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Symmetry of evidence without evidence of symmetry

Larry G. Epstein
Department of Economics, Boston University

Kyoungwon Seo
Department of Managerial Economics and Decision Sciences, Northwestern University

The de Finetti Theorem is a cornerstone of the Bayesian approach. Bernardo
(1996, p. 5) writes that its “message is very clear: if a sequence of observations is
judged to be exchangeable, then any subset of them must be regarded as a random
sample from some model, and there exists a prior distribution on the parameter
of such model, hence requiring a Bayesian approach.” We argue that although ex-
changeability, interpreted as symmetry of evidence, is a weak assumption, when
combined with subjective expected utility theory, it also implies complete confi-
dence that experiments are identical. When evidence is sparse and there is little
evidence of symmetry, this implication of de Finetti’s hypotheses is not intuitive.
This motivates our adoption of multiple-priors utility as the benchmark model of
preference. We provide two alternative generalizations of the de Finetti Theorem
for this framework. A model of updating is also provided.

Keywords. Ambiguity, exchangeability, symmetry, updating, learning, multiple
priors.

JEL classification. D81.

1. Introduction

1.1 Motivation and objectives

An individual is considering bets on the outcomes of a sequence of coin tosses. It is
the same coin being tossed repeatedly, but different tosses are performed by different
people. The individual believes that outcomes depend both on the (unknown) physical
makeup or bias of the coin and on the way in which the coin is tossed. Her understand-
ing of tossing technique is poor. However, she has no reason to distinguish between the
techniques of different people and she views technique as being idiosyncratic. Given
this perception, how would she rank bets?
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More generally, we are interested in modeling a decision-maker who is facing a se-
quence of experiments and whose perception is that outcomes are influenced by two
factors—one that is well understood and fixed across experiments (coin bias), and the
other that is poorly understood and thought to be unrelated across experiments. This
description would seem to apply to many choice settings, where the decision-maker has
a theory or model of her environment, but where she is sophisticated enough to realize
that it is “incomplete”; hence the second factor, which can be thought of as an “error
term” for her model.

We limit ourselves to situations where, in addition, there is symmetry of evidence
about the experiments: no information is given that would imply a distinction between
them. However, if little information is provided about any of the experiments, in which
case there is little evidence of symmetry, a sophisticated individual might very well admit
the possibility that the experiments may differ in some way, and this may influence her
ranking of bets. The distinction between the two forms of symmetry is due to Walley
(1991), who also argued that this distinction is behaviorally meaningful and that it can-
not be accommodated within the Bayesian framework. Following the terminological
distinction introduced in Epstein and Schneider (2003), we also refer to experiments as
being indistinguishable but not necessarily identical.

A prime motivating example is where the decision-maker is a statistician or empiri-
cist, and an experiment is part of a statistical model of how data are generated. Invari-
ably, symmetry is assumed at some level, perhaps after correcting for perceived asym-
metries such as heteroscedasticity of errors in a regression model. Standard statistical
methods presume that after such corrections, the identical statistical model applies to
all experiments or observations. This practice has been criticized as being particularly
inappropriate in the context of the literature attempting to explain cross-country differ-
ences in growth rates, in which case an experiment corresponds to a country. Brock and
Durlauf (2001, p. 231) argue that it is “a major source of skepticism about the empirical
growth literature.” They write further that “where the analyst can be specific about po-
tential differences [between countries], she can presumably (test and) correct for them
by existing statistical methods. However, the open-endedness of growth theories makes
it impossible to account in this way for all possible differences.” Since they also empha-
size the importance of having sound decision-theoretic foundations for statistical meth-
ods, particularly for purposes of policy analysis, we interpret their paper as calling (first)
for a model of decision-making that would permit the analyst to express a judgement of
“similarity” or “indistinguishability,” but also a concern that countries or experiments
may differ, even if she cannot specify how. Such a model is our objective.

1.2 The de Finetti Bayesian model

Some readers may be wondering why there is a need for a new model of choice. Does
not the exchangeable Bayesian model due to de Finetti adequately capture beliefs and,
in conjunction with subjective expected utility, also choice in the coin-tossing setting
(and more generally)?

Recall de Finetti’s model and celebrated theorem (de Finetti 1937, Hewitt and Savage
1955). There is a countable infinity of experiments, indexed by the set N = {1�2� � � �}.
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Each experiment yields an outcome in the set S and thus � = S∞ is the set of all possible
sample paths (technical details are suppressed until later). A probability measure P on �

is exchangeable if

P(A1 ×A2 × · · ·) = P(Aπ−1(1) ×Aπ−1(2) × · · ·)

for all finite permutations π of N. de Finetti shows that exchangeability is equivalent to
the following representation: There exists a (necessarily unique) probability measure μ

on �(S) such that

P(·) =
∫
�(S)

�∞(·)dμ(�)� (1.1)

where, for any probability measure � on S (written � ∈ �(S)), �∞ denotes the correspond-
ing independently and identically distributed (i.i.d.) product measure on �.1

Given a Bayesian prior, symmetry of evidence implies exchangeability and, there-
fore, de Finetti’s representation, which admits the obvious interpretation: The individ-
ual is uncertain about which probability law � describes any single experiment. How-
ever, conditional on any � in the support of μ, it is the i.i.d. product �∞ that describes
the implied probability law on �. This suggests that there is no room in the model to
accommodate a concern with experiments not being identical. In Section 4, we con-
firm this suggestion at the behavioral level by identifying behavior that is intuitive for
an individual who is not completely confident that experiments are identical, but yet is
ruled out by the Independence Axiom of subjective expected utility theory. Thus we pro-
pose a model that generalizes the exchangeable Bayesian model by suitably relaxing the
Independence Axiom.

Specifically, we adopt the framework of multiple-priors utility (Gilboa and Schmei-
dler 1989) and specialize it by adding axioms, forms of “exchangeability,” for example,
that capture alternative hypotheses about how the relationship between experiments is
perceived. Two alternative generalizations of de Finetti’s theorem are established. In the
first (Theorem 3.2), the decomposition (1.1) of a Bayesian prior is generalized so that the
individual’s set of priors P has the form

P =
{∫

�∞(·)dμ(�) :μ ∈ M
}

for some set of probability measures M over �(S); equivalently, every measure in P is
exchangeable. An interpretation is that there is ex ante ambiguity about which like-
lihood function applies, but certainty that the same likelihood function applies to all
experiments. Thus, just for the Bayesian case, experiments are perceived as identical.

The second generalization of de Finetti’s Theorem (see Theorem 5.2) relaxes the lat-
ter feature and accommodates the absence of (overwhelming) evidence of symmetry.
(However, ex ante ambiguity is precluded, so that this result does not generalize the first

1Though the de Finetti Theorem can be viewed as a result in probability theory alone, it is typically un-
derstood in economics as describing the prior in the subjective expected utility model of choice. That is
how we view it in this paper.
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one.) The corresponding representation for P is more complicated: it retains a counter-
part of the single prior μ, but where μ is a probability measure over, roughly speaking,
nonsingleton sets of likelihoods, which sets are the unknown parameters in the repre-
sentation. The following informal description gives a sense of how “indistinguishable
but not identical” is captured. Consider the introductory coin-tossing setting for con-
creteness, so that S = {H�T }. In the Bayesian model, each experiment is characterized
by a single number in the unit interval—the probability of heads. Here, instead, an ex-
periment is characterized by an interval of probabilities for heads, which is nondegener-
ate because even given the physical bias of the coin, the influence of tossing technique is
poorly understood. Experiments are indistinguishable, because each is described by the
same interval. However, they are not identical, because any probability in the interval
could apply to any experiment. The length of the interval parametrizes the importance
of idiosyncratic poorly understood factors and varies with preference, hence with the
individual.

1.3 Updating

As indicated, one formal contribution of this paper is to generalize de Finetti’s Theorem
from probability measures to sets of priors. However, the importance of the de Finetti
Theorem extends beyond the representation to the connection it affords between sub-
jective beliefs and empirical frequencies, most notably through Bayesian updating of the
prior μ. The combination of the de Finetti Theorem and Bayes’ Rule gives the canonical
model of learning or inference in economics and statistics. Under well known condi-
tions, it yields the important conclusion that priors will eventually be swamped by data
and that individuals will learn the truth (see Savage 1972, Chap. 3.6, for example). Our
second major contribution is to show that (with some qualification) Bayesian updat-
ing extends to the case where experiments may not be identical, as formalized by our
second model (Theorem 5.2).

It is well known that ambiguity poses difficulties for updating and that there is no
consensus updating rule analogous to Bayes’ Rule. However, our second model admits
intuitive (and dynamically consistent) updating in a limited but still interesting class of
environments, namely, where an individual first samples and observes the outcomes
of some experiments, and then chooses how to bet on the outcomes of remaining ex-
periments. The essential point is that each experiment serves either as a signal or is
payoff-relevant, but not both. For example, think of a statistical decision-maker who,
after observing the results of some experiments, is concerned with predicting the re-
sults of others because he must take an action (estimation or hypothesis testing per-
haps) whose payoff depends on their outcomes. Policy evaluation in the context of
cross-country growth is a concrete application, where the choice between policies for
a particular country is based on observations of how these policies fared in other coun-
tries. Our model prescribes a way to use the latter information that accommodates the
policy-maker’s concern that countries may differ in ways that are poorly understood and
that are not taken into account in the model of growth.

Besides being well founded axiomatically, the model of updating is also tractable.
This aspect stems from the fact that given the model of Theorem 5.2, beliefs at every
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node are completely defined by a (unique) probability measure over the unknown para-
meters. Thus one need only describe how information is incorporated into an additive
probability measure, rather than dealing with the thornier problem of updating a set
of priors. As shown in Theorem 6.1, this can be done in a way that mirrors standard
Bayesian updating. A consequence is that formal results from Bayesian learning theory
can be translated into our model, though with suitable reinterpretation. As one exam-
ple, we establish (Proposition 6.3) a counterpart of the Savage result that data eventu-
ally swamp the prior. In the coin-tossing example, the individual asymptotically con-
verges to certainty about a particular bias, and hence about a specific probability inter-
val, but since she may still be left with an interval, she may remain ambiguous about
tossing technique and thus remain concerned that experiments differ. She learns all
that she believes that she can, given her ex ante perception of the experiments, which,
in turn, underlies her preferences. If the truth is that tossing technique is not important
and if that possibility is admitted in her prior view, then she will converge to the truth
asymptotically.

1.4 Related literature

Kreps (1988, Chap. 11) refers to the de Finetti Theorem as “the fundamental theorem of
(most) statistics” because of the justification it provides for the analyst to view samples
as being independent and identically distributed with unknown distribution function:
this is warranted if and only if samples are assessed ex ante as being exchangeable. As a
result, and also because similarity judgements naturally play a central role in statistical
analysis, the notion of exchangeability underlies much of common empirical practice.

Bayesians often refer to exchangeability as a weak assumption. Schervish (1995, p. 8)
writes, “The motivation for the definition of exchangeability is to express symmetry of
beliefs. . . in the weakest possible way. The definition. . . does not require any judgement
of independence or that any limit of relative frequencies will exist. It merely says that
the labeling of random quantities is immaterial.” We agree that “symmetry of beliefs,”
in the sense of “symmetry of evidence,” is a weak assumption. Our objection is to the
(implicit) companion hypothesis of subjective expected utility (SEU) preferences. To
improve upon exchangeability, Bayesians have proposed weaker notions that build in
less symmetry, while maintaining SEU; see Schervish’s Chapter 8, for example. Such ex-
tensions within the Bayesian framework do not permit the separate modeling of a concern
with evidence of symmetry in an environment where evidence is symmetric.

Brock and Durlauf’s (2001) critique of the empirical growth literature is in part ex-
pressed as a critique of the assumption of (a conditional or partial form of) exchange-
ability. In our view, the culprit is not symmetry, but rather the implicit assumption of
expected utility theory.

We have already acknowledged our debt to Walley (1991) for the critique that moti-
vates this paper and for the distinction that we have adopted as a title. His contribution
to modeling the distinction is described briefly in Section 3.

Finally, Epstein and Schneider (2003) model the distinction between symmetry of
evidence and evidence of symmetry in the special case where experiments are viewed
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as being completely unrelated (in the context of the above example of repeated tosses of
a single coin, they assume that the physical bias is known with certainty). Epstein and
Schneider (2007) study the more general case dealt with here (unknown physical bias).
A major difference from this paper is that they describe functional forms and provide
informal justification, partly through applications, while here the focus is on axiomatic
foundations.

2. Preliminaries

2.1 The Bayesian model

There exists a countable infinity of experiments. They are ordered and indexed by the set
N = {1�2� � � �}. Each experiment yields an outcome in the finite set S. The set of possible
outcomes for the ith experiment is sometimes denoted Si, though Si = S for all i. The
full state space is

� = S∞ = S1 × S2 × · · · = S∞�

Denote by � the product σ-algebra on �. Probability measures on (���) are understood
to be countably additive unless specified otherwise.

An act is a �-measurable function from � into [0�1]. For example, when S = {H�T },
then the act f ,

f (s1� � � � � si� � � �) =
{

1 if (s1� s2) = (H�T)

0 otherwise,

is the bet on heads followed by tails; below it will often be abbreviated by H1T2 (sim-
ilar abbreviations are adopted for other acts in the coin-tossing context). Preference,
denoted �, is defined on the set F of all acts.

For any subset I of N, �I denotes the product σ-algebra on
∏

i∈I Si, also identified
with a σ-algebra on �. Denote by FI the set of all acts that are �I-measurable. (When
I = {i}, we write �i and f ∈ Fi.) Such acts will be said to depend only on experiments
in I. Particularly important are acts that depend on finitely many experiments, that is,
acts in

Ffin =
⋃

I finite

FI �

Refer to such acts as finitely based.
Denote by 
 the set of finite permutations of N; all permutations appearing in the

paper should be understood to be finite. For any π in 
 and probability measure P

on (S∞��), define πP to be the unique probability measure on S∞ satisfying (for all
rectangles)

(πP)(A1 ×A2 × · · ·)= P(Aπ−1(1) ×Aπ−1(2) × · · ·)�
Given an act f , define the permuted act πf by (πf )(s1� � � � � st� � � �) = f (sπ(1)� � � � � sπ(t)� � � �).
Abbreviate

∫
f dP by Pf , or P(f ). Then, for all P , f , and π,

(πP)f = P(πf)�
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The probability measure P is exchangeable if πP = P for all π. In behavioral terms,
assuming subjective expected utility preference with prior P , exchangeability of P is
equivalent to the universal indifference between an act and any permuted variant, that
is,

f ∼ πf for all acts f and permutations π�

For any probability measure � on S (write � ∈ �(S)), �∞ denotes the corresponding
i.i.d. product measure on (���).

Theorem 2.1 (de Finetti). The probability measure P on (���) is exchangeable if and
only if there exists a (necessarily unique) Borel probability measure μ on �(S) such that

P(·) =
∫
�(S)

�∞(·)dμ(�)�

A noteworthy and problematic feature of the framework, which we adopt also below,
is that payoffs to acts depend on the outcomes of infinitely many experiments, which is
problematic for a positive model. In particular, the domain of preference includes acts
whose payoffs depend on the truth/falsity of tail events, which are not observed in fi-
nite time and thus are, in fact, unobservable.2 This concern was emphasized also by de
Finetti; see Regazzini (1996) for extensive discussion of de Finetti’s view and also Dubins
(1974). However, a decision-maker might be able to conceive of payoffs that depend
on tail events (receive x∗ if the limiting empirical frequency of heads in an infinite se-
quence of tosses is greater than 1

2 and x otherwise). Thus the de Finetti Theorem and its
generalizations below seem useful in a normative context.3

Another objection to the de Finetti–Savage model is that raised by Walley and de-
scribed in the Introduction—that symmetry of evidence in their model implies also that
experiments are necessarily viewed as being identical. Elaborating upon and accommo-
dating this critique are the objectives of this paper, and is the reason that we move from
subjective expected utility (SEU) to the multiple-priors model.

For any compact metric space X , �(X) denotes the set of countably additive Borel
probability measures on X , endowed with the weak-convergence topology induced by
continuous functions. K(X) denotes the space of compact subsets of X , endowed with
the Hausdorff metric topology, which renders it compact metric. When X is a lts, Kc(X)

denotes the subspace of compact and convex subsets of X .

2.2 Multiple-priors preference

By a multiple-priors preference (or utility), we mean a preference � on F that has a
representation of the following form. There exists a convex set P ⊂ �(�), compact in
the weak-convergence topology, such that

U(f) = inf
P

Pf = inf
P

∫
f dP� f ∈ F � (2.1)

2The tail σ-algebra is defined by �tail =⋂∞
t=1 σ(

∨∞
j=t Sj).

