of RBS, we let Hρ

u : Z −→ N ∪ ∞ denote this first hitting time associ-
ated with utility function u and reservation utility level ρ,

H
ρ
u(Z) =

{
inf{t | Zt ∩X

ρ
u �= ∅} if Zt ∩X

ρ
u �= ∅ for some t

∞ otherwise.

That hitting times are F -measurable functions is standard.
We use the notion of hitting times to define the stochastic version of the RBS model.

Definition 12. Stochastic choice process (X� C̃) has a stochastic RBS representation
(u� S̃�ρ) if (u� S̃) forms a stochastic ABS representation and ρ ∈ R is such that, given
A ∈ X , the following statements hold:

RS1. If A∩X
ρ
u = ∅, then S̃LA(A) = 1.

RS2. If A∩X
ρ
u �= ∅, then

(a) S̃A{Z ∈ Z | Hρ
u(Z) is finite} = 1

(b) S̃A{Z ∈ Z | S̃LA = S̃A(H
ρ
u(Z))} = 1.

As with ABS, the stochastic RBS characterization is the precise analog of the deter-
ministic version, and relies on the identification of directly and indirectly nonterminal
sets. We define 
y ⊂ Z to be the set of sequences in which y ∈ X appears at some point,
but the sequence changes thereafter. Measurability is established in Appendix 2.
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Definition 13. Given stochastic choice process (X� C̃), define the nonterminal set
X̃N ⊂X as

X̃N = {x ∈X | ∃A ∈ X with x ∈ A and C̃A(

x) > 0}�

Define the indirectly nonterminal set X̃IN as X̃Nand elements rejected with positive
probability in favor of an element of XN,

X̃IN = X̃N ∪ {
x ∈X | ∃A ∈ X � y ∈ X̃N with x�y ∈A�y ∈ B ⊂ A� and C̃L

A(B) > 0
}
�

The definition of revealed preference in the stochastic RBS model can now proceed
in line with the deterministic case.

Definition 14. Given stochastic choice process (X̃�C), the binary relation 	L̃ on X is
defined by x	L̃ y if ({x}∪ {y})∩ X̃IN �= ∅, and there exists A ∈ X with x�y ∈ A and B ⊂A

with x ∈ B, y /∈ B and C̃L
A(B) > 0. Binary relation 	R̃ is defined as 	L̃ ∪ 	C̃ .

Using this definition, the standard application of Lemma 1 characterizes existence
of an RBS representation.

Theorem 4. Stochastic choice process (X� C̃) has a stochastic RBS representation (u� S̃�ρ)

if and only if 	R̃ and ∼C̃ satisfy OWC.

4.3 Sketch of proofs

The proofs of Theorem 3 and of Theorem 4 are detailed in Appendix 3. We limit our-
selves in this discussion to presenting structural elements. Both proofs work by reduc-
ing the stochastic case to its deterministic counterpart. The key step involves showing
that nothing is lost by “compressing” choice process data by removing time periods in
which choice does not change.

Definition 15. Stochastic choice process (X� C̃) is compressed if C̃A(Z COM)= 1 for all
A ∈ X , where,

Z COM ≡ {Z ∈ Z | Zt =Zt+1 �⇒Zt =Zt+s all s ≥ 1}�

In the first step of the reduction, a given stochastic choice process (X� C̃) is associ-
ated with a unique compressed choice process by removing all periods of constancy (see
Appendix 3 for details). The process of compression reduces to equivalence an infinite
number of choice processes differing only in the delay between switches.

The first observation that makes compression valuable is the invariance of key prop-
erties under compression and its inverse, decompression. It is immediate that the or-
derings 	R̃, 	C̃ , and ∼C̃ are preserved under both operations. It is equally immediate
that ABS and RBS survive under both compression and decompression, since one uses
exactly the same utility function and reservation utility in the representation of the orig-
inal process and its transformation, using compression only to change the search corre-
spondence by removing repetition in the case of compression and inverting suitably in
the process of decompression.
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The second observation that makes compression valuable is that any compressed
process that satisfies ABS is “finite” in that only a finite number of sequences have strictly

positive probability. Conversely, any compressed stochastic choice process for which 	C̃

and ∼C̃ satisfy OWC is finite. While the formal definitions and proof are in Appendix 3,
the intuition is simple. Both ABS and OWC imply that a compressed stochastic choice
process must stop changing within a number of periods that matches the cardinality of
the power set of X .

The bottom line of this reduction process is that the proofs of Theorems 3 and 4,
detailed in the appendix, are provided only for finite models, with the extension to the
general case being immediate. The critical observation in establishing the finite case is
that any finite stochastic choice processes (X� C̃) can be identified with an appropriately
defined convex combination of deterministic choice processes.

5. RBS and nonstandard behavior

The stochastic RBS model allows for two channels by which seemingly unimportant
changes in the decision making environment might lead to changes in the choices peo-
ple make. First, they may impact the probability distribution over paths of search. Sec-
ond, they may impact the level of reservation utility. These changes can, in turn, lead
to framing effects, status quo bias, and stochastic choice of a specific form that we now
characterize.

