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A theory of regular Markov perfect equilibria in dynamic
stochastic games: Genericity, stability, and purification

Ulrich Doraszelski
Wharton School, University of Pennsylvania

Juan F. Escobar
Department of Industrial Engineering, University of Chile

This paper studies generic properties of Markov perfect equilibria in dynamic sto-
chastic games. We show that almost all dynamic stochastic games have a finite
number of locally isolated Markov perfect equilibria. These equilibria are essen-
tial and strongly stable. Moreover, they all admit purification. To establish these
results, we introduce a notion of regularity for dynamic stochastic games and ex-
ploit a simple connection between normal form and dynamic stochastic games.

Keywords. Dynamic stochastic games, Markov perfect equilibrium, regularity,
genericity, finiteness, strong stability, essentiality, purifiability, estimation, com-
putation, repeated games.

JEL classification. C61, C62, C73.

1. Introduction

Stochastic games are central to the analysis of strategic interactions among forward-
looking players in dynamic environments. Dating back to Shapley (1953), they have
a long tradition in economics. Applications of dynamic stochastic games abound and
range from public finance (Bernheim and Ray 1989) and political economics (Acemoglu
and Robinson 2001) to industrial organization (Bergemann and Valimaki 1996). An es-
pecially well known example is the Ericson and Pakes (1995) model of dynamic compe-
tition in an oligopolistic industry with investment, entry, and exit that has triggered a
large and active literature in industrial organization (see Doraszelski and Pakes 2007 for
a survey) and other fields.

While several results in the literature guarantee the existence of Markov perfect equi-
libria in dynamic stochastic games, to date very little is known about the structure of the
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equilibrium set in a dynamic environment. This paucity of knowledge sharply contrasts
with normal form games, where a large body of research is devoted to characterizing the
equilibrium set and the properties of its members.

The goal of this paper is to help fill this void by developing a theory of regular Markov
perfect equilibria in discrete-time, infinite-horizon dynamic stochastic games with a fi-
nite number of states and actions. We introduce a suitable regularity notion and show
that regularity is a generic property of Markov perfect equilibria. More formally, we iden-
tify a dynamic stochastic game with its period payoffs and show that the set of games
having Markov perfect equilibria that all are regular is open and has full Lebesgue mea-
sure. While regularity is a purely mathematical concept, it paves the way to a number
of economically meaningful properties. An immediate consequence of the fact that all
Markov perfect equilibria of almost all dynamic stochastic games are regular is that al-
most all games have a finite number of Markov perfect equilibria that are locally isolated.
With some further work, it can be shown that these equilibria are essential and strongly
stable, and are therefore robust to slight changes in payoffs. Finally, they all admit pu-
rification and can, therefore, be obtained as limits of equilibria of dynamic stochastic
games of incomplete information as random payoff fluctuations become vanishingly
small. In sum, this paper shows how to extend several of the most fundamental results,
including genericity (Harsanyi 1973a), stability (Wu and Jiang 1962, Kojima et al. 1985),
and purifiability (Harsanyi 1973b), of the by now standard theory of regular Nash equi-
libria in normal form games from static to dynamic environments.

Our starting point is the observation that, holding fixed the value of continued play,
the strategic situation that the players face in a given state of the dynamic system is
akin to a normal form game. Consequently, a Markov perfect equilibrium of a dynamic
stochastic game must satisfy the conditions for Nash equilibrium of a certain family of
reduced one-shot games. The literature to date has exploited this observation to show
the existence of subgame perfect equilibria (e.g., Mertens and Parthasarathy 1987, 1991)
and Markov perfect equilibria (e.g., Nowak and Raghavan 1992, Horst 2005) in dynamic
stochastic games. Our main insight is that the connection between dynamic stochastic
games and normal form games can be used to establish genericity, stability, and pu-
rifiability results. Viewing a dynamic stochastic game as a family of interrelated (and
endogenous) normal form games, we derive a system of equations, f (σ)= 0, that must
be satisfied by any Markov perfect equilibrium σ . We say that the equilibrium is regular
if the Jacobian of f with respect to σ , ∂f (σ)/∂σ , has full rank. Our notion of regularity
is closely related to that introduced by Harsanyi (1973b, 1973a) for normal form games
and, indeed, reduces to it if players fully discount the future. We are thus able to “im-
port” many of the techniques that have been used to prove these results in the context
of normal form games.

The presence of nontrivial dynamics introduces nonlinearities that preclude us from
directly applying Harsanyi’s (1973a) construction to prove our main genericity result.
Two insights are the key to our proof. First, the map that relates a dynamic stochastic
game to the payoffs of the family of induced normal form games underlying our reg-
ularity notion is linear and invertible. These properties are evident if players fully dis-
count the future but are less than obvious in the presence of nontrivial dynamics. Sec-
ond, in a departure from the standard treatment in the literature on normal form games
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(Harsanyi 1973a, van Damme 1991), we study the regularity of f by directly applying the
transversality theorem—a generalization of Sard’s theorem—to it.

As a corollary to our main genericity result, we deduce that almost all dynamic sto-
chastic games have a finite number of Markov perfect equilibria that are locally isolated.
This result has already been established in an important paper by Haller and Lagunoff
(2000). In contrast to our approach, Haller and Lagunoff (2000) exploit a notion of reg-
ularity based on the idea that once-and-for-all deviations from the prescribed equilib-
rium strategies cannot be profitable. While there are clearly many types of deviations
one can consider in dynamic stochastic games, our focus on one-shot deviations has
the advantage that it permits us to generalize several other major results for normal form
games besides generic finiteness to dynamic stochastic games.

We first show that regular Markov perfect equilibria are robust to slight changes in
payoffs and, more specifically, that the equilibria of a given game can be approximated
by the equilibria of nearby dynamic stochastic games. To this end, we generalize two
stability properties that have received considerable attention in the literature on normal
form games to our dynamic setting, namely essentiality and strong stability. Loosely
speaking, a Markov perfect equilibrium is essential if it can be approximated by equi-
libria of nearby games; it is strongly stable if it changes uniquely and continuously with
slight changes in payoffs. We show that regular equilibria are strongly stable and, there-
fore, essential. This result in combination with our main genericity result yields the
generic essentiality and strong stability of Markov perfect equilibria.1 We, moreover,
show that the map from payoffs to equilibria is locally not only continuous, but also
differentiable.

These stability properties ensure that slight changes in the parameters of a dy-
namic stochastic game do not severely alter the nature of the interactions among play-
ers. This is especially beneficial if the researcher uses modern econometric techniques
(Aguirregabiria and Mira 2007, Bajari et al. 2007, Judd and Su 2008, Pakes et al. 2007,
Pesendorfer and Schmidt-Dengler 2008) to estimate the primitives of the game and
therefore recovers them with error. In addition, our main stability result lays the foun-
dations for comparative statics. Because the map from payoffs to equilibria is differen-
tiable, differentiable comparative statics are well defined, at least for a small change to
the system. We finally discuss how these comparative statics can be numerically imple-
mented using so-called homotopy or path-following methods.

Next we show that regular Markov perfect equilibria admit purification, thereby ex-
tending Harsanyi’s (1973b) celebrated purification theorem from normal form games to
dynamic stochastic games. We perturb a dynamic stochastic game by assuming that, at
each decision node, a player’s payoffs are subject to random fluctuations that are known
to the player but not to his rivals. We demonstrate that any regular Markov perfect equi-
librium of the original complete information game can be obtained as the limit of equi-
libria of the perturbed game of incomplete information as payoff fluctuations become
vanishingly small. Hence, one can view the original game of complete information as

1Maskin and Tirole (2001) demonstrate the generic essentiality of Markov perfect equilibria in finite-
horizon dynamic stochastic games. Their result does not imply, nor is it implied by, our essentiality result.
Kalandrakis (2006) studies the stability of equilibria in a class of bargaining models.
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an idealization of nearby games with a small amount of payoff uncertainty. The proof of
our main purification result generalizes arguments previously presented by Govindan
et al. (2003) in the context of normal form games. That we are able to do so once again
shows the power of our regularity notion.

Our main purification result shows that the choice between complete and incom-
plete information in formulating a dynamic economic problem is one of convenience,
at least when the random payoff fluctuations are small. This is useful because dynamic
stochastic games of incomplete information are often easier to solve numerically than
their complete information counterparts (Doraszelski and Satterthwaite 2010); they also
tend to be more tractable econometrically. Our main purification result further provides
a convincing interpretation of behavior strategy equilibria in dynamic stochastic games.
Because, at each decision node, a player is indifferent among several pure actions, it is
natural to ask what compels the player to randomize precisely as mandated by the equi-
librium. In the approximating equilibrium, in contrast, a player is no longer indifferent
among several pure actions, but instead has a strictly optimal pure action for almost all
realizations of his payoffs.

To the best of our knowledge, our paper is the first to establish the purifiability of
equilibrium behavior in a general class of dynamic economic models. The literature so
far has studied but a small number of particular examples. Bhaskar (1998) and Bhaskar
et al. (2007, 2010) provide examples of nonpurifiable equilibria in which strategies de-
pend on payoff irrelevant variables. In contrast, our main purification result shows that
equilibria in which strategies depend only on the payoff relevant history are generically
purifiable.

In sum, in this paper we develop a theory of regular Markov perfect equilibria in dy-
namic stochastic games. We show that almost all dynamic stochastic games have a finite
number of locally isolated equilibria. These equilibria are essential and strongly stable.
Moreover, they all admit purification. The key to obtaining these results is our notion of
regularity, which is based on the insight that, holding fixed the value of continued play,
the strategic situation that the players face in a given state of the dynamic system is akin
to a normal form game. By viewing a dynamic stochastic game as a family of induced
normal form games, we are able to make a rich body of literature on normal form games
useful for the analysis of dynamic environments.

The remainder of this paper is organized as follows. Section 2 sets out the model
and equilibrium concept. Section 3 introduces our notion of regularity and illustrates it
with some examples. Section 4 states the main genericity result and discusses its impli-
cations for the finiteness of the equilibrium set. Section 5 presents stability properties
and Section 6 presents our main purification result. Section 7 contains the proofs of our
main genericity and purification results. Supporting arguments have been relegated to
the Appendix.

2. Model

In this section we set up the model and define our notion of equilibrium. We further
describe the total payoff that a player receives in a dynamic stochastic game.
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2.1 Dynamic stochastic games

A dynamic stochastic game is a dynamic system that can be in different states at different
times. Players can influence the evolution of the state through their actions. The goal of
a player is to maximize the expected net present value of his stream of payoffs.

We study dynamic stochastic games with finite sets of players, states, and actions.2

Let I denote the set of players, let S denote the set of states, and let Ai(s) denote the set
of actions of player i at state s. Time is discrete and the horizon is infinite.3

The game proceeds as follows. The dynamic system starts at time t = 0 from an initial
state st=0 that is randomly drawn according to the probability distribution q̄(·) ∈ �(S),
where�(S) denotes the space of probability distributions over S. After observing the ini-
tial state, players choose their actions at=0 = (at=0

i )i∈I ∈∏
i∈I Ai(st=0)=A(st=0) simulta-

neously and independently from each other. Now two things happen, depending on the
state st=0 and the actions at=0. First, player i receives a payoff ui(at=0� st=0) ∈ R, where
ui(·� s) :A(s) → R is the period payoff function of player i at state s ∈ S. Second, the
dynamic system transits from state st=0 to state st=1 according to the probability distri-
bution q(·;at=0� st=0) ∈ �(S), with q(st=1;at=0� st=0) being the probability that state st=1

is selected. In the next round at time t = 1, after observing the current state st=1, play-
ers choose their actions at=1 ∈A(st=1). Then players receive period payoffs u(at=1� st=1)

and the state of the dynamic system changes again. The game goes on in this way ad
infinitum.

