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Common agency and public good provision under
asymmetric information

David Martimort
École des Hautes Études en Sciences Sociales, Toulouse School of Economics

Humberto Moreira
Graduate School of Economics, Fundação Getulio Vargas

The provision of public goods under asymmetric information has most often been
viewed as a mechanism design problem under the aegis of an uninformed medi-
ator. This paper focuses on institutional contexts without such a mediator. Con-
tributors privately informed on their willingness to pay non-cooperatively offer
contribution schedules to an agent who produces the public good on their behalf.
In any separating and informative equilibrium of this common agency game un-
der asymmetric information, instead of reducing marginal contributions to free-
ride on others, principals do so to screen the agent’s endogenous private infor-
mation obtained from privately observing other principals’ offers. Under weak
conditions, the existence of a differentiable equilibrium is shown. Equilibria are
always ex post inefficient and interim efficient if and only if the type distribution
has a linear inverse hazard rate. This points to the major inefficiency of contri-
bution games under asymmetric information and stands in contrast to the more
positive efficiency result that the common agency literature has unveiled when as-
suming complete information. Extensions of the model address direct contracting
between principals, the existence of pooling uninformative equilibria, and the ro-
bustness of our findings to the possibility that principals entertain more complex
communication with their agent.

Keywords. Common agency, asymmetric information, public goods, ex post and
interim efficiency.

JEL classification. D82, D86, H41.

1. Introduction

Since Green and Laffont (1979), the provision of public goods under asymmetric infor-
mation has most often been viewed as a mechanism design problem under the aegis
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of an uninformed mediator having a full commitment ability. This paper relaxes this as-
sumption and focuses on cases without such a mediator. Contributors who are privately
informed on their willingness to pay non-cooperatively offer contribution schedules to
an agent who produces the public good on their behalf.

Our first motivation for undertaking such analysis comes from observing that, in
many real-world settings, centralized mechanisms and uninformed mediators with a
strong ability to commit to those mechanisms are not available. Health, environment,
multilateral foreign aid, and other transnational public goods are all examples of pub-
lic goods with voluntary provision by sovereign countries. There is no mediator to de-
sign the mechanisms that those countries should play to reveal their preferences. Poli-
tics and games of influence among interest groups offer other important examples. Key
decision-makers might not have much commitment power to organize and ex ante de-
sign competition between interest groups. Instead, they only react ex post to the lobby-
ing contributions they receive from those groups.1 In those contexts, it is important to
know whether a game of voluntary contributions fares well under asymmetric informa-
tion, i.e., what are the positive and normative properties of the corresponding Bayesian–
Nash equilibria.

Our second motivation is theoretical. Although earlier works on asymmetric infor-
mation (Clarke 1971, Groves 1973) studied specific mechanisms for the provision of
public goods, the bulk of the literature has departed from the analysis of real-world
institutions to characterize instead properties of the whole set of incentive-feasible al-
locations.2 In the standard framework (sometimes referred to as the centralized mecha-
nism approach in what follows), an uninformed mediator, moving first, designs a mech-
anism for informed players. This mechanism induces an equilibrium allocation that is
Bayesian incentive compatible, feasible (i.e., contributions cover the cost of the public
good), and might respect the agents’ veto constraints. No other institutional constraint
on the kind of mechanisms or on the communication devices that can be used is con-
sidered. In this paper, we impose that such allocation is an equilibrium outcome of a
game of voluntary contributions taking place under asymmetric information. In such a
game, a privately informed contributor might want to offer a contribution schedule that
is flexible enough to cope with different realizations of others’ preferences. An agent col-
lects contributions, endogenously learns something about the contributors’ preferences
from observing their mere offers, and chooses the level of public good accordingly.

This institutional setting is thus viewed as a common agency game under asymmet-
ric information with privately informed contributors non-cooperatively designing con-
tribution schedules.3 We are interested in the general properties of such games both in
terms of how information is aggregated, and in terms of ex post and interim efficiency.

Our first important results are related to the process by which the equilibrium out-
come aggregates contributors’ private information. At a best response to what others
offer, a given principal designs his own contribution not only to signal his preferences

1Grossman and Helpman (1994).
2This research strategy of the public good literature stands in sharp contrast with the way the literature

on auctions has evolved. There, equal efforts have been devoted to the study of particular auction formats
and to the characterization of the general properties of unrestricted auction mechanisms.

3See Martimort (2006) for a survey of the literature.
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to the common agent, but also to extract the endogenous private information that this
agent may have learned from observing others’ offers. Signaling turns out to be cost-
less in our environment because of private values (the principals’ private information
does not enter directly into the agent’s utility function) and risk neutrality. Focusing
on informative outcomes that aggregate information efficiently, we study separating
Bayesian equilibria, i.e., contributors with different valuations offer different contribu-
tion schedules. In our private values environment, those contributions are the same
as if the agent was perfectly informed on principals’ valuations and out-of-equilibrium
beliefs following unexpected offers are irrelevant in characterizing the equilibrium. In-
stead, screening is costly. Each principal has to learn what the agent has endogenously
learned from observing others’ contributions.4 Standard mechanism design techniques
can nevertheless be used to compute best responses. When choosing how much to con-
tribute, each principal behaves actually as a monopsonist in front of an agent who is en-
dogenously privately informed on the preferences of other contributors. By a standard
screening argument,5 this principal contributes less at the margin than his marginal val-
uation to decrease the agent’s information rent. Intuitively, the agent can always ask for
more from a given principal by pretending that others have not contributed enough.
Each principal has then to reduce his own contribution to make that strategy less attrac-
tive to the agent.

As far as existence is concerned, we show that the marginal contribution in any equi-
librium solves a complex functional equation with rather stringent boundary condi-
tions. This equation links the equilibrium’s marginal contribution, its inverse, and its
derivative. It is thus nonlocal by nature. Boundary conditions come from characterizing
the bidding behavior of the two principals who have the highest and the lowest valua-
tions, and who altogether implement a given output. We show that there always exists
a differentiable equilibrium of the game under weak conditions on distributions. The
idea is to analyze best responses in terms of the distribution of marginal contributions
that a principal offers and to provide conditions under which that best-response map-
ping is monotonically decreasing: If principal 2’s distribution of marginal contributions
increases in the sense of first-order stochastic dominance, principal 1’s own distribu-
tion decreases. This monotonicity helps to define a set of distributions that is stable by
the best-response mapping and from which a fixed point can be found using Schauder’s
Second Theorem. Finally, we also show uniqueness when the distribution of types is
uniform.

Turning now to the normative properties of those equilibria, any equilibrium is nec-
essarily ex post inefficient. For screening purposes, each principal always contributes
less at the margin than what it is worth to him and “free-riding” arises. This is not to

4This is related to the notion of “market information” that Epstein and Peters (1999) stress in multiprin-
cipals environments. Those authors derive general Revelation Principles for multiprincipals games where
each principal should try to learn from the agent whatever information he has on his own preferences, but
also on what he privately learns from observing others’ offers. In a pure strategy Bayesian equilibrium as
analyzed below, principals perfectly conjecture the strategy followed by others. They are a priori unaware
of their exact types, but may try to learn those types from asking the common agent about what he learns
from observing offers made by other principals.