5.1 Framing effects

To model framing effects, let � comprise abstract elements γ ∈ � that we refer to as
frames. For example, these frames may represent different ways in which objects are
physically displayed to the DM. Let � :� → C̄ be a mapping from frames to the class C̄
of stochastic choice processes on (Z� F), with �(γ) the process associated with γ ∈ �.
We seek to characterize data sets in which all choice processes regardless of frame
can be derived from a common underlying utility function, but with frame-specific
search orders and reservation utilities. Such a characterization is experimentally use-
ful, since it indicates conditions under which one can derive information on prefer-
ences in a low search cost (hence high reservation utility) environment that will apply
equally in a higher search cost (hence lower reservation utility) frame in which choice
process data yield less direct evidence on preferences. It turns out that we need to ap-
ply OWC to a binary relation that appropriately unifies revealed preference information
across frames. In the statement, S̄ denotes the set of all stochastic search processes on
(Z� F).

Definition 16. Define x 	R̃(�) y if x 	R̃ y according to some stochastic choice process

�(γ) for some γ ∈ �. Similarly define x ∼C̃(�) y if x ∼R̄ y according to some stochastic
choice process �(γ) for some γ ∈ �.

Theorem 5. Given finite set X , frames �, and � :� → C̄ , there exists a utility function
u :X → R, a family of reservation utilities ρ :� → R, and family of stochastic search
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processes  :� → S̄ such that (u�(γ)�ρ(γ)) forms a stochastic RBS representation of

�(γ) ∀γ ∈ � if and only if 	R̃(�) and ∼C̃(�) satisfy OWC.

The proof is given in Appendix 4.

5.2 Status quo bias

One particular class of framing effect that can be explored using the RBS model is status
quo bias—the increased likelihood of selecting a particular object simply because it is
the status quo or currently selected option (Samuelson and Zeckhauser 1988). We can
model such behavior as a framing model in which each status quo gives rise to its own
frame. To capture status quo bias, we posit that the status quo object is always the first
object searched in any choice environment.

Under this assumption, the stochastic RBS model makes particular predictions
about how status quo will affect choice. For above-reservation utility objects, status quo
bias will be complete: when such objects are the status quo, then they will always be
chosen, as the DM is immediately aware of their existence and will indulge in no further
search. However, if the status quo object is below-reservation utility, then it will not be
chosen unless it is the highest utility object in the choice set, in which case it will be
chosen regardless of the status quo, as the stochastic RBS model implies that search will
be complete in such cases. Thus, the RBS model implies a form of status quo bias that
has two extremes: either an object will always be chosen when it is the status quo or the
status quo will have no effect.

5.3 Stochastic choice

It is clear that the stochastic RBS model can give rise to stochastic choice in the form of a
probability distribution over final choices. Even with a fixed utility function, final choice
will be random if the order of search is random and search is incomplete. However,
this distribution will be of a particular form: choice may be stochastic among above-
reservation objects, while objects with below-reservation utility are never chosen. In
the simplest possible case with all search orders being equally probable, final choice is
deterministic and consistent for choice sets made up only of below-reservation items,
whereas for choice sets containing above-reservation items, there is an equal chance
of choosing any such item. Observed stochasticity in choice will therefore increase as
reservation utility falls.

6. Eliciting choice process data in the laboratory

For the above results to advance our understanding of incomplete search and choice,
one must be able to experimentally identify the path of provisional choices over the pre-
decision period. We sketch the approach that Caplin et al. (forthcoming) (CDM) use to
generate just this data and we describe results for a highly stylized experiment.

Subjects in the experiment were presented with various subsets of a larger choice
set, from each of which they had to make a choice. They were given a fixed time win-
dow within which to choose from among each fixed set of available alternatives. They
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were allowed to select any alternative at any point in a fixed time window.13 They were
informed that they could change the selected alternative whenever they wished. Rather
than being based on final choice alone, actualized choice was recorded at a random
point in the given time window that was revealed only at the end of the experiment. This
incentivized subjects to always have selected their current best option in the choice set.
It is for this reason that we interpret the sequence of selections as comprising provisional
choices.14

Our first experiment using this interface was deliberately stark, missing the conflict-
ing priorities that may typify more intricate decisions. The objects of choice were kept as
simple as possible, and were subject to clear and universal preferences: all options were
deterministic dollar amounts. To render the problem nontrivial, the dollar amount for
each option was represented as a sequence of addition and subtraction operations. The
simplicity of the setting enabled us to explore the ABS and RBS models in an uncluttered
and “friendly” experimental context.

Each experimental round began with the topmost, and worst, option of $0 se-
lected.15 Subjects could at any time select any of the alternatives on the screen, with the
currently selected object being displayed at the top of the screen. In each round there
was a time constraint, with subjects having up to 120 seconds to complete the choice
task (though this constraint was binding only in about 5% of the rounds). A subject who
finished in less than 120 seconds could press a submit button, which completed the
round as if he had kept the same selection for the remaining time. Treatments varied in
the number of alternatives available and in the complexity of each alternative.