3In fact, we have overstated the problem somewhat in as much as our central axioms concern only the
ranking of acts that depend on finitely many experiments.
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In Section 7, we relate this specification to the Gilboa and Schmeidler (1989)
formulation—ours is a specialization—and we provide behavioral foundations for (2.1).
Since we suspect that some readers will consider this material to be largely “technical,”
we defer it to the end.

One difference that may seem important, but that is in fact of minor significance,
can be dealt with here. In this paper, acts are taken to be real-valued and they enter
linearly into the utility calculation in (2.1). In contrast, Gilboa and Schmeidler and much
of the related literature consider Anscombe–Aumann acts f that have lotteries in �(Z)

over a primitive set Z as outcomes. However, this specification of objects of choice can
be reduced to ours as follows: Suppose also that there exist best and worst outcomes z

and z. Then, under weak conditions, for each state ω and act f , there exists a unique
probability p, so that the constant act f (ω) is indifferent to the lottery (z�p;z�1 − p).
Refer to such a lottery as (a bet on) the toss of a (objective) p-coin.4 One can define
u(f (ω)) to be this unique probability, so that

f (ω) ∼ (
z�u(f (ω));z�1 − u(f (ω))

)
� (2.2)

Such calibration renders the util-outcomes of any act observable, and these are the
[0�1]-valued outcomes we assume herein and that justify writing utility as in (2.1). A fur-
ther consequence given (2.1) is that the utility U(f) is also scaled in probability units: it
satisfies

f ∼ (z�U(f );z�1 −U(f))� (2.3)

Thus f is indifferent to betting on the toss of a U(f)-coin.
The fact that outcomes are “equivalent” probabilities will be important below; multi-

plying outcomes, which may seem unnatural, will amount to the very natural operation
of multiplying probabilities.

We conclude this section with an elementary lemma that we use repeatedly. Say that
P ∈ P is a minimizing, or supporting, measure for f if the infimum in (2.1) is achieved
at P . If f is (lower semi-)continuous, such as if f is finitely based, then there is a mini-
mizer in P , but not so in general.

Lemma 2.2. Let fi ∈ Ffin and αi > 0, i = 1� � � � � n, with
∑n

i=1 αi = 1. Then

U

(
n∑

i=1

αifi

)
=

n∑
i=1

αiU(fi) (2.4)

if and only if every measure supporting
∑n

i=1 αifi also supports every fi. In particular,
(2.4) implies that, for any m≤ n, βi > 0, and

∑m
i=1 βi = 1,

U

(
m∑
i=1

βifi

)
=

m∑
i=1

βiU(fi)�

4We do not always repeat “objective” below, but there should be no confusion between the motivating
coin-tossing experiment described in the Introduction, where uncertainty is subjective, and these tosses of
an objective coin that define lotteries used to calibrate utility outcomes.
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Proof. Let P∗ support the mixed act. Then

U

(∑
i

αifi

)
=
∑
i

αiP
∗fi >

∑
i

αiU(fi)

if P∗ is not minimizing for some fi. The rest of the proof is obvious. �

3. Strong exchangeability

Turn finally to the core question—how to model the distinction described in the title.
The first part is obvious: If evidence is symmetric, then it is intuitive that an individ-

ual would satisfy the following axiom.

Symmetry. For all finitely based acts f and permutations π, f ∼ πf .

Assuming subjective expected utility, Symmetry is equivalent to exchangeability of
the prior, as noted above. But Symmetry in itself is a relatively weak assumption follow-
ing, for example, from symmetry of information about all the experiments. The force of
the assumption of Symmetry, as reflected in de Finetti’s theorem, stems largely from the
added assumption of expected utility theory or a single prior, as will be evident shortly.
In a multiple-priors framework, relatively little structure is implied for the set of priors.
(See Section 7.1 for a proof.)

Proposition 3.1. Let � be represented by multiple-priors utility as in (2.1), with set of
priors P . Then � satisfies Symmetry if and only if for every finite permutation π,

P ∈ P 	⇒ πP ∈ P� (3.1)

Say that P is symmetric if it satisfies (3.1).
The heart of the paper concerns modeling the perception of “limited evidence of

symmetry.” Before arguing that the Independence Axiom excludes it, we state the axiom:

Independence. For all α in (0�1),

f � g ⇐⇒ αf + (1 − α)h � αg + (1 − α)h�

Consider bets in the coin-tossing example. Symmetry implies the indifference

H1T2 ∼ T1H2�

Here H1T2 is the bet that pays 1 util if the first toss yields heads and the second yields
tails; the bet T1H2 is interpreted similarly. Consider now the choice between either of
the above bets and the mixture 1

2H1T2 + 1
2T1H2, the bet paying 1

2 if {H1T2�T1H2} and 0
otherwise. The Independence Axiom would imply that

1
2H1T2 + 1

2T1H2 ∼H1T2 ∼ T1H2�
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This is intuitive given certainty that tossing technique does not vary, since then there is
nothing to be gained by mixing; neither is there a cost because outcomes are denomi-
nated in utils. On the other hand, if the individual admits the possibility that technique
varies, and hence that experiments are not identical, then she may strictly prefer the
mixture because the bets H1T2 and T1H2 hedge one another: the former pays well if the
first toss is biased toward heads and the second toward tails, pays poorly if the opposite
bias pattern is valid, and these “good” and “bad” scenarios are reversed for act T1H2.
Thus 1

2H1T2 + 1
2T1H2 hedges uncertainty about the bias pattern and, as such, suggests

the ranking

1
2H1T2 + 1

2T1H2 �H1T2 ∼ T1H2� (3.2)

contrary to the Independence Axiom.5

It merits emphasis that concern with the coins not being identical is not a (prob-
abilistic) risk: If it were, then, because payoffs are in utils, there would be no value to
hedging the risk and hence to randomization. Put another way, it is not possible to
model the noted concern by using a single probability measure, since symmetry of infor-
mation suggests immediately that the associated probability measure is exchangeable,
leaving no room for possible differences between coins. This is the heart of Walley’s
criticism of the exchangeable Bayesian model.

There is another motivation for randomizing which is not derived from the concern
that experiments may not be identical. Thus, for example, consider the rankings

1
2H1 + 1

2T2 �H1 ∼ T2� (3.3)

Here we assume for simplicity that heads and tails are thought to be equally likely. Sup-
pose further that tossing technique is thought to be irrelevant. Nevertheless, the mixed
bet 1

2H1 + 1
2T2 may be strictly preferable if there is ambiguity about the physical bias of

the coin; this is the key intuition in Gilboa and Schmeidler (1989).
Both reasons for randomizing, and hence both forms of violations of Independence,

seem important. We do not have a single model that accommodates both (see, however,
the remark at the end of Section 5.2). In this paper, we describe two models, each of
which accommodates one of (3.2) and (3.3) but not the other.

The next axiom permits only the second rationale for randomizing. Note that it is
redundant in the Bayesian case because it is implied by Symmetry and Independence.

Strong Exchangeability. For all finitely based acts f and all α in [0�1],

αf + (1 − α)πf ∼ f�

Theorem 3.2. Let � be represented by a multiple-priors utility function as in (2.1), with
set of priors P . Then the following conditions are equivalent.

5Gilboa and Schmeidler (1989) suggest that since randomization smooths out payoffs across ambiguous
states, a strict preference for randomization reveals an aversion to ambiguity. We rely heavily on similar
intuition.
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(i) � satisfies Strong Exchangeability.

(ii) Every prior P in P is exchangeable.

(iii) There exists M ⊂ �(�(S)) such that

P =
{∫

�∞(·)dμ(�) :μ ∈ M
}
� (3.4)

Proof. The equivalence of (ii) and (iii) follows from de Finetti’s Theorem.
(ii) 	⇒ (i) By assumption, for every P in P , act f , and permutation π,

P(πf) = (πP)f = Pf�

For any finitely based act f , U(f) = infP∈P Pf = P∗f for some P∗ in P . Then

U(πf) = inf
P∈P

P(πf) = inf
P∈P

(πP)f = inf
P∈P

Pf = P∗f�

that is, P∗ is also minimizing for πf . Therefore, Lemma 2.2 gives the result.
(i) 	⇒ (ii) Assume Strong Exchangeability. The indifference asserted in the axiom

extends to all (not necessarily finitely based) acts (see Section 7.1). Refer to P∗ in P as an
exposed point if there exists a continuous act f such that

{P∗} = arg min
P∈P

Pf�

Then αf +(1−α)πf ∼ f implies there is a common minimizing measure for f and πf 	⇒
P∗ = πP∗, and this is true for every π. That is, P∗ is exchangeable.

Argue next that P equals the closed convex hull of its exposed points: Let c(�)

be the linear space generated by �(�); it is separable when endowed with the weak-
convergence topology. Therefore, C(�), the Banach space of continuous real-valued
functions with the sup norm is an Asplund space (Phelps 1989, Theorem 2.12). The
assertion now follows from Phelps (1989, Theorem 5.12).

Finally, (ii) is implied by the fact that the set of all exchangeable measures in P is
closed and convex. (Convexity is obvious. P is exchangeable if and only if, for every π

and for every f ∈ Ffin,

Pf = P(πf)�

Since f ∈ Ffin is continuous, this equality is preserved in the weak-convergence limit.) �

Part (iii) clarifies how a model with Strong Exchangeability differs from the de Finetti
model. Confirming the intuition described preceding the axiom, the representation (3.4)
suggests the interpretation whereby the individual is uncertain ex ante which likelihood
function applies, but she is certain that the same likelihood function applies to all exper-
iments. This is just as for the Bayesian case—experiments are perceived as identical. The
difference here is that the ex ante uncertainty is in general not representable by a single
probability measure; there is ambiguity rather than risk regarding the true likelihood
function.
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Remark 1. Walley (1991, Chap. 9) defines and discusses exchangeability for “previ-
sions” ν, where ν(f ) is interpreted as the maximum price (in utils) the individual would
be willing to pay for the act f , that is, so that the act f − ν(f ) is just desirable. Symmetry
of evidence is expressed through indifference between an act f and any permutation πf ,
in the sense that ν(f ) = ν(πf). Walley suggests an additional axiom, which he calls ex-
changeability, which states that

ν(πf − f ) = 0 for all f and π�

The axiom, and his representation result, bear some similarity to Strong Exchangeabil-
ity and Theorem 3.2. His formulation leads to results that follow almost by definition;
for example, the heavy machinery invoked in the proof of our theorem is not needed.
Further results for lower previsions appear in de Cooman and Miranda (2007) and de
Cooman et al. (2009).

4. Nonidentical experiments

In this section, we describe a model that accommodates the strict preference for ran-
domization in (3.2) and that accordingly, we interpret as capturing a concern that exper-
iments may differ. In terms of the implied representation to be described below (The-
orem 5.2), it has in common with de Finetti’s (1.1) a single prior, but it differs from his
in featuring (in a suitable sense) multiple likelihoods. The model is based on two new
axioms, alternatives to Strong Exchangeability.

4.1 Orthogonal independence

The first axiom is called Orthogonal Independence and it expresses primarily that poorly
understood factors affecting different experiments are unrelated.6 The point is that ran-
domization is a matter of indifference for some bets, and precisely when such indiffer-
ence prevails can be interpreted in terms of the individual’s perception of how experi-
ments are related to one another.

Say that the acts f and g do not hedge one another if, for every 0 < α < 1 and p in
[0�1],

f � p ⇐⇒ [αf + (1 − α)g � αp+ (1 − α)g]�
It is easy to see that f and g do not hedge one another if and only if, for all α,

U(αf + (1 − α)g) = αU(f )+ (1 − α)U(g)� (4.1)

We use this characterization repeatedly below (without reference).
Think of coin-tossing for concreteness. If tossing techniques are thought to be un-

related across experiments, then presumably the bets H1 and H2 do not hedge one an-
other. As pointed out in the discussion of (3.3), bets on different experiments can hedge

6Since “independence” has a different meaning in an axiomatic context, we often refer to the “unrelat-
edness” or “stochastic independence” of experiments, though the latter should not be understood in the
usual sense of probability theory.
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one another if there is ambiguity about the coin’s bias. Here we exclude such ambiguity.
Then the unrelatedness of experiments suggests also that H1T3 and H2T3, for example,
do not hedge one another. To illustrate the role of “unrelatedness,” suppose that there is
concern that outcomes on consecutive tosses could be either perfectly negatively corre-
lated (for example, heads implies tails on the next toss) or perfectly positively correlated
(heads implies heads on the next toss). Then one would expect the strict preference

U
(

1
2H1T3 + 1

2H2T3

)
> 1

2U(H1T3)+ 1
2U(H2T3)�

and hence that H1T3 and H2T3 hedge one another.
Our axiom builds on this intuition. To express it, we generalize “product bets” such

as H1T3 and consider “product acts.” Given any two acts f ∗ and f , then f ∗ · f denotes
the pointwise product, that is, the act given by

(f ∗ · f )(ω) = f ∗(ω)f (ω) for all ω ∈��

Recall from Section 2.2 that the outcome produced by f in state ω can be viewed as
a coin toss that gives the best “true” underlying outcome z, or utility 1, with objective
probability f (ω), and the worst outcome z, or utility 0, with the complementary prob-
ability. Similarly, in state ω the product act f ∗ · f gives a lottery where 1 util is received
with objective probability f ∗(ω)f (ω), corresponding to the independent tosses of the
two coins associated with f ∗ and f .

Orthogonal Independence (OI). If f�g ∈ FI do not hedge one another, then neither
do f ∗ · f and f ∗ · g for all f ∗ ∈ FI∗ , with I and I∗ finite and disjoint.

The axiom weakens Independence since, by (4.1), nonhedging pairs are precisely
those for which utility exhibits the linearity implied by Independence. The reason for
the qualifier “Orthogonal” is that one might refer to acts f ∗ and f as in the statement
as being orthogonal because they depend on different experiments. Formally, say that
f ∗ and f are (mutually) orthogonal, written f ∗ ⊥ f , if f ∗ ∈ FI∗ and f ∈ FI for some dis-
joint I∗ and I. The following diagram illustrates the orthogonality assumed in the axiom.

The positioning of acts above the line indicates that f and g depend only on experiments
in I, and f ∗ depends only on those in I∗.
Note that all the acts in the axiom statement are finitely based.

We will use the following lemma repeatedly when invoking OI. It illustrates further
how Orthogonal Independence, given also multiple-priors utility, expresses the unrelat-
edness of experiments.

Lemma 4.1. Let � be represented by a multiple-priors utility function U and satisfy Or-
thogonal Independence. Then, for all finitely based acts f ∗ ⊥ f and g∗ ⊥ g,
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(i) f ∗ and f are nonhedging

(ii) f ∗ · f and f ∗ are nonhedging

(iii) if f and g are nonhedging, and if f ∗ and g∗ are either nonhedging or orthogonal,
then f ∗ · f and g∗ · g, are nonhedging.

By (i), acts that depend on different experiments are nonhedging. The remaining
parts specify conditions under which nonhedging prevails even where acts depend on
overlapping sets of experiments. Some illustrations of nonhedging pairs in the coin-
tossing context were provided above. Other examples of such pairs include {H1T2�T2},
{H1T3�H2H4}, and {H1�T2}. The latter case implies, contrary to (3.3) (and assuming
again for simplicity that H1 ∼ T2) that

1
2H1 + 1

2T2 ∼H1 ∼ T2�

Thus, in light of the discussion surrounding (3.3), Orthogonal Independence excludes
ambiguity about the coin’s bias. However, it does permit (3.2) and thus the concern that
experiments may not be identical.

Proof of Lemma 4.1. (ii) Since � is a multiple-priors preference, f and the constant
act 1 are nonhedging. Thus, (ii) follows by OI.

(i) Use (ii) to derive

U
(

1
4f

∗ · f + 1
4f

∗ + 1
4f + 1

4

)
= U

((
1
2f

∗ + 1
2

)(
1
2f + 1

2

))
= 1

2U
((

1
2f

∗ + 1
2

)
· f
)

+ 1
2U

((
1
2f

∗ + 1
2

))
= 1

4U(f ∗ · f )+ 1
4U(f ∗)+ 1

4U(f)+ 1
4 �

By Lemma 2.2 (existence of a common minimizer), (i) follows.
(iii) Suppose that f ∗ and g∗ are nonhedging. Then, by OI,

U
(

1
4f

∗ · f + 1
4f

∗ · g + 1
4g

∗ · f + 1
4g

∗ · g
)

= U
((

1
2f

∗ + 1
2g

∗)( 1
2f + 1

2g
))

= 1
2U

((
1
2f

∗ + 1
2g

∗) · f
)

+ 1
2U

((
1
2f

∗ + 1
2g

∗) · g
)

= 1
4U(f ∗ · f )+ 1

4U(f ∗ · g)+ 1
4U(g∗ · f )+ 1

4U(g∗ · g)�

Apply Lemma 2.2 to conclude that f ∗ · f and g∗ · g are nonhedging.
The case where f ∗ and g∗ are orthogonal is straightforward by the preceding

and (i). �

We provide two examples to illustrate what is excluded by Orthogonal Indepen-
dence.
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Example 4.2. Let P0 be any countably additive (not necessarily exchangeable) mea-
sure and define P to be the closed convex hull of {πP0 :π ∈ 
}. By construction, P is
symmetric. However, it violates OI.