5Laffont and Martimort (2001, Chapter 3).
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hide his type to the common agent as the centralized mechanism design approach pre-
dicts.6 Instead, a principal induces less production to reduce the information rent that
the agent gets from learning the preferences of others. Downward distortions below the
first-best necessarily follow from this new source of distortion. The absence of a me-
diator forces privately informed contributors to communicate through a self-interested
agent. Communication occurs via the offer of a contribution schedule that reveals the
corresponding principal’s type in any informative equilibrium.

Given that ex post efficiency fails and interim efficiency is a more relevant efficiency
concept under asymmetric information, we ask whether equilibria are nevertheless in-
terim efficient and under which circumstances if any.7 The additional screening costs
from having communication take place through the agent explain why the Bayesian
equilibria of the voluntary contribution game generally fail to be interim efficient. In-
terim efficiency is obtained if and only if the type distribution has a linear inverse hazard
rate. We derive the symmetric equilibrium marginal contribution in that case. Beyond
that non-generic case, public intervention under the aegis of an uninformed mediator is
helpful in coordinating contributions. This points at the major inefficiency of contribu-
tion games under asymmetric information and stands in sharp contrast to the striking
positive efficiency result that the common agency literature has unveiled when assum-
ing complete information.8

Extensions of the model address direct contracting and communication between
principals, the existence of pooling uninformative equilibria, and the robustness of our
findings to the possibility that principals entertain more complex communication with
their agent.

Section 2 reviews the literature. Section 3 presents the model. Section 4 shows
how to derive symmetric differentiable equilibria of the common agency game under
asymmetric information. We present there also the Lindahl–Samuelson conditions sat-
isfied at equilibrium and provide tractable examples. Section 5 discusses existence and
uniqueness. Section 6 analyzes welfare properties of equilibria. Section 7 discusses sev-
eral extensions of our model. Section 8 concludes. Proofs are relegated to the Appendix.

2. Review of the literature

Following Wilson (1979) and Bernheim and Whinston (1986), the common agency lit-
erature has developed an analytical framework to tackle a variety of important prob-
lems such as menu auctions, public goods provision through voluntary contributions,9

or policy formation with competing lobbying groups in complete information environ-
ments.10 Imposing that contributions are “truthful,” i.e., reflect the relative preferences

6Laffont and Maskin (1979), Güth and Hellwig (1987), Rob (1989), and Mailath and Postlewaite (1990).
7Holmström and Myerson (1983) and Ledyard and Palfrey (1999). Because the common agent might

get a positive rent in equilibrium from his endogenous private information, he might also receive a posi-
tive weight in the social welfare function maximized by the uninformed mediator offering the centralized
mechanism designed to achieve a given interim efficient allocation.

8Bernheim and Whinston (1986).
9Laussel and Le Breton (1998).
10Grossman and Helpman (1994).
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of the principals among alternatives, Bernheim and Whinston (1986) reduce the equilib-
rium indeterminacy of those games and select efficient equilibria.11 With such truthful
schedules, what a principal pays at the margin for inducing a change in the agent’s de-
cision is exactly what it is worth to him and the “free-riding” problem in public good
provision cannot arise. Modulo truthfulness, common agency aggregates preferences
efficiently under complete information.12 Modeling private information on the princi-
pals’ side justifies the use of nonlinear contributions for screening purposes in the first
place. The “truthfulness” requirement is then replaced by incentive compatibility con-
straints. The cost of putting on firmer foundations the use of schedules is that ex post
efficiency is lost and the conditions for interim efficiency become severe. In sharp con-
trast to complete information models, contribution games under asymmetric informa-
tion are most often inefficient even in the interim sense. This gives a less optimistic view
of decentralized bargaining.

Paralleling those complete information papers, Stole (1990), Martimort (1992, 1996a,
1996b), Mezzetti (1997), Biais et al. (2000), and Martimort and Stole (2002, 2003, 2009)
among others analyze oligopolistic screening environments where different principals
elicit information privately known by the common agent at the contracting stage. These
papers stress the impact of oligopolistic screening on the standard rent/efficiency trade-
off. We focus instead on asymmetric information on the principals’ side. Like in this ear-
lier literature, the presence of competing principals introduces an additional distortion.
In the standard common agency literature, a given principal needs to worry that the
mechanism he offers affects the agent’s choices of the contracting variables controled
by other principals. The distortion channel in our paper is different. Since principals
cannot coordinate by communicating their types to a mediator, they do so through the
agent and endow the latter with private information that the agent can exploit to obtain
an information rent. The agent’s private information vis-à-vis each principal is endoge-
nous: it is what the agent may have learned from observing the other principals’ offers.13

The additional distortion due to the principals’ non-cooperative behavior can thus be
explained by their desire to extract the information rent associated to such endogenous
information.

Contrasting with the use of schedules stressed by Bernheim and Whinston (1986),
the complete information literature on voluntary provision of public goods highlights
inefficiency and free-riding in models where contributors are restricted to offer fixed

11Multiplicity might still come from the flexibility in sharing the aggregate surplus among the contribut-
ing principals and their common agent (Bernheim and Whinston 1986).

12These results have been extended in many different directions. Dixit et al. (1997) introduce redistrib-
utive concerns by relaxing the quasi-linearity assumption. Laussel and Le Breton (1998) study incomplete
information on the preferences of the common agent, but focus on ex ante contracting when agency costs
are null. Other extensions less directly relevant for the analysis of this paper include Prat and Rustichini
(2003), who study competition among principals trying to influence multiple agents, and Bergemann and
Välimäki (2003), who consider dynamic issues.

13Bond and Gresik (1997) study the case where only one principal has private information and principals
compete with piece-rate contracts. They show that there exists an open set of inefficient equilibria. Bond
and Gresik (1998) analyze how tax authorities compete for a multinational firm’s revenue when only one
principal knows the firm’s costs. In both papers, decisions are on private goods.
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contributions (Bergstrom et al. 1986). Other solutions to this inefficiency problem in-
clude refunds (Bagnoli and Lipman 1989) and multistage mechanisms in environments
with partially verifiable information (Jackson and Moulin 1992).

There exists a tiny literature on voluntary contributions for a 0–1 public good by pri-
vately informed agents. These works derive equilibrium strategy using techniques from
the auction literature (Alboth et al. 2001, Menezes et al. 2001). Menezes et al. (2001)
stress the strong ex post inefficiency of equilibria, whereas Laussel and Palfrey (2003)
and Barbieri and Malueg (2008a, 2008b) find more positive results using interim effi-
ciency. Our assumption that the level of public good is continuous invites the use of a
differentiable approach. Interim efficiency is now much more stringent since it should
apply not only on a line in the type space as in the 0–1 case (namely the set of types for
which there is indifference between producing or not producing the public good), but
on the whole type space. This is too demanding beyond the case of linear inverse hazard
rates.

Finally, it is also useful to situate our contribution within the existing mechanism
design literature on public goods. Since Clarke (1971) and Groves (1973), it is well
known that ex post efficiency is possible under dominant strategy implementation.
d’Aspremont and Gerard-Varet (1979) show that one can maintain budget balance and
efficiency under Bayesian implementation. Laffont and Maskin (1979), Güth and Hell-
wig (1987), Rob (1989), and Mailath and Postlewaite (1990) stress the role of participa-
tion constraints to generate inefficiency. A game of voluntary contributions ensures par-
ticipation by principals, relies on Bayesian strategies, and finally generates a positive
surplus for the agent. Hence, ex post inefficiency necessarily arises. When a centralized
mechanism is offered by an uninformed mediator, inefficiencies are due to the contrib-
utors’ incentives to hide their own types to this mediator: the so-called free-riding prob-
lem. Under common agency, as we will see below, contributors reveal instead their types
by offering contracts to the agent but want to screen this agent according to what he has
learned from others. This is no longer contributors who underestimate their valuations
but their common agent who wants to claim to each principal that others have a lower
willingness to pay: a different source of inefficiency in public good provision.