As one might expect, the experiment provided support for ABS-style search. Subjects
made several selections in the course of a round and generally switched from lower value
to higher value objects over time. In the context of the experiment, this is equivalent
to finding positive support for the ABS model of search. A more striking finding was
that behavior was well approximated by the RBS model. While behavior did change
as the number of available options and their level of complexity was varied, it did so
within the RBS framework. The results suggest that choice process data are of more
than theoretical interest.

7. Concluding remarks

Incomplete information may explain many apparent deviations from utility-maximizing
behavior. Standard choice data do not allow one to pin down when such deviations are

13As with tests of standard choice theory, this experiment uncovers only one most preferred element
rather than all such elements. This opens some daylight between the theoretical definition of choice
process data and the experimental data.

14In support of this interpretation, 58 of 76 subjects in a post-experiment survey responded directly that
they always had their most preferred option selected, while others gave more indirect responses that sug-
gest similar behavior (e.g., having undertaken a recalculation before selecting a seemingly superior alter-
native).

15The subjects knew that the $0 option was the worst in the choice set. They therefore had the incentive
to immediately change their selection, which is consistent with the ABS model with this being the only
object searched. The model is restrictive only when a switch is made, at which point it implies that the
object switched to is of higher value.
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caused by changing preferences and when they result from incomplete information. We
develop clean procedures for accomplishing this separation by expanding beyond stan-
dard choice data to include data on the evolution of choice with time. We character-
ize standard alternative-based and reservation-based procedures that are ubiquitous in
search theory. Experimental investigation of choice process data is ongoing.

Appendix 1: RBS

Proof of Proposition 1. To prove sufficiency, we note from Lemma 1 that (iii) implies
existence of u :X → R that respects 	R

D and ∼ on X . Define

ρ= maxx∈D u(x)+ minx∈X\D u(x)

2
�

Note from (ii) that CL{x� y} = y whenever y ∈ X\D and x ∈ D, implying y 	R
D x and

u(y) > u(x), and hence that X/D = X
ρ
u . Mimicking the proof of Theorem 1, one can then

define a search correspondence such that (u�S) together form an ABS representation,

SA(t) =
{⋃

s≤t CA(s) for t < T(A)⋃
s≤T(A) CA(s)∪L(A) for t ≥ T(A),

where T(A) ≡ min{t ≥ 1 | CA(t) = CL
A} is the time at which choice first achieves its limit

and L(A) comprises all elements of A with utility strictly below maxx∈CL
A
u(x). We now

show that all requirements for (u�S) and ρ together to form an RBS representation with
reservation set X\D are met.

• R1. When A∩X
ρ
u = ∅ and so A ⊂ D, we know that x ∈ CL

A and y /∈ CL
A �⇒ x 	L

D y,
so that u(x) > u(y). Hence CL

A = arg max{x∈A} u(x) with SLA =A by construction.

• R2(a). If A ∩X
ρ
u �= ∅ and so A∩X\D �= ∅, then CL

A ∩D = ∅ since x ∈ CL
A ∩D and

y /∈ CL
A �⇒ u(x) > u(y), contradicting the fact that utility is strictly higher on X\D

than on D. Hence there exists t ≥ 1 such that CA(t)∩X
ρ
u �= ∅.

• R2(b). If CA(t) ∩ X
ρ
u �= ∅, then CA(t) ∩ XN = ∅ by (i), implying directly that

CA(t + s) = CA(t) for all s ≥ 1, by construction. It is therefore the case that
SA(t + s) = SA(t) for all s ≥ 1 as required.

That condition (i) of the proposition is necessary for an RBS representation follows
directly from property R2(b) of RBS definition, which implies that XN ⊂ D is required
for D to be a reservation set. Given Lemma 1, to prove that (iii) is necessary, it suf-
fices to show that u represents 	R

D and ∼ in any RBS representation (u�S�ρ), where
D = X\Xρ

u and X
ρ
u is the corresponding reservation set. The fact that u represents 	C

and ∼ is direct since (u�S) forms an ABS representation of (X�C). To see that 	L
D is

respected, suppose to the contrary that x 	L
D y but u(y) ≥ u(x). Note in this case that

x ∈ D, since y ∈ D �⇒ x ∈ D and {x∪ y} ∩D �= ∅ by definition of x 	L
D y. But then by R1,

x ∈ CL
A �⇒ CL

A = arg maxx∈A u(x); hence u(y) < u(x) since y /∈ CL
A. This contradiction
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establishes that u indeed represents 	R
D and ∼ . With this we know that condition (ii)

of the proposition is necessary, since x ∈ D �⇒ u(x) < ρ, whereupon x �R
D y implies