There is a simple interpretation: P0 reflects some asymmetries across experiments,
for example, it might be believed that toss 1 is biased toward heads and that the others
are unbiased. If beliefs are instead that there exists exactly one biased toss, though its
identity is completely unknown, one is led to {πP0 :π ∈ 
}.7 Then the agent would be
indifferent between betting on tails for any two coins, but, contrary to OI, she would
strictly prefer to randomize, that is,

1
2T1 + 1

2T2 � T1 ∼ T2�

Since the worst case scenario for T1 (T2) is that the first (second) coin is the biased one,
the mixture smooths out these uncertainties and guarantees at least one coin that is
not biased against tails. Hence it is strictly preferable. OI is violated because the poorly
understood factor—which toss is the biased one—relates the outcomes of the different
experiments since there is certainty that only one is biased. ♦

Example 4.3. Fix a probability measure �∗ in �(S) and let

P = {P ∈ �(�) : mrgSi P = �∗ for all i}�
Thus P consists of all measures that agree with �∗ on each Si, with joint distributions
across different experiments being unrestricted. The interpretation is that there is no
ambiguity about the nature of any single experiment, but there is complete ignorance
about how experiments are correlated. This perception of the experiments is not cov-
ered by our model. The individual in our model is uncertain that experiments are iden-
tical because she views each experiment as being affected also by poorly understood
factors that vary across experiments, but she is certain that these are unrelated across
experiments. Here, in contrast, she is concerned with the possible correlation of these
factors across experiments.8

Though P is obviously symmetric, compact, and convex, it lies outside the scope of
our model because it violates OI as we now show.

For concreteness, let S = {H�T } and let �∗ describe an unbiased coin toss. OI would
imply that

U
((

1
2H1 + 1

2

)(
1
2T2 + 1

2

)(
1
2H3 + 1

2

))
= 1

2U
((

1
2H1 + 1

2

)(
1
2T2 + 1

2

)
H3

)
+ 1

2U
((

1
2H1 + 1

2

)(
1
2T2 + 1

2

))
���

= 1
8

[
U(1)+U(H1)+U(T2)+U(H3)

+U(H1 · T2)+U(T2 ·H3)+U(H1 ·H3)+U(H1 · T2 ·H3)
]
�

7Taking the closed convex hull has no consequence for decisions.
8In fact, the difference is more subtle, since, as shown in the sequel, OI does permit the perception of

some degree of dependence between experiments.
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Thus, there is a common minimizing measure, say P , for the acts H1�T2�H3�H1 · T2�

T2 ·H3�H1 ·H3, and H1 · T2 ·H3. Compute that

U(H1)= U(T2)= U(H3) = 1
2

U(H1 · T2)= U(T2 ·H3)= U(H1 ·H3) =U(H1 · T2 ·H3)= 0�

where, for example, U(H1 · T2) = 0 because the worst-case scenario for this act is that
tosses 1 and 2 are perfectly positively correlated. Since P is a common minimizer, de-
duce that

P(H1)= P(T2)= P(H3) = 1
2

P(H1T2)= P(T2H3) = P(H1H3)= P(H1T2H3) = 0�

But there does not exist a probability measure satisfying these conditions. (Since
P(H1T2)= 0, P(H1H3) = 0, and P(H1) = 1

2 , it follows that

P(H1H2H3)= 0� P(H1H2T3)= 1
2

P(H1T2H3)= 0� and P(H1T2T3)= 0�

Combine these with P(T2)= 1
2 and P(T2H3) = 0 to deduce that

P(T1T2H3)= 0 and P(T1T2T3) = 1
2 �

Finally, use P(H3) = 1
2 to conclude that P(T1H2H3) = 1

2 . But then P(H1H2T3) +
P(T1T2T3)+ P(T1H2H3) > 1.) ♦

4.2 A final axiom: Superconvexity

Denote by θ the shift operator, so that, for any act,

(θf )(s1� s2� s3� � � �) = f (s2� s3� � � �);
θn denotes the n-fold replication of θ. It is straightforward to show that Symmetry also
implies indifference to shifts,9

θf ∼ f for all f ∈ F �

For any act g∗ ∈ F{1�����n}, the acts g∗ and θnf are orthogonal, and their product is given
by

(g∗ · θnf )(ω) = g∗(s1� � � � � sn)f (sn+1� sn+2� � � �)�

The final axiom strengthens the assumption of convexity of preference, one of the
central axioms in Gilboa and Schmeidler’s (1989) characterization of multiple-priors
(following Schmeidler 1989, they refer to it as uncertainty or ambiguity aversion).

9By Symmetry, U(θf) = U(f) on Ffin. By Epstein and Wang (1996, Theorem D.2) and Lemma B.8, the
two functions coincide everywhere.
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Convexity has the standard meaning that sets of the form {f ∈ F : f � g} are convex.
Given also the other axioms (notably Certainty Independence) used to characterize the
multiple-priors model, the preceding convexity is equivalent to concavity of the utility
function U that represents preference via probability equivalents as in (2.3). For this
reason we call our stronger assumption Superconvexity.

Superconvexity. Let U be the probability-equivalent utility function (as in (2.3)) rep-
resenting the preference �. Then, for all g∗�h∗ ∈ F{1�����n}, with g∗ and h∗ nonhedging, and
g∗ ≥ h∗, the function W : Ffin → R defined by

W (f) =U(g∗ · θnf )−U(h∗ · θnf )

is concave.

In the special case g∗ = 1 and h∗ = 0, the axiom imposes concavity of U(·) on Ffin, as
in the Gilboa–Schmeidler model. We emphasize that Superconvexity is an assumption
about preference: since the utility function U gives the probability equivalents of acts,
the axiom can be expressed explicitly and exclusively in terms of preference.

Finally, it can be understood as follows. For any F ′ and F (acts over experiments
beyond the nth) because of hedging gains, the individual prefers the mixed act αF ′ +
(1−α)F as expressed by the concavity of U(·). The same is true if the acts and the mixed
act are premultiplied by g∗ ∈ F{1�����n} or by h∗ ∈ F{1�����n}. However, the value of mixing is
small if h∗ is “small” at every state, since then premultiplication by h∗ shrinks differences
between F ′, F , and αF ′ + (1 − α)F . (In the extreme case where h∗ = 0, compounding
by h∗ wipes out all differences between acts.) For this reason mixing has greater value
when premultiplication is by g∗, g∗ ≥ h∗. The restriction that g∗ and h∗ be nonhedging
weakens the axiom; in fact, the stronger axiom without that restriction is implied given
the other axioms, as can be seen from the representation derived below.

Although we believed, at an earlier stage in this research, that Superconvexity was
implied by the other axioms, that possibility remains an open question. Note that Su-
perconvexity does not imply Orthogonal Independence, even given the other axioms, as
illustrated by the utility function (5.7) described below.

5. Representations: Conditionally IID

5.1 A definition

Our next objective is to describe the representation implied by Symmetry, Orthogonal
Independence, and Superconvexity. It is our counterpart, or generalization, of the “con-
ditionally i.i.d.” representation in de Finetti’s Theorem. Thus we begin with a definition
of “stochastic independence” of experiments for our framework. (Here we mean that ex-
periments are not related, not even by a common bias in the case of coin tossing. Think
of the case where the bias is known with certainty.) In the Bayesian setting, stochastic in-
dependence amounts to beliefs being represented by a product measure. However, the
situation is more complicated in a multiple-priors framework: there are different ways
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to define a product set of priors consistent with given sets of marginals (for example, see
Hendon et al. 1996 and Ghirardato 1997).

We define “product” in terms of utility functions rather than directly in terms of sets
of priors. Say that the multiple-priors utility function U , as in (2.1), is a product utility
function if

U(f · g) =U(f)U(g) for all orthogonal f�g ∈ Ffin� (5.1)

If preference represented by U also satisfies Symmetry, then refer to an IID utility func-
tion and to the corresponding set of priors P as an IID set of priors. Following Epstein
and Schneider (2003), the acronym IID stands for independently and indistinguishably
(as opposed to identically) distributed.10

The rationale for (5.1) may seem obvious, but its behavioral meaning should be
made clear. Recall the probability-equivalence nature of outcomes and utility (see (2.2)
and (2.3)). The acts f and g are assumed to depend on different experiments; for con-
creteness, let f ∈ F1 and g ∈ F2. Then, in state (s1� s2), f · g yields (the equivalent of)
successive and independent tosses of an objective f (s1)-coin and an objective g(s2)-
coin.11 If experiments 1 and 2 are “stochastically independent,” it is intuitive to perceive
this prospect as though the order of coin tossing were toss all f (s1)-coins as s1 varies
over S1, and separately and independently toss all g(s2)-coins as s2 varies over S2. But
the prospect consisting of the first set of coin tosses is equivalent to f and the second
set is equivalent to g. Further, f is indifferent to a U(f)-coin and g is indifferent to a
U(g)-coin. We conclude that f · g is indifferent to winning 1 util if both the U(f)- and
the U(g)-coins, tossed independently, produce favorable outcomes, which is equivalent
to a U(f)U(g)-coin. This “proves” that (5.1) is implied if experiments are seen to be
independent. The converse is similarly intuitive.

Lemma 5.1. If U is an IID utility function, then U satisfies both Orthogonal Independence
and Superconvexity.

Proof. Take f , g, and f ∗ as in the statement of Orthogonal Independence. Then

U
(

1
2f

∗ · f + 1
2f

∗ · g
)

= U
(
f ∗ ·

(
1
2f + 1

2g
))

= U(f ∗)
(

1
2U(f)+ 1

2U(g)
)

= 1
2U(f ∗ · f )+ 1

2U(f ∗ · g)�

Thus f ∗ · f and f ∗ · g are nonhedging by (4.1).
Superconvexity follows from the fact that

U(g∗ · θnf )−U(h∗ · θnf ) = [U(g∗)−U(h∗)]U(θnf )

= [U(g∗)−U(h∗)]U(f)

10We continue to use the lowercase acronym i.i.d. when referring to single measures, with the usual
meaning of independently and identically distributed.

11A p-coin is one that yields 1 util (or the best outcome z) with objective probability p and 0 utils (or the
worst outcome z) with probability 1 −p.
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and U(g∗)≥ U(h∗) if g∗ ≥ h∗. �

To help fix ideas, we describe one example of an IID utility. Fix a (closed) set L of
probability measures on S, thought of as the set of priors applying to any single experi-
ment. Let12

PWF = clh(L∞)� where L∞ ≡
{⊗
i∈N

�i :�i ∈ L for every i

}
� (5.2)

Since the utility of any finitely based act is a minimum over L∞, which consists exclu-
sively of product measures, (5.1) is obvious; so is Symmetry. Therefore, UWF defined
by

UWF(f ) = inf
P∈L∞ Pf� f ∈ F� (5.3)

is an IID utility function. This product is adapted from Walley and Fine (1982), and was
studied also by Gilboa and Schmeidler (1989).

We emphasize that UWF is just one example of an IID utility function. It is well known
in the decision-theoretic literature (see Hendon et al. 1996 and Ghirardato 1997) that
stochastic independence is multifaceted in the multiple-priors (or nonadditive proba-
bility) framework, and hence that there is more than one way to form an independent
product from a given set L of priors over S. In other words, in general and in contrast
to the Bayesian setting, there are many utility functions satisfying (5.1), and hence the
“stochastic independence” embodied in it, that also agree on the ranking of acts over
any single experiment.

5.2 A representation result

Some preliminaries are needed before we can state the representation. Any set of pri-
ors P lies in Kc(�(�)), the space of compact and convex subsets of �(�); the Hausdorff
metric topology renders it a compact metric.

Each P ∈ Kc(�(�)) corresponds to a unique multiple-priors preference or, equiva-
lently, to a unique multiple-priors utility function UP : F → R, given by

UP(f ) = inf
P∈P

Pf�

This correspondence induces a compact metric topology on

U = {
UP : P ∈ Kc(�(�))

}
�

The subset of IID utility functions,

V = {U ∈ U :U is IID}�
inherits the induced topology.

12Denote by
⊗

t∈I �t the unique countably additive product measure with marginals �t . Since L∞ is not
convex, we take its closed convex hull, denoted by clh(L∞), so as to conform to the normalization that sets
of priors are closed and convex. The sets clh(L∞) and L∞ generate the identical preference.
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Theorem 5.2. The preference � on F is a multiple-priors preference and it satisfies Sym-
metry, Orthogonal Independence, and Superconvexity if and only if it admits representa-
tion by a utility function U of the form in (2.1) satisfying

U(f) =
∫

V
V (f )dμ(V ) for all f in F� (5.4)

for some Borel probability measure μ on V . Moreover, μ is unique.

The proof of sufficiency is relegated to Appendix B. Here briefly consider necessity
(see Appendix B for further details). The first step is to verify that the integrand on the
right is well defined for every f . This is done by showing that the function V �−→ V (f )

is universally measurable and by making use of the fact that any measure μ admits a
unique extension, also denoted μ, to the universal completion of �. (A similar proce-
dure is used throughout, without explicit mention, to make sense of integrals where
measurability issues arise.)

Turn to axioms. Since U is a mixture of symmetric utility functions, it is also symmet-
ric. We showed above (Lemma 5.1) that Orthogonal Independence and Superconvexity
are satisfied by any IID utility function—the argument is readily extended to any mixture
of IID utility functions as in the representation.

The theorem generalizes de Finetti’s, wherein each IID utility function in the sup-
port of μ is an expected utility function with i.i.d. probabilistic beliefs. The more general
representation (5.4) suggests an interpretation similar to that familiar for a mixture of
i.i.d. beliefs. Any IID utility function reflects the view that experiments are indistinguish-
able (because of Symmetry) and unrelated or independent. Thus experiments would
be indistinguishable and independent if the individual knew which IID utility function
were appropriate or correct. However, she is uncertain of that, as reflected by the mea-
sure μ. Overall, therefore, she views experiments as being IID conditionally on the cor-
rect V . Because the possible functions V correspond to multiple priors rather than to
expected utility, the individual may value randomization, as illustrated in (3.2), and ac-
cordingly not view experiments as being identical.

To illustrate, suppose that each IID function in the support of μ has the form in (5.3).
Then, a slight abuse of notation, where the uncertainty modeled by μ is translated into
uncertainty about the true set L, yields

U(f) =
∫ (

inf
L∞ Pf

)
dμ(L)� (5.5)

Given resolution of that uncertainty and thus a specific L, the same set is assumed to
describe each experiment (because the minimum is over L∞). This implies that exper-
iments are indistinguishable (or viewed symmetrically). However, experiments are not
viewed as identical because L∞ admits that different likelihoods from L apply to differ-
ent experiments.