3. The model

Consider two risk-neutral principals Pi (i = 1�2) who derive utility from consuming a
public good that is produced in nonnegative quantity q.14�15 This public good may be
an infrastructure of variable size or a charitable activity, or it may also have a more ab-
stract interpretation as a policy variable in some lobbying games. The public good is ex-
cludable so that noncontributors do not enjoy the public good. Principals Pi get a utility
Vi(θi� q� ti)= θiq− ti from consuming q units of the good and paying an amount ti.

14Extending our analysis to the case of more than two principals significantly increases complexity. In-
deed, we will see below that each principal designs his contribution to screen others’ types. Having more
than two principals leads thus to a difficult multidimensional screening problem when computing each
principal’s best response. We leave those issues for further research.

15The public good can also be produced in quantity 0 or 1 and q is then viewed as its variable quality.



Theoretical Economics 5 (2010) Common agency and public good provision 165

Principals are privately informed on their respective valuations θi. Types are in-
dependently drawn from the same common knowledge and atomless distribution on
� = [¯θ� θ̄] (we denote �θ = θ̄ − ¯θ > 0) with cumulative distribution function F(·) and
everywhere positive and differentiable density f = F ′. Unless specified otherwise, we
assume that ¯θ > 0 and θ̄ < ∞ with |f ′(θ)| being bounded.16 The inverse hazard rate
R(θ) = (1 − F(θ))/f (θ) is nonincreasing. The expectation operator with respect to θ is
denoted Eθ[·].

Contributions are collected by a risk-neutral common agentAwho produces at cost
C(q) the public good and whose utility function is U(q�

∑2
i=1 ti)= ∑2

i=1 ti − C(q). Cost
C(·) is twice differentiable and convex with C(0) = C ′(0) = 0 and C ′(∞) = ∞, where
Inada conditions avoid corner solutions.

Benchmark. Let qFB(θ1� θ2) be the first-best level of public good. It is increasing in
both arguments and satisfies the Lindahl–Samuelson conditions:

2∑
i=1

θi = C ′(qFB(θ1� θ2))�

Strategy space. Each principal Pi may offer any nonnegative and continuous contri-
bution schedule ti(·) defined on a compact interval Q = [0� Q̄], where Q̄ is large enough
(say larger than qFB(θ̄� θ̄)).

Timing. The sequence of events is as follows.

• Stage 0: Principals privately learn their types θi.

• Stage 1: Principals non-cooperatively and simultaneously offer the contributions
{t1(·)� t2(·)}.

• Stage 2: The agent accepts or refuses any of those contracts. If he refuses all con-
tracts, the game ends with zero payoff for all players.

• Stage 3: The agent produces the level of public good q. Payments are made ac-
cording to the agent’s acceptance decisions and the chosen level of public good.

Together with the principals’ preferences, the information structure, and strategy
spaces, this timing defines our common agency game under incomplete information �.
We consider pure-strategy perfect Bayesian equilibria (PBE) of � (in short equilibrium).
Let ti(·� θi) denote an equilibrium strategy followed by principal Pi when his type is θi.

Definition 1. A pair of strategy profiles {t1(·� θ1)� t2(·� θ2)}(θ1�θ2)∈�2 is an equilibrium
of � if and only if

16Example 2 below provides an equilibrium characterization in the case of an exponential distribution.
Theorem 6 applies to beta density that may be zero at θ̄.
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• principal Pi (i= 1�2) with type θi finds it optimal to offer the contribution sched-
ule ti(·� θi) given that he expects that principal P−i follows the strategy profile
{t−i(·� θ−i)}θ−i∈�

• the agent’s updated beliefs on the principals’ types follow Bayes’ rule on the equi-
librium path and are arbitrary elsewhere

• the agent accepts contributions and chooses optimally the level of public good
given those contributions and his beliefs on the principals’ types.

Because of symmetry between players, we focus on symmetric equilibrium contri-
butions, and we may sometimes omit subscripts when they are obvious.

Remark 1. Acceptance of all contributions is a weakly optimal strategy for the agent
given that those contributions are nonnegative. Note that the restriction to nonnegative
schedules is innocuous in this context. The agent would never choose an equilibrium
output on the range of transfers offered by a given principal that are negative. He would
prefer to refuse such schedule to increase his payoff.17

Remark 2. The strategy space that we consider allows principals to offer only contri-
bution schedules. We postpone to Section 7.3 the analysis of the case where principals
may offer more complex communication mechanisms in line with the informed prin-
cipal literature (say menus of such contribution schedules from which they may pick
one).18�19

Remark 3. Existence of an optimal output at Stage 3 follows from compactness of Q and
continuity of the schedules. In the sequel, we impose further regularity assumptions on
contributions to get sharper predictions.

Remark 4. In any separating equilibrium, the agent infers from each principal’s contri-
bution his type. In such equilibrium, the agent gets endogenous private information on
both principals’ types before making his own choice on the level of public good.

Remark 5. At Stages 2 and 3 of the game, the agent’s decisions to accept and produce
depend only on the contribution schedules he receives. In our private values context
where the principals’ types do not enter directly into the agent’s utility function, these
decisions do not depend on the agent’s posterior beliefs following any offer made by one
of the principals either on or off the equilibrium path. Hence, out-of-equilibrium beliefs
that sustain the equilibrium are arbitrary.20

17In Section 7.3 we allow for negative transfers when principals offer inscrutable menus of mechanisms
(i.e., menus of contributions schedules that do not reveal the principal’s type) that are accepted or refused
by the agent before he produces and the principals reveal their types. Ex post participation constraints
are then replaced by interim ones and, in that case, it becomes quite natural to allow for transfers being
possibly negative in some states of nature.

18Maskin and Tirole (1990, 1992) and Myerson (1983) among others.
19There is no cheap-talk stage between players that could help them to replicate the existence of a me-

diator (Bárány 1992, Forges 1990, Gerardi 2002).
20See the Appendix for details.
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4. Characterizing equilibria

4.1 Overview

We proceed as follows to compute Pi’s best response to a pure-strategy profile
{t−i(·� θ−i)}θ−i∈� followed by P−i. First, we conjecture that P−i’s strategy is separating,
i.e., P−i offers different contributions as his type changes. Our focus on separating
equilibria is in the spirit of looking at equilibrium allocations that are informative as in
Spence (1973) and Riley (1979).21 Before choosing the level of public good, the agent gets
endogenous private information on θ−i by simply observing the mere offer t−i(·� θ−i) he
receives. Principal Pi must thus design his own contribution with an eye on the infor-
mation rent that the agent gets from this endogenous information.22 Second, we first
act as if the agent was perfectly informed on Pi’s type when the latter chooses his best
response to the strategy profile {t−i(q�θ−i)}θ−i∈� followed by P−i in a pure-strategy equi-
librium. Third, we benefit from the private values environment (i.e., the principals’ types
do not enter directly into the agent’s utility function) to show that the corresponding
profile of contribution schedules is also a best response in the asymmetric information
game �. Deviating toward another contribution schedule is suboptimal for any out-of-
equilibrium beliefs that the agent may hold following such an unexpected offer. Finally,
we notice that Pi’s best response is itself separating and conveys information on Pi’s type
to the agent. Therefore, the agent also gets endogenous private information on Pi’s type
by simply observing his mere offer. This verifies that the same techniques can also be
used to compute P−i’s best response, so this approach holds the symmetric equilibrium
we seek.