u(y) < ρ, hence y ∈ D, completing the proof. �

Proof of Theorem 2. To prove sufficiency, we show that the conditions of the propo-
sition are satisfied in this case for D= XIN. For (i) and (iii) this is direct. Hence it suffices
to establish that if x ∈ XIN and x �R y, then y ∈ XIN. By definition x ∈ XIN implies that
we can find z ∈ XN with z �L x. Now, if CL{y�z} = y, we have that x �R y 	R z �L x, vio-

lating OWC. Thus it must be the case that z �L y, implying by definition that y ∈ XIN, as
required. To show that 	R and ∼ satisfying OLC is necessary for (X�C) to have any RBS
representation (u�S�ρ), it suffices by Lemma 1 to show that such u :X → R must respect
	R and ∼. This follows directly for 	C and ∼ since (u�S) forms an ABS representation
of (X�C). To confirm that u :X → R respects 	L, consider A ∈ X with x�y ∈ A, x ∈ CL

A,
y /∈ CL

A, and x or y ∈XIN. There are two cases.

• If u(x) < ρ, then x ∈ CL
A �⇒ A∩X

ρ
u = ∅ by R2(a); hence SLA = A by R1, and hence

u(y) < u(x) for all y ∈A with y /∈ CL
A.

• If u(x) ≥ ρ, then x /∈XIN follows directly from condition 2(b) of the RBS definition,
so that y ∈XIN ⊂ X\Xρ

u and u(y) < ρ≤ u(x). �

Appendix 2: Measurability

We show that various sets are contained in the σ-algebra F .

• Z COM and Z ND: Given T ≥ 1, define N DT as all subsets of X T that are nondimin-
ishing, Zt ⊂ Zt+1 for all 1 ≤ t ≤ T , and define N RT as all subsets of X T in which
there is no immediate repetition, Zt �= Zt+1 for any 1 ≤ t ≤ T − 1. Note that

Z ND =
∞⋂
T=1

{Z ∈ Z | (Z1� � � � �ZT ) ∈ N DT } ∈ F

Z COM =
∞⋃
t=1

{ ∞⋂
s=1

{Z ∈ Z | (Z1� � � � �Zt) ∈ N Rt �Zt = Zt+s}
}

∈ F �

• Note that {Z ∈ Z | {arg maxx∈Zt
u(x)}∞t=1 ∈ F} ∈ F for any F ∈ F can be expressed

as a countable collection of cylinder sets

∞⋂
T=1

{
Z ∈ Z

∣∣ ∃Y ∈ F s.t. arg max
x∈Zt

u(x) = Yt ∀t ∈ {1� � � � �T }
}
�

• For any x� y ∈X , the sets Jxy , Rxy , and 
x: Given A ∈ X , define WA as all supersets
of A and define W C

A ⊂ X as its complement. Define the cylinder sets WA(t) and
WC

A(t) ∈ G by

WA(t) ≡ {Z ∈ Z |Zt ∈WA}
WC

A(t) ≡ {Z ∈ Z |Zt ∈W C
A }�
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• Note that

Jxy =
⋃
t

W{x�y}(t) ∈ F

Rxy =
∞⋃
t=1

{
W{y}(t)∩

{ ∞⋃
s=1

{WC{y}(t + s)∩ W{y}(t + s)}
}}

∈ F


x =
∞⋃
t=1

{ ⋃
B∈W{x}

{ ∞⋃
s=1

{Z ∈ Z | Zt = B�Zt+s �= B}
}}

∈ F �

• Z NCY = {Z ∈ Z | Zt+1 �= Zt �⇒ Zt+s �= Zt any s ≥ 1} (see Appendix 3): First, index
all sets in X , A1�Am� � � � �AM , with M the cardinality of X . Define �(M) to be all
permutations of the first m ≤ M integers. Given πm ∈ �(M), define the countable
set ϒ(πm) to comprise all strictly increasing sets of m natural numbers,

ϒ(πm) = {Tm = {Tm
1 �Tm

2 � � � � �Tm
m }|Tm

1 = 1�Tm
i ∈ N and Tm

i < Tm
i+1 for all i ≥ 1}�

That Z NCY ∈ F follows since it is a countable union of cylinder sets,⋃
πm∈�(M)

⋃
Tm∈ϒ(πm)

{Z ∈ Z | Zt =Aπm
i

for Tm
i ≤ t < Tm

i+1�1 ≤ i ≤m− 1;

Zt =Aπm
m

for t ≥ Tm
m }�

• E(Y) (see Appendix 3): Given K nonnegative integers sk, define S0 = 0 and partial
sums Sk = ∑k

j=1 sj , enabling the short definition

E(Y) =
∞⋂

K=1

{ ∞⋃
sK=1

· · ·
{ ∞⋃
s1=1

{Z ∈ Z | Zτ =Zk

for Sk−1 + 1 ≤ τ ≤ Skand 1 ≤ k≤ K}
}}

∈ F �

Proposition 2. If (X� C̃) permits a stochastic ABS representation (u� S̃), then for any
A ∈ X ,