We let Ui = (ui(a� s))a∈A(s)�s∈S ∈ R

∑
s∈S |A(s)| denote the vector of payoffs of player i

and let U = (Ui)i∈I ∈ R
|I|∑s∈S |A(s)| denote the vector of payoffs of all players. A dynamic

stochastic game is a tuple

〈S� (Ai(s))i∈I�s∈S�U� (δi)i∈I� q� q̄〉�

where δi ∈ [0�1[ is the discount factor of player i that is used to compute his total payoff
as the expected net present value of his period payoffs. In the remainder of this paper,
unless otherwise stated, we identify a dynamic stochastic game with its period payoffs
U = (Ui)i∈I .

2.2 Markov perfect equilibria

A Markov perfect equilibrium is a subgame perfect equilibrium in which the strategies
depend only on the payoff relevant history. Below we provide a formal definition of our
equilibrium concept and an alternative characterization that is key to the subsequent
analysis.

A stationary Markov behavior strategy (or strategy, for short) for player i is a collec-
tion of probability distributions (σi(·� s))s∈S such that σi(·� s) ∈ �(Ai(s)) and σi(ai� s) is

2Several papers study equilibrium existence in dynamic stochastic games with a continuum of states and
actions (e.g., Mertens and Parthasarathy 1987, Nowak and Raghavan 1992, Horst 2005). While clearly not
appropriate for all applications, finite settings like ours have been widely used (see Doraszelski and Pakes
2007 for a survey).

3Our results also apply to finite-horizon dynamic stochastic games.
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the probability that player i selects action ai ∈ Ai(s) in state s. We denote the set of
strategies for player i as �i = ∏

s∈S �(Ai(s)) and define � = ∏
i∈I �i. We further extend

ui(·� s) and q(s′; ·� s) in the obvious way to allow for randomization overA(s).

Definition 1. A stationary Markov behavior strategy profile σ = (σi)i∈I is a Markov
perfect equilibrium (or equilibrium, for short) if it is a subgame perfect equilibrium.

We denote the set of Markov perfect equilibria of the dynamic stochastic game U
by Equil(U). The nonemptiness of Equil(U) has long been established in the literature
(e.g., Fink 1964).

We further provide an alternative characterization of equilibrium that exploits the
recursive structure of the model. A strategy profile σ = (σi)i∈I is a Markov perfect equi-
librium if and only if (i) for all i ∈ I, there exists a function Vi :S → R such that for all
s ∈ S,

Vi(s)= max
ai∈Ai(s)

ui((ai�σ−i(·� s))� s)+ δi
∑
s′∈S

Vi(s
′)q(s′; (ai�σ−i(·� s))� s) (2.1)

and (ii) for all s ∈ S, the strategy profile σ(·� s) = (σi(·� s))i∈I is a (mixed-strategy) Nash
equilibrium of the normal form game in which player i chooses an action ai ∈Ai(s) and,
given the action profile a= (ai)i∈I ∈A(s), obtains a payoff

ui(a� s)+ δi
∑
s′∈S

Vi(s
′)q(s′;a� s)� (2.2)

The function Vi :S → R in equation (2.1) is the equilibrium value function for
player i. The number Vi(s) is the expected net present value of the stream of payoffs
to player i if the dynamic system is currently in state s. That is, Vi(s) is the equilibrium
value of continued play to player i starting from state s.

Our alternative characterization of equilibrium is based on the observation that,
given continuation values, the strategic situation that the players face in a given state s
is akin to a normal form game. Consequently, an equilibrium of the dynamic stochas-
tic must induce a Nash equilibrium in a certain reduced one-shot game. The payoff
to player i in this game as given in equation (2.2) is the sum of his period payoff and
his appropriately discounted continuation value. Note that, given continuation values,
equation (2.2) can be used to construct the entire payoff matrix of the normal form game
that players face in state s.

While simple, the observation that a dynamic stochastic game can be studied by
analyzing a family of normal form games is the key to the subsequent analysis. It sug-
gests defining a notion of regularity with reference to the induced normal form games.
We formalize this idea in Section 3. The obvious difficulty that we have to confront is
that the induced normal form games are endogenous in that the payoffs depend on the
equilibrium of the dynamic stochastic game.

2.3 Notation and continuation values

Before defining our notion of regularity, we introduce some notation and further de-
scribe the total payoff that a player receives in a dynamic stochastic game.
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In what follows, we consider not only equilibria, but also deviations from equilib-
rium strategies. We thus have to know the value of continued play given an arbitrary
strategy profile σ ∈ �. In fact, since � is not an open set of R

∑
i∈I

∑
s∈S |Ai(s)|, we work

mostly with the set �ε. We construct �ε to be open in R

∑
i∈I

∑
s∈S |Ai(s)| and to strictly con-

tain �. The construction of �ε is detailed in the Appendix. Here we just note that �ε has
elements that are not strategies. Throughout the paper, we reserve the term “strategy
profile” for an element of �.

To facilitate the subsequent analysis, we introduce some notation. Enumerate the
action profiles available at state s as

A(s)= {
a1
s � � � � � a

|A(s)|
s

}
�

We also write S = {s1� � � � � s|S|}. As in Haller and Lagunoff (2000), we define the transition
matrixQ ∈ R

∑
s∈S |A(s)|×|S| as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q(s1;a1
s1
� s1) · · · q(s|S|;a1

s1
� s1)

q(s1;a2
s1
� s1) · · · q(s|S|;a2

s1
� s1)

���
���

q(s1;a|A(s1)|
s1 � s1) · · · q(s|S|;a|A(s1)|

s1 � s1)

q(s1;a1
s2
� s2) · · · q(s|S|;a1

s2
� s2)

���
���

q(s1;a|A(s2)|
s2 � s2) · · · q(s|S|;a|A(s2)|

s2 � s2)
���

���

q(s1;a1
s|S|� s|S|) · · · q(s|S|;a1

s|S|� s|S|)
���

���

q(s1;a|A(s|S|)|
s|S| � s|S|) · · · q(s|S|;a|A(s|S|)|

s|S| � s|S|)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

We further define the matrix Pσ ∈ R
|S|×∑

s∈S |A(s)| as⎛⎜⎜⎜⎜⎝
σ(a1

s1
� s1) · · · σ(a|A(s1)|

s1
� s1) 0 · · · 0 · · · 0 · · · 0

0 · · · 0 σ(a1
s2
� s2) · · · σ(a|A(s2)|

s2
� s2) · · · 0 · · · 0

���
���

���
���

���
���

0 · · · 0 0 · · · 0 · · · σ(a1
s|S| � s|S|) · · · σ(a

|A(s|S|)|
s|S| � s|S|)

⎞⎟⎟⎟⎟⎠ �

In the remainder of the paper, we write Ps
σ to denote row s of Pσ . We also define Ps

ai�σ−i
as the s row of the matrix above, assuming that player i chooses ai ∈Ai(s) with proba-
bility 1 in state s. Finally, Ir denotes the R

r×r identity matrix.
Using this notation, the value of continued play given an arbitrary profile σ ∈ �ε is

V Ui (·�σ)=
( ∞∑
t=0

(δi)
t(PσQ)tPσ

)
Ui = (I|S| − δiPσQ)−1 PσUi� (2.3)

where the inversion is justified by the construction of �ε. We interpret V Ui (s�σ) as the
expected net present value of the stream of payoffs to player i if the dynamic system
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is currently in state s and play is according to σ . Our notation emphasizes that these
continuation values also depend on the payoff vector U .

3. Regularity

In this section we first define our notion of regularity. Then we illustrate our definition
with two examples.

3.1 Regular Markov perfect equilibria

Our notion of regularity is based on the observation that, given continuation values, the
strategic situation that the players face in a given state s is akin to a normal form game
with the payoffs in equation (2.2). Since an equilibrium of the dynamic stochastic game
must induce a Nash equilibrium of this normal form game, one-shot deviations cannot
be profitable.

To make this idea precise, for all s ∈ S, define Ui(·� s� ·) :Ai(s)×�ε → R by

Ui(ai� s�σ)= ui((ai�σ−i(·� s))� s)+ δi
∑
s′∈S

V Ui (s
′�σ)q(s′; (ai�σ−i(·� s))� s)� (3.1)

The number Ui(ai�σ� s) is the expected net present value of the stream of payoffs to
player i if the current state is s, his rivals play according to σ−i, and player i chooses ac-
tion ai in the current period and then plays according to σi from the subsequent period
on. If σ ∈ � is an equilibrium, then one-shot deviations cannot be profitable. Formally,
if σ ∈ � is an equilibrium, then, for all i ∈ I and s ∈ S,

σi(ai� s) > 0 implies ai ∈ arg max
a′
i∈Ai(s)

Ui(a′
i� s�σ)� (3.2)

These are the conditions for a Nash equilibrium in the normal form game in state s as
induced by the value of continued play V Ui (·�σ).

Consider a collection of actions asi ∈ Ai(s) for all i ∈ I and s ∈ S. We think of asi
as a reference action for player i in state s. We now define f :�ε × R

|I|∑s∈S |A(s)| →
R

∑
i∈I

∑
s∈S |Ai(s)| so that its (i� ai� s) component is given by

fi�ai�s(σ�U)=

⎧⎪⎨⎪⎩
∑
ai∈Ai

σi(ai� s)− 1 if ai = asi

σi(ai� s)
(

Ui(ai� s�σ)− Ui(asi � s�σ)
)

if ai ∈Ai(s) \ {asi }.

(3.3)

Condition (3.2) implies that if σ is an equilibrium of the game U such that σ(asi � s) > 0
for all i ∈ I and s ∈ S, then

f (σ�U)= 0� (3.4)

Equation (3.4) is necessary but not sufficient for an equilibrium. Further, since Pσ is
continuously differentiable as a function of σ ∈ �ε, so are V Ui (s�σ) and f (σ�U) as func-
tions of σ ∈ �ε. For future reference, we note that f is also continuously differentiable as
a function of (σ�U) ∈ �ε × R

|I|∑s∈S |A(s)|.
We are now ready to define our notion of regularity.
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Definition 2. A Markov perfect equilibrium σ of a dynamic stochastic game U is reg-
ular if the Jacobian of f with respect to σ , ∂f (σ�U)/∂σ , has full rank for some selection
of actions asi ∈Ai such that σ(asi � s) > 0 for all i ∈ I and s ∈ S. An equilibrium is irregular
if it is not regular.

The definition of f depends on the reference actions. However, if an equilibrium σ

is regular given a collection (asi )i∈I�s∈S with σi(asi � s) > 0, then it is also regular given an-
other collection (bsi )i∈I�s∈S with σi(bsi � s) > 0. The same invariance holds true in normal
form games (van Damme 1991, Lemma 2.5.4); it arises because the Jacobian of f when
using (asi )i∈I�s∈S as reference actions is, up to elementary algebraic operations, the same
as the Jacobian of f when using (bsi )i∈I�s∈S .