Running Example. To illustrate the above procedure, we use throughout the quadrat-
ic-uniform example, i.e., C(q) = q2/2 and types are uniformly distributed on � = [¯θ� θ̄]with 3¯θ > θ̄. ♦

4.2 Computing best responses

Following the procedure explained above, we assume that the agent is perfectly in-
formed on Pi’s type when the latter chooses his best response to the strategy profile
{t−i(q�θ−i)}θ−i∈� followed by P−i. The Revelation Principle can be used to char-
acterize any allocation that principal Pi may achieve by deviating toward any pos-
sible contribution schedule ti(q�θi).23 We thus focus on revelation mechanisms
{tDi (θ̂−i|θi)�qD(θ̂−i|θi)}θ̂−i∈� that induce the agent to reveal to Pi what he has learned
by observing P−i’s offer.

21Such equilibria aggregate information efficiently, which seems to be an interesting normative property,
especially in view of assessing the ex post efficiency of equilibrium allocations. Section 7.2 analyzes instead
the case of uninformative pooling equilibria.

22This points at the role that contributions play in a common agency environment: learning over what
Epstein and Peters (1999) call market information, i.e., over other principals’ preferences that are reflected
in their own offers to the agent.

23Martimort and Stole (2002).
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Let θ̂−i be the agent’s report on θ−i (that he has learned from observing P−i’s offer)
to Pi in the truthful and direct revelation mechanism above. The agent’s utility becomes

ŨD(θ̂−i� θ−i|θi)= tDi (θ̂−i|θi)+ t−i(qD(θ̂−i|θi)�θ−i)−C(qD(θ̂−i|θi))�
Incentive compatibility yields the expression of the agent’s information rent:

UD(θ−i|θi)= ŨD(θ−i� θ−i|θi)= max
θ̂−i∈�

ŨD(θ̂−i� θ−i|θi)� (1)

For a fixed strategy profile {t−i(q�θ−i)}θ−i∈� for P−i, the mechanism {tDi (θ̂−i|θi)�
qD(θ̂−i|θi)}θ̂−i∈� induces the allocation {UD(θ−i|θi)�qD(θ−i|θi)}θ−i∈�.

Making Pi’s endogenous screening problem about learning P−i’s type from the agent
tractable requires further conditions on P−i’s contributions. The conditions below will
thus be satisfied by the informative equilibrium under scrutiny. To simplify the analysis,
we now also consider contribution schedules that are piecewise three times differen-
tiable so that the equilibrium output is differentiable.24

Definition 2. A nonnegative contribution t−i(q�θ−i) is increasing in type (IT) when,
at any differentiability point (q�θ−i),

∂t−i
∂θ

(q�θ−i)≥ 0�

Under IT, principal P−i contributes more if he has a greater valuation. Another nat-
ural requirement is that an upward shift in P−i’s valuation increases also the equilibrium
quantity, i.e., the same Spence–Mirrlees property as for the principals’ preferences holds
also for the contribution schedules.

Definition 3. A nonnegative contribution t−i(q�θ−i) with margin p−i(q�θ−i) =
∂t−i(q�θ−i)/∂q satisfies the Spence–Mirrlees Property (SMP) when, at any differentia-
bility point (q�θ−i),

∂p−i
∂θ

(q�θ−i)≥ 0�

Using standard techniques from the screening literature in monopolistic screening
environments, the next lemma characterizes incentive compatible allocations that Pi
may induce by choosing his own contribution schedule.

Lemma 1. Assume that P−i offers a nonnegative contribution t−i(q�θ−i). Any truthful
and direct revelation mechanism {tDi (θ̂−i|θi)�qD(θ̂−i|θi)}θ̂−i∈� that Pi may offer to induce

the allocation {UD(θ−i|θi)�qD(θ−i|θi)}θ−i∈� satisfies the following properties.

• UD(θ−i|θi) is a.e. differentiable with respect to θ−i with

∂UD

∂θ−i
(θ−i|θi)= ∂t−i

∂θ
(qD(θ−i|θi)�θ−i)≥ 0 (2)

24Equilibria using forcing contributions can be constructed in this environment. See Section 7.2.
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when t−i(q�θ−i) satisfies IT.

• If t−i(q�θ−i) satisfies SMP, qD(θ−i|θi) is monotonically increasing and thus a.e. dif-
ferentiable in θ−i with

∂qD

∂θ−i
(θ−i|θi)≥ 0 a.e. (3)

• If t−i(q�θ−i) satisfies SMP, (3) is also sufficient for global optimality of the agent’s
problem (1).

Running Example continued. Suppose that principal P2 with type θ2 offers the re-
vealing nonnegative contribution

t2(q�θ2)= max
{
0�

( 1
2θ2 − 1

6 θ̄
)
q+ 1

6q
2 + t02(θ2)

}
� (4)

where

t02(θ2)= 1
12(3¯θ− θ̄)2 − 1

6

( 3
2(θ2 + ¯θ)− θ̄)2

�

Notice that, on its positive range, t2(q�θ2) satisfies IT when q ≥ −2dt02(θ2)/dθ2 =
3
2(θ2 + ¯θ) − θ̄, a property that holds for the equilibrium output given in (6) below. It
also satisfies SMP. ♦

Turning now to participation constraints, the agent accepts Pi’s offer when

UD(θ−i|θi)≥ Û−i(θ−i) for all θ−i ∈�� (5)

where Û−i(θ−i)= maxq∈Q t−i(q�θ−i)−C(q) is the agent’s rent when not taking Pi’s con-
tribution. Since t−i(q�θ−i) is nonnegative, the agent necessarily makes a nonnegative
profit at any profile (θi� θ−i).

Running Example continued. By taking only the contribution schedule defined
in (4), the agent gets a reservation payoff

Û2(θ2)= max
q≥0

t2(q�θ2)− 1
2q

2 = max
{
0� 1

48(3θ2 − θ̄)2 + t02(θ2)
}
�

where the second term in the right-hand side above is achieved by choosing the non-
negative output q̂2(θ2)= 1

4(3θ2 − θ̄) on the positive range of t2(q�θ2). ♦

If the agent were informed on Pi’s type θi, principal Pi would solve the follow-
ing mechanism design problem at a best response to any nonnegative SMP profile
t−i(q�θ−i):

Pi(θi) : max
{UD(·|θi);qD(·|θi)}

Eθ−i
[
θiq

D(θ−i|θi)

+ t−i(qD(θ−i|θi)�θ−i)−C(qD(θ−i|θi))−UD(θ−i|θi)
]

subject to (2), (3), and (5).
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A solution to Pi(θi) is an allocation {UD(θ−i|θi)�qD(θ−i|θi)} (or, equivalently, a di-
rect revelation mechanism {tDi (θ−i|θi)�qD(θ−i|θi)} that induces this allocation)25 from
which we can easily reconstruct the nonlinear contribution ti(q�θi) offered by Pi with
the simple formula ti(q�θi)= tDi (θ−i|θi) at q= qD(θ−i|θi).26

The standard techniques for solving problems like Pi(θi) in monopolistic screening
environments consist in, first, neglecting the second-order condition (3), second, as-
suming that the participation constraint (5) binds only at θi = ¯θ to obtain an expression
of the agent’s rent UD(θ−i|θi), and, third, integrating by parts the expected rent left to
the agent to get an expression of the principal’s virtual surplus function.