In the concrete setting of coin-tossing, any (convex) set L of likelihoods can be iden-
tified with an interval I = [Im� IM ] ⊂ [0�1], interpreted as a set of possible probabilities
for heads. There is ex ante uncertainty about which interval is correct, but conditional
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on knowing I , coin tosses are viewed as indistinguishable ambiguous experiments, in-
dependent from one another in the specific sense of (5.2). How the model can accom-
modate the value of randomization is easily seen in (3.2), and this is so even when there
is certainty about I . Suppose Im < 1

2 < IM . Then

U
(

1
2H1T2 + 1

2T1H2

)
= min

P∈L2
P
(

1
2H1T2 + 1

2T1H2

)
= min

�1��2∈L
1
2

(
�1(H1)�2(T2)+ 1

2�1(T1)�2(H2)
)

= min
�1��2∈L

1
2

[
�1(H1)(1 − �2(H2))+ (1 − �1(H1))�2(H2)

]
= min{Im(1 − Im)� IM(1 − IM)}
≥ Im(1 − IM) =U(H1T2) =U(T1H2)�

The representation result leads to an interesting implication about the perceived
value of repetition, which, at a mathematical level, extends the fact that for any ran-
dom sequence (Xt) having an exchangeable probability law, Xi and Xj are positively
correlated if i �= j.13

Theorem 5.3. If the multiple-priors preference � satisfies Symmetry, Orthogonal Inde-
pendence, and Superconvexity, then, for any act f ∈ F{1�����n},

f ∼ p 	⇒ f · θnf � p2� (5.6)

Proof. By the representation,

U(f · θnf ) =
∫

V (f · θnf )dμ(V ) =
∫

V (f )V (θnf )dμ(V )

=
∫
(V (f ))2 dμ(V )≥

(∫
V (f )dμ(V )

)2

= (U(f ))2 = p2�

where we use the fact that every V is symmetric (and hence also invariant to shifts) and
a product utility function, and also the familiar property that the geometric average is at
least as large as the arithmetic average. �

For simplicity, consider the special case of bets (binary acts). Suppose that a bet on A

is indifferent to the bet on a coin with known objective probability p. How would an in-
dividual rank twofold repetitions of each? In the case of the coin, the two tosses would
be independent and thus have probability p2 of success. For the subjective bet, the rep-
etitions are not plausibly viewed as independent in general, as de Finetti pointed out in
the Bayesian setting. Where there is a common element connecting experiments—such
as the uncertain bias of a coin that is tossed repeatedly—experiments are presumably
viewed as positively correlated, which makes bets such as A × A more attractive than

13See Theorem 5.1 in Hewitt and Savage (1955).
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twofold independent replicas of the bet on A. This intuition relies only on the individ-
ual having a conditionally i.i.d. (or IID) view of experiments and not on the experiments
conforming to a Bayesian (probabilistic) model.14

Remark 2. A more general functional form that is likely to have occurred to many read-
ers is

U(f) = inf
μ∈M

∫
V
V (f )dμ� (5.7)

where M ⊂ �(V) is a set of probability measures over the set V of IID utility functions.
It is not difficult to see that this functional form, with each V being a Walley–Fine IID
utility function, for example, can accommodate both of the motivating behaviors (3.2)
and (3.3). More generally, it includes both of our models as special cases and seems to
be an obvious candidate for the missing unifying model. The model satisfies Symmetry
and Superconvexity, but not Orthogonal Independence.15 We do not have an axiomatic
characterization of (5.7).

5.3 The representation of sets of priors

The representation given in Theorem 5.2 is for utility functions, while de Finetti’s theo-
rem is about beliefs. The former seems more appropriate for a decision-theoretic model,
but it is interesting to consider also a formulation that is closer to de Finetti’s. In his the-
orem, every exchangeable measure is represented as a mixture of i.i.d. measures. Here,
every set of priors consistent with our axioms is a (suitably defined) mixture of IID sets
of priors.

To state this formally, define

�= {
Q ∈ Kc(�(�)) : Q is an IID set

}
�

Since � is homeomorphic to V , each measure on V corresponds to a unique measure on
�, and we use the same symbol to denote both. Given μ ∈ �(�), use Aumann’s integral
for a correspondence to define the set of priors

∫
� Q dμ(Q). (Technical details are pro-

vided in Appendix B, which also contains, in Section B.1, all the ingredients of a proof of
the following corollary.)

Corollary 5.4. Let � be represented by multiple-priors utility U as in (2.1) with set of
priors P . Then each hypothesis in Theorem 5.2 is equivalent to P being expressible in the
form

P =
∫
�

Q dμ(Q)

for the Borel probability measure μ on � corresponding to the measure on V appearing
in (5.4).

14Even in the Bayesian case, we have not found intuition for (5.6) that relies solely on the axioms, without
recourse to the representation.

15Details are omitted.
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When all IID sets have the form in (5.2), one obtains a representation even closer to
de Finetti’s. Then, with the obvious abuse of notation,16

P =
∫

clh(L∞)dμ(L)�

de Finetti’s representation (1.1) is the special case where there is certainty that each set of
likelihoods is a singleton, and hence that each experiment is described by the same like-
lihood. Here, by contrast, multiple likelihoods are associated with each experiment.17

5.4 Ambiguity and dissimilarity

The next theorem describes axiomatically the gap between de Finetti’s model and ours.

Theorem 5.5. Let the multiple priors preference � satisfy Symmetry, Orthogonal Inde-
pendence, and Superconvexity. Then the following statements are equivalent.

(i) Preference � is an expected utility preference.

(ii) Preference � satisfies Strong Exchangeability on the subdomain of acts over S1 ×S2,
that is,

αf + (1 − α)πf ∼ f for all f ∈ F{1�2}�

(iii) Preference � satisfies the Independence on the subdomain F1 of acts over S1.

(i) is the de Finetti model. The other conditions describe alternative characteriza-
tions of how it differs from ours. According to intuition given earlier, (ii) says that the first
two experiments, and hence also any other pair, are perceived as identical. Following
Gilboa and Schmeidler, we think of violations of Independence as reflecting (aversion
to) ambiguity. Therefore, (iii) says that the first experiment is unambiguous. Conclude
that our model permits any two experiments to be nonidentical by allowing ambiguity
about any single experiment. This connection seems to us to be intuitive (however, see
Example 4.3, for a specification where it is violated).

Proof of Theorem 5.5. (i) 	⇒ (ii) Clear.
(ii) 	⇒ (iii) Let U represent � and assume (ii). For f�g ∈ F1,

U
(

1
8 [f · θg + θg + f + 1 + g · θf + θf + g + 1]

)
= U

(
1
2

(
1
2f + 1

2

)
·
(

1
2θg + 1

2

)
+ 1

2

(
1
2g + 1

2

)
·
(

1
2θf + 1

2

))
= U

((
1
2f + 1

2

)
·
(

1
2θg + 1

2

))
(by (ii))

= 1
2U

((
1
2f + 1

2

)
·
(

1
2θg + 1

2

))
+ 1

2U
((

1
2g + 1

2

)
·
(

1
2θf + 1

2

))
(by Symmetry)

16clh(·) denotes closed convex hull.
17Contrast also with the representation (3.4), corresponding to Strong Exchangeability, where every ex-

periment is described by the same likelihood but where there is ambiguity about which likelihood is correct.
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= 1
8 [U(f · θg)+U(θg)+U(f)+U(1)+U(g · θf )+U(θf)+U(g)+U(1)]

(by Orthogonal Independence)�

Thus, by Lemma 2.2, there is a common minimizing measure for f and g, and (iii) fol-
lows.

(iii) 	⇒ (i) By Theorem 5.2, there exists μ ∈ �(V) such that U(f) = ∫
V (f )dμ(V ) for

all f in F . By (iii),∫ [
V (αf + (1 − α)g)− αV (f )− (1 − α)V (g)

]
dμ(V )= 0 for all f�g ∈ F1�

Since the integrand is nonnegative for all V ∈ V , we conclude that, for all f�g ∈ F1, a.s.-
μ[V ],

V (αf + (1 − α)g) = αV (f )+ (1 − α)V (g). (5.8)

Thus it suffices to show that if V ∈ V satisfies (5.8), then V is an expected utility function.
Assume V satisfies (5.8) and let P be the corresponding set of measures for V . Write

V (B) instead of V (1B). By the assumption, there exists � ∈ �(S) such that, for all A ∈ �1,

V (A) = �(A)�

Claim. If P ∈ P , then P(A1 ×A2 × · · · ×An) = V (A1 ×A2 × · · · ×An) for all Ai ∈ �i,
i ≤ n.

Let A=A1 ×A2 × · · · ×An. Since S is finite,

P(A) = 1 − P(�\A) ≤ 1 − V (�\A)

≤ 1 −
∑

(s1�����sn)/∈A
V ({(s1� � � � � sn)})

= 1 −
∑

(s1�����sn)/∈A

n∏
i=1

V ({si}) = 1 −
∑

(s1�����sn)/∈A

n∏
i=1

�({si})

=
∑

(s1�����sn)∈A

n∏
i=1

�({si}) =
n∏

i=1

�({Ai}) =
n∏

i=1

V ({Ai})

= V (A)�

But, P(A) ≥ minP ′∈P P ′(A) = V (A). Thus, P(A) = V (A).
We conclude that all P ∈ P agree with V and, therefore, with one another, on finite

rectangles. Since finite rectangles generate the Borel σ-algebra �, P is a singleton. �

6. Updating

There is a given ordering of experiments (which need not be temporal); sn1 = (s1� � � � � sn)

denotes a generic sample or history of length n. Ex ante preference on F is �0 , and �n�sn1
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denotes preference on F conditional on the sample sn1 . (When there is no need to em-
phasize the sample, we suppress it in the notation and write �n; similarly for other ran-
dom variables.) We seek a model that describes how preferences evolve along a sample.

There is an implicit assumption in this setup that should be made explicit. We have
defined outcomes in terms of util/probability equivalents, which obviously depends on
how the individual ranks lotteries (constant acts) over the underlying physical outcomes
(represented earlier by the set Z). This rescaling of outcomes is straightforward when
dealing with a single preference order. However, when there are several preferences, as
is the case here, in general they may disagree on how to rank lotteries, and thus any
given physical action translates into a different act depending on which preference or-
der is being considered. Our implicit assumption is that �0 and every conditional pref-
erence �n agree on the ranking of lotteries. That justifies interpreting any given f in F
as representing the same physical action for all the noted preferences.

Our model of updating applies to the second model above, where experiments are
not necessarily identical. Thus assume that �0 and every �n satisfy the axioms of The-
orem 5.2, namely Symmetry, Orthogonal Independence, and Superconvexity. Call this
composite axiom Basic.

We assume also Consequentialism—the conditional ranking given the sample sn1
does not take into account what the acts might have delivered had a different sample
been realized. Formally, we make the following assumption.

Consequentialism. We have f ′ ∼n�sn1
f if f ′(sn1 � ·)= f (sn1 � ·).

6.1 Weak dynamic consistency

We postulate the following weak form of dynamic consistency. Abbreviate F{n+1�n+2����}
by F>n.

Weak Dynamic Consistency ( WDC). For any n ≥ 1, sample sn−1
1 , and acts f ′� f ∈ F>n,

f ′ �
n�(sn−1

1 �sn)
f for all sn 	⇒ f ′ �

n−1�sn−1
1

f�

f ′ �
n�(sn−1

1 �sn)
f for some sn 	⇒ f ′ �

n−1�sn−1
1

f�

If the defining conditions are assumed to hold for all acts f ′ and f , then we obtain the
usual notion of dynamic consistency that we abbreviate DC. In that case, when the acts
f ′ and f can depend on all experiments, each si is both a signal and a payoff-relevant
state. In contrast, for each comparison in WDC, states are either signals (s1� � � � � sn), or
payoff-relevant (sn+1� � � �), but not both. Thus WDC requires dynamic consistency in the
ranking of terminal payoffs as “pure signals” are received, and beliefs and rankings of
future prospects are updated.

Note that WDC is weaker than DC even in the Bayesian context. DC implies Bayes’
Rule, but, as will become evident below, WDC does not. However, as argued in the In-
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troduction, it is strong enough to accommodate important settings. There are many
cases where an individual observes signals and uses them to learn about a payoff rel-
evant parameter. Here the signals are (s1� � � � � sn) for some n and the parameter is
(sn+1� sn+2� � � �).

Since all utility functions satisfy the axioms in Theorem 5.2, each admits a represen-
tation in terms of a unique measure over V , the set of IID utility functions. Their utility
functions are U0 and Un(·|sn1) for �0 and �n�sn1

, respectively. Frequently, dependence on
the sample is suppressed, and we write simply �n and Un. Then

U0(f ) =
∫

V
V (f )dμ0(V ) for all f ∈ F

and, imposing Consequentialism,

Un(f |sn1) =
∫

V
V (f (sn1 � ·))dμn(V ) for all f ∈ F�

for some probability measure μn that depends on the realized sample sn1 . The updat-
ing problem thus reduces to describing the evolution of μn as a function of μ0 and the
realized sample.

The implications of WDC and the other axioms are described in terms of a likelihood
function L : V → �(�), where V �−→ L(B|V ) is (Borel) measurable for each measurable
subset B of �. Think of L(B|V ) as the likelihood of B ⊂ �, a set of infinite samples,
conditional on V describing the perception of experiments. These likelihoods are used
in describing inferences drawn after observing a sample; they are not to be thought of as
describing ex ante beliefs. For each n and likelihood function L, Ln is its one-step-ahead
conditional at stage n, Ln :Sn−1 × V → �(S).18 Thus for each sample sn−1

1 , Ln(·|V ) ∈ �(S)

gives the probability distribution, or likelihood, for the nth experiment, conditional on
sn−1

1 and the given V .
The central result in our model of updating follows.

Theorem 6.1. The axioms Basic, Consequentialism, and WDC are satisfied if and only if
the representing probability measures {μn} are related as follows: There exists a likelihood
function L such that, for all n ≥ 1,

dμn(V )= Ln(sn|V )

Ln(sn)
dμn−1(V )� (6.1)

where

Ln(·) =
∫

Ln(·|V )dμn−1(V ) (6.2)

is a probability measure on S having full support.

18More precisely, Ln(·|V ) is a regular conditional probability on Sn given sn1 (suppressed in the notation),
which exists as long as S is Polish.
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The proof of necessity is straightforward. We verify only WDC. For any f ∈ F>n,

∑
sn

Ln(sn)Un(f |sn) =
∑
sn

(∫
V (f )Ln(sn|V )dμn−1

)

=
∫

V (f )

(∑
sn

Ln(sn|V )

)
dμn−1

=
∫

V (f )dμn−1 =Un−1(f )

or

Un−1(f ) =
∑
sn

Ln(sn)Un(f |sn)� f ∈ F>n� (6.3)

which implies WDC.
See Appendix D for the proof of sufficiency. The argument amounts to showing that

the problem is a special case of affine aggregation (see De Meyer and Mongin 1995);
other special cases include Harsanyi’s (1955) aggregation theorem and probability ag-
gregation (Mongin 1995).

The theorem may be surprising at first glance and some discussion is in order. Two
features stand out: (i) likelihood functions are not tied to the ex ante preference �
and (ii) the implied process of posteriors {μn} is identical to that implied by a suitable
Bayesian model. We elaborate on each in turn.

In the absence of ambiguity, when prior beliefs are probabilistic, it is standard prac-
tice to use them to define likelihood functions for updating, as in Bayes’ Rule. The nor-
mative argument for doing so is that Bayesian updating delivers DC. However, if only
WDC is sought, then even under subjective expected utility, one can use any likelihood
function to define updating. Also more generally, any likelihood function L can be used
for updating in such a way as to satisfy WDC. In particular, though L is derived from the
entire set of (conditional) preferences, it plays no role in the representation of ex ante
preference. Its role is exclusively to represent updating. The divorce from prior beliefs
of the likelihoods used for updating does not contradict WDC: prior beliefs about sig-
nals underlie choice, but since in WDC, signals are assumed not to be payoff-relevant,
consistency across time does not require that they play a role when processing signals.

Turn to the connection with updating in a Bayesian model. Given a likelihood func-
tion L and prior μ as in the theorem, define L ∈ �(�) by

L(·) =
∫

L(·|V )dμ(V )�

Note that then the one-step-ahead conditional of L at stage n is Ln defined by (6.2). It
follows that the identical process {μn} arises in an expected utility model where L(·) is
the Bayesian prior.19 This is not to say that our model is observationally equivalent to

19Without further assumptions, L need not be exchangeable. Thus the shadow Bayesian model is not de
Finetti’s in general.



340 Epstein and Seo Theoretical Economics 5 (2010)

the corresponding Bayesian model; both involve the identical process of posteriors, but
the two models of choice are distinct. For example, only in the shadow Bayesian model
do ex ante and conditional preferences satisfy the Independence axiom; in our model
preferences at node n are represented by the mutliple-priors utility function

∫
V dμn(V ).

The existence of a shadow Bayesian model is an advantage in terms of tractability, since
it permits application of results from the Bayesian literature about the dynamics of pos-
teriors.

The emergence of additive likelihood functions in spite of the presence of ambiguity
should by now not be surprising. At the functional form level, it is a consequence of
preferences being represented by additive measures μn. The latter, in turn, emerges as
a consequence of Orthogonal Independence. We pointed out when discussing OI that it
rules out (in the coin-tossing example) ambiguity about the physical bias of the coin;
hedging gains arise only from the poorly understood idiosyncratic factors that affect
experiments and render them nonidentical.

Finally, briefly consider uniqueness properties. Define the process {wn} by

wn(sn;V ) = Ln(sn|V )

Ln(sn)
= dμn

dμn−1
� (6.4)

Refer to wn(sn�V ) as the weight of evidence for V provided by sn (and the suppressed
sn−1

1 ). Then the weight of evidence process is unique (up to nullity), because {μn} is
unique and hence so are the Radon–Nikodym densities dμn/dμn−1.