Our definition of regularity is reminiscent of that introduced by Harsanyi (1973a,
1973b) for normal form games. Indeed, if δi = 0 for all i ∈ I, our notion of regularity
reduces to the standard notion. But even if δi > 0 for some i ∈ I, our notion remains
closely related to the standard notion because we base it on the equilibrium conditions
for reduced one-shot games. This permits us to make a rich body of literature on normal
form games useful for the analysis of dynamic environments.

3.2 Examples

We provide two examples of dynamic stochastic games having regular equilibria. While
our main genericity result (Theorem 1) shows that regularity is a property that is satis-
fied by all equilibria of a large set of models, any particular application may not be part
of this set. Regularity may therefore have to be established from first principles. Our
examples show that doing so is relatively straightforward. Because the equilibria in our
examples are regular, they are robust to slight changes in payoffs (Proposition 2) and the
introduction of incomplete information (Theorem 2).

Example 1 (Exit game). We consider a simple version of the model of industry dynam-
ics proposed by Ericson and Pakes (1995) (see also Doraszelski and Satterthwaite 2010).
Consider an industry with two firms. The set of players is I = {1�2} and the set of states
is S = {(1�1)� (1�0)� (0�1)� (0�0)}, where the state s = (s1� s2) indicates whether firm i is
in the market (si = 1) or out of the market (si = 0).

We assume that the only nontrivial decision a firm has to make is whether or not to
exit if the market is a duopoly; in all other states, a firm has no choice but to preserve
the status quo. More formally, firm i’s action set is {exit� stay} in state s = (1�1) and a
singleton in all other states. All states other than state (1�1) are absorbing.

If the market is a duopoly in state (1�1), then each firm receives a period payoff πD.
If the market is a monopoly in state (1�0) or (0�1), then the monopolist receives a period
payoff πM and its competitor receives nothing. Neither firm receives anything in state
(0�0). Finally, if a firm is in the market but decides to exit it, then it receives a scrap
value φ, regardless of what the other firm does. We assume that

δ

1 − δπ
D <φ<

δ

1 − δπ
M�

where δ ∈]0�1[ is the common discount factor. Hence, while a monopoly is viable, a
duopoly is not. The duopolists are thus caught up in a war of attrition.
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The exit game has three equilibria, two of them in pure strategies. In the pure-
strategy equilibria, one of the firms exits in state (1�1)while the other stays. At each deci-
sion node, a firm strictly prefers to conform with the equilibrium strategy (we call these
equilibria strict; see Section 5.1 for a formal definition). Proposition 1 in Section 5.1
therefore implies that these equilibria are regular.

The symmetric equilibrium, denoted by σ̄ , is fully characterized by the probability
of exiting if the market is a duopoly:

σ̄i(exit� (1�1))= (1 − δ)φ− δπD
δ
(
πM

1−δ −πD −φ
) �

Our goal here is to show that this mixed-strategy equilibrium is regular.
To compute the value of continued play given an arbitrary strategy profile σ , we ex-

ploit the simple structure of the exit game rather than rely on equation (2.3). Since all
states other than state (1�1) are absorbing, we have Vi(s�σ) = 0 if si = 0 and Vi(s�σ) =
πM/(1 − δ) if si = 1 and s−i = 0. The value of continued play in state (1�1), Vi((1�1)�σ),
is defined recursively as the unique solution to

Vi((1�1)�σ)

= πD + σi(exit� (1�1)){φ+ δ0}

+ σi(stay� (1�1))
{
δσ−i(exit� (1�1))

πM

1 − δ + δσ−i(stay� (1�1))Vi((1�1)�σ)
}
�

The (i� ai� s) component of f is

fi�ai�s(σ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σi(ai� s)− 1 if si �= (1�1)
σi(exit� (1�1))+ σi(stay� (1�1))− 1 if si = (1�1) and ai = stay

σi(exit� (1�1))
{
πD +φ−

(
πD + δσ−i(exit� (1�1))

πM

1 − δ
+ δσ−i(stay� (1�1))Vi((1�1)�σ)

)}
if si = (1�1) and ai = exit.

Computing the Jacobian of f with respect to σ and evaluating its determinant at σ̄ , it can
be verified that the determinant is nonzero under our assumptions on the parameters,
so that the mixed-strategy equilibrium σ̄ is regular. This is easiest to see if we normalize
πD = 0 to reduce the determinant to

− δ2φ2(πM − (1 − δ)φ)4
(δ(πM)2 − (1 − δ)2φ2)2

< 0� ♦

Example 2 (Repeated prisoners’ dilemma). We consider a repeated prisoners’ dilemma
with two players I = {1�2}, two actions Ai = {C�D} per player, and a common discount
factor δ ∈]0�1[. The payoff matrix is

C D

C 1 1 −g 1 + g
D 1 + g −g 0 0
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Monitoring is public and perfect. From here on we assume g > 0 and δ > g/(1 + g).
As often is done in the literature on repeated games (e.g., Ely and Välimäki 2002,

Mailath and Morris 2002, Phelan and Skrzypacz 2009), we focus on finite state strategies.
A finite state strategy for player i is a probability distribution over actions σi(·� s) ∈ �(Ai)
for all states s ∈ S. We view a subgame perfect equilibrium of the repeated game as a
Markov perfect equilibrium of a dynamic stochastic game. To illustrate the construction
and represent trigger strategies as finite state strategies, define the state space by S =
{on�off} and the transition function by

q(on;a� s)=
{

1 if a= (C�C) and s = on
0 otherwise

and q̄(on)= 1. Then player i’s trigger strategy can be represented as

ai(s)=
{
C if s = on
D otherwise.

This strategy profile is a strict equilibrium of the dynamic stochastic game and therefore
is regular by Proposition 1 in Section 5.1.

There is another pure-strategy equilibrium that has both players defect in any state.
Again this equilibrium is strict and therefore is regular. Finally, there is a symmetric
mixed-strategy equilibrium σ̄ given by

σ̄i(D�off)= 1� σ̄i(C�on)=
√

g

δ(1 + g) �

To study the regularity of σ̄ , we compute the determinant of the Jacobian of f at σ̄ as a
function of g and δ. This determinant is zero only when

δ ∈ {
0�1�−4(1 + 2g+ g2)g4}�

Since δ ∈ [g/(1 + g)�1[, the mixed-strategy equilibrium σ̄ is regular and thus strongly
stable and purifiable.4

Purifiability of equilibria in dynamic models has been studied by Bhaskar (1998) and
Bhaskar et al. (2007, 2010). Bhaskar et al. (2007) study the purifiability of belief-free
equilibria, a class of subgame perfect equilibria in stationary behavior strategies with
one-period memory introduced by Ely and Välimäki (2002). They show that in the re-
peated prisoners’ dilemma there is a continuum of belief-free equilibria and that none
of them is purifiable. Our example shows that it is possible to have equilibria that in-
volve nontrivial mixing and yet avoid the purification failure found in these previous
studies. ♦

4Embedding a repeated game into a dynamic stochastic game generalizes beyond our repeated prison-
ers’ dilemma. For example, the strategies used in the proof of Theorem 2 in Fudenberg and Maskin (1986)
can be represented as finite state strategies and incentives can be taken to be strict, both on and off path.
Therefore, these folk theorem strategies are regular.
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4. Genericity of regular equilibria

Before demonstrating that our notion of regularity is useful for characterizing the equi-
librium set and the properties of its members, we show that regularity is a property that
is satisfied by all equilibria of a large set of models.

Recall that we identify a dynamic stochastic game with its period payoff functions
(ui)i∈I . We endow the set of games with the Lebesgue measure λ and say that a property
is generic if it does not hold at most on a closed subset of measure zero. In this case, we
say that the property holds for almost all games U ∈ R

|I|∑s∈S |A(s)|.
The following is the main result of this section.

Theorem 1. For almost all games U ∈ R
|I|∑s∈S |A(s)|, all equilibria are regular.

The proof of Theorem 1 is detailed in Section 7.1. It proceeds as follows. We first
consider the set of dynamic stochastic games having equilibria in which some player
puts zero weight on some of his best replies. The set of such games has a small dimen-
sion and so does, therefore, the subset of games having irregular equilibria. We then
consider the set of games having equilibria in which all players put positive weight on
all their best replies (we call these equilibria quasistrict; see Section 5.1 for a formal defi-
nition). Within this class, we restrict attention to completely mixed equilibria. For these
equilibria, we show that the Jacobian of f with respect to the pair (σ�U) has full rank.
An application of the transversality theorem—a generalization of Sard’s theorem—then
yields the desired result.

In the context of normal form games, Harsanyi (1973a) proves the generic regularity
of Nash equilibria as follows. Denoting the space of normal form games by , he con-
structs a subspace ̄ of the space of games and a function � :�× ̄→  such that σ is a
regular equilibrium of the game U ∈  if and only if �(σ� Ū)=U and ∂�(σ� Ū)/∂(σ� Ū)
has full rank, where Ū denotes the projection of U ∈  on ̄. Applying Sard’s theorem
to �, it follows that the set of normal form games having equilibria that are all regular
has full Lebesgue measure.

The presence of nontrivial dynamics introduces nonlinearities that preclude us from
directly applying Harsanyi’s (1973a) construction. Since his proof exploits the polyno-
mial nature of f for normal form games to construct the map �, it is not clear how his
approach can be extended to our problem. Indeed, the family of induced normal form
games is endogenous to the equilibrium of the dynamic stochastic game. Moreover, the
value of continued play in equation (2.3) is not a polynomial function of σ .

Two insights facilitate our analysis. The first is that to enable study of the regularity
of f , we can apply the transversality theorem directly to it (see Section 7.1.2 for details).
The second insight that facilitates our analysis is that, given a strategy profile σ to be
followed from next period on, the map that relates a dynamic stochastic game to the
payoff matrices of the family of induced normal form games is linear and invertible. To
see this, consider the normal form game induced in state s, given continuation play σ .
Given the action profile a ∈A(s), player i obtains a payoff

ui(a� s)+ δi
∑
s′∈S

V Ui (s
′�σ)q(s′;a� s)� (4.1)
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where we have replaced the equilibrium continuation value Vi(·) in equation (2.2) with
V Ui (·�σ), the value of continued play given the arbitrary strategy profile σ to be followed
from next period on. The payoff to player i in equation (4.1) is the (a� s) component of
the vector Ui + δiQV Ui (·�σ) ∈ R

∑
s∈S |A(s)|. Using equation (2.3), we obtain

Ui + δiQV Ui (·�σ) =
(

I
∑
s∈S |A(s)| + δiQ

∞∑
t=0

(δi)
t(PσQ)tPσ

)
Ui

= (
I
∑
s∈S |A(s)| + δiQPσ + δiQδi(PσQ)Pσ + δiQδ2

i (PσQ)2 Pσ + · · ·)Ui
= ( ∞∑

t=0

(δi)
t(QPσ)t

)
Ui

= (
I
∑
s∈S |A(s)| − δiQPσ

)−1
Ui�

where the inversion is justified since all the relevant matrices have strictly dominant
diagonals by construction of �ε. The following lemma summarizes the discussion so
far.

Lemma 1 (Invertibility lemma). For all i ∈ I and σ ∈ �ε, the matrix (I∑
s∈S |A(s)| −

δiQPσ)−1 has full rank
∑
s∈s |A(s)| and the map Ui 	→ Ui + δiQV

U
i (·�σ) is linear and

invertible.