As shown in the Appendix, these first three steps of the analysis lead to the reduced-
form problem

P ′
i(θi) : max

qD(·|θi)
Eθ−i

[
θiq

D(θ−i|θi)+ t−i(qD(θ−i|θi)�θ−i)

−C(qD(θ−i|θi))−R(θ−i)
∂t−i
∂θ

(qD(θ−i|θi)�θ−i)
]
�

A first difficulty is that the concavity of Pi’s virtual surplus function in the maximand
above depends on the other principal’s offer t−i(q�θ−i), which is an equilibrium con-
struction. A second difficulty comes from checking that the second-order condition (3)
holds. It turns out that both difficulties can be handled together when t−i(q�θ−i) satis-
fies a couple of properties that are made explicit in condition (11) below.

Running Example continued. Let us find principal P1’s best response to t2(q�θ2) and
assume that his type is revealed through the contract offer to the agent. As we saw
above, such best response can be computed by means of a direct revelation mechanism
{tD1 (θ̂2|θ1)�q

D(θ̂2|θ1)}θ̂2∈�.
Using standard techniques, let us thus write the agent’s payoff when taking both

schedules as

UD(θ2|θ1)= max
θ̂2∈�

tD1 (θ̂2|θ1)+ t2(qD(θ̂2|θ1)�θ2)− 1
2(q

D(θ̂2|θ1))
2�

The equilibrium output being chosen on the positive range of t2(q�θ2), we immediately
get from the Envelope Theorem that

∂UD

∂θ2
(θ2|θ1)= ∂t2

∂θ2
(qD(θ2|θ1)�θ2)= 1

2
qD(θ2|θ1)≥ 0�

A key point for finding P1’s best response consists in determining where the participa-
tion constraint necessary to induce the agent’s acceptance of principal P1’s contribu-
tion binds. Note that Û2(¯θ) = 0 and that the slope of Û2(θ2) is lower than the slope of
UD(θ2|θ1) provided principal P1’s marginal contribution is positive and induces more

25To simplify notation, the dependence on t−i(q�θ−i) is implicit.
26This formula holds whether qD(θ−i|θi) is strictly increasing in θ−i or has flat parts on bunching areas

if any.
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production than when the agent contracts only with principal P2. This yields immedi-

ately:

UD(θ2|θ1)=
∫ θ2

¯θ
1
2q
D(x|θ1)dx�

When using the direct revelation mechanism {tD1 (θ̂2|θ1)�q
D(θ̂2|θ1)}θ̂2∈�, principal P1’s

expected payoff becomes

Eθ2

[
θ1q

D(θ2|θ1)+ t2(qD(θ2|θ1))− 1
2(q

D(θ2|θ1))
2 −UD(θ2|θ1)

]
=Eθ2

[(
θ1 + θ2 − 1

3 θ̄
)
qD(θ2|θ1)− 1

3(q
D(θ2|θ1))

2 − t02(θ2)
]
�

where the equality follows from using Eθ2[UD(θ2|θ1)] =Eθ2[((θ̄− θ2)/2)qD(θ2|θ1)].
Pointwise optimization of P1’s virtual surplus yields the following expression of the

output induced at a best response to t2(q�θ2):

q(θ1� θ2)= 3
2(θ1 + θ2)− θ̄� (6)

Moreover, P1’s marginal contribution at a best response is such that

∂t1
∂q
(q(θ1� θ2)�θ1) = q(θ1� θ2)− ∂t2

∂q
(q(θ1� θ2)�θ1)

= 1
2θ1 − 1

6 θ̄+ 1
3q(θ1� θ2)≥ 0 when 3¯θ > θ̄

and where the second equality follows from using the expression of t2(q�θ2) given in (4)

on its positive range. Integrating yields the following expression of P1’s contribution for

any output in its positive range:

t1(q�θ1)= ( 1
2θ1 − 1

6 θ̄
)
q+ 1

6q
2 + t01(θ1)�

where

t01(θ1)= 1
12(3¯θ− θ̄)2 − 1

6

( 3
2(θ1 + ¯θ)− θ̄)2

is chosen so that UD(¯θ|θ1) = 0 for all θ1.27 The contribution can finally be extended

beyond the set of equilibrium outputs as in (4). A pair of such schedules forms thus a

symmetric informative equilibrium in this quadratic-uniform example. ♦

The next subsection offers a general analysis of such equilibria.

27Notice that ∂t1/∂θ1 ≥ 0 if q ≥ −2dt01(θ1)/dθ1 = 3
2 (θ1 + ¯θ) − θ̄ as will be the case for the output found

in (6). This expression is symmetric to that obtained for t02(θ2).
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4.3 Symmetric informative equilibria

Consider symmetric equilibria that solve problems Pi(θi) (or P ′
i(θi)) for both principals.

An important step of our analysis below will consist in showing that the contribution
schedule solution to Pi(θi), which was derived assuming that the agent has complete
information on Pi’s type, is also a best response in �, i.e., when Pi is privately informed.
Indeed, note that the incentive and participation constraints (2), (3), and (5) do not de-
pend on the agent’s beliefs on Pi’s type, but only on the schedule that this principal
offers. Hence, the agent’s decisions to accept that contribution and to produce accord-
ingly are also independent of his beliefs on Pi’s type. Any deviation away from the con-
tribution that Pi would optimally offer had the agent been informed on his type is thus
dominated for any out-of-equilibrium beliefs.

At a symmetric informative equilibrium with contribution t(q�θ) (resp. marginal
contributionp(q�θ)) satisfying SMP, we denote, respectively, the agent’s output and rent
as qD(θ−i|θi) = qD(θi|θ−i) = q(θ1� θ2) and UD(θ−i|θi) = UD(θi|θ−i) = U(θ1� θ2). The
first-order condition for pointwise optimization of P ′

i(θi) is

θi +p(q(θ1� θ2)�θ−i)−C ′(q(θ1� θ2))=R(θ−i)
∂p

∂θ
(q(θ1� θ2)�θ−i) for i= 1�2� (7)

This is the standard condition in screening models that says that the marginal surplus of
the bilateral coalition between Pi and the agent (left-hand side of (7)) is equal to the mar-
ginal cost of the latter’s information rent (right-hand side of (7)). The difficulty comes
from the fact that the marginal contribution p(q�θ) is an equilibrium construction.