On the one hand, the likelihood function L is typically not unique. Suppose, for ex-
ample, that signals are perceived to be uninformative, so that μn = μ for all n. Then
any specification with Ln(·;V ) = Ln(·), where the latter measures are arbitrary, satis-
fies (6.1). On the other hand, if for each history sn−1

1 , the conditional utility functions
Un(·|sn), sn ∈ Sn, are linearly independent, then it follows immediately from (6.3) that
{Ln(·)} is unique and thus the conditional likelihoods Ln(·;V ) = wn(·;V )Ln(·) are also
unique for each sn. Uniqueness of L follows (up to μ-nullity).

We summarize the preceding statements more formally. First, we add the axiom.20

Non-Collinearity. For each n, the collection {Un(·|sn1) : sn1 ∈ Sn} is linearly indepen-
dent, where each function Un(·|sn1) is viewed as a function on F>n.

Corollary 6.2. Let L′ and L be two likelihood functions that satisfy the conditions in
Theorem 6.1. Then, for every n,

w′
n(·;v) = wn(·;v) μn−1-a.s.�

where the weights processes {w′
n} and {wn} are defined as in (6.4). Moreover, if Non-

Collinearity is satisfied, then L′(·|V )= L(·|V ) μ-a.s.

20Recall that utilities are “probability equivalents”; thus, it is legitimate to use Un(·|sn1 ) in an axiom for
conditional preference.
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6.2 The dynamics of beliefs

The preceding section defines a rich framework for modeling updating. There is room
for more structure to be imposed on updating via additional axioms on preferences that
restrict the likelihood function L provided by Theorem 6.1. Rather than pursue further
axiomatizations here, we turn instead to illustrating what the model can deliver.

Two properties are immediate and apply at a very general level: (i) Ambiguity
is, in general, not monotonic along a sample. Posterior probabilities μn(V ) are not
monotonic under Bayesian updating. Thus, for example, if μ has two points of sup-
port V ′ and V , and if V ′(·) ≤ V (·) (the set of priors for V ′ includes that for V ), then
the set of priors corresponding to Un decreases with n (in the sense of set inclusion) if
μn(V ) increases, but increases in size if μn(V ) decreases. (ii) Ambiguity need not vanish
asymptotically (this is illustrated and discussed further below).21

By way of illustration, we adopt a number of specializations. First, we assume
that μ0, representing ex ante beliefs, has support on Walley–Fine IID utility functions,
that is, ex ante utility is given, as in (5.5), by

U0(f ) =
∫ (

inf
L∞ Pf

)
dμ0(L)�

For concreteness and to aid interpretation, we consider coin-tossing, S = {H�T }, though
considerable generalization is possible. Then, as pointed out following (5.5), each set L
can be identified with a probability interval I L for heads, and beliefs μn are defined over
the set of all intervals contained in [0�1]. Previously, the likelihood function L(·|V ) used
for updating was conditioned on the IID utility function V . Here, the latter is in one-to-
one correspondence with a set L and, hence, with a probability interval for heads. Thus
we can write the updating rule (6.1) in the form

dμn(I ′)
dμn(I) = Ln(sn|I ′)

Ln(sn|I)
dμn−1(I ′)
dμn−1(I)

for all intervals I ′, I . The interpretation is that beliefs about the probability intervals
evolve according to the reweighting described by the likelihood ratio Ln(sn|I ′)/Ln(sn|I).
This is just as in Bayesian updating of beliefs about the relevant parameter, which here
is a probability interval for heads. (To remind the reader, the coin is represented by an
interval because the physical bias of the coin is only part of the story; tossing technique
is thought to be important to a degree corresponding to the length of the probability
interval.)

We specialize the likelihood function by assuming that for μ0-almost every I (or L),
the following statements are true.

L1. Measure L(·|I) is exchangeable. Then, by the de Finetti Theorem,

L(·|I) =
∫
�({H�T })

�∞(·)dλI(�) (6.5)

21Though our model does not permit infinite samples, asymptotic results can be interpreted as approxi-
mations for large finite samples.
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for a unique probability measure λI on �({H�T }).

L2. Measure λI has support equal to I . (Here and below we identify λI also with a
measure on [0�1] in the obvious way.)

L1 asserts that even conditional on the probability interval I , there is still uncer-
tainty, represented by λI , about which i.i.d. law describes experiments. Acemoglu et al.
(2009) study updating in a completely Bayesian model where likelihoods are specified
as in (6.5) so as to capture situations where, for agents trying to learn about I , signals
are difficult to interpret. In their case, I is an abstract parameter rather than a proba-
bility interval. Here signals are difficult to interpret exactly because experiments are not
identical.

L2 asserts that when drawing inferences from a signal about a particular interval I ,
that is, when conditioning on I , the i.i.d. laws taken into account are precisely those for
which the probability of heads lies in the interval. (An immediate implication is that
L(·|I) ∈ clh(L∞).)

If I is the degenerate interval at p ∈ [0�1], then L1 implies that L(·|p) is the i.i.d. mea-
sure with probability of heads equal to p. If the preceding obtains for every I in the
support of μ0, de Finetti’s model, including Bayesian updating, is obtained.

We can now state a counterpart for our framework of the Savage result that data
eventually swamp the prior.

Proposition 6.3. Suppose that the likelihood function L satisfies L1 and L2, and that
μ0 has finite support.

(i) Suppose further that for any I ′ �= I in the support, I ′ and I are disjoint. Then, for
every I with μ0(I) > 0,

μn(I) → 1 L(·|I)-a.s.

(ii) Let μ0 have support {I�p}, where p(H) ∈ I is permitted. If p is not an atom of λI ,
that is, if λI(p) = 0, then

μn(p) → 1 p∞-a.s.

Part (i) is the indicated counterpart. The assumption of disjoint intervals is an intu-
itive identification assumption. The set G of samples along which μn(I) converges to 1
satisfies L(G|I) = 1 and, hence, also

�∞(G) = 1 λI -a.s.

Since λI has full support (L2), this clarifies the sense in which G is a large set.
Note that even given certainty about I , in general there remains ambiguity when

predicting future experiments and ranking bets over their outcomes. For example, an
individual could become certain about the physical bias of the coin, but in general re-
main ambiguous about the outcomes of future experiments because of her limited un-
derstanding of the effects of tossing technique, particularly her view that these are un-
related across tosses. Alternatively, if the truth is that experiments are i.i.d. with prob-
ability of heads equal to p, if the truth has positive subjective probability ex ante (p is
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in the support of μ0), and if the identification condition is satisfied, then the individual
asymptotically becomes certain of the true law with probability 1 according to the truth,
and there is no ambiguity remaining (she uses the i.i.d. measure corresponding to p to
predict future outcomes).

Part (ii) is an illustrative result for the case when intervals may overlap. Here there is
convergence to the truth, though the prior attaches positive probability to I and, hence,
to experiments differing. The overall message is that whether ambiguity persists asymp-
totically depends (on the sample and) on the prior view of experiments. If the individual
is certain that each new coin toss is influenced by a different and hard-to-understand
technique, then, even after learning the coin’s bias, it is rational to take this limited un-
derstanding into account for further prediction and choice. However, the model does
not force ambiguity to persist in all circumstances.

A final example exploits the fact that the “parameters” I being learned about are
probability intervals. Let μ0 have support {I ′� I}, where

I ′ = [p− δ′�p+ δ′]� I = [p− δ�p+ δ] and δ′ > δ> 0�

Thus the intervals have a common midpoint but differ in length. Accordingly, we inter-
pret that the individual entertains two hypotheses that differ only in how similar exper-
iments are seen to be; obviously, they are more similar according to I . We ask how the
posterior probability μn(I) behaves in large samples.

Specialize L1 and L2 by assuming further that λI ′ and λI are uniform on their re-
spective intervals. Although we do this for concreteness, the uniform distribution seems
natural. It delivers the following result for the limiting probability of I 22: Denote by �I
the set of samples ω for which lim�n(ω) ∈ I . Then, for every ω in �I ,

μ∞(I) = 1

1 + μ0(I ′)
μ0(I)

δ
δ′
� (6.6)

Note that, by (D.1) and the full support property L2, the set of samples �I has positive
probability according to both L(·|I ′) and L(·|I).

For samples in �I , the limiting empirical frequency of heads is consistent with both
I and I ′. This identification problem leads to the result that 0 < μ∞(I) < 1; neither hy-
pothesis is dismissed entirely along such samples, even in the limit. This is an instance
of the identification problem studied by Acemoglu et al. (2009). In spite of differences
between the two models, some of their other results also translate into our setting. In
particular, one could use concern about nonidentical experiments to justify asymptotic
disagreement between individuals.

Another noteworthy implication of (6.6) is that μ∞(I) > μ0(I), that is, any sample
that is consistent with both hypotheses leads eventually to a shift in probability mass to-
ward the “more precise” hypothesis. Given a sample, the difficulty in making inferences
about future experiments is that they are not seen to be identical. Here experiments may

22The claim (6.6) to follow is adapted from Acemoglu et al. (2009, Lemma 1). The latter implies also that
for the lack of asymptotic learning, it would be enough for λI′ and λI to have positive and continuous
Lebesgue densities on their intervals.
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differ according to both I ′ and I , but they differ more according to I ′. Thus the sample
provides less information about future experiments under I ′ than under I . This leads
to a shift in weight toward I .

7. Regularity or monotone continuity?

Return to the static or one-shot choice setting. With the convention that outcomes are
measured in utils, the multiple-priors model is usually written in the form

U(f) = min
P∈C

∫
�
f dP = min

P∈C
Pf� f ∈ F� (7.1)

where C ⊂ ba1
+(�) is a convex and weak*-compact set of finitely additive probability

measures on (���).23 Gilboa and Schmeidler (1989) prove that this model is character-
ized by a simple set of axioms.

At the functional form level, our version of multiple-priors (2.1) is evidently the spe-
cial case where the Gilboa–Schmeidler set of priors C is the weak*-closure of a convex
and weak-convergence closed set P of countably additive priors. Our main objective in
this section is to describe the behavioral meaning of this specialization.

The rationale for the specialization is straightforward: Just as countable additivity is
assumed widely in the central theorems of probability theory, including in the de Finetti
Theorem that concerns us here, we specialize multiple-priors utility to provide a coun-
terpart of countable additivity.24 Since Chateauneuf et al. (2005) put forth a more restric-
tive way to express “countable additivity” for a set of priors, we examine it in some detail
and argue that, although it is in some sense simpler, it is unduly restrictive, particularly
for a setting with repeated experiments.

7.1 Regularity

The added axiom that we impose on preference, or utility, is Regularity, a property first
studied by Epstein and Wang (1996). Roughly, it extends to preferences the well known
property of regularity of probability measures.25 A connection to countable additivity is
that any measure on a compact metric space is countably additive if and only if it is regu-
lar (Dunford and Schwartz 1958, p. 138). Thus it is not easy to distinguish between these
properties within the space of measures. However, as will become evident, they lead
to substantially different notions more generally, and we argue that there is a distinct
advantage to using regularity to define the ambient technical framework.

23The following additional notation is needed here. For any compact metric space X , ba(X) and ca(X)

denote the spaces of finite variation set functions on the Borel σ-algebra that are finitely additive (charges)
and countably additive, respectively; ba1

+(X) and ca1+(X) are the corresponding subsets of positive and
normalized measures. The notation ca1+(X), in place of �(X), is useful when it is important to draw a
distinction between finitely and countably additive probability measures. Unless otherwise specified, the
weak-convergence topology is used for ca1+(X). By the weak*-topology on ba(�), we mean the topology
induced by bounded measurable functions.

24See Regazzini (1996) and Dubins (1974, 1982) for approaches that assume only finite additivity.
25The reader is referred to Epstein and Wang (1996) for detailed discussion of regularity of preferences,

and the formal relationship to regular probability measures and also regular capacities.
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The set of all [0�1]-valued acts on � is F . Denote by F u the set of all upper semicon-
tinuous (usc) and simple (finite-ranged) acts, and denote by F � the set of lower semi-
continuous (lsc) and simple acts. As shown above, under suitable conditions there is a
unique probability-equivalent utility function U , defined in (2.3), that represents pref-
erence. Thus we can state the sought-after condition in terms of that utility function.26

Regularity. A utility function U : F → [0�1] and the corresponding preference order are
regular if both of the following conditions are satisfied.

Inner Regularity. For each h ∈ F �, U(h) = sup{U(g) :g ≤ h�g ∈ F u}.

Outer Regularity. For each f ∈ F , U(f) = inf{U(h) :h ≥ f�h ∈ F �}.

To see the parallel with the notion of regularity for a measure, think of the special
case of acts that are indicator functions, and note that the indicator 1A is simple and
usc (lsc) if A is closed (open). This parallel inspired the closely related, but distinct,
definition of regularity of preference in Epstein and Wang (1996). The relation is that U
is regular in the above sense if and only if its conjugate U∗,

U∗(f ) = 1 −U(1 − f )� f ∈ F�

is regular in the sense of Epstein and Wang. For another perspective on the difference
between the two definitions of regularity, observe that the Epstein–Wang notion requires
that

U(f) = sup{U(g) :g ≤ f�g ∈ F u}� ∀f ∈ F�

that is, the utility of arbitrary acts can be approximated from below (by simple usc acts).
In contrast, Outer Regularity above postulates that the utility of arbitrary acts can be ap-
proximated from above (by simple lsc acts). Approximation from above seems more in-
tuitive given the conservatism inherent in aversion to ambiguity or to limited evidence.
Since any probability measure coincides with its conjugate (P(A) = 1 − P(�\A)), the
two notions of regularity coincide in the SEU case, where U(f) = Pf for a fixed P , with
the usual notion of regularity of the measure P .27

We can now state the main result of this subsection, which shows that Regularity
characterizes our specialization of the Gilboa–Schmeidler model.28

26We state Regularity for any utility function U . As shown in Epstein and Wang (1996), the axiom is
readily expressed explicitly in terms of preference for a large class of preferences.

27More precisely, it follows from Epstein and Wang (1996, Theorem 4.1) that an SEU preference with prior
P is regular in the sense of Epstein–Wang if and only if it is regular in the sense of this paper if and only if P
is a regular measure.

28See Appendix A for a proof, which relies, for one direction, on a result by Chen (2010). We remind
the reader that since the probability-equivalent utility U corresponds uniquely to preference, the theorem
could be restated in terms of the latter. Finally, see Philippe et al. (1999, Proposition 1) for a related result
dealing with lower envelopes of sets of priors rather than with preferences over acts.
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Theorem 7.1. Let U be a multiple-priors utility as in (7.1). Then U satisfies Regularity
if and only if it can be expressed in the form (2.1) for some P ⊂ ca1+(�) that is convex and
(weak-convergence) compact. Moreover, the set P is unique.

An important implication of Regularity is that utility is completely determined by its
values on finitely based acts. Much as the Kolmogorov Extension Theorem tells us that
a probability measure on � = S∞ (which is necessarily regular given that � is metric) is
completely determined by its values on finite cylinders, a generalized extension theorem
proven in Epstein and Wang (1996, Theorem D.2) implies that a regular utility is uniquely
determined by its values on Ffin.29 This feature of our model of multiple-priors utility
was behind the scenes of a number of results stated above.

For example, consider the proof of Proposition 3.1. Symmetry implies that prefer-
ence over Ffin is represented both by P and by {πP :π ∈
�P ∈ P}; hence, they represent
the same preference over F by Epstein and Wang (1996, Theorem D.2). Therefore, they
must be identical by the uniqueness of the representing set of priors (Theorem 7.1).

As a second example, consider a gap in the proof that (i) implies (ii) in Theorem 3.2.
Let Û(f ) = U(αf +(1−α)πf). Strong Exchangeability implies Û = U on Ffin. Lemma A.1
shows that Û satisfies Regularity. Therefore, Û(f ) = U(f) for all f ∈ F by Epstein and
Wang (1996, Theorem D.2).

7.2 An alternative: Monotone continuity

An alternative way to express countable additivity for a set of priors, put forth by
Chateauneuf et al. (2005), is to assume that P itself is weak*-compact, and hence that C
(equals P and) consists exclusively of countably additive measures. What could be a
more natural way to formulate the counterpart of countable additivity of single mea-
sures?

It may seem plausible also at the more meaningful behavioral level. Chateauneuf
et al. show that weak*-compactness of P is characterized behaviorally by Monotone
Continuity.

Monotone Continuity. Given f � g, outcome x, and a sequence {An} in �, with An ↘
∅, then there exists N such that (x�AN ; f (·)��\AN) � g and f � (x�AN ;
g(·)��\AN).

As Chateauneuf et al. point out, this axiom is used by Arrow (1970) to characterize count-
able additivity of the Savage prior. Moreover, Monotone Continuity is arguably simpler
than Regularity.30

29The different meaning of “regularity,” explained above, does not affect the validity of the Kolmogorov-
style theorem.