C̃A

{ ⋃
B∈X

LB

}
= 1�

Proof. Since (X� C̃) has an ABS representation (u� S̃), we know that S̃A(Z ND) = 1.
Note that since X is finite, limit elements exist for all Z ∈ Z ND, establishing that
S̃A{⋃B∈X LB} = 1. Now note that if Z ∈ ⋃

B∈X LB, then {arg maxx∈Zt
u(x)}∞t=1 ∈ ⋃

B∈X LB,
as, Z ∈ ⋃

B∈X LB implies that there must be some t such that Zt = Zt+s ∀s ≥ 0; thus it
must be the case that arg maxx∈Zt

u(x) = arg maxx∈Zt
u(x) ∀s ≥ 0. Hence,

C̃A

{ ⋃
B∈X

LB

}
= S̄

{
Z ∈ Z

∣∣∣ {
arg max

x∈Zt

u(x)
}∞
t=1

∈
⋃
B∈X

LB

}
≥ S̄

{ ⋃
B∈X

LB

}
= 1�

�
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Appendix 3: Theorems 3 and 4

We first formally define compression, from which it follows immediately that it is suffi-
cient to prove Theorems 3 and 4 for compressed stochastic choice processes. We then
show that compressed stochastic choice processes of interest are finite, further simpli-
fying the requirements to establishing Theorems 3 and 4 for finite stochastic choice
processes. Next, we show that finite stochastic choice processes can be represented
as weighted averages of deterministic processes. We close out by proving Theorems 3
and 4 for the finite case, which proof is general in light of the earlier results.

A3.1 Compression

Definition 17. Given Z ∈ Z , define the set of times at which Z changes in sequential
fashion starting with τ1(Z) = 1 as

τj+1(Z) =
{

mins≥1{Zτj(Z)+s �=Zτj(Z)} if ∃s ≥ 1 s.t. Zτj(Z)+s �=Zτj(Z)

∞ if Zτj(Z)+s =Zτj(Z) for all s ≥ 1.

Let J(Z) ∈ N ∪ ∞ be the number of distinct points of change, and define the compres-
sion of any element Z ∈ Z , D(Z) ∈ Z COM, by removing all time indices in which there is
repetition and repeating the limit element if there is any repetition,

D(Z) =
{
(Zτ1(Z)� � � � �Zτj(Z)� � � � �ZτJ(Z)(Z)� � � � �ZτJ(Z)(Z)� � � � �ZτJ(Z)(Z)) if J(Z) is finite
(Zτ1(Z)� � � � �Zτj(Z)� � � �) if J(Z)= ∞.

Given Y ∈ Z COM, define the equivalence classes of compressed elements of E(Y) ⊂ Z
(the proof that E(Y) ∈ F is in Appendix 2),

E(Y) = {Z ∈ Z | D(Z) = Y }�
Given a measure P ∈ P , define its compression DP ∈ P by shifting probabilities onto the
compressed representative of each equivalence class,

DP(Y) =
{
P(E(Y)) for Y ∈ Z COM

0 for Y = Z\Z COM.

A3.2 Compression and finiteness

Proposition 3. A compressed SCP that has an ABS representation or for which 	C̃ and

∼C̃ satisfy OWC is finite, in that there exists a finite set G ∈ F such that C̃A(G) = 1 for all
A ∈ X .

Proof. To show that compression and ABS imply that the SCP is finite, let M = |X | and
let Z(M) ∈ F be sequences that are unchanging after period M :

Z(M) = {Z ∈ Z | Zt =Zs ∀t� s >M}�
It is intuitive that a compressed choice sequence with an ABS representation satisfies
C̄A(Z(M)) = 1 ∀A ∈ X . To confirm, consider the union of all cylinder sets with Zt �= Zs
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for some t� s >M . If any element Z in this set is to be in Z COM, it must be the case that,
for some r�w < s, Zr =Zw and r �= w± 1. Consider now the cylinder sets defined by

{Z ∈ Z | Zt �=Zs�Zr =Zw}�
Now take any k such that r < k <w and consider the cylinder set

{Z ∈ Z | Zt �=Zs�Zk �= Zr =Zw}�
These cylinder sets must have measure zero in any choice process that has an ABS rep-
resentation, as the set of search sequences such that

arg max
x∈SA(k)

u(x) �= arg max
x∈SA(r)

u(x) = arg max
x∈SA(w)

u(x)

is measure zero (as any such sequence would be nonincreasing). As Z\Z(M) can be ob-
tained by the repeated countable union across {Z ∈ Z | Zt �= Zs�Zr = Zw}, we know that
if a choice process is compressed and has an ABS representation, then C̃A(Z\Z(M)) = 0
∀A ∈ X and so C̄A(Z(M)) = 1. This in turn proves that (X� C̃) is finite.