Linearity and invertibility are evident for normal form games where the term
δiQV

U
i (·�σ) vanishes. In our dynamic setting, the matrix (I∑

s∈S |A(s)| − δiQPσ)−1 is a
part of the Jacobian of f with respect to U . The significance of Lemma 1 is thus that it
enables us to determine the rank of the Jacobian of f with respect to the pair (σ�U), a
key step in applying the transversality theorem (see Section 7.1.1 for details).

To fully appreciate the importance of Lemma 1, fix the continuation play and
consider the set of reduced normal form games induced by all period payoffs U ∈
R

|I|∑s∈S |A(s)|. If δi = 0 for all i ∈ I, then the set of reduced normal form games coincides
with the set of all possible normal form games and, therefore, the set of gamesU having
equilibria that are all regular is generic. If δi > 0 for some i ∈ I, then Lemma 1 shows that
the set of dynamic stochastic games induces a set of reduced normal form games that
has the same dimension as the set of normal form games. Since our regularity notion is
in reference to these reduced normal form games, Lemma 1 shows that in the set of all
possible such games, we have enough degrees of freedom to prove our genericity result.

To provide a first glimpse at the power of our regularity notion, we note that any reg-
ular equilibrium is locally isolated as a consequence of the implicit function theorem.
A dynamic stochastic game having equilibria that are all regular has a compact equilib-
rium set that consists of isolated points; therefore, the equilibrium set has to be finite.
We summarize in the following corollary.

Corollary 1 (Haller and Lagunoff 2000). For almost all games U ∈ R
|I|∑s∈S |A(s)|, the

number of equilibria is finite.
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The above result has already been established in an important paper by Haller and
Lagunoff (2000).5 These authors exploit a notion of regularity derived from the first-
order necessary conditions for an equilibrium of a dynamic stochastic game. This sys-
tem of equations captures the idea that once-and-for-all deviations from the prescribed
equilibrium strategies cannot be profitable. In contrast to Haller and Lagunoff (2000),
we focus on deviations from a reduced one-shot game. This approach allows us to de-
rive several economically meaningful properties of regular equilibria. Below we further
provide examples of equilibria that are regular in the sense of Haller and Lagunoff (2000)
but do not exhibit these properties.

Implicit in the Appendix of Herings and Peeters (2004) is yet another notion of reg-
ularity. These authors define a system of equations by exploiting, as we do, the fact
that one-shot deviations cannot be profitable. Because in their much larger system of
equations the unknowns are the equilibrium strategies, the continuation values, and the
Lagrange multipliers associated with nonnegativity constraints (see their Theorem 3.6),
their regularity notion is not easily connected to the family of normal form games in-
duced by the value of continued play. While our main stability result can also be proven
by deriving additional implications of their implicit regularity notion, it is an open ques-
tion whether equilibria that are regular in the sense of Herings and Peeters (2004) are
also purifiable.

5. Stability properties of regular equilibria

In this section we explore the notions of strongly stable and of essential equilibria in
dynamic stochastic games. Before studying these desirable stability properties, we in-
troduce the notions of strict and quasistrict equilibria. These concepts both help us to
clarify the proofs below and are invoked extensively again in Section 7. At the end of the
section, we discuss the implications of our results for applied work.

5.1 Strict and quasistrict equilibria

Given a strategy profile σ ∈ �, we define the set of (pure) best replies for player i in state s
as

Bi(σ� s)= arg max
ai∈Ai(s)

Ui(ai� s�σ)�

We also define the carrier Ci(σ� s)⊆Ai(s) of player i in state s as the set of actions ai with
σi(ai� s) > 0. We finally define B(σ)=∏

i∈I
∏
s∈S Bi(σ� s) and C(σ)=∏

i∈I
∏
s∈S Ci(σ� s).

If σ is an equilibrium, then Ci(σ� s)⊆ Bi(σ� s) for all i ∈ I and s ∈ S. The equilibrium
is quasistrict if Bi(σ� s) = Ci(σ� s) for all i ∈ I and s ∈ S. This means that all players put
strictly positive weight on all their best replies. We further say that the equilibrium is
strict if the set of best replies is always a singleton, i.e., |Bi(σ� s)| = 1 for all i ∈ I and s ∈ S.

5Herings and Peeters (2004) strengthen Corollary 1 and show that the number of equilibria is generically
not only finite but also odd. While not pursued here, it is possible to use our regularity notion to define
the index of an equilibrium. This yields, among other properties, the generic oddness of the number of
equilibria. Ritzberger (1994) discusses related results for normal form games.
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A strict equilibrium is also quasistrict, but how these concepts relate to regularity is
not immediately apparent. The following proposition resembles a well known result for
normal form games (van Damme 1991, Corollary 2.5.3).

Proposition 1. Every strict equilibrium is regular. Every regular equilibrium is quasi-
strict.

Proof. Define J(σ) = ∂f (σ�U)/∂σ to be the Jacobian of f with respect to σ , and con-
sider the submatrix J̄(σ) obtained from J(σ) by crossing out all columns and rows cor-
responding to components (ai� s) with ai ∈ Ai(s) \ Ci(σ� s). For all pairs (ai� s) with
ai /∈ Ci(σ� s), we have

∂fi�ai�s(σ�U)

∂σi(ai� s)
= Ui(ai� s�σ)− Ui(asi � s�σ)�

while for all j ∈ I and ãj ∈Aj(s), with ãj �= ai if j = i, we have

∂fi�ai�s(σ�U)

∂σj(̃aj� s)
= 0�

It follows that

|det(J(σ))| = |det(J̄(σ))|
∣∣∣∣∏
i∈I

∏
s∈S

∏
ai∈Ai(s)\Ci(σ�s)

[Ui(ai� s�σ)− Ui(asi � s�σ)]
∣∣∣∣� (5.1)

If the equilibrium σ ∈ � is strict, then {asi } = Ci(σ� s) = Bi(σ� s) for all i ∈ I and
s ∈ S. Therefore, det(J̄(σ)) = 1 and Ui(ai� s�σ)− Ui(asi � s�σ) < 0 for all pairs (ai� s) with
ai /∈ Ci(σ� s). It follows that det(J(σ)) �= 0 so that σ is regular. On the other hand, if the
equilibrium is regular, then each of the terms on the right hand side of equation (5.1) is
nonzero. Hence, Ui(ai� s�σ) < Ui(asi � s�σ) for all pairs (ai� s)with ai ∈Ai(s)\Ci(σ� s); this
corresponds to the definition of quasistrictness. �

5.2 Strongly stable and essential equilibria

We now study some continuity properties of regular equilibria with respect the data of
the game. Continuity is harder to obtain the more parameters of the game are allowed
to vary. In this and the next subsection, we fix the action and state spaces, and identify a
dynamic stochastic game G= (U�δ�q) with the vector of period payoffs, in addition to
the collection of discount factors (δi)i∈I and the transition function q. In this subsection,
we also highlight the dependence of f , Equil, and Ui on the game G by writing f (σ�G)
and UG

i (ai� s�σ).
We say that an equilibrium σ̄ of game Ḡ is strongly stable if there exist neighbor-

hoods NḠ of Ḡ and Nσ̄ of σ̄ such that the map equil : NḠ → Nσ̄ defined by equil(G)=
Equil(G)∩ Nσ̄ is single-valued and continuous. In words, an equilibrium is strongly sta-
ble if the equilibrium correspondence is locally a continuous function. This definition
generalizes that introduced for normal form games by Kojima et al. (1985).
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Proposition 2. Every regular equilibrium is strongly stable.

Proof. Let σ̄ be a regular equilibrium of game Ḡ. Since ∂f (σ̄� Ḡ)/∂σ has full rank, the
implicit function theorem implies the existence of open neighborhoods NḠ of Ḡ and Nσ̄

of σ̄ , and of a differentiable function σ̃ : NḠ → Nσ̄ such that for all G ∈ NḠ, σ̃(G) is the
unique solution σ ∈ Nσ̄ to f (σ�G)= 0. We can choose NḠ and Nσ̄ small enough so that
for all i ∈ I, all s ∈ S, and all ai ∈Ai(s), the following properties hold: (i) If σ̄i(ai� s) > 0,
then σi(ai� s) > 0 for all σ ∈ Nσ̄ . (ii) If U Ḡ

i (ai� s� σ̄)− U Ḡ
i (a

s
i � s� σ̄) < 0, then UG

i (ai� s�σ)−
UG
i (a

s
i � s�σ) < 0 for all (σ�G) ∈ Nσ̄ × NḠ.

Denote σ̃(G) by σG. From (i) it follows that σGi (ai� s) > 0 for all ai ∈ Ci(σ̄� s). This
together with the definition of f implies that for allG ∈ NḠ,

Ci(σ̄� s)⊆ Ci(σG� s) and UG
i (ai� s�σ

G)= UG
i (a

s
i � s�σ

G) for ai ∈ Ci(σG� s)� (5.2)

Now, for ai ∈ Ai(s) \ Ci(σ̄� s), the fact that σ̄ is regular and so quasistrict implies that
U Ḡ
i (ai� s� σ̄) < U Ḡ

i (a
s
i � s� σ̄). From (ii) it follows that UG

i (ai� s�σ
G) < UG

i (a
s
i � s�σ

G) and, by
definition of σG, σG(ai� s)= 0. It follows that for allG ∈ NḠ,

Ci(σ
G� s)⊆ Ci(σ̄� s) and UG

i (ai� s�σ
G) < UG

i (a
s
i � s�σ

G) for ai /∈ Ci(σ̄� s)� (5.3)

Conditions (5.2) and (5.3) imply that σG ∈ Equil(G) for all G ∈ NḠ. Moreover, σG is
the only equilibrium of G in Nσ̄ because any other equilibrium σ would have to satisfy
f (σ�G) = 0; consequently, equil(G) = Equil(G) ∩ Nσ̄ = σG. Since σG is differentiable,
equil(G)= σG is differentiable (and therefore continuous). �

For future reference, we note that the proof of Proposition 2 develops an argument
we exploit in the proof of our main purification result (see Section 7.2.2 for details). The
idea behind the proof is to show that close enough to a regular equilibrium σ̄ of Ḡ, the
system of equations f (σ�G) = 0 fully characterizes the equilibrium map Equil. This is
not self-evident for, as we noted in Section 3.1, f (σ�G)= 0 is necessary but not sufficient
for σ ∈ Equil(G). Hence, to establish the proposition, we further invoke the quasistrict-
ness of a regular equilibrium.

Importantly, the proof of Proposition 2 shows that the equilibrium correspondence
is locally not only a continuous, but also a differentiable function.

Corollary 2. Let σ̄ ∈ Equil(Ḡ) be regular. Then there exist open neighborhoods NḠ of
Ḡ and Nσ̄ of σ̄ such that the map equil : NḠ → Nσ̄ defined by equil(G)= Equil(G)∩ Nσ̄

is a differentiable function.

To illustrate, note that the symmetric mixed-strategy equilibrium in Example 1 is
regular and therefore differentiable in the parameters of the model.

Turning to the notion of essentiality, we say that an equilibrium σ̄ of game Ḡ is es-
sential if, for every neighborhood Nσ̄ , there exists a neighborhood NḠ such that for all
games G ∈ NḠ there exists σ ∈ Equil(G) ∩ Nσ̄ . In words, an equilibrium is essential if it
can be approximated by equilibria of nearby games. Since any strongly stable equilib-
rium can be approximated by equilibria of nearby games, the following proposition is
immediate.
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Proposition 3. Every strongly stable equilibrium is essential.