30Monotone Continuity is definitely easier to state, but it is not clear that its meaning is easier to grasp.
For example, the Borel σ-algebra includes many complicated events that are difficult even to describe.
Hence the scope of a condition that applies to all (measurable) acts is hard to understand. The surprising
Theorem 7.2 below illustrates this point.
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However, Monotone Continuity is stronger than Regularity (weak*-compactness im-
plies weak-convergence compactness for any set of priors), and we argue that the differ-
ence is significant.

For example, Monotone Continuity implies that31

U(Bn)↗ U(B) for all sequences Bn ↗ B�

In contrast, Regularity (via Inner Regularity) imposes only that U(B) can be approxi-
mated from below by U(Bn) by some sequence Bn that increases to B. (In fact, this is
required only if B is open, which notably excludes B being a tail event; however, the
approximating sets must be compact.) To see that the difference between “for all” and
“for some” can be significant, consider the following coin-tossing example. The coin
is known to be unbiased, but there remains uncertainty surrounding the tossing tech-
niques of different people. You believe that every person imparts an (idiosyncratic)
effective bias lying in {0� 1

2 �
1
3 � � � � �

1
n � � � �}, but are completely ignorant within this set.

A model that captures this perception is the IID utility function corresponding to L∞,
where

L = {δ0} ∪ {δ1/n :n > 1} ⊂ �({H�T })�
Let

Bn =
{
ω : lim

k
�k(ω) = 0� or lim sup

k

�k(ω) ≥ 1
n

}
�

where �k(ω) denotes the empirical frequency of heads in the first k tosses along the
sample ω. Observe that Bn ↗ �. However, U(Bn) = 0 for every n: the set of priors L∞ in-
cludes an i.i.d. measure Q where heads has probability λ in (0�1/n), and thus according
to which the empirical frequency of heads converges with certainty to λ. Therefore,

U(Bn) = inf
P∈L∞ P(Bn) ≤Q(Bn) = 0�

You would not be willing to bet on Bn because, no matter how large is n, the worst-case
scenario is that many people impart a bias smaller than 1/n, and this would lead to a
sample path not in Bn. Because U(�) = 1, Monotone Continuity is violated. In con-
trast, there is no contradiction to Regularity, since � can be approximated from below
by some sequence {Kn} of compact sets; Kn =� for all n works trivially.

More generally, while Regularity is consistent with the Walley–Fine IID utility func-
tion (5.3), that model is excluded if Monotone Continuity is assumed, because L∞ is
not weak*-compact unless L is a singleton. Here is a proof: For simplicity, consider
S = {H�T }. Let �0� �1 ∈ L and �0 �= �1. For any r ∈ [0�1], we can find {it}∞t=1 ∈ {0�1}∞ such
that 1/N

∑
it converges to r. Then, by Hall and Heyde (1980, Theorem 2.19), the mea-

sure
⊗

t �it ∈ L∞ assigns 1 to the event Ar , where Ar is the set that the limiting empirical
frequency of head is (1 − r)�0(H)+ r�1(H). If L∞ were weak*-compact, there would be

31Let Bn ↗ B. Define An = B\Bn ↘ ∅, f = 1B , and fn = 1Bn = (0�An; f��\An). Then Monotone Conti-
nuity implies that, for every ε > 0, there exists N such that V (BN)= V (fN) > (1 − ε)V (B).
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Q ∈ �(S∞) such that, by Chateauneuf et al. (2005, Lemma 3), Q(A) = 0 implies P(A) = 0
for all P ∈ L∞. Thus, Q(Ar) > 0 for all r ∈ [0�1], which cannot be true.

The Walley–Fine utility function (5.3) is only one example of an IID utility function,
that is, a function satisfying Symmetry and the product rule (5.1). Finally, we show that
Monotone Continuity excludes all IID utility functions other than expected utility func-
tions. Thus in the setting of infinitely many experiments that are viewed symmetrically,
Monotone Continuity excludes modeling the perception that experiments are unrelated
in the natural sense of (5.1).

Theorem 7.2. If V is an IID utility function that satisfies Monotone Continuity, then V

is an expected utility function (with an i.i.d. prior).

The key to the proof of the theorem (found in Appendix C) is to show that Monotone
Continuity plus Symmetry and the stochastic independence condition (5.1) imply that
V is 0–1-valued and additive on �tail, which implies that all measures in P are 0–1-valued
and that they agree on �tail. The rest is straightforward.

The restrictiveness of Monotone Continuity is not limited to settings with repeated
experiments. For example, let the state space be [0�1] and consider the set of priors
P equal to the weak-convergence closed convex hull of {δ0} ∪ {δ1/n :n > 1}. Thus the
true state is known to lie in {0�1/2� � � � �1/n � � �}, but there is complete ignorance within
the set. Then Monotone Continuity is violated along the sequence Bn = {0} ∪ [1/n�1] ↗
[0�1], since U(Bn) = 0 �−→ 1 = U(�). This reflects an inherent discontinuity arising from
ignorance. Again, Inner Regularity is trivially satisfied at �.

Appendix A: Regularity

Proof of Theorem 7.1.
⇐	 Chen (2010, Proposition 1) proves that V is regular in the sense of Epstein and

Wang, where

V (f ) = sup
P∈P

Pf = max
P∈cl(P)

Pf� f ∈ F �

(The term cl∗(P) denotes the weak*-closure of P in ba1
+(�).) Therefore, U = V ∗, the

conjugate of V , satisfies Regularity.
	⇒ The multiple-priors utility function U can be extended in the obvious way to

C(�), the set of all continuous real-valued functions on �, and the extension is norm-
continuous, superadditive, monotone, and U(1) = 1. Therefore, it is a support function
for a unique compact and convex set P ⊂ ca1+(�). In particular,

U(f) = min
P

Pf for every continuous act f�

Let h ∈ F �. By Inner Regularity, there exist gi ∈ F u such that

gi ≤ h and U(gi) > U(h)+ 2−i�
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Furthermore, there exist continuous acts fi such that

gi ≤ fi ≤ h�

(When gi = 1Ki and h= 1G are indicator acts, this follows from Urysohn’s Lemma. More
generally, the assertion follows from a straightforward extension of Urysohn’s Lemma
for simple acts; see Epstein and Wang (1996, Lemma A.1).) Finally, it is without loss
of generality to assume that fi ↗ h (see Aliprantis and Border 2006, Theorem 3.13). It
follows that

U(h) = lim
i
U(fi) = lim

i
min

P
Pfi = min

P
lim
i
Pfi = inf

P
Ph�

where the third equality follows by Terkelsen (1972, Corollary, p. 407), and the last equal-
ity holds because limi Pfi = Ph for every P by the Monotone Convergence Theorem.

Define

U(f) = inf
P

Pf = min
cl(P)

Pf� f ∈ F �

By the first part of the proof, U is regular, while U is regular by assumption. As just
shown, the two utility functions agree on F �. It follows immediately from Regularity
that they must agree on all of F . By the uniqueness of the (weak*-compact and convex)
set of priors, proven by Gilboa and Schmeidler, C is the weak* closure of P . �

The following lemma was used in the proof of Theorem 3.2.

Lemma A.1. If U is regular, then so is Û , where Û(f ) =U(αf + (1 − α)πf), f ∈ F , for any
fixed α and π.

Proof. Inner Regularity. Take h ∈ F �. It is clear that U(h) ≥ sup{U(g) :g ≤ h�g ∈ F u}.
Next show equality. By Aliprantis and Border (2006, Theorem 3.13), we can take continu-
ous fn such that fn(ω) ↗ h(ω) for each ω ∈�. By Epstein and Wang (1996, Lemma D.3),
there exist finitely based h′

n such that fn ≤ h′
n ≤ h. Thus,

lim
n

U(αh′
n + (1 − α)πh′

n) = lim
n

min
P∈P

∫
(αh′

n + (1 − α)πh′
n)dP

= min
P∈P

lim
n

∫
(αh′

n + (1 − α)πh′
n)dP

= min
P∈P

∫
(αh+ (1 − α)πh)dP

= U(αh+ (1 − α)πh)�

The second equality follows from Terkelsen’s (1972, Corollary, p. 407) minimax theorem
and the third equality follows by the Monotone Convergence Theorem for each P .

Outer Regularity. Note that

U(αf + (1 − α)πf) = inf
P∈P

∫
(αf + (1 − α)πf)dP
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= inf
P∈P

inf
f≤h∈F �

∫
(αh+ (1 − α)πh)dP

= inf
f≤h∈F �

inf
P∈P

∫
(αh+ (1 − α)πh)dP

= inf
f≤h∈F �

U(αh+ (1 − α)πh)�

The second equality follows because f �−→ ∫
(αf + (1 − α)πf)dP satisfies Regularity. �

Appendix B: Proof of Theorem 5.2

After proving necessity, the bulk of the proof concerns sufficiency of the axioms. Here
we adapt the Hewitt and Savage (1955) proof strategy for the de Finetti Theorem to our
setting. In broad terms, it amounts to showing that the set U ∗ of multiple-priors utility
functions satisfying Symmetry, OI, and Superconvexity is compact and convex, and then
using the Choquet Theorem (Phelps 2001, p. 14) to express any such utility function as
an integral over extreme points of U ∗. The proof of uniqueness concludes.

B.1 Necessity

Show first that the integral
∫

V V (f )dμ(V ) is well defined for all f in F . Denote by

QIID = {
P ∈ Kc(�(�)) :UP ∈ V

}
the set of all IID sets of priors. We show below that V and hence also QIID are compact,
hence Borel-measurable. Since μ is well defined on �, the universal completion of �, it
suffices to show that the function V �−→ V (f ) is universally measurable. This is true if
every set of the form

{P ∈ QIID :∃P ∈ P�Pf < c}
= proj�(�)

({
(P�P) ∈ Kc(�(�))×�(�) : P ∈ QIID�P ∈ P�Pf < c

})
lies in �. But the set being projected is Borel-measurable (in the product σ-algebra).
Therefore, the projection is universally measurable by the Lusin–Choquet–Meyer Theo-
rem (Kallenberg 1997, Theorem A.1.8, p. 457).

Define U by (5.4), that is,

U(f) =
∫

V
V (f )dμ(V ) for all f in F �

The Gilboa–Schmeidler axioms are clearly satisfied. OI and Superconvexity can be
proven as in the proof of Lemma 5.1. We need to show that U is a (regular) multiple-
priors utility function. To do so, we establish a suitable set of priors for U .

Since U is homeomorphic to Kc(�(�)), μ ∈ �(V) can be viewed as a measure on
Kc(�(�)). Thus, we can write

U(f) =
∫

UQ(f )dμ(Q)� (B.1)
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We define the Aumann integral
∫

Q dμ(Q) as follows. For a measurable φ :
Kc(�(�)) → �(�), define

∫
φ(Q)dμ(Q) = ∫

φdμ ∈ �(�) by32(∫
φ(Q)dμ(Q)

)
(A) =

∫
φ(Q)(A)dμ(Q) for all A ∈ ��

Let � be the identity function from Kc(�(�)) to Kc(�(�)) and let Sel� be the set of all
measurable selections from �, that is, φ ∈ � if and only if φ is a measurable function
from Kc(�(�)) to �(�) satisfying φ(Q) ∈ Q. Then∫

Q dμ(Q) ≡
{∫

φdμ :φ ∈ Sel�
}
�

Subsequently, we use the next lemma, which can be proven by a standard argument
using the Lebesgue Dominated Convergence Theorem.

Lemma B.1. Let φ : Kc(�(�)) → �(�) be measurable and let P = ∫
φdμ. Then, for any

f ∈ F , ∫
Kc(�(�))

[∫
�
f dφ(Q)

]
dμ(Q) =

∫
f dP�

Lemma B.2. Let μ ∈ �(Kc(�(�))). Then, for all f ∈ F ,

inf
P∈∫ Q dμ(Q)

∫
f dP =

∫
Kc(�(�))

(
inf
P∈Q

∫
f dP

)
dμ(Q)�

=
∫

Kc(�(�))
UQ(f )dμ(Q) ≡U(f)�

where U is defined by (B.1).

Proof. We use a result of Castaldo et al. (2004, Theorem 3.2), which translated into our
setup, states that

inf
φ∈Sel�

∫
�(�)

f̂ (P)d(μ ◦φ−1)(P) =
∫

inf
P∈Q

f̂ (P)dμ(Q)

for any measurable f̂ :�(�) → R. Given f ∈ F , define f̂ (P) = ∫
f dP . Then

inf
P∈∫ Q dμ(Q)

∫
f dP = inf

φ∈Sel�

∫
Kc(�(�))

[∫
�
f dφ(Q)

]
dμ(Q)

= inf
φ∈Sel�

∫
Kc(�(�))

f̂ (φ(Q))dμ(Q)

= inf
φ∈Sel�

∫
�(�)

f̂ (P)d(μ ◦φ−1)(P)

32The right side is well defined because Q �−→ Q(A) is measurable by Aliprantis and Border (2006,
Lemma 15.16). It is easy to see that one obtains a countably additive measure.
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=
∫

inf
P∈Q

f̂ (P)dμ(Q) =
∫

Kc(�(�))

[
inf
P∈Q

∫
f dP

]
dμ(Q)�

where the third equality follows by the Change of Variable Theorem (Aliprantis and Bor-
der 2006, Theorem 13.46), and the fourth equality follows by the result cited above. �

Lemma B.3. The set P = ∫
Q dμ(Q) is a convex and weak-convergence compact subset

of �(�).

Proof. Convexity follows from the convexity of each Q. Prove compactness. The func-
tion � used in the definition of the Aumann integral can be viewed as a correspon-
dence from Kc(�(�)) to �(�); it is upper hemicontinuous, compact-valued and convex-
valued. Define also the correspondence �′ from �(Kc(�(�))) to �(�), by

�′(μ′)=
∫

�dμ′ =
∫

Q dμ′(Q)

By Aliprantis and Border (2006, Lemma 19.29, Theorem 19.30), �′ is compact-valued
and upper hemicontinuous. Therefore, P = �′(μ) is compact (Aliprantis and Border
2006, Lemma 17.8). �

B.2 Sufficiency: The Hewitt–Savage strategy adapted

We turn to the sufficiency part of the theorem. Assume Symmetry, OI, and Supercon-
vexity. We exploit heavily the homeomorphism between Kc(�(�)), the space of sets of
priors, and U = {UP : P ∈ Kc(�(�))}, the space of (regular) multiple-priors utility func-
tions. We pass freely between them. Recall also that Kc(�(�)) and hence also U are
compact metric.

The following preliminary results are straightforward.

Lemma B.4. The mapping P �−→ minP∈P Pf is continuous for any continuous act f .

Proof. This is implied by the Maximum Theorem (Aliprantis and Border 2006, Theo-
rem 17.31). �

Define

U ∗ = {U ∈ U :U satisfies Symmetry, OI, and Superconvexity}�
Lemma B.5. The set U ∗ is compact and convex, and V , the subset of IID utility functions,
is compact.

Proof. As noted, U is compact. The further defining properties of U ∗ and V deal with
finitely based, and hence continuous, acts only. Therefore, Lemma B.5 implies that each
set is closed. Convexity of U ∗ is obvious. �

The following lemma is the key to identifying the extreme points of U ∗. Much of the
next subsection is concerned with proving the lemma. We continue here, assuming the
lemma is true.
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Lemma B.6. For any U ∈ U ∗ and f ∗ ∈ F{1�����m} satisfying U(f ∗) ∈ (0�1), define the func-
tions U∗ and U∗∗ by, for all f ∈ F ,

U∗(f ) = U(f ∗ · θmf)
U(f ∗)

(B.2)

U∗∗(f ) = U(θmf)−U(f ∗ · θmf)
1 −U(f ∗)

�

Then U∗�U∗∗ ∈ U ∗.

Proposition B.7. If U is an extreme point of U ∗, written U ∈ ext(U ∗), then U ∈ V .33

Proof. Let U ∈ ext(U ∗). It suffices to show that

U(f ∗ · θmf) =U(f ∗)U(f ) (B.3)

for every f ∗ ∈ F{1�����m} and f ∈ Ffin.
Let P ∈ Kc(�(S∞)) be the set of priors corresponding to U . Consider three cases.

Case 1—U(f ∗) = 0. Then
∫
f ∗ dP = 0 for some P ∈ P . Therefore,

f ∗ ≥ 0 	⇒ f ∗(ω) = 0� P-a�s� 	⇒ (f ∗ · θmf)(ω) = 0� P-a�s��

which implies (B.3).