To complete the characterization of equilibrium marginal contributions, it is useful
to rewrite the optimality condition for the agent’s output given that he has accepted
both contributions. This output must, on top of (7), also satisfy the following first-order
condition of the agent’s problem expressed in terms of nonlinear contributions:

2∑
i=1

p(q(θ1� θ2)�θi)= C ′(q(θ1� θ2))� (8)

with the second-order condition

2∑
i=1

∂p

∂q
(q(θ1� θ2)�θi)−C ′′(q(θ1� θ2))≤ 0� (9)

Consider now an equilibrium output q(θ1� θ2) increasing in each argument. For any
given level of the public good q = q(θ1� θ2), we can uniquely define the conjugate of
type θi as the type ψ(q�θi) for principal P−i such that q(θi�ψ(q�θi)) = q. Using condi-
tions (7) and (8), ψ(q�θ)must be defined as

ψ(q�θ)= −p(q�θ)+C ′(q)+R(θ)∂p
∂θ
(q�θ)� (10)

From now on, we assume that

∂ψ

∂q
(q�θ) > 0 and

∂ψ

∂θ
(q�θ) < 0� (11)
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These assumptions bear on an endogenous object, namely the equilibrium marginal
contribution, but they allow a clear characterization of equilibrium properties.

Running Example continued. Going back to formula (6), we easily observe that
ψ(q�θ)= 2

3(θ̄+ q)− θ satisfies conditions (11). ♦

Theorem 1. A nonnegative marginal contribution p(q�θ) arising at a symmetric infor-
mative equilibrium of � and satisfying 28 IT, SMP, and (11) implements an output sched-
ule q(θ1� θ2) that is increasing in each argument and satisfies conditions (7), (8), and (9).
Such equilibrium is separating and sustained by arbitrary out-of-equilibrium beliefs.

Turning now to the output distortions and distributions of information rent in any
such symmetric informative equilibrium, we obtain the following theorem.

Theorem 2. Any symmetric informative equilibrium with a marginal contribution
p(q�θ) satisfying (11) implements an output schedule q(·) and a rent profile U(·) such
that

• efficiency arises when both principals have the highest valuation (q(θ̄� θ̄) =
qFB(θ̄� θ̄)) and output is downward distorted otherwise (q(θ1� θ2) ≤ qFB(θ1� θ2) for
all (θ1� θ2))

• the agent’s information rent is such that

U(θ1� θ2)≥ 0 with equality if θi = ¯θ for at least one i�

where also

∂U

∂θi
(θi� ¯θ)= ∂t

∂θ
(q(θi� ¯θ)�θi)= 0 for all θi� (12)

At a best response, a principal induces less output from the agent than what is ex post
efficient for their bilateral coalition. This downward distortion reduces the information
rent that the agent gets from his endogenous private knowledge on the other principal’s
type. This distortion is captured by the right-hand side of (7), which is positive thanks
to SMP. In this common agency game, inefficiency comes from the screening problem
that each principal faces in contracting with an agent who is endogenously privately
informed on the other principal’s type.

This downward distortion should be contrasted to the usual free-riding problem for
public good provision found in centralized Bayesian mechanisms (Laffont and Maskin
1979, Rob 1989, Mailath and Postlewaite 1990). There free-riding comes from the con-
tributors’ incentives to underestimate their valuations when reporting to a single mech-
anism designer. Under common agency instead, principals do not hide their own valu-
ations from the common agent, but each of these principals wants to screen the agent
about the other principal’s preferences. These are no longer contributors themselves

28From now on, an informative equilibrium satisfying IT and SMP is called an equilibrium for short.
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who hide information, but the agent who might pretend having received less contribu-
tions from each principal than he really had.

Finally, the agent’s rent is everywhere nonnegative and zero when at least one of the
principals has the lowest possible valuation. The equilibrium allocation is generally not
budget balanced, and may generate some surplus that accrues to the agent.

4.4 Lindahl–Samuelson conditions and tractable examples

From condition (10) we have

ψ(q�θi)+p(q�θi)−C ′(q)=R(θi)∂p
∂θ
(q�θi) (13)

for all q= q(θi� θ−i) and (θi� θ−i) ∈�2. This condition can be rewritten as

∂

∂θi

[
p(q�θi)(1 − F(θi))

] = (ψ(q�θi)−C ′(q))f (θi)�

This differential equation in θi can be integrated to get p(q�θi). Since p(q�θi) must
remain bounded around θi = θ̄ for all q, we obtain

p(q�θi)= C ′(q)− 1
1 − F(θi)

∫ θ̄

θi

ψ(q�x)f (x)dx� (14)

Taking into account this expression of the marginal contributions and using (8) yields
the modified Lindahl–Samuelson conditions

C ′(q(θ1� θ2))=
2∑
i=1

1
1 − F(θi)

∫ θ̄

θi

ψ(q(θ1� θ2)�x)f (x)dx� (15)

Conditions (14) and (15) might sometimes suffice to characterize the marginal contri-
bution and output at an equilibrium.

Example 1. Let us extend our Running Example for a general cost function. Assume
that the principals’ types are still independently and uniformly distributed on�= [¯θ� θ̄].The following marginal contribution, which is linear in type and satisfies SMP, is part of
a symmetric equilibrium:

p(q�θ)= 1
2θ− 1

6 θ̄+ 1
3C

′(q)�

One can check that condition (7) holds, so it is a best response for each principal to offer
such a marginal contribution given that the other principal also does so.

The equilibrium output satisfies

C ′(q(θ1� θ2))= 3
2(θ1 + θ2)− θ̄� (16)

and thusψ(q�θ)= 2
3(θ̄+C ′(q))−θ (with ∂ψ(q�θ)/∂q > 0 and ∂ψ(q�θ)/∂θ < 0). Marginal

contributions are always positive for any equilibrium output when �θ is small enough,
namely 3¯θ > θ̄. ♦
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Example 2. Consider an exponential distribution on the unbounded support � =
[¯θ�+∞) with 1 − F(θ) = exp(−r(θ − ¯θ)), where r > 0 and ¯θ > 1/r. Looking again for a
symmetric equilibrium with a marginal contribution that is linear in type and satisfies
SMP, we find

p(q�θ)= θ− 1
r �

Again (7) holds and the nonnegative equilibrium output is such that

C ′(q(θ1� θ2))= θ1 + θ2 − 2
r �

so that ψ(q�θ)= 2/r +C ′(q)− θ (with again ∂ψ(q�θ)/∂q > 0 and ∂ψ(q�θ)/∂θ < 0). Mar-
ginal contributions are always positive for any equilibrium output, since ¯θ > 1/r. ♦

5. Existence and uniqueness

To get further insights on the structure of equilibria, it is useful to describe an equilib-
rium in terms of its isoquant lines θ2 = ψ(q�θ1). Rewriting conditions (7) and (8) along
such isoquants yields

p(q�θ)+p(q�ψ(q�θ)) = C ′(q) (17)

ψ(q�θ)−p(q�ψ(q�θ)) = R(θ)
∂p

∂θ
(q�θ) (18)

for all (q�θ), where q is in the range of the equilibrium schedule of outputs q(·).29

For a distribution with finite support, positive density, and |f ′(θ)| bounded, equa-
tions (17) and (18) are already quite informative on the shape of the marginal contribu-
tion at its boundaries on any isoquant. For any q such that 2θ̄≥ C ′(q)≥ θ̄+¯θ−1/(2f (¯θ)),
the highest type on the q-isoquant is θ̄, whereas the lowest type ¯θ(q) ≥ ¯θ is increasing
in q. We show in the Appendix (Lemma 6) that marginal contributions at those bound-
aries satisfy

p(q� ¯θ(q))= ¯θ(q)�
∂p

∂θ
(q� ¯θ(q))= 1

2
�

p(q� θ̄)= C ′(q)− ¯θ(q) < θ̄� and
∂p

∂θ
(q� θ̄) > 0�

Solving for (17) and (18) at a fixed q means looking for a function x(θ)= p(q�θ) that
is increasing in θ (and thus invertible) on a domain [¯θ(q)� θ̄] that satisfies the nonstan-
dard functional equation

R(θ)ẋ(θ)− x(θ)+C ′(q)= x−1(C ′(q)− x(θ)) (19)

29Notice that, by definition of a conjugate type, it must also be that ψ(q�ψ(q�θ))= θ for all θ ∈ [¯θ� θ̄].