Theorem 1, Proposition 2, and Proposition 3 permit us to deduce the generic essen-
tiality of equilibria, generalizing a well known result for normal form games due to Wu
and Jiang (1962) to our dynamic context.

The regularity notion in Haller and Lagunoff (2000) implies neither quasistrictness
nor strong stability. Consider an arbitrary two-player game and any equilibrium σ sat-
isfying Haller and Lagunoff’s (2000) regularity notion. Construct the following artificial
game. For some state s′, add an action a′

i to the action setsAi(s′) of both players and let
A′
i(s) denote the new action sets. Extend the transition function so that q(s′;a� s′)= 1 if

ai = a′
i for some i ∈ I. Further, if player 1 plays a′

1 in state s′ and player 2 plays a2 �= a′
2,

then player 1’s period payoff equals (1 − δi)Ui(ai� s�σ) for some action ai ∈ Ci(σ� s); if
player 2 plays a′

2, then player 1’s period payoff is u1(a
′� s′) >maxa∈A(s)�s∈S u1(a� s). Con-

struct player 2’s period payoff so that u2(a1� a
′
2� s

′) is sufficiently negative if a1 �= a′
1 while

u2(a
′� s′) > maxa∈A(s)�s∈S u2(a� s). The equilibrium σ of the original game can be ex-

tended to a strategy profile σ ′ that puts weight zero on actions a′
i in the artificial game.

Moreover, because their regularity notion does not restrict actions that are not played in
equilibrium, the equilibrium σ ′ is regular in Haller and Lagunoff’s (2000) sense. But, by
construction, σ ′ is not quasistrict; σ ′ is also not strongly stable because a small increase
to player 1’s period payoff from action a′

1 completely reshapes the equilibrium.

5.3 Differentiable comparative statics

Because regular equilibria are strongly stable and, as shown by Corollary 2, the locally
defined map equil is a differentiable function, differentiable comparative statics are well
defined, at least for small changes to the system. Moreover, these comparative statics
can be numerically implemented. Consider a game Ḡ and a regular equilibrium σ̄ , and
suppose we are interested in how the equilibrium changes when we slightly change the
data from Ḡ to Ĝ. We assume, without loss of generality, that NḠ in Corollary 2 is convex.

If Ĝ is close enough to Ḡ, then Ĝ belongs to NḠ, the domain of equil. Consider the
homotopy functionH : Nσ̄ × [0�1] → R

∑
i∈I

∑
s∈S |Ai(s)| defined by

H(σ�τ)= f (σ� (1 − τ)Ḡ+ τĜ)�

There exists a path σ : [0�1] → Nσ̄ that satisfiesH(σ(τ)� τ)= 0 for all τ ∈ [0�1]. It is para-
meterized by the homotopy parameter τ and connects the “old” equilibrium σ(0)= σ̄ at
Ḡ to a “new” equilibrium σ(1)= σ̂ at Ĝ. One way to compute this path is to numerically
solve the ordinary differential equation

dσ

dτ
(τ)= −

[
df

dσ
(σ(τ)� (1 − τ)Ḡ+ τĜ)

]−1
∂f

∂G
(σ(τ)� (1 − τ)Ḡ+ τĜ)(Ĝ− Ḡ)

with initial condition σ(0) = σ̄ . See Zangwill and Garcia (1981) for a more detailed
discussion of homotopy methods, and Besanko et al. (2010) and Borkovsky et al.
(forthcoming) for an application to dynamic stochastic games.
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A particularly vexing problem arises when the game has multiple equilibria. In this
case, little is known about which equilibrium is likely be played after a change to the
system has occurred. What happens depends on how players adjust to the change. The
above discussion suggests singling out σ(1) = σ̂ as the equilibrium that is likely to be
played after the original game Ḡ has been slightly changed.6 We leave it to future work to
establish formal conditions under which this equilibrium arises from learning dynamics
and out-of-equilibrium adjustment processes.

6. Purification of regular equilibria

In this section we present our main purification result. We begin by introducing incom-
plete information into our baseline model of dynamic stochastic games. After present-
ing our main purification result, we briefly discuss some of its implications for repeated
games.

6.1 Dynamic stochastic games of incomplete information

Following Harsanyi (1973b), we assume that in every period t, after state st is drawn,
player i receives a shock ηti ∈ R

|A(st)| before choosing his action. The shock ηi is known
to player i but not to his rivals. The private shocks are independent across players and
periods, and are drawn from a probability distribution μi(·; st). We assume that μi(·; s)
is differentiable and therefore absolutely continuous with respect to the Lebesgue mea-
sure in R

|A(s)|. The period payoff of player i is ui(a� s) + ηi(a), where ηi(a) denotes
the a component of ηi. We extend ηi(·) in the obvious way to allow for randomization
overA(s). We refer to the private information game as the perturbed dynamic stochastic
game; it is characterized by a tuple

〈S� (Ai(s))i∈I�s∈S�U� (δi)i∈I� (μi(·� s))i∈I�s∈S�q� q̄〉�

A pure strategy for player i is a function bi(s�ηi) of the state s ∈ S and the private shock
ηi ∈ R

A(s). The equilibrium concept is Bayesian Markov perfect equilibrium. We, how-
ever, are not interested in equilibrium strategies, but in equilibrium distributions. A dis-
tribution profile σ = (σi)i∈I ∈ � is a Markov perfect equilibrium distribution (or equilib-
rium distribution, for short) if and only if (i) for all i ∈ I, there exists a function V̄i :S→ R

such that for all s ∈ S,

V̄i(s)=
∫ (

max
ai∈Ai(s)

ui((ai�σ−i(·� s))� s)+ηi(ai�σ−i(·� s))

+ δi
∑
s′∈S

V̄i(s
′)q(s′; (ai�σ−i(·� s))� s)

)
dμi(ηi; s)�

6Aguirregabiria and Ho (2008) conduct counterfactual experiments in a dynamic stochastic game by
assuming the existence of a locally defined differentiable function that relates parameters to equilibria.
While their model does not fit exactly into our framework, their analysis illustrates how the existence and
differentiability of equil can be exploited in applications.
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and (ii) for all s ∈ S, the distribution profileσ(·� s)= (σi(·� s))i∈I is consistent with a (pure-
strategy) Bayesian Nash equilibrium of the incomplete information game in which
player i chooses an action ai ∈ Ai(s) and, given the action profile a = (ai)i∈I , obtains
a payoff

ui(a� s)+ηi(a)+ δi
∑
s′∈S

V̄i(s
′)q(s′;a� s)�

where by consistent we mean that if (bi(s�ηi))i∈I is the strategy profile in the Bayesian
Nash equilibrium, then σi(ai� s)= ∫

{ηi|bi(s�ηi)=ai} dμi(ηi; s).7
This characterization of Bayesian Markov perfect equilibrium is similar in spirit to

the characterization in Section 2.2. The main difference is that here we have a game of
incomplete information and therefore the equilibrium concept in the reduced one-shot
game is Bayesian Nash equilibrium. Escobar (2008) ensures the existence of a Bayesian
Markov perfect equilibrium in the perturbed dynamic stochastic game.

6.2 Purification: Convergence and approachability

To explore how good of an approximation to the original (unperturbed) dynamic sto-
chastic game the perturbed game is, we consider, for all i ∈ I and s ∈ S, a sequence of
probability distributions of private shocks (μni (·; s))n∈N converging to a mass point at
0 ∈ R

|A(s)|. We ask whether the corresponding sequence of perturbed games has equi-
librium distributions that are getting closer to the equilibria of the original game.

Before answering this question, we provide a precise notion of convergence for a
sequence of probability distributions.

Definition 3. The sequence of probability distributions (μni (·; s))n∈N converges to a
mass point at 0 ∈ R

|A(s)| as n→ ∞ if

lim
n→∞

1
μni (R

n; s)
∫
ηi∈Rn

{
max
a∈A(s)

|ηi(a)|
}
dμni (ηi; s)= 0

for any sequence of measurable sets (Rn)n∈N such that μni (R
n) > 0.

The perturbations considered by Harsanyi (1973b) satisfy Definition 3. While our
approachability result in Theorem 2 remains valid under more general perturbations,
we prefer to work with a single convergence notion because both convergence and ap-
proachability are desirable properties in applications. Note that Definition 3 is satis-
fied by, for example, any sequence of probability distributions (μni (·; s))n∈N such that
the support of μni (·; s) is contained in a ball of radius r(n) centered at 0 ∈ R

|A(s)|, where
r(n)→ 0 as n→ ∞.

To facilitate the exposition, we define Equiln(U) to be the set of equilibrium dis-
tributions of the perturbed game when players’ private shocks are drawn from μn =
(μni (·; s))i∈I�s∈S . The following proposition shows that as the private shocks vanish, any
converging sequence of equilibrium distributions for perturbed games converges to an
equilibrium of the original game.

7Given the absolute continuity of μi , player i has a unique best reply for almost all realizations of ηi.
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Proposition 4 (Convergence). Suppose that, for all i ∈ I and all s ∈ S, (μni (·; s))n∈N

converges to a mass point at 0 ∈ R
|A(s)| as n → ∞. Suppose further that (σn)n∈N, with

σn ∈ Equiln(U), converges to σ̄ as n→ ∞. Then σ̄ ∈ Equil(U).

The proof of Proposition 4 is detailed in the Appendix. Note that any sequence
(σn)n∈N ⊆ � has a converging subsequence and therefore Proposition 4 applies to the
subsequence.

The following theorem is the main result of this section. It shows that any regular
equilibrium of the original game can be approximated by equilibrium distributions of
nearby perturbed games.

Theorem 2 (Approachability). Suppose that, for all i ∈ I and all s ∈ S, (μni (·; s))n∈N

converges to a mass point at 0 ∈ R
|A(s)| as n → ∞. Let σ̄ be a regular equilibrium of

game U . Then, for all ε̄ > 0 and all large enough n, there exists σn ∈ Equiln(U) such
that ‖σn − σ̄‖< ε̄.

In conjunction with Theorem 1, Theorem 2 indicates that, for almost all games
U ∈ R

|I|∑s∈S |A(s)|, all equilibria are purifiable. Hence, one can interpret the original
game as an idealization of nearby games with a small amount of payoff uncertainty.
Our main purification result also blunts a common criticism of the notion of a mixed-
strategy equilibrium, namely that a player has no incentive to adhere to the prescribed
randomization over his pure actions, since in the approximating equilibrium a player
has a strictly optimal pure action for almost all realizations of his payoffs.

It is considerably more difficult to obtain lower hemicontinuity results such as The-
orem 2 than closure results such as Proposition 4. The proof of Theorem 2 is detailed in
Section 7.2. We first characterize the set of equilibrium distributions of the games of in-
complete information as solutions to a fixed point problem. We then use the fixed point
characterization and rely on arguments previously presented by Govindan et al. (2003)
to derive the existence of an equilibrium distribution close enough to the regular equi-
librium σ̄ . That we are able to generalize their proof once again shows the power of our
regularity notion. The two key properties satisfied by regular equilibria that we exploit
are strong stability and quasistrictness.

An equilibrium that is regular in Haller and Lagunoff’s (2000) sense may not be pu-
rifiable. In the example discussed at the end of Section 5.2, the introduction of pri-
vate information distributed symmetrically around zero implies that action a′

1 must
be played with strictly positive probability along any sequence of equilibria of the per-
turbed games that approximates σ ′. This implies that the equilibrium σ ′ cannot be pu-
rified.