Case 2—U(f ∗) = 1. Then
∫
f ∗ dP = 1 for all P ∈ P and, again for all P ,

f ∗ ≤ 1 	⇒ f ∗(ω) = 1� P-a�s� 	⇒ (f ∗ · θmf)(ω) = θmf(ω)� P-a�s�

Therefore,

U(f ∗ · θmf) =U(θmf) =U(f) =U(f ∗)U(f )�

where use has been made of the fact that Symmetry implies “shift invariance”:

f ∼ θf for every f ∈ Ffin�

Case 3—U(f ∗) ∈ (0�1). For every f ∈ F ,

U(f) =U(θmf) = U(f ∗)U∗(f )+ (1 −U(f ∗))U∗∗(f )�

where U∗ and U∗∗ are defined in Lemma B.6. Thus

U = αU∗ + (1 − α)U∗∗�

33We show later that the converse is also true—ext(U ∗) = V —although we use only the fact that all ex-
treme points lie in V .
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where α = U(f ∗). Since U is an extreme point of U ∗and U∗�U∗∗ ∈ U ∗, we have U = U∗,
and hence

U(f) = U(f ∗ · θmf)
U(f ∗)

�

especially for f ∈ FI with finite I. This proves (B.3). �

We wish to apply the Choquet Theorem (Phelps 2001, p. 14). For that purpose, note
that U ⊂ E ≡ {αU :α ∈ /R�U ∈ U }, where E is a locally convex (vector) space under the
topology generated by sets of the form {αU :a < α < b�U ∈ G�G open in U }. Now take
U ∈ U ∗. Then Lemma B.5 and Choquet’s Theorem imply the existence of a Borel proba-
bility measure μ on the set of extreme points of U ∗ such that L(U) = ∫

L(V )dμ(V ) for
every continuous linear functional L on E. Since αU �−→ αU(f ) is linear and continuous
on E for every continuous f , it follows that

U(f) =
∫

V (f )dμ(V ) (B.4)

for every continuous f . This, in fact, holds for any f ∈ F : From the necessity proof, we
know that f �−→ ∫

V (f )dμ(V ) defines a utility function satisfying Regularity. In addi-
tion, U satisfies Regularity by assumption. Finitely based acts are continuous since S

is finite. Thus we can invoke the generalized Kolmogorov extension theorem in Epstein
and Wang (1996, Theorem D.2) to conclude that (B.4) holds for any f ∈ F .

This completes the proof of sufficiency in Theorem 5.2, once we have proven
Lemma B.6.

B.3 Remaining arguments regarding extreme points of U ∗

The main objective in this section is to prove Lemma B.6, namely that the two functions
U∗ and U∗∗ defined there lie in U ∗.

That U∗ ∈ U ∗ is straightforward. First, we show that it is regular.

Lemma B.8. For any f ∗ ∈ F{1�����m} with U(f ∗) > 0, the function U∗ : F → [0�1], defined
by

U∗(f ) = U(f ∗ · θmf)
U(f ∗)

� f ∈ F�

satisfies Regularity.

Proof. We show Outer Regularity; Inner Regularity can be shown in the same way.
View f ∗ also as a function of (s1� � � � � sm) ∈ Sm. By Regularity for U , there exist hn ∈ F �

such that hn ≥ f ∗ · θmf and U(hn) ↘ U(f ∗ · θmf). Define

h′
n(ω) = min

s′1�����s
′
m∈S

{
hn(s

′
1� � � � � s

′
m�ω)

f ∗(s′1� � � � � s′m)
: f ∗(s′1� � � � � s

′
m) > 0

}
� ω ∈ S∞�
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Then h′
n ∈ F � by Aliprantis and Border (2006, Lemma 17.30). We will show that

hn(ω) ≥ f ∗(ω) · θmh′
n(ω) ≥ (f ∗ · θmf)(ω) for each ω ∈ S∞� (B.5)

Fix ω. If f ∗(ω) = 0, the inequality is clear. Assume f ∗(ω) > 0.
The first inequality in (B.5) holds because

f ∗(ω) · θmh′
n(ω) = f ∗(s1� � � � � sm) · h′

n(sm+1� � � �)

≤ f ∗(s1� � � � � sm) · hn(s1� � � � � sm� sm+1� � � �)

f ∗(s1� � � � � sm)

= hn(s1� � � � � sm� sm+1� � � �)�

For the second inequality, f ∗(s′1� � � � � s
′
m) · f (s′m+1� � � �) ≤ hn(ω

′) for each ω′ =
(s′1� s

′
2� � � �). Therefore,

f (sm+1� � � �) ≤ hn(s1� s2� � � �)

f ∗(s1� � � � � sm)

whenever f ∗(s1� � � � � sm) > 0 and

f (sm+1� � � �) ≤ min
s1�����sm∈S

hn(s1� s2� � � �)

f ∗(s1� � � � � sm)
= h′

n(sm+1� � � �)�

which completes the proof of (B.5).
Finally, since U is monotone, U(hn) ≥U(f ∗ · θmh′

n) ≥U(f ∗ · θmf). Thus,

[U(hn)↘ U(f ∗ · θmf)] 	⇒ [U(f ∗ · θmh′
n) ↘ U(f ∗ · θmf)]�

which proves Outer Regularity for U∗.
�

It is evident that U∗ (or the preference that it represents) satisfies the Gilboa–
Schmeidler axioms. Symmetry is satisfied because U(f ∗ · θmf) = U(f ∗ · (θm(πf))) for
any permutation π, by Symmetry for U . For Orthogonal Independence, let f , f ′ be non-
hedging, let f� f ′ ∈ FI , and let f ∗∗ ∈ FI∗∗ with finite and disjoint I and I∗∗. Then

U
(
f ∗ · θm[α(f ∗∗ · f )+ (1 − α)(f ∗∗ · f ′)])

=U(α(f ∗ · θmf ∗∗) · θmf + (1 − α)(f ∗ · θmf ∗∗) · θmf ′)

= αU((f ∗ · θmf ∗∗) · θmf)+ (1 − α)U((f ∗ · θmf ∗∗) · θmf ′)

= αU(f ∗ · θm(f ∗∗ · f ))+ (1 − α)U(f ∗ · θm(f ∗∗ · f ′))�

This implies OI for U∗. Superconvexity is also immediate. We conclude that U∗ ∈ U ∗.
It remains to prove that U∗∗ ∈ U ∗. This is more difficult because U∗∗ is a difference

of two functions derived from U . We show that U∗∗ is suitably monotone and concave,
and that it satisfies Regularity. Other properties are immediate.

Lemma B.9. The function U∗∗ defined in (B.2) is monotone on Ffin, that is, for all f ′, f in
Ffin,

f ′ ≥ f 	⇒ U∗∗(f ′)≥ U∗∗(f )�
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Proof. Take f ∗ ∈ Fm and f� f ′ ∈ Fn. For each τ ∈ [0�1], there is a common minimizing
measure Pτ for f ∗ · θm(τf ′ + (1 − τ)f ) and θm(τf ′ + (1 − τ)f ), by OI and Lemma 4.1. Let
ϕ(P�τ) = ∫

f ∗ · θm(τf ′ + (1 − τ)f )dP . Then

U
(
f ∗ · θm(τf ′ + (1 − τ)f )

)= min
P∈P

ϕ(P�τ) =
∫

f ∗ · θm(τf ′ + (1 − τ)f )dPτ�

The partial derivative with respect to τ is ϕτ(P�τ) = ∫
f ∗ · θm(f ′ − f )dP . Therefore,

by Milgrom and Segal (2002, Theorem 2),

U(f ∗ · θmf ′)−U(f ∗ · θmf) =
∫ 1

0

[∫
f ∗ · θm(f ′ − f )dPτ

]
dτ�

Similarly,

U(θmf ′)−U(θmf)=
∫ 1

0

[∫
θm(f ′ − f )dPτ

]
dτ�

Therefore,

(1 −U(f ∗))(U∗∗(f ′)−U∗∗(f )) = U(θmf ′)−U(f ∗ · θmf ′)−U(θmf)+U(f ∗ · θmf)

=
∫ 1

0

[∫
(1 − f ∗) · θm(f ′ − f )dPτ

]
dτ�

We conclude that if f ′ ≥ f , then
∫
(1 − f ∗) · θm(f ′ − f )dPτ ≥ 0 for all τ ∈ [0�1] and

U∗∗(f ′) ≥U∗∗(f ). �

Lemma B.10. If F ∈ F{1�����n}, and if g∗ and h∗ are nonhedging, then so are

g∗∗ = 1
2θ

ng∗ + 1
2F · θnh∗ and h∗∗ = 1

2θ
nh∗ + 1

2F · θng∗� (B.6)

Proof. Compute, using OI and Lemma 4.1 repeatedly, that

U
(

1
2g

∗∗ + 1
2h

∗∗) = U
((

1
2 1 + 1

2F
)

· θn
(

1
2g

∗ + 1
2h

∗))
= 1

2U
((

1
2 1 + 1

2F
)

· θng∗)+ 1
2U

((
1
2 1 + 1

2F
)

· θnh∗)
= 1

4U(θng∗)+ 1
4U(F · θng∗)+ 1

4U(θnh∗)+ 1
4U(F · θnh∗)

= 1
2

[
1
2U(θng∗)+ 1

2U(F · θnh∗)
]
+ 1

2

[
1
2U(θnh∗)+ 1

2U(F · θng∗)
]

= 1
2U

(
1
2θ

ng∗ + 1
2F · θnh∗)+ 1

2U
(

1
2θ

nh∗ + 1
2F · θng∗)

= 1
2U(g∗∗)+ 1

2U(h∗∗)� �

Lemma B.11. The function U∗∗ defined in (B.2) satisfies Superconvexity.
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Proof. Let g∗ ≥ h∗ ∈ F{1�����m} be nonhedging. Since the denominator 1 − U(f ∗) is not
important, consider the function U2 defined by the numerator. Then

U2(g
∗ · θmf)−U2(h

∗ · θmf) = U(g∗ · θmf)−U(f ∗ · θn(g∗ · θmf))
− [

U(h∗ · θmf)−U(f ∗ · θn(h∗ · θmf))]
= [

U(g∗ · θmf)+U(f ∗ · θn(h∗ · θmf))]
− [

U(h∗ · θmf)+U(f ∗ · θn(g∗ · θmf))]
= [U(g∗ · θmf)+U(f ∗ · θnh∗ · θn+mf)]

− [U(h∗ · θmf)+U(f ∗ · θng∗ · θn+mf)]
(by Symmetry) = [U(θng∗ · θn+mf)+U(f ∗ · θnh∗ · θn+mf)]

− [U(θnh∗ · θn+mf)+U(f ∗ · θng∗ · θn+mf)]
(by OI) = 2U

((
1
2θ

ng∗ + 1
2f

∗ · θnh∗) · θn+mf
)

− 2U
((

1
2θ

nh∗ + 1
2f

∗ · θng∗) · θn+mf
)

= 2[U(g∗∗ · θn+mf)−U(h∗∗ · θn+mf)]�
where g∗∗ and h∗∗ are defined in (B.6). Note that g∗∗ and h∗∗ are nonhedging by
Lemma B.10. Also, g∗∗ ≥ h∗∗. Therefore, Superconvexity for U implies that it is satisfied
also by U∗∗. �

It remains to prove regularity and also that monotonicity and concavity obtain on
all of F . For this purpose we exploit the regularity of U , as described in the following
lemmas. Because the surrounding arguments are routine, many details are omitted.

Let F �
fin = F � ∩ Ffin, the set of (simple) lsc acts that are finitely based.34

Lemma B.12. Let f ∗ ∈ F{1�����m}. Then, for any f ′� f ∈ F and α ∈ [0�1],
U
(
f ∗ · θm(αf + (1 − α)f ′)

)= inf
f≤h∈F �

f ′≤h′∈F �

U
(
f ∗ · θm(αh+ (1 − α)h′)

)
�

Proof. The set P denotes the set of priors corresponding to U . Note that

U(α(f ∗ · θmf)+ (1 − α)(f ∗ · θmf ′))

= inf
P∈P

[
α

∫
(f ∗ · θmf)dP + (1 − α)

∫
(f ∗ · θmf ′)dP

]
= inf

P∈P

[
α inf
f≤h∈F �

∫
(f ∗ · θmh)dP + (1 − α) inf

f ′≤h′∈F �

∫
(f ∗ · θmh′)dP

]
34Since S is finite, every finitely based act is continuous, hence lsc. However, we use the notation F �

fin to
emphasize that we are using the lower semicontinuity of such acts, which would be important in any future
generalization to infinite S.
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= inf
P∈P

inf
f≤h∈F �

f ′≤h′∈F �

∫
[α(f ∗ · θmh)+ (1 − α)(f ∗ · θmh′)]dP

= inf
f≤h∈F �

f ′≤h′∈F �

inf
P∈P

∫
[α(f ∗ · θmh)+ (1 − α)(f ∗ · θmh′)]dP

= inf
f≤h∈F �

f ′≤h′∈F �

U(α(f ∗ · θmh)+ (1 − α)(f ∗ · θmh′))�

The second equality follows because f �−→ ∫
f dP for P ∈ �(S∞) is monotone and satis-

fies Regularity; hence Lemma B.8 implies
∫
f ∗ · θmf dP = inff≤h∈F �

∫
f ∗ · θmhdP . �

Lemma B.13. Let f ∗ ∈ F{1�����m}.

(a) For any h ∈ F �, there exist hn ∈ F �
fin such that hn ≤ h,

U(hn)↗ U(h) and U(f ∗ · θmhn)↗ U(f ∗ · θmh)�

(b) For any f ′� f ∈ F and α ∈ [0�1], there exist hn�h
′
n ∈ F � such that

f ≤ hn� f ≤ h′
n� U(hn) ↘U(f)� U(h′

n) ↘ U(f ′)

U(f ∗ · θmhn)↘ U(f ∗ · θmh)� U(f ∗ · θmh′
n) ↘ U(f ∗ · θmh′)

U(αhn + (1 − α)h′
n)↘ U(αf + (1 − α)f ′)

U
(
f ∗ · θm(αhn + (1 − α)h′

n)
)↘U

(
f ∗ · θm(αf + (1 − α)f ′)

)
�

Proof. (a) By Inner Regularity, there is a sequence gn ∈ F u such that gn ≤ h and
U(gn) ↗ U(h). By Epstein and Wang (1996, Lemma D.3), there exist h′

n ∈ F �
fin such

that gn ≤ h′
n ≤ h. Then U(h′

n) ↗ U(h). Similarly, by the regularity established in
Lemma B.8, there exist h′′

n ∈ F �
fin such that h′′

n ≤ h and U(f ∗ ·θmh′′
n)↗ U(f ∗ ·θmh). Define

hn = max{h′
n�h

′′
n} and hn does the job.

(b) By Regularity of U , there is ĥn ∈ F � such that ĥn ≥ f and U(ĥn) ↘ U(f). By

the regularity established in Lemma B.8, there exist ̂̂hn ∈ F � such that ̂̂hn ≥ f and

U(f ∗ · θm̂̂hn)↘ U(f ∗ · θmf). Define hn ∈ F � by

hn = min{ĥn�
̂̂hn}�

Then hn ∈ F �, hn ≥ f ,

U(hn) ↘ U(f) and U(f ∗ · θmhn) ↘ U(f ∗ · θmf)�

The preceding argument is readily extended to prove the remainder of (b), when
combined with Lemma B.12. �

We can finally complete the proof of Lemma B.6.
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Monotonicity. U∗∗(f ′) ≥ U∗∗(f ) if f ′ ≥ f and f ′� f ∈ F . By Lemma B.9, this is true
if f ′ and f are finitely based. The inequality is readily extended to all simple lsc acts and
then to arbitrary acts by using Lemma B.13.

Regularity. Since U∗∗ is increasing, U∗∗(f ) ≤ inf{U∗∗(h) :h ≥ f�h ∈ F �}. Lemma B.13
implies equality, which proves Outer Regularity. Inner Regularity can be shown similarly.

Concavity. We have to show that

U∗∗(αf + (1 − α)f ′) ≥ αU∗∗(f )+ (1 − α)U∗∗(f ′) for all f ′� f ∈ F �

For finitely based f ′ and f , the inequality follows from Lemma B.11. It is readily extended
to all simple lsc acts and then to arbitrary acts by using Lemma B.13.

We offer a remark related to the proof. Above we showed that every extreme point
of U ∗ lies in V . In fact, we can prove, using the representation, that the other direction is
also true.

Lemma B.14. The set V is the set of all extreme points of U ∗.