To prove that a compressed SCP that satisfies which 	C̃ and ∼C̃ satisfy OWC is fi-
nite, note that this implies that the associated choice process must apply full measure
to Z NCY, those elements of Z in which there are no cycles (the proof that Z NCY is mea-
surable is in Appendix 2),

Z NCY = {Z ∈ Z |Zt+1 �=Zt �⇒ Zt+s �= Zt any s ≥ 1} ∈ F �

To see why �C̃ satisfying OWC implies that C̃A(Z NCY) = 1 for any set A ∈ X , assume
to the contrary, that there is a set of strictly positive measure according to some A ∈ X

such that Zt+1 �=Zt , yet Zt+s = Zt for some s ≥ 1. There are two possibilities. One is that
there is an element y ∈ Zt+1 with y /∈ Zt : in this case, consider any x ∈ Zt+1, and note
that C̃A(R

xy) > 0 due to exit of element y and entry of element x from period t + 1 to pe-
riod t + s, while also one of the statements C̃A(R

yx) > 0 or C̃A(J
yx) > 0 in consideration

of the entry of y in period t + 1. In the former case, the contradiction to �C̃ satisfying

OWC is that x 	C̃ y and y 	C̃ x, while in the latter case, the contradiction is that x 	C̃ y

and y ∼C̃ x. Alternatively, it could be that there is some y ∈ Zt and y /∈ Zt+1. A simi-

lar argument shows that this violates �C̃ satisfying OWC . This establishes the required
finiteness, since elements of Z COM ∩ Z NCY are unchanging after a number of periods no
larger than the cardinality of X , completing the proof. �

A3.3 Structure of the finite case

Proposition 4. A stochastic choice process (X� C̃) is finite if and only if it is the con-
vex combination of a finite number of deterministic choice processes, in that there exist
some J deterministic choice processes {(X�Cj)}Jj=1 and weight vector λ ∈ R

J++ satisfying∑J
j=1 λj = 1, and such that C̃ = ∑J

j=1 λjC
j : i.e., for all F ∈ F and A ∈ X ,

C̃A(F) =
J∑

j=1

λjC
j
A(F) =

J∑
j=1

λj1{Cj
A∈F}�
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Proof. It is immediate that the convex combination of deterministic choice processes
{(X�Cj)}Jj=1 is finite, since C̃A{Z ∈ Z | ∃j ∈ {1� � � � � J} s.t. Z = Cj} = 1 for all A ∈ X . To
prove that any finite process (X� C̃) can be decomposed as the proposition asserts,
use integers 1 ≤ k ≤ K to index elements Zk of the finite set G with the property that
C̃A(G) = 1 ∀A ∈ X : we call these the basic choice processes. Since C̃A(Zk) ≥ 0 and∑K

k=1 C̃A(Zk) = 1, we can use indicator functions to record the probability of any set
F ∈ F as a convex combination of these basic processes as

C̃A(F) =
K∑

k=1

C̃A(Zk)1{Zk∈F)�

We now show that we can use these weights to construct a finite set of choice processes
that are able simultaneously to capture such probability information across sets F ∈ F
and A ∈ X .

First, gather together in the finite set J all values taken on by the cumulative distri-
butions taken in order according to k across all A ∈ X ,

J =
{
x ∈ (0�1]

∣∣∣ x =
k∑
i=1

C̃A(Zi) for some A ∈ X �k ∈ {1� � � � �K}
}
�

Index members of the set J by 1 ≤ j ≤ J in increasing order, so that xj < xj+1, with
xJ = 1. Now define a family of functions fA : J → G that, for each A ∈ X , record which
basic choice process is related to each cumulative probability level,

fA(xj) = C̃A(Zk) if and only if xj ∈
(
k−1∑
i=1

C̃A(Zi)�

k∑
i=1

C̃A(Zi)

]
�

We use these objects to construct the finite set of choice processes of interest using
the following iteration. The probability assigned to the first deterministic choice process
C1 is x1 and the actual specification involves using the set-specific weights

C1
A = fA(x1)�

If J > 1, we iterate the construction, using weight xj − xj−1 > 0 at step j and specifying

choice process Cj
A to satisfy

C
j
A = fA

( j∑
i=1

xi

)
�

The above construction identifies a finite set of deterministic choice processes Cj ,
1 ≤ j ≤ J, and weights λj = xj − xj−1 ≥ 0, and sums to 1. We now iterate claim that, for
all A ∈ X and F ∈ F ,

C̃A(F) =
J∑

j=1

λjC
j
A(F) =

J∑
j=1

λj1{Cj
A∈F}�
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We consider first the sets Zk ∈ F , noting that