7. Proofs

In this section, we detail the proofs of our main genericity and purification results in
Theorems 1 and 2, respectively.
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7.1 Proving Theorem 1

7.1.1. Two useful lemmata

We present two lemmata. As a corollary to the second lemma, we further obtain
a characterization of the dimension of the equilibrium graph. To facilitate the analy-
sis, we require some notation. Define arbitrary product sets B∗ = ∏

i∈I
∏
s∈S B∗

i (s) and
C∗ =∏

i∈I
∏
s∈S C∗

i (s), where B∗
i (s)�C

∗
i (s) ∈ 2|Ai(s)|. Further defineG(B∗�C∗) as the set of

games having some equilibrium σ with best replies B∗ and carriers C∗. Formally,

G(B∗�C∗)= {
U | there exists σ ∈ Equil(U) such that

Bi(σ� ·)= B∗
i and Ci(σ� ·)= C∗

i for all i ∈ I}�
where the setsBi(σ� s) andCi(σ� s) are as defined in Section 5.1. We also define I(B∗�C∗)
as the set of games that have some irregular equilibrium with best repliesB∗ and carriers
C∗. Clearly, I(B∗�C∗)⊆G(B∗�C∗).

The first lemma shows that the set of games that have some equilibrium that fails
to be quasistrict has measure zero. The proof proceeds as follows. We first derive a
set of necessary conditions that characterize a game Ū and an equilibrium σ̄ that fails
to be quasistrict. These indifference conditions can be written as a system of equa-
tions, M(σ̄� Ū)= 0. Since these equations are linearly independent (as shown below in
Claim 1), we can derive a locally defined function that maps strategies and some com-
ponents of the payoff vector U to the entire vector U . We then show that the set of all
gamesGσ̄�Ū (B∗�C∗) that are close to Ū and have some equilibrium that is close to σ̄ has
a small dimension and is therefore negligible (Claim 2). The lemma finally follows by
applying this logic to each possible pair (σ̄� Ū) in a properly chosen way. (Recall from
Section 4 that λ is the Lebesgue measure on the set of games.)

Lemma 2. If B∗ �= C∗, then λ(G(B∗�C∗))= 0. It follows that λ(I(B∗�C∗))= 0.

Proof. Consider a game Ū with an equilibrium σ̄ such that Bi(σ̄� ·)= B∗
i and Ci(σ̄� ·)=

C∗
i for all i ∈ I. Because B∗ �= C∗ by assumption, σ̄ fails to be quasistrict. Fix a collection

of actions asi ∈Ai(s) such that asi ∈ C∗
i (s) for all i ∈ I and s ∈ S.

By definition of B∗
i (s), it must be that Ui(ai� s� σ̄) = Ui(asi � s� σ̄) for all ai ∈ B∗

i (s).
In words, player i’s payoff to all his best replies is the same. In matrix notation,
Ui(ai� σ̄� s) in equation (3.1) can be written as Ps

ai�σ̄−i (I
∑
s∈S |A(s)| − δiQPσ̄ )−1Ūi, where

Ps
ai�σ̄−i is as defined in Section 2.3. Hence, for all ai ∈ B∗

i (s) \ {asi }, (Ps
ai�σ̄−i − Ps

asi �σ̄−i ) ×
(I∑

s∈S |A(s)| − δiQPσ̄ )−1Ūi = 0. For all ai ∈ B∗
i (s) \ {asi } and s ∈ S, define the (ai� s) row of

P̄i�σ̄ ∈ R

∑
s∈S(|B∗

i (s)|−1)×∑
s∈S |A(s)| by (Ps

ai�σ̄−i − Ps
asi �σ̄−i ). Write the indifference conditions

for player i as

P̄i�σ̄
(
I
∑
s∈S |A(s)| − δiQPσ̄

)−1
Ūi = 0�

Collect the indifference conditions for all players to obtain the system of equations

M(σ̄� Ū)=
⎛⎜⎝ P̄1�σ̄ (I

∑
s∈S |A(s)| − δ1QPσ̄ )−1Ū1

���

P̄|I|�σ̄ (I∑s∈S |A(s)| − δ|I|QPσ̄ )−1Ū|I|

⎞⎟⎠= 0�
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Claim 1. The Jacobian ∂M(σ̄� Ū)/∂U has full rank
∑
i∈I

∑
s∈S(|B∗

i (s)| − 1).

Proof. The Jacobian ofM with respect to U takes the form

∂M(σ̄� Ū)

∂U

=

⎛⎜⎜⎝
P̄1�σ̄ (I

∑
s∈S |A(s)| − δ1QPσ̄ )

−1 0 · · · 0
0 P̄2�σ̄ (I

∑
s∈S |A(s)| − δ2QPσ̄ )

−1 · · · 0
�
�
�

�
�
�

�
�
�

0 0 · · · P̄|I|�σ̄ (I∑s∈S |A(s)| − δ|I|QPσ̄ )
−1

⎞⎟⎟⎠�
The matrix P̄i�σ̄ has full rank

∑
s∈S(|B∗

i (s)| − 1). To see this, note that for all pairs (ai� s)

with ai ∈ B∗
i (s)\{asi }, the (ai� s) row of P̄i�σ̄ contains a zero in all those components (a′� s′)

where either s′ �= s or ai is not contained in a′ (by this we mean that there is no a−i such
that (ai� a−i) = a′). The (ai� s) row also contains a nonzero term in some component
(a′� s) where a′ contains ai; indeed,

∑
a′ contains ai σ̄−i(a′ \ ai� s) = ∑

a−i σ̄−i(a−i� s) = 1,

where, given a′ = (ai� a−i), we take a′ \ ai = a−i. This shows that P̄i�σ̄ has full rank. The
matrix (I∑

s∈S |A(s)| − δiQPσ̄ )−1 has full rank as a consequence of Lemma 1. Taken to-
gether, these observations imply that the Jacobian of M with respect to U has full rank∑
i∈I

∑
s∈S(|B∗

i (s)| − 1). �

As a consequence of the implicit function theorem, it is possible to obtain open sets
N 1 ⊆ R

|I|∑s∈S |A(s)|−∑
i∈I

∑
s∈S(|B∗

i (s)|−1), N 2 ⊆ R

∑
i∈I

∑
s∈S(|B∗

i (s)|−1), and N ⊆ �ε, where Ū ∈
N 1 × N 2 (properly ordered) and σ̄ ∈ N , and a function� : N 1 × N → N 2 such that for all
(σ�U1) ∈ N × N 1, �(U1�σ1) is the unique solution U2 ∈ N 2 to M(σ� (U1�U2))= 0. We
define the function H(σ�U1) = (U1��(σ�U1)). To highlight the dependence of these
objects on σ̄ and Ū , we write N 1

σ̄�Ū
, N 2

σ̄�Ū
, Nσ̄�Ū , and Hσ̄�Ū , respectively. We assume,

without loss of generality, that N 1
σ̄�Ū

, N 2
σ̄�Ū

, and Nσ̄�Ū are balls with rational centers and

radii.
DefineGσ̄�Ū (B∗�C∗) as the set of all games that are close enough to Ū and have some

equilibrium that is close enough to σ̄ with the same best replies and carriers as σ̄ . More
formally,

Gσ̄�Ū (B∗�C∗)= {
U ∈ N 1

σ̄�Ū
× N 2

σ̄�Ū
| there exists σ ∈ Equil(U)∩ Nσ̄�Ū

with Bi(σ� ·)= B∗
i for all i ∈ I and σ ∈A(C∗)

}
�

whereA(C∗)= {σ ∈ � | Ci(σ� ·)= C∗
i for all i ∈ I}. Further define the set

Pσ̄�Ū (B∗�C∗)= {
U ∈ N 1

σ̄�Ū
× N 2

σ̄�Ū
| there exists (σ�U1) ∈ N 1

σ̄�Ū
× (A(C∗)∩ Nσ̄�Ū )

such thatHσ̄�Ū (σ�U
1)=U}�

Clearly,Gσ̄�Ū (B∗�C∗)⊆ Pσ̄�Ū (B∗�C∗).

Claim 2. λ(Pσ̄�Ū (B∗�C∗))= 0.
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Proof. Note that dim(N 1
σ̄�Ū

) = |I|∑s∈S |A(s)| −∑
i∈I

∑
s∈S(|B∗

i (s)| − 1) and

dim(A(C∗)∩ Nσ̄�Ū )=∑
i∈I

∑
s∈S(|C∗

i (s)| − 1). Therefore, dim(N 1
σ̄�Ū

× (A(C∗)∩ Nσ̄�Ū ))=
|I|∑s∈S |A(s)|−∑

i∈I
∑
s∈S |B∗

i (s)|+
∑
i∈I

∑
s∈S |C∗

i (s)|< |I|∑s∈S |A(s)| for B∗
i (s) �= C∗

i (s)

for some i ∈ I and s ∈ S. Since Pσ̄�Ū (B∗�C∗)=Hσ̄�Ū ((A(C∗) ∩ Nσ̄�Ū )× N 1
σ̄�Ū

), the claim

follows. �

We are now ready to complete the proof of Lemma 2. For each game Ū having some
equilibrium σ̄ such that Bi(σ̄� ·)= B∗

i and Ci(σ̄� ·)= C∗
i for all i ∈ I, we can construct the

sets Gσ̄�Ū (B∗�C∗) and Pσ̄�Ū (B∗�C∗). Moreover, since the neighborhoods N 1
σ̄�Ū

, N 2
σ̄�Ū

,

and Nσ̄�Ū are chosen from a countable set, it follows that G(B∗�C∗) ⊆ ⋃
n∈N

Qn, where

Qn = Pσ̄n�Ūn(B∗�C∗) is constructed for each of the countable number of neighborhoods.
Lemma 2 now follows from Claim 2 by noting that the countable union of measure zero
sets has measure zero as well. �

The proof of Lemma 2 resembles proofs given for normal form games by Harsanyi
(1973a) and van Damme (1991). The main difference is that we cannot define � glob-
ally (see the discussion of Harsanyi’s 1973a approach following Theorem 1). Instead,
we analyze the system of equations �(σ̄� Ū) = 0 locally and apply this construction to
a countable set of games and equilibria. Haller and Lagunoff (2000) also use local ar-
guments to show the local finiteness of the equilibrium set. We, in contrast, use local
arguments only to dispense with equilibria that are not quasistrict.

Having disposed of all games that have some equilibrium that fails to be quasistrict,
we turn to games that have equilibria that all are quasistrict. Within this class, we restrict
attention to completely mixed equilibria. The second lemma shows that for these equi-
libria, the Jacobian of f with respect to the pair (σ�U) has full rank. Its proof is similar
to that of Claim 1 and exploits Lemma 1, and the diagonal structure of the Jacobian.

To state the lemma, we define the set of completely mixed profiles in �ε as

�̃= {
σ ∈ �ε | σi(ai� s) > 0 for all i ∈ I�ai ∈Ai(s)� and s ∈ S}�

Lemma 3. If σ ∈ �̃, then ∂f (σ�U)/∂(σ�U) has full rank
∑
i∈I

∑
s∈S |Ai(s)|.