176 Martimort and Moreira Theoretical Economics 5 (2010)

with the boundary conditions30

x(¯θ(q))= ¯θ(q) and x(θ̄)= C ′(q)− ¯θ(q)� (20)

Equation (19) is not a standard differential equation since it depends not only on the
function and its (nonnegative) derivative, but also on its inverse. Standard results do not
apply to guarantee existence and uniqueness of such a solution. Moreover, the bound-
ary conditions (20) are such that (19) has a singularity at θ̄. Hence, the analysis needed
to prove existence has to rely on a global approach. In this respect, a more tractable way
to prove existence is to work with the equilibrium distribution of marginal prices.31 Do-
ing so turns out also to provide new intuition on how each principal computes his best
response.

Fix q and denote byG(p�q) the cumulative distribution of marginal price p(q�θ) on
that isoquant, i.e.,G(p�q)= Pr[p(q�θ)≤ p]. Since we are interested in deriving equilib-
ria with strictly increasing marginal contribution, G(p�q) has no atom. Denote then
by g(p�q) = ∂G(p�q)/∂p the corresponding density. A priori, only agents with type
θ ≥ ¯θ(q) may lie on that isoquant q, and the boundary conditions (20) tell us that the
range of prices p(q�θ) must be [¯θ(q)�C

′(q)− ¯θ(q)]. By the monotonicity of p(θ�q), we
haveG(p(q�θ)�q)= F(θ) and g(p(q�θ))∂p(q�θ)/∂θ= f (θ), and we may extendG(p�q)
for p ∈ [¯θ� ¯θ(q)] with the convention that types θ≤ ¯θ(q) contribute their valuation at the
margin, i.e., p(q�θ)= θ.

The equilibrium condition (19) can be rewritten using the definition ofG(·� q) as

F

(
C ′(q)−p+ 1 −G(p�q)

g(p�q)

)
=G(C ′(q)−p�q)�

From this, we obtain the functional equation

∂G
∂p (p�q)

1 −G(p�q) = 1
F−1(G(C ′(q)−p�q))−C ′(q)+p� (21)

The boundary conditions (20) yield

G(¯θ(q)�q)= F(¯θ(q)) and G(C ′(q)− ¯θ(q)�q)= 1� (22)

The next theorem provides our existence result. For this, we need the following tech-
nical assumption on the hazard function:32

min
θ∈�

θ+R(θ)= θ̄� (23)

30We focus on the case 2θ̄ ≥ C ′(q) ≥ θ̄+ ¯θ− 1/(2f (¯θ)), i.e., outputs close enough to the first-best when
both principals have the highest valuation, since it appears to be the most interesting. Lower output lev-
els correspond to less stringent boundary conditions that are thus less constraining for the equilibrium
characterization.

31A similar trick is used by Leininger et al. (1989) for double auctions and Wilson (1993) for nonlinear
pricing.

32Since R(θ̄) = 0 and R′(θ̄) = −1, it is straightforward that the convexity of the hazard function guar-
antees (23). Another sufficient condition is the log concavity of the density. Notice that R′(θ) = −1 −
R(θ)d(ln(f (θ)))/dθ and R′′(θ) = −R′(θ)d(ln(f (θ)))/dθ − R(θ)d2(ln(f (θ)))/dθ2, which imply that every
critical point θ∗ < θ̄ of the minimization problem (23) is such that d(ln(f (θ)))/dθ|θ=θ∗ = 0. Thus, R′′(θ∗)=
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Theorem 3. Assume that (23) holds. A solution G(p�q) to the system (21)–(22) (alter-
natively, a solution p(q�θ) to (19)–(20)) exists. This solution G(p�q) (resp. p(q�θ)) is
increasing in p (resp. θ).

It is instructive to sketch the proof of Theorem 3. The first step is to consider the
sequence of distributions of marginal contributions that each principal plays in turn at
a best response to what the other offers, starting from the simple case where one princi-
pal, say P1, myopically offers a marginal contribution always equal to his own valuation.
Under the weak condition (23), principal P2 reacts by offering a distribution that, at each
iteration, dominates in the sense of first-order stochastic dominance that offered at the
round before. For P1, this is the reverse; each iterate is dominated by the previous one.
Intuitively, a principal finds it worthwhile to offer higher marginal contributions if the
other offers lower contributions and vice versa; the best-response mapping is monoton-
ically decreasing. This iterative process converges toward a set of distributions that is
stable in the following sense: if any principal offers a distribution of marginal prices
from this set, the other principal’s best response lies also in it. Schauder’s Second The-
orem33 then guarantees the existence of a distribution in that stable set that is a fixed
point.

Theorem 3 gives us the existence of a solution p(q�θ) to (19) for a given isoquant q.
We must also check that, as q increases, the corresponding ψ(q�θ) derived from the
knowledge ofp(q�θ) increases in q to ensure concavity of the principals’ problems as re-
quested by Theorem 1. Using that ψ(q� ¯θ(q))= θ̄ in any equilibrium and differentiating
with respect to q yields ∂ψ(q�θ)/∂q > 0 in the neighborhood of ¯θ(q). Hence, concavity
holds when �θ is small enough. The monotonicity of output follows from Theorem 2.

We have been silent so far about uniqueness, with respect to which we make the
following statement.

Theorem 4. Assume that types are uniformly distributed. Then the solution to the system
(21)–(22) is unique.

This result is of some importance for what follows. In the case of a uniform distri-
bution, the unique separating equilibrium is given by (16) and, anticipating Theorem 6
below, it is interim efficient.

With an unbounded support, however, ¯θ(q) is not properly defined and there is no
boundary condition that must be satisfied by the price schedule at θ̄= +∞. This inde-
terminacy opens the door to a multiplicity of equilibria as shown by the example below.

Example 2 continued. Assume that types are distributed according to an exponen-
tial distribution F(θ) = 1 − exp(−r(θ − ¯θ)) on [¯θ�∞) with ¯θ > 1/r. There exists a
whole continuum of equilibria p(q�θ) that solve (19). Those equilibria are such that

−R(θ∗)d2(ln(f (θ)))/dθ2|θ=θ∗ ≥ 0 whenever ln(f (θ)) is a concave function. Therefore, every critical point
is a local minimum, which implies that θ = θ̄ is the unique minimum. It is straightforward to check that
uniform, and normal or exponential distributions restricted to finite supports satisfy log concavity of the
density.

33Burton (2005, Chapter 3).
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p(q�θ) < θ− 1/r. Inefficiencies in any of those equilibria are stronger than in the equi-
librium where p(q�θ)= θ− 1/r, which we already exhibited above.34 ♦

6. Welfare properties

6.1 Ex post inefficiency

The following necessary implementability condition makes it easy to check whether a
given output schedule can be implemented as a common agency equilibrium.