Proof. Let U ∈ V and show that U is an extreme point of U ∗.
The proof of Theorem 5.2, specifically, application of Choquet’s Theorem, implies

that U(f) = ∫
V (f )dμ(V ) for some μ that is supported by the set of extreme points of

U ∗ (and not only by its superset V ). Therefore, for f ∈ F{1�����m},[∫
V (f )dμ(V )

]2

= [U(f)]2 =U(f · θmf)

=
∫

V (f · θmf)dμ(V )=
∫

[V (f )]2 dμ(V )�

But [∫ V (f )dμ(V )]2 = ∫ [V (f )]2 dμ(V ) if and only if

V (f ) is constant μ-a�s�[V ]�
The exceptional set depends on f . But since F1 is separable, there exists a μ-null set
of V ’s that works for all acts. Conclude that a�s�-μ[V ], V (·) = U(·) on F{1�����m}. Since
this is true for any m, the equality holds a�s� on all of F by the generalized Kolmogorov
Extension Theorem (Epstein and Wang 1996, Theorem D.2). Thus, μ is degenerate and U

is an extreme point of U ∗. �

B.4 Uniqueness

Let μ′ and μ, Borel measures on the compact metric space V , satisfy∫
V (f )dμ′ =

∫
V (f )dμ for all f ∈ F �

We show that

μ′ = μ�
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Each finitely based act f induces (by Lemma B.4) the continuous map f̂ : V → [0�1],
given by

f̂ (V ) = V (f )�

Let F̂fin be the set of all such maps and let A = sp(F̂fin), the linear span of F̂fin within
C(V), be the set of continuous real-valued functions on V . Then∫

f̂ (V )dμ′ =
∫

f̂ (V )dμ for all f̂ ∈ F̂fin�

This equality extends also to the linear span:∫
φ(V )dμ′ =

∫
φ(V )dμ for all φ ∈ A�

It is enough to show that∫
φ(V )dμ′ =

∫
φ(V )dμ for all φ ∈ C(V)� (B.7)

We do this by verifying the conditions of the Stone–Weierstrass Theorem, which implies
that A is sup-norm dense in C(V), and hence also (B.7).

Obviously A contains the constant functions and it separates points; in fact, since
every IID utility is regular, if V ′ �= V , then φ(V ′) �= φ(V ) for some φ ∈ F̂fin ⊂ A. We need
only show that

φ′�φ ∈ A 	⇒ φ′φ ∈ A�

which follows from Steps 1 and 2.

Step 1. Any finite linear combination of elements in F̂fin can be expressed as a linear
combination of two such elements, that is,∑

i

aif̂i = κĥ− κ′ĥ′� (B.8)

Clearly, (∑
i

aif̂i

)
(V ) =

∑
i

aif̂i(V )=
∑
i

aiV (fi)�

Suppose that every ai is positive. We can shift each of the acts fi so that they are mutually
orthogonal and V is additive over them (since every IID utility satisfies OI). Because
weights may not sum to 1, we obtain κV (h) for some finitely based act h and κ > 0, that
is, ∑

i

aif̂i = κĥ�

If one or more of the coefficients ai is negative, then one can collect those acts that have
similarly signed weights and derive (B.8).
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Step 2. Verify that (af̂ + bĝ)(a′f̂ ′ + b′ĝ′) ∈ A:

[(af̂ + bĝ)(V )][(a′f̂ ′ + b′ĝ′)(V )]
= [aV (f )+ bV (g)][a′V (f ′)+ b′V (g′)]
= aa′V (f · θnf ′)+ ab′V (f · θng′)+ ba′ V (g · θnf ′)+ bb′V (g · θng′)

= (
aa′ ̂(f · θnf ′)+ ab′ ̂(f · θng′)+ ba′ ̂(g · θnf ′)+ bb′ ̂(g · θng′)

)
(V )�

where n is large enough so that all paired acts are orthogonal to one another. The last
equality is derived by shifting each of the product acts so that they are mutually orthog-
onal, so that V is additive over them, and then applying shift invariance. Thus (B.8)
implies

(af̂ + bĝ)(a′f̂ ′ + b′ĝ′)= κĥ− κ′ĥ′ ∈ A�

Appendix C: Proof of Theorem 7.2

Step 1. For all g ∈ F{1�����m} and f ∈ F{m+1�m+2����}, V (g · f ) = V (g)V (f ). The equality is
true by (5.1) if f is finitely based. Extend it to all acts f indicated by applying Regularity.

Step 2. Fix A ∈ �tail and define (where A denotes 1A and so on)

B =
{
B ∈ � :V

((
1
2B + 1

2

)
·
(

1
2A+ 1

2

))
= V

(
1
2B + 1

2

)
V
(

1
2A+ 1

2

)}
�

Then B is a monotone class.
(a) Assume Bn ∈ B, Bn ↗ B and show B ∈ B, that is,

V
((

1
2B + 1

2

)
·
(

1
2A+ 1

2

))
= V

(
1
2B + 1

2

)
V
(

1
2A+ 1

2

)
�

Let Cn = B\Bn ↘ ∅ and define, for a fixed tail event A′,

f =
(

1
2B + 1

2

)
·
(

1
2A

′ + 1
2

)
fn =

(
1
2Bn + 1

2

)
·
(

1
2A

′ + 1
2

)
gn =

(
1
4 �Cn; fn��\Cn

)
�

(i) If s ∈ Cn, then s /∈ Bn and fn(s) = 1
2(

1
2A

′ + 1
2)(s) ∈ { 1

4 �
1
2 }.

(ii) By (a)(i), gn ≤ fn. Therefore, V (gn) ≤ V (fn).
(iii) If fn(s) �= f (s), then[(

1
2Bn + 1

2

)(
1
2A

′ + 1
2

)]
(s) �=

[(
1
2B + 1

2

)(
1
2A

′ + 1
2

)]
(s)

	⇒
(

1
2Bn + 1

2

)
(s) �=

(
1
2B + 1

2

)
(s) 	⇒ s ∈ B\Bn = Cn�

Therefore, s /∈ Cn 	⇒ fn(s) = f (s).
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(iv) gn = ( 1
4 �Cn; f��\Cn). This is clear by (a)(iii).

(v) By Monotone Continuity, for any ε > 0, there exists N such that V (gN) > V (f )−ε.

Therefore, by (a)(ii), V (fN) > V (f )− ε. But fn
n↗ f . We conclude that

V (fn)↗ V (f )� (C.1)

We can now complete the proof of (a) and show that B ∈ B: (C.1) implies that

limV
((

1
2Bn + 1

2

)
·
(

1
2A

′ + 1
2

))
= V

((
1
2B + 1

2

)(
1
2A

′ + 1
2

))
for all A′ ∈ �tail. Thus

V
((

1
2B + 1

2

)
·
(

1
2A+ 1

2

))
= limV

((
1
2Bn + 1

2

)(
1
2A+ 1

2

))
(set A′ = A)

= limV
(

1
2Bn + 1

2

)
V
(

1
2A+ 1

2

)
(since Bn ∈ B)

= V
(

1
2B + 1

2

)
V
(

1
2A+ 1

2

)
(set A′ = �)�

(b) Assume Bn ∈ B and Bn ↘ B, and show that B ∈ B. The argument is similar to that
in (a). We provide an outline for completeness.

Let Cn = Bn\B ↘ ∅ and define, for a fixed tail event A′,

f =
(

1
2B + 1

2

)
·
(

1
2A

′ + 1
2

)
fn =

(
1
2Bn + 1

2

)
·
(

1
2A

′ + 1
2

)
gn = (1�Cn; fn��\Cn)�

(i) If s ∈ Cn, then s ∈ Bn and fn(s) = ( 1
2A

′ + 1
2)(s) ∈ { 1

2 �1}.
(ii) By (b)(i), gn ≥ fn. Therefore, V (gn) ≥ V (fn).
(iii) If fn(s) �= f (s), then[(

1
2Bn + 1

2

)
·
(

1
2A

′ + 1
2

)]
(s) �=

[(
1
2B + 1

2

)
·
(

1
2A

′ + 1
2

)]
(s)

	⇒
(

1
2Bn + 1

2

)
(s) �=

(
1
2B + 1

2

)
(s) 	⇒ s ∈ Bn\B = Cn�

Therefore, s /∈ Cn 	⇒ fn(s) = f (s).
(iv) gn = (1�Cn; f��\Cn). This is clear by (b)(iii).
(v) V (fn)↘ V (f ).
The rest of the argument is exactly as in (a).

Step 3. By Step 1,
⋃

m�{1�����m} ⊂ B. Thus the Monotone Class Lemma (Aliprantis and
Border 2006, p. 137) implies that B = �, that is, for all A ∈ �tail and B ∈ �,

V
((

1
2B + 1

2

)
·
(

1
2A+ 1

2

))
= V

(
1
2B + 1

2

)
V
(

1
2A+ 1

2

)
�
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In the same way we can show that, for all A ∈ �tail and B ∈ �,

V (1A · 1B)= V (1A∩B) = V (A∩B)= V (A)V (B)� (C.2)

The rest of the proof uses these properties and not Monotone Continuity directly.

Step 4. Apply Step 3 to two tail events A and B to derive

V
(

1
4 1B · 1A + 1

4 1A + 1
4 1B + 1

4

)
= V

((
1
2 1B + 1

2

)
·
(

1
2 1A + 1

2

))
= V

(
1
2 1B + 1

2

)
V
(

1
2 1A + 1

2

)
= 1

4 [V (A)V (B)+ V (A)+ V (B)+ 1]
= 1

4 [V (A∩B)+ V (A)+ V (B)+ 1]�
By Lemma 2.2,

V
(

1
2 1A + 1

2 1B
)

= 1
2V (A)+ 1

2V (B)�

Step 5. A �−→ V (A) defines a finitely additive 0–1-valued measure (or charge) on �tail:
The 0–1 property follows from (C.2). For disjoint A�B ∈ �tail, by Step 4,

V (A∪B) = V (1A∪B) = V (1A + 1B)

= 2V
(

1
2 1A + 1

2 1B
)

= V (A)+ V (B)�

Step 6. Let P be the set of priors corresponding to V . For A ∈ �tail, V (A)+ V (�\A)= 1.
Thus, V (A) = 0 	⇒ V (�\A) = 1. Further, V (A) = 1 	⇒ P(A) = 1 for all P ∈ P . Since
V (A) = 0 or 1, it follows that

{P(A) :P ∈ P} = {0} or {1}�

Step 7. For each f ∈ F1, there is an exchangeable measure P∗ that is minimizing for f .
To see this, note that

V
(

1
4f · θf + 1

4f + 1
4θf + 1

4

)
= V

((
1
2f + 1

2

)
·
(

1
2θf + 1

2

))
= V

(
1
2f + 1

2

)
V
(

1
2θf + 1

2

)
= 1

4 [V (f · θf )+ V (f )+ V (θf )+ 1]�
By Lemma 2.2, there is a common minimizing measure P for f and θf . Let π be the
permutation that switches experiments 1 and 2. Then, using Symmetry,

(πP)f = P(πf) = P(θf ) = V (θf )= V (f )�

Therefore, P and πP are both minimizing for f . Finally, P1 ≡ 1
2P + 1

2πP is also minimiz-
ing (it lies in P because P is convex) and it satisfies πP1 = P1.
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Apply a similar argument to ( 1
2f + 1

2) · ( 1
2θf + 1

2) · · · ( 1
2θ

nf + 1
2) to deduce that there

is a common minimizing measure Pn for {f�θf� � � � � θnf } that satisfies πPn = Pn for all
π ∈ 
n, the set of permutations on {1� � � � � n}. Since P is compact, without loss of gener-
ality (after relabeling), Pn → P∗ ∈ P . Then P∗ is exchangeable and minimizing for f .

Step 8. The measure P∗ in Step 8 is i.i.d. By Step 6, P∗ is 0–1-valued on �tail. But, using
the de Finetti Theorem, it is straightforward to show that the only exchangeable mea-
sures with this property are i.i.d. measures.

Step 9. For all f ′� f ∈ F1, V (αf ′ + (1 − α)f ) = αV (f ′)+ (1 − α)V (f ). Take i.i.d. measures
P ′ for f ′ and P for f . Since both P ′ and P are i.i.d. measures and they agree on tail events
(Step 6), they must coincide. Thus, there is a common minimizing measure for f ′ and f .

Step 10. For all f ′� f ∈ F , V (αf ′ + (1 − α)f ) = αV (f ′) + (1 − α)V (f ). For any n, view
Sn as corresponding to one experiment and repeat the above to derive additivity for all
f ′� f ∈ F{1�����n}. Finally, apply Regularity to extend additivity to all acts.

Appendix D: Proofs for updating

Proof of Theorem 6.1 (Sufficiency). We prove (6.1) for n = 1; the general argument is
similar.

We use Proposition 1 in De Meyer and Mongin (1995), for which the main step is to
show that D is convex, where

D= {
(U(f )�U1(f |s1))s1∈S1 : f ∈ F>1

}⊂ RS+1�

A preliminary result concerns shifted acts. Recall that θ is the shift operator, so that,
for any act,

(θf )(s1� s2� s3� � � �)= f (s2� s3� � � �)�

where θn denotes the n-fold replication of θ. Symmetry implies also indifference to
shifts, that is, θf ∼ f for all acts f (see Section 4.2).

Now let x� y ∈D,

x= (U(f )�U1(f |s1))s1∈S1 and y = (U(g)�U1(g|s1))s1∈S1�

and prove that αx + (1 − α)y ∈ D. Suppose first that f and g are finitely based. Then
there exists N large enough so that f and the shifted act θNg are orthogonal, that is, they
depend on disjoint sets of experiments. For such an N , because each utility function
satisfies OI and shift-invariance,

αx+ (1 − α)y = α(U(f )�U1(f |s1))s1∈S1 + (1 − α)(U(g)�U1(g|s1))s1∈S1

= α(U(f )�U1(f |s1))s1∈S1 + (1 − α)(U(θNg)�U1(θ
Ng|s1))s1∈S1

= (
U(αf + (1 − α)θNg)�U1(αf + (1 − α)θNg|s1)

)
s1∈S1

∈D�
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where the last equality follows from OI. Finally, the preceding reasoning can be extended
to general (not only finitely based) acts f and g by Regularity.

The other conditions in Proposition 1 of De Meyer and Mongin (1995) are readily
verified.35 Therefore, there exist positive numbers as1 > 0 such that

U(f) =
∑
s1

as1U1(f |s1)� f ∈ F>1�

Since U(p) =U1(p|s1)= p for all (constant acts) p, it follows that
∑

s1
as1 = 1.

Deduce that, for all f ∈ F>1,∫
V (f )dμ(V )=

∑
s1

as1

∫
V (f )dμs1(V ) =

∫
V (f )(�s1as1 dμs1(V ))�

By uniqueness of the representing measure,

μ(·) =
∑
s1

as1μs1(·)�

Because as1 > 0 for each s1, it follows that μs1 � μ and

1 =
∑
s1

as1(dμs1(·)/dμ(·))�

Equation (6.1) is satisfied for n= 1 if

L1(s1|V ) = as1(dμs1(V )/dμ(V ))�

Similarly for n > 1.
Argue similarly for every n to obtain a family {Ln(·|V )} of conditional one-step-ahead

likelihoods. These can be combined in the standard way to yield a unique likelihood
function L(·|V ) on �. �

Proof of Proposition 6.3. (i) We adapt a result of Doob as described in Le Cam and
Yang (2000, Propositions 2 and 3, p. 243). For simplicity, consider the special case of
coin-tossing.

Because each L(·|I) is exchangeable, lim�n(ω) exists L(·|I)-a.s. and, for any inter-
val I ⊂ [0�1],

λI(I) =L(·|I)
({ω : lim�n(ω) ∈ I})� (D.1)

Since λI has support in I , then λI(I) = 1. Because intervals are disjoint, for each ω,
there is at most one I such that lim�n(ω) ∈ I . Define F :� → Supp(μ), by

F(ω) = I if lim�n(ω) ∈ I

35De Meyer and Mongin’s condition (C) is satisfied here because U(p) = U1(p|s1) = p for all s1 and
0 ≤ p≤ 1. Therefore, WDC implies their condition P4, and the proposition’s conclusion follows.
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and define F(ω) = I , with I an arbitrary fixed interval in the support of μ, if lim�n(ω) /∈⋃
Supp(μ) I . Then ∫

Supp(μ)

∫
�

|I − F(ω)|dL(ω|I)dμ(I) = 0�

which establishes the condition in Le Cam and Yang (2000, Proposition 2). Their Propo-
sition 3 completes the proof.

(ii) Define F :� → {I�p} by F(ω) = p if lim�n(ω) = p and by F(ω) = I otherwise.
Then ∫

�
|I − F(ω)|dL(ω|I) = 0∫

�
|p− F(ω)|dp∞(ω) = 0�

The former is valid because L({ω : lim�n(ω) = p}|I) = λI({p}) = 0. Thus Le Cam and
Yang’s (2000), Proposition 3 completes the proof. �
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