Proof. In matrix notation, σi(ai� s)(Ui(ai� s�σ) − Ui(asi � s�σ)) in equation (3.3) can be
written as σi(ai� s)(Ps

ai�σ−i − Ps
asi �σ−i )(I

∑
s∈S |A(s)| − δiQPσ)−1Ui. For all ai ∈Ai(s) \ {asi }

and s ∈ S, define the (ai� s) row of P∗
i (σ) ∈ R

∑
s∈S(|Ai(s)|−1)×∑

s∈S |A(s)| by σi(ai� s) ×
(Ps
ai�σ−i − Ps

asi �σ−i ). The components of f associated with player i can now be written
as

fi(σ�U)=

⎛⎜⎜⎜⎜⎝
∑
ai∈Ai σi(ai� s1)− 1

���∑
ai∈Ai σi(ai� s|S|)− 1

P∗
i (σ)(I

∑
s∈S |A(s)| − δiQPσ)−1Ui

⎞⎟⎟⎟⎟⎠ �
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The derivative of the first |S| components of fi with respect to σi takes the form⎛⎜⎜⎜⎜⎜⎜⎜⎝

σi(·� s1) σi(·� s2) · · · σi(·� s|S|)
1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0
���

���
���

���
���

���

0 · · · 0 0 · · · 0 · · · 1 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
�

This matrix, denoted byXi, has full rank |S|. The Jacobian of the first |S| components of
fi with respect to (σ−i�U) is 0 ∈ R

|S|×(∑j �=i |Aj ||S|+|I|∑s∈S |A(s)|).
Next consider the components of fi associated with ai �= asi . The Jacobian of those

components with respect to U takes the form(
U1 U2 · · · Ui−1 Ui Ui+1 · · · U|I|
0 0 · · · 0 P∗

i (σ)(I
∑
s∈S |A(s)| − δiQPσ)−1 0 · · · 0

)
�

The matrix P∗
i (σ) has full rank

∑
s∈S(|Ai(s)| − 1). To see this, note that for all pairs (ai� s)

with ai ∈ Ai(s) \ {asi }, the (ai� s) row of P∗
i (σ) contains a zero in all those components

(a′� s′)where either s′ �= s or ai is not contained in a′ (by this we mean that there is no a−i
such that (ai� a−i) = a′). The (ai� s) row also contains a nonzero term in some compo-
nent (a′� s) where a′ contains ai; indeed,

∑
a′ contains ai σ−i(a′ \ ai� s)=∑

a−i σ−i(a−i� s)=
1, where, given a′ = (ai� a−i), we write a′ \ ai = a−i. Since P∗

i (σ) has full rank, so does the
matrix Zi = P∗

i (σ)(I
∑
s∈S |A(s)| − δiQPσ)−1 as a consequence of Lemma 1.

We now see that, up to permutations of rows, the Jacobian of f with respect to the
pair (σ�U) takes the form

∂f (σ�U)

∂(σ�U)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1 σ2 · · · σ|I| U1 U2 · · · U|I|
X1 0 0 0 0 0 · · · 0
0 X2 0 0 0 0 · · · 0
���

���
� � �

���
���

���
���

0 0 0 X|I| 0 0 · · · 0

Z1 0 · · · 0
0 Z2 · · · 0

Y1 Y2 · · · Y|I|
���

���
� � �

���

0 0 · · · Z|I|

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

where Yi ∈ R

∑
i∈I

∑
s∈S(|Ai(s)|−1)×∑

s∈S |Ai(s)|. This permits us to deduce that ∂f (σ�U)/
∂(σ�U) has full rank

∑
i∈I

∑
s∈S |Ai(s)|. �

Lemma 3 implies a version of the structure theorem.

Corollary 3. The equilibrium graph has the same dimension as the space of games.
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Corollary 3 generalizes an observation made by Govindan and Wilson (2001) for
normal form games to dynamic stochastic games.8 This corollary and the transversal-
ity theorem almost immediately yield Haller and Lagunoff’s (2000) finiteness result in
Corollary 1. Note that to obtain a finiteness result it is enough to restrict attention to
completely mixed equilibria; therefore, there is no need for Lemma 2. Our analysis also
provides a finiteness proof for normal form games from a different perspective than the
proof based on the theory of semialgebraic sets in Govindan and Wilson (2001).9

7.1.2. Proof of Theorem 1

We employ the following result from differential topology.

Theorem 3 (Transversality theorem). Let O ⊆ R
n be open and let L : O × R

s → R
n be

continuously differentiable. Assume that the Jacobian ∂L(x� y)/∂(x� y) has rank n for all
(x� y) ∈ O ×R

s such thatL(x� y)= 0. Then, for almost all ȳ ∈ R
s, the Jacobian ∂L(x� ȳ)/∂x

has rank n for all x ∈ O such that L(x� ȳ)= 0.

The transversality theorem is a generalization of the well known Sard theorem. See
Mas-Colell et al. (1995) for an intuitive discussion and applications in economics, and
see Abraham and Robbin (1967) and Guillemin and Pollack (1974) for further results and
technical details.

We are now ready to prove Theorem 1. Denote by Ī the set of all games having some
irregular equilibrium. Then

Ī =
⋃

C∗⊆B∗
I(B∗�C∗)�

Since there exists only a finite number of sets B∗ and C∗ such that C∗ ⊆ B∗, it is enough
to show that λ(I(B∗�C∗))= 0 for all such sets. If B∗ �= C∗, this follows from Lemma 2.

Suppose B∗ = C∗ and consider the submatrix J̄(σ) obtained from J(σ) =
∂f (σ�U)/∂σ by crossing out all rows and columns that correspond to components (ai� s)
with ai /∈ B∗

i (s). As shown in the proof of Proposition 1,

|det(J(σ))| = |det(J̄(σ))|
∣∣∣∣∏
i∈I

∏
s∈S

∏
ai /∈Ci(σ�s)

[Ui(ai� s�σ)− Ui(asi � s�σ)]
∣∣∣∣�

Since Ui(ai� s�σ)− Ui(asi � s�σ) < 0 for ai /∈ Ci(σ� s), J(σ) has full rank if and only if J̄(σ)
does. The submatrix J̄(σ) is itself the Jacobian of a completely mixed equilibrium. With-
out loss of generality, we can therefore assume that B∗(s) = C∗(s) = A(s) for all s ∈ S.

8Govindan and Wilson (2009) recently strengthened Corollary 3 by extending Kohlberg and Mertens’
(1986) structure theorem to dynamic stochastic games.

9Note, however, that extending Govindan and Wilson’s (2001) tools to dynamic stochastic games requires
establishing the “semialgebraicity” of f .
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Then

I(B∗�C∗)⊆
{
U ∈ R

|I|∑s∈S |A(s)|
∣∣∣ there exists σ ∈ �̃ such that

f (σ�U)= 0 and
∂f (σ�U)

∂σ
is singular

}
�

From Lemma 3, ∂f (σ�U)/∂(σ�U) has full rank for all pairs (σ�U) ∈ �̃ × R
|I|∑s∈S |A(s)|.

The transversality theorem therefore implies that for almost all gamesU ∈ R
|I|∑s∈S |A(s)|,

∂f (σ�U)/∂σ has full rank whenever f (σ�U)= 0.

7.2 Proving Theorem 2

To prove Theorem 2, we proceed as follows. In Section 7.2.1, we first derive a system of
nonlinear equations that characterizes the equilibrium distributions of a perturbed dy-
namic stochastic game. In Section 7.2.2, we then exploit a result from algebraic topology
to ensure that there exists a solution to this system and, moreover, that this solution is
close enough to the regular equilibrium σ̄ of the original (unperturbed) game.

7.2.1. Alternative characterization

We derive a system of nonlinear equations that characterizes the equilibrium distri-
butions of a perturbed dynamic stochastic game. This, in effect, amounts to providing
an alternative characterization of a Bayesian Markov perfect equilibrium. See Hotz and
Miller (1993) and Aguirregabiria and Mira (2007) for similar derivations.

Continuation values. Consider a dynamic stochastic game with perturbations
(μi(·; s))i∈I�s∈S and equilibrium strategy profile b. Let σb be the corresponding con-
sistent distribution profile. Then V̄i :S → R, the equilibrium value function for player i,
is the solution the Bellman equation

V̄i(s)= ui(σb(·� s)� s)+
∑

ai∈Ai(s)

∫
{ηi|bi(s�ηi)=ai}

ηi(ai�σ
b
−i(·� s))dμi(ηi; s)

+δi
∑
s′∈S

V̄i(s
′)q(s′;σb(·� s)� s)�

(7.1)

The first and the third terms on the right hand side of equation (7.1) depend on b only
indirectly through σb. Proposition 1 in Hotz and Miller (1993) ensures that∑

ai∈Ai(s)

∫
{ηi|bi(s�ηi)=ai}

ηi(ai�σ
b
−i(·� s))dμi(ηi; s)= ei(σb� s)�

where ei(σb� s) is the expected value of the private shock given optimizing behavior.
Hence, the second term in equation (7.1) is seen to also depend on b only indirectly
through σb. See Aguirregabiria and Mira (2002) for further discussion.
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Importantly, ei(σ� s) is well defined even if σ ∈ � is not an equilibrium distribution.
Moreover, ei(σ� s) is a continuous function of σ ∈ �. We note that for all s ∈ S the range
of ei(·� s) :�→ R is contained in the interval [−γi(s)�γi(s)], where

γi(s)= |Ai(s)|
∫

max
a∈A(s)

{|ηi(a)|}dμi(ηi; s)�

According to Tietze’s extension theorem (Royden 1968), it is therefore possible to extend
ei(·� s) to �̄ε, the closure of�ε, in a continuous manner such that its range is contained in
the interval [−γi(s)�γi(s)]. Slightly abusing notation, we denote the extended function
by ei(·� s) : �̄ε → R.

Using this construction, the value of continued play, given an arbitrary profile
σ ∈ �̄ε, is

V̄i(·�σ)= (I|S| − δiPσQ)−1(PσUi + ei(σ))�
where the s component of ei(σ) ∈ R

|S| is given by ei(σ� s). We interpret V̄i(s�σ) as the
expected net present value of the stream of payoffs to player i if the dynamic system is
currently in state s and play is according to σ . Note that the formula above reduces to
equation (2.3) if μi({0}; s)= 1 for all s.

Equilibrium distributions. Fix σ ∈ �̄ε and let V̄i(·�σ) be the corresponding value of
continuation play. Define the best reply of player i in state s as

bσi (s�η
i)= arg max

ai∈Ai(s)
ui(ai�σ−i(·� s)� s)+ηi(ai�σ−i(·� s))

+ δi
∑
s′∈S

V̄i(s
′�σ)q(s′;ai�σ−i(·� s)� s)�

The number bσi (s�η
i) is the best reply of player i if the current state is s, his private

shock is ηi, his rivals play according to σ−i, and player i plays according to σi from the
subsequent period on.

For ai ∈Ai(s), define the (i� ai� s) component of the function g : �̄ε → � by

gi�ai�s(σ)=
∫

{ηi|bσi (s�ηi)=ai}
dμi(ηi; s)� (7.2)

The number gi�ai�s(σ) is the probability that the best reply of player i in state s is ai. The
following lemma characterizes the equilibrium distributions of the dynamic stochastic
game with perturbations (μi(·; s))i∈I as fixed points of g.

Lemma 4. A profile σ ∈ �̄ε is an equilibrium distribution if and only if g(σ)= σ .