J∑
j=1

λj1{Cj
A=Zk} =

J∑
j=1

λj1{fA(
∑j

i=1 λi)=Zk}

and that fA(
∑j

i=1 λi) = Zk if and only if
∑j

i=1 λi ∈ (
∑k−1

i=1 C̃A(Zi)�
∑k

i=1 C̃A(Zi)]. Hence

we can identify j and l such
∑j

i=1 λi = ∑k−1
i=1 C̃A(Zi) and

∑l
i=1 λi = ∑k

i=1 C̃A(Zi), so that
by construction we get

J∑
j=1

λj1{Cj
A=Zk} =

k∑
i=1

C̃A(Zi)−
k−1∑
i=1

C̃A(Zi) = C̃A(Zk)�

That the same is true for any F ∈ F follows directly, since

C̃A(F) =
K∑
i=1

C̃A(Zk)1{Zk∈F} =
K∑
i=1

(
J∑

j=1

λj1{Cj
A=Zk}

)
1{Zk∈F} =

J∑
j=1

λj1{Cj
A∈F}� �

A3.4 Proof of Theorem 3

Application of the compression and decompression relations establishes that the finite
case is all that needs to be considered. To prove that if ∼C̃ and 	C̃ satisfy OWC, then

ABS follows, we apply Lemma 1 directly to show that �C̃ satisfying OWC implies exis-

tence of ũ :X → R that respects the binary relations ∼C̃ and 	C̃ . Moreover, in light of
the last proposition, (X� C̃) is the weighted average of deterministic choice processes,
C̃ = ∑J

j=1 λjC
j , which have the property that their corresponding relations ∼j and 	j

are all respected by the same ũ :X −→ R, since ∼C̃ and 	C̃ represent the union of these
deterministic relations:

C̃A(J
xy) > 0 if and only if x∼j y� for some 1 ≤ j ≤ J

C̃A(F
xy) > 0 if and only if x	j y� for some 1 ≤ j ≤ J�

Reapplication of Lemma 1 to each of the deterministic choice processes {(X�Cj)}Jj=1 im-

plies that ∼j and 	j satisfy OWC for all j, and moreover that the utility function ũ :X → R

forms part of some ABS representation of them, further ensuring the existence of deter-
ministic search processes Sj such that (ũ� Sj) forms ABS representations of (X�Cj) for
all 1 ≤ j ≤ J. Defining the corresponding weighted average search process S̃ ≡ ∑J

j=1 λjS
j

and vS
j

A = {arg max
x∈SjA(t)

u(x)}∞t=1, we can immediately confirm that (ũ� S̃) forms a sto-

chastic ABS representation of (X� C̃), since, given F ∈ F and A ∈ X ,

C̃A(F) =
J∑

j=1

λj1{Cj
A∈F} =

J∑
j=1

λj1{vSjA ∈F}�
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But as S̃A{Z ∈ Z | Z = S
j
A for no j ∈ {1� � � � � J}}, we know that

S̃A

({
Z ∈ Z

∣∣ {
arg max

x∈Zt

u(x)
}∞
t=1

∈ F
})

=
j∑

j=1

S̃A(S̃
j
A)1{vSjA ∈F} =

J∑
j=1

λj1{vSjA ∈F}�

The last equality follows from the fact that, ∀j ∈ {1� � � � � J}, S̃A(S̃JA)= λj .

To prove that ABS implies that ∼C̃ and 	C̃ satisfy OWC, note that if (ũ� S̃) forms an

ABS representation of (X� C̃), Lemma 1 then implies that ũ respects the orderings ∼C̃

and 	C̃ on X , which therefore satisfies OWC. �

A3.5 Proof of Theorem 4

As for ABS, the proof needs to be given only for the finite case in light of the compres-
sion and decompression operations. This finite proof follows from a generalized version
of the RBS characterization precisely as the deterministic result followed from Proposi-
tion 1. To prove the relevant result, we need to generalize the ordering �R̃ of Section 4.

Definition 18. Given a stochastic choice process (X̃�C) and set D ∈ X , the binary

relation 	L̃
Don X is defined by x 	L̃

D y if {x ∪ y} ∩ D �= ∅, and there exists A ∈ X with

x�y ∈ A with C̃L
A{x} > 0 and C̃L

A{y} = 0. The binary relation 	R̃ is defined as 	L̃
D ∪ 	C̃ .

Proposition 5. A finite stochastic choice process model (X� C̃) has a stochastic RBS rep-
resentation (u� S̃�ρ) with below-reservation set D ⊂ X if and only if the following state-
ments hold.

(i) X̃N ⊂ D.

(ii) If x ∈D and x�R̄
D y, then y ∈D.

(iii) Given x1�x2�x3� � � � � xn ∈ X with x = x1 �R̄
D x2 �R̄

D · · · �R̄
D xn = x, there is no k with

xk 	R̄
D xk+1.