This lemma is standard up to the fact that the domain of g is not � but �̄ε. It follows
because the range of g is contained in �, so that a fixed point of g must belong to �.
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Finally, for ai ∈ Ai(s), define the (i� ai� s) component of the function h : �̄ε →
R

∑
i∈I

∑
s∈S |Ai(s)| by

hi�ai�s(σ)=
⎧⎨⎩

∑
ai∈Ai

σi(ai� s)− 1 if ai = asi
gi�ai�s(σ)− σi(ai� s) if ai �= asi ,

where asi is the reference action for player i in state s as used in the construction of the
function of f for the equilibrium σ̄ of the unperturbed game U . Since g is continuous
in σ , so is h. It is not hard to see that h(σ)= 0 if and only if g(σ)= σ , so the problem of
finding an equilibrium distribution reduces to finding a zero of h.

7.2.2. Proof of Theorem 2

We employ the following result from algebraic topology.

Proposition 5 (Govindan et al. 2003). Suppose thatO is a bounded, open set in R
m and

h�f : Ō→ R
m are continuous, where Ō denotes the closure of O. Further, suppose that f is

continuously differentiable on O, that x0 is the only zero of f in O, and that the Jacobian
of f at x0 has full rank. If, for all t ∈ [0�1], the function th+ (1 − t)f has no zero on the
boundary of O, then h has a zero in O.

The equilibrium σ̄ of the unperturbed game U is a zero of f . We have also con-
structed h so that a zero of h is an equilibrium distribution of the perturbed game. In
what follows, we use Proposition 5 to establish the existence of a Bayesian Markov per-
fect equilibrium of the perturbed game.

Since the equilibrium σ̄ of the unperturbed game U is regular, the argument de-
veloped in the proof of Proposition 2 shows that there exists an open set O ⊆ �ε that
satisfies the following conditions (referred to hereafter as C1–C5).

C1. σ̄ ∈O.

C2. For all σ ∈O, ‖σ̄ − σ‖< ε̄.

C3. σ̄ is the only zero of f (·�U) in O.

C4. For all i ∈ I, s ∈ S, and ai ∈Ai(s), if σ̄i(ai� s) > 0, then σi(ai� s) > 0 for all σ ∈O.

C5. For all i ∈ I, all s ∈ S, and ai ∈ Ai(s), if Ui(ai� s� σ̄) − Ui(asi � s� σ̄) < 0, then
Ui(ai� s�σ)− Ui(asi � s�σ) < 0 for all σ ∈O.

Consider the sequence of probability distributions of private shocks (μni (·; s))n∈N.
For all i ∈ I, use (μni (·; s))s∈S to construct eni , V̄ ni , gn, and hn as detailed in Section 7.2.1.
To prove Theorem 2, it suffices to find a zero of hn in O for all large enough n. Such a
zero is an equilibrium distribution of the dynamic stochastic game with perturbations
(μni (·; s))i∈I�s∈S and it is within a distance at most ε̄ of σ̄ due to C2. As a consequence of
Proposition 5, the following lemma yields the desired result.
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Lemma 5. For all large enough n and all t ∈ [0�1], the function thn+ (1 − t)f (·�U) has no
zero on the boundary of O.

Proof. Suppose not. Consider a sequence (tn)n∈N converging to t̄ ∈ [0�1] and a se-
quence (σn)n∈N contained in the boundary of O, converging to σ̂ , such that σn is a zero
of tnhn + (1 − tn)f (·�U). We state and prove three preliminary claims.

Claim 3. If Ui(ai� s� σ̂)− Ui(asi � s� σ̂) < 0, then gni�ai�s(σ
n)→ 0.

Proof. For s ∈ S, a′
i ∈Ai(s), and σ ∈ �ε, define

Un
i (a

′
i� s�σ)= ui(a′

i�σ−i(·� s)� s)+ δi
∑
s′∈S

V̄ ni (s
′�σ)q(s′;a′

i�σ−i(·� s)� s)� (7.3)

Note that

V̄ ni (·�σn)= (I|S| − δiPσnQ)−1(PσnUi + eni (σn)) → (I|S| − δiPσQ)−1 PσUi = Vi(·�σ)

because the range of eni (·� s) is contained in [−γni (s)�γni (s)], where

γn(s)= |Ai(s)|
∫ {

max
a∈A(s)

|ηi(a)|
}
dμni (ηi; s)→ 0�

It thus follows that Un
i (a

′
i� s�σ

n)→ Ui(a′
i� s� σ̂) for all s ∈ S and a′

i ∈Ai(s). Consequently,
there exists ψ> 0 such that for all large enough n,

Un
i (ai� s�σ

n)− Un
i (a

s
i � s�σ

n) <−ψ�

By the definition of g in equation (7.2),

gni�ai�s(σ
n)

≤
∫

{ηi∈R|A(s)||ηi(ai�σn−i(·�s))−ηi(asi �σn−i(·�s))≥Un
i (a

s
i �s�σ

n)−Un
i (ai�s�σ

n)}
dμni (ηi; s)

≤
∫

{ηi∈R|A(s)|||ηi(ai�σn−i(·�s))−ηi(asi �σn−i(·�s))|≥ψ}
dμni (ηi; s)

≤
∫

{ηi∈R|A(s)|||ηi(ai�σn−i(·�s))−ηi(asi �σn−i(·�s))|≥ψ}
|ηi(ai�σn−i(·� s))−ηi(asi �σn−i(·� s))|

ψ
dμni (ηi; s)

≤ 2
ψ

∫ {
max
a∈A(s)

|ηi(a)|
}
dμni (ηi; s)

→ 0� �

Claim 4. If Ui(ai� s� σ̂)− Ui(asi � s� σ̂) < 0, then σ̂i(ai� s)= 0.
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Proof. From Claim 3, gni�ai�s(σ
n)→ 0. Therefore,

0 = lim
n→∞ t

nhni�ai�s(σ
n)+ (1 − tn)fi�ai�s(σn�U)

= t̂(−σ̂i(ai� s))+ (1 − t̂)fi�ai�s(σ̂�U)
= −σ̂i(ai� s)

(
t̂ + (1 − t̂)(Ui(asi � s� σ̂)− Ui(ai� s� σ̂))

)
�

It follows that σ̂i(ai� s)= 0. �

Claim 5. For all i ∈ I and s ∈ S, σ̂i(·� s) is a probability distribution. In addition, there
exist i ∈ I, ai ∈Ai(s) \ {asi }, and s ∈ S such that fi�ai�s(σ̂�U) �= 0.

Proof. If σ̂i(ai� s) < 0, then C4 implies that σ̄i(ai� s) = 0. Since σ̄ is quasistrict,
Ui(ai� s� σ̄)− Ui(asi � s� σ̄) < 0 and, from C5, Ui(ai� s� σ̂)− Ui(asi � s� σ̂) < 0. Claim 4 shows
that σ̂i(ai� s)= 0, a contradiction. Therefore, σ̂i(ai� s)≥ 0 for all i ∈ I, s ∈ s, and ai ∈Ai(s).
Further, because hn

i�asi �s
≡ fi�asi �s , we deduce that fi�asi �s(σ

n�U) = 0 for all n, so σ̂i(·� s) is

a well defined probability distribution over actions. From C3, σ̂ cannot be a zero of
f (·�U). So there must exist i ∈ I, ai ∈Ai(s) \ {asi }, and s ∈ S such that fi�ai�s(σ̂�U) �= 0. �

With these claims in hand, we are ready to complete the proof of Lemma 5. Fix
i ∈ I, ai ∈ Ai(s) \ {asi }, and s ∈ S as in Claim 5 for the rest of the proof. Note that asi
cannot belong to Bi(σ̂� s). Indeed, if it did, then Ui(ai� s� σ̂)− Ui(asi � s� σ̂) ≤ 0 and, from
Claim 4, fi�ai�s(σ̂�U) = 0, contradicting the definition of ai (Claim 5). Since σ̄ is quasi-
strict, σ̄i(a′

i� s) > 0 for all a′
i ∈ Bi(σ̄� s); this together with C4 implies that σ̂i(a′

i� s) > 0 for
all a′

i ∈ Bi(σ̄� s). Statement C5 implies that Bi(σ̂� s)⊆ Bi(σ̄� s) and, therefore, σ̂i(a′
i� s) > 0

for all a′
i ∈ Bi(σ̂� s). Consequently,∑

a′
i∈Bi(σ̂�s)

fi�a′
i�s
(σn�U) > 0� (7.4)

For a′
i /∈ Bi(σ̂� s), gni�a′

i�s
(σn)→ 0, so that

∑
a′
i∈Bi(σ̂�s) g

n
i�a′

i�s
(σn)→ 1. Because σ̂i(asi � s) > 0

and σ̂(·� s) is a probability distribution,
∑
a′
i∈Bi(σ̂�s) σ̂i(a

′
i� s) < 1. Therefore,

∑
a′
i∈Bi(σ̂�s)

hni�a′
i�s
(σn) > 0 (7.5)

for large enough n. But equations (7.4) and (7.5) imply that tnhn + (1 − tn)f (·�U) is not
zero at σn, a contradiction. This completes the proof of Lemma 5. �

Appendix

In this appendix, we detail the construction of �ε. We then provide the proof of support-
ing results.
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A.1 Construction of �ε

We construct �ε as follows. Note that, for all σ ∈ �, I|S| − δiPσQ and I
∑
s∈S |A(s)| − δiQPσ

are invertible. Indeed, PσQ and QPσ are stochastic matrices so that I|S| − δiPσQ
and I

∑
s∈S |A(s)| − δiQPσ have strictly dominant diagonals. Therefore, for all σ̄ ∈ �, we

can find εσ̄ > 0 such that I|S| − δiPσQ and I
∑
s∈S |A(s)| − δiQPσ are invertible for all

σ ∈ R

∑
i∈I

∑
s∈S |Ai(s)| satisfying ‖σ̄ − σ‖ < εσ̄ . Since � is compact, we can take a finite

covering (B(σ̄j� εσ̄j ))j∈J of �. Define �ε to be open such that its closure, denoted �̄ε, is
contained in the open set

⋃
j∈J B(σ̄j� εσ̄j ).

A.2 Omitted proof

Proof of Proposition 4. For large enough n, Ci(σ̄� s)⊆ Ci(σn� s) for all i ∈ I and s ∈ S.
By definition of g in equation (7.2), for any ai ∈ Ci(σn� s), gni�ai�s(σn) = σni (ai� s) > 0.

Therefore, there exists a set Rni�s ⊆ R
|A(s)| such that μni (R

n
i�s; s) > 0 and, for all ηi ∈ Rni�s

and a′
i ∈Ai(s),

Un
i (ai� s�σ

n)− Un
i (a

′
i� s�σ

n) > ηi(a
′
i�σ

n
−i(·� s))−ηi(ai�σn−i(·� s))�

where Un
i is defined in equation (7.3). We can integrate out this inequality to deduce

that, for all a′
i ∈Ai(s),

Un
i (ai� s�σ

n)− Un
i (a

′
i� s�σ

n)

>
1

μni (R
n
i�s; s)

∫
ηi∈Rni�s

ηi(a
′
i�σ

n
−i(·� s))−ηi(ai�σn−i(·� s))dμni (ηi; s)�

Letting n→ ∞, it follows that, for all a′
i ∈Ai(s),

Ui(ai� s�σ)− Ui(a′
i� s�σ)≥ 0�

We have therefore shown that for any ai ∈ Ci(σ̄� s), ai ∈ Bi(σ̄� s). This proves the result.
�
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