Proof. The proof that conditions (i)–(iii) of the proposition are sufficient is construc-
tive, and similar to that in the deterministic case. As there, we define a utility function

u :X → R that respects 	R̃
D and ∼ on X , define reservation utility ρ as the average be-

tween the maximum on the set D and the minimum on the set X\D, and demonstrate
again that X\D is the reservation set associated with the utility function u :X → R and
reservation utility level ρ by noting that u(x) > u(y) whenever x ∈ X\D and y ∈ D. To
see this, note that x ∈ X\D and y ∈ D imply by condition (ii) above that CL{x�y}({x}) = 1,
whereupon x 	R̃

D y, so that u(x) > u(y) by construction.
We now consider all deterministic processes Cj in the decomposition of the finite

stochastic choice process map C̃ that we know by Proposition 4 to be available. Define
XN

j as the nonterminal set associated with deterministic choice process (X�Cj), and
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define also the corresponding binary relations ∼j , 	Cj
, 	Lj

D , 	Rj

D , �Cj
, �Lj

D , and �Rj

D .
We show now that any set D ⊂ X with properties (i)–(iii) above for the stochastic choice
process (X� C̃) necessarily satisfies the corresponding deterministic properties (i)–(iii)
established in Theorem 2 to be necessary and sufficient for D to be a reservation set in
some RBS representation of each (X�Cj). With respect to the first such property, note
directly from the definition that any nonterminal element in (X�Cj) is necessarily so in
the stochastic models, so that XN

j ⊂ X̃N; hence XN
j ⊂ D as required. The second and

third properties follow directly from the fact that, for any j ∈ {1� � � � � J}, x	Rj

D y ⇒ x	R̄
D y

and x ∼j y ⇒ x ∼ y. To see this, note first that x 	Rj

D y implies that either x 	Cj
y or

x	Lj

D y. The former case indicates that for some A ∈ X , C̃A(R
xy)≥ λj > 0 and so x	Cj

y,
while the latter implies that, for some A ∈ X and B ⊂A, x ∈ B, y /∈ B, and C̃L

A(B) ≥ λj > 0,

so x 	L
D y. In each case, x 	R̄

D y. A similar argument shows that x ∼j y implies for some

A ∈ X , C̃A(J
xy) ≥ λj > 0 and so x ∼ y. This result shows that any violation of conditions

(ii) and (iii) at the level of the deterministic choice process j would lead to a violation of
the equivalent condition at the level of the stochastic choice function.

Given that the assumptions of Theorem 2 are satisfied, we conclude not only that
there exists an RBS representation of each (X�Cj) with reservation set D, but also that
the utility function u :X → R and reservation utility level ρ can be utilized in construct-
ing such a representation, given that these are precisely the objects that are constructed
in the course of the deterministic proof. Hence, for each j, there exists a search corre-
spondence Sj such that (u�Sj�ρ) represents an RBS representation of (X�Cj). We show
now that (u� S̃�ρ) comprises an RBS representation of (X� C̃), where S̃ is the correspond-
ing convex combination of the deterministic search processes Sj :

S̃ =
J∑

j=1

λjS
j�

That (u� S̃) for a stochastic ABS representation follows as in the proof of the ABS rep-
resentation theorem. That X\D = {x ∈ X | u(x) ≥ ρ} holds by construction. Moreover,
given A ∈ X , we know that if A ∩ (X\D) = φ, then A is searched fully in all search cor-
respondences Sj , ensuring that S̃LA(A) = 1. Alternatively, if A ∩ XR ∩ (X\D) �= φ, then
we know that in the limit, search reaches into the reservation set in all search correspon-
dences Sj , ensuring that S̃A{Z ∈ Z | HR(Z) is finite} = 1. Finally, since each element in
the reservation set has the property that search ceases at once with probability 1 when
such an element is encountered in each Sj , we know that S̃A{Z ∈ Z | S̃LA = S̃A(H

R(Z))} =
1, completing the proof that (u� S̃�ρ) comprises an RBS representation of (X� C̃).

The proof that conditions (i)–(iii) above are necessary for a finite stochastic choice
process (X� C̄) to have an RBS representation (u� S̃�ρ) is essentially identical to that in
the deterministic case. We let D be the below reservation set generated by that repre-
sentation and establish that the three conditions of the proposition hold. �
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Appendix 4

Proof of Theorem 5. Application of Lemma 1 translates the theorem to the statement
that there exists u :X → R, ρ :� → R, and  :� → S̄ such that (u�(γ)�ρ(γ)) forms a
stochastic RBS representation of �(γ) ∀γ ∈ � if and only if there exists v :X → R that

respects 	R̃(�) and ∼C̃(�). To see that existence of such a function v :X → R is necessary,
note from Theorem 4 that the given function u :X → R such that (u�(γ)�ρ(γ)) forms a

stochastic RBS representation of �(γ) for all γ ∈ � respects 	R̃(γ) and ∼C̃(γ) for all γ ∈ �

and hence respects 	R̃(�) and ∼C̃(�) . Conversely, given v :X → R that respects 	R̃(�)

and ∼C̃(�), by definition it respects 	R̃(γ) and ∼C̃(γ) for all γ ∈ �, whereupon Theorem 4
implies that there exists an RBS representation of �(γ) for all γ ∈ �. In fact, the proof
of Theorem 4 reveals that the given function v :X → R that respects 	R̃(γ) and ∼C̃(γ)

can form the basis for an ABS representation with appropriately defined ρ :� → R and
 :� → S̄ , with (v�(γ)�ρ(γ)) therefore forming the required stochastic RBS represen-
tation of �(γ) ∀γ ∈ �. �
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