Lemma 2. Any equilibrium output q(·)must satisfy

E(θ1�θ2)

[( 2∑
i=1

θi −R(θi)
)
q(θ1� θ2)−C(q(θ1� θ2))

]
≥ 2¯θq(¯θ� ¯θ)−C(q(¯θ� ¯θ)) > 0� (24)

Condition (24) says that the expected virtual surplus (where marginal valuations θi
are replaced by their virtual values θi −R(θi)) is worth at least the whole surplus gener-
ated in the worst scenario where both principals have the lowest type. This is similar to
the standard feasibility condition that arises in asymmetric information models with in-
dependent types once Bayesian incentive compatibility, ex post budget balancing, and
individual rationality constraints are aggregated together.35 In the contexts used so far
in this literature, there is no restriction in the centralized mechanisms that an unin-
formed mediator can use to implement an allocation, and this condition turns out to
be also sufficient: Given any output schedule satisfying the implementability condition,
one can find transfers that are ex post budget-balanced, Bayesian incentive compati-
ble, and individually rational for the informed players. Here, the added requirement
is that the allocation should arise as the equilibrium of a common agency game and
budget balancing is replaced by the weaker requirement that the agent’s information
rent is nonnegative. Condition (24) is here no longer sufficient for implementation as a
common agency equilibrium. Indeed, such an allocation must also solve the functional
equation (15).

Nevertheless, the necessary condition (24) is enough to get sharp results. Indeed,
Examples 1 and 2 above already showed existence of ex post inefficient equilibria.
Equipped with condition (24), it is straightforward to check that ex post inefficiency al-
ways arises.

Theorem 5. The first-best output qFB(θ1� θ2) never satisfies condition (24) and thus can-
not be achieved at any common agency equilibrium under asymmetric information.

This result echoes the discussion after Theorem 2, but it sharpens it. Equipped with
Theorems 2 and 5, we can conclude that there is always some downward distortion

34See the proof in the Appendix.
35Myerson and Satterthwaite (1983) develop such conditions for the case of bargaining, whereas Laffont

and Maskin (1979), Güth and Hellwig (1987), Mailath and Postlewaite (1990), Ledyard and Palfrey (1999),
and Hellwig (2003) did so for the case of public goods.
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of the equilibrium output below the first-best for at least a set of types with nonzero
measure. This contrasts sharply with the case of complete information where common
agency games have efficient equilibria sustained with “truthful” schedules.

6.2 Interim inefficiency

Under asymmetric information, one can still be interested in the normative properties
of common agency equilibria provided that interim efficiency is used as the welfare cri-
terion. We now investigate circumstances under which an equilibrium might be interim
efficient.

Interim efficient allocations are obtained as solutions of a centralized mechanism
design problem.36 An uninformed mediator offers a centralized mechanism to both
principals, who then report their types to this mediator. This mediator maximizes a
weighted sum of the principals’ and the agent’s utilities with the weights given to dif-
ferent types of principals being possibly different. Because we want to replicate a sym-
metric common agency equilibrium with such a centralized mechanism, we consider
symmetric weights that do not depend on the principal’s identity.

Lemma 3. An interim efficient profile q(θ1� θ2) nondecreasing in each argument (resp.

increasing) is such that there exist positive social weights α(θ) > 037 such that
∫ θ̄
¯θ
α(θ)×

f (θ)dθ≤ 138 and

2∑
i=1

b(θi)= C ′(q(θ1� θ2))� (25)

where b(θi) = θi − R(θi)(1 − α̃(θi)) is nondecreasing (resp. increasing) in θi and α̃(θi) =
(1/(1 − F(θi)))

∫ θ̄
θi
α(x)f (x)dx.

Equation (25) is again a Lindhal–Samuelson condition under asymmetric informa-
tion where valuations are replaced by virtual valuations reflecting the weights that dif-
ferent types have in the social welfare function that is maximized by the uninformed
mediator in charge of finding such interim efficient allocation.

Examples 1 and 2 continued. For a uniform distribution having support � = [¯θ� θ̄],the solution found in (16) remains interim efficient with the uniform weight α(θ) = 1
2

36Holmström and Myerson (1983).
37We focus on the case where all types receive a positive social weight in the social welfare criterion.

Without this assumption, we would get the unpalatable conclusion that giving only a Dirac mass to types θ̄
trivially achieves efficiency since the equilibrium output has no distortion at the top. Also, given that we
focused above on separating equilibria with strictly monotonically increasing allocations as described in
Theorem 1, we restrict to social weights that induce monotonically increasing allocations as well.

38This inequality captures the possibility that the common agent receives a positive weight in the social
welfare function maximized by the uninformed mediator. Remember that Theorem 2 shows that, in any
common agency symmetric equilibrium, the agent gets a nonnegative ex post rentU(θ1� θ2) that should be
accounted for when evaluating welfare. This distinguishes our notion of interim efficiency from that used
when it is assumed that budget is always balanced ex post (as in Ledyard and Palfrey 1999).
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for all θ. Even though the type distribution has unbounded support, positive results can
also be found for Example 2 with the uniform weight α(θ) = 0, i.e., principals have no
weight in the social welfare objective maximized by the uninformed mediator. ♦

Altogether (15) and (25) show that any increasing candidate function b(·)must solve
the functional equation

2∑
i=1

b(θi)=
2∑
i=1

1
1 − F(θi)

∫ θ̄

θi

b−1(b(θ1)+ b(θ2)− b(x))f (x)dx ∀(θ1� θ2) ∈�2� (26)

This condition is rather stringent. As a result, it is not surprising that there are few can-
didates for such b(·) and F(·) functions that altogether ensure interim efficiency.

Theorem 6. A symmetric equilibrium of a common agency game is interim efficient if
and only if the inverse hazard rate R(θ) is linear.

Theorem 6 implies that the only possibility for interim efficiency in the case of dis-
tributions having finite support arises with the β density function f (θ) = ((1 + β)/

(�θ1+β))(θ̄ − θ)β (for β ≥ 0).39 The function b(·) is then linear (b(θ) = ((β + 3)θ − θ̄)/

(β+ 2)), isoquants have slope −1 in the (θ1� θ2) space, and social weights are uniform
(α(θ) = 1/(β + 2)). Marginal contributions are linear in type and positive for �θ small
enough:

p(q�θ)= C ′(q)
β+ 3

+ θ̄
(
β+ 1
β+ 3

)
− (θ̄− θ)

(
β+ 1
β+ 2

)
�

The derivative ∂p(q�θ)/∂θ= (β+ 1)/(β+ 2) > 0 is independent of type and output. This
is the SMP term that determines the distortions induced by each principal at a best re-
sponse. When it is constant, each principal induces a distortion that does not depend
on the other’s type. This reduces the scope for manipulations by the agent and ensures
interim efficiency.

An immediate corollary of Theorem 6 follows.

Theorem 7. Public intervention through an uninformed mediator improves on the equi-
librium outcome unless the inverse hazard rate R(θ) is linear.

Although the common agency institution implements an interim efficient allocation
for linear inverse hazard rates, beyond that case, players strictly gain from appealing
to an uninformed mediator to collect contributions and move the outcome toward the
interim efficiency frontier with a centralized mechanism.

This is an important insight. Contribution games under asymmetric information are
unlikely to be efficient even in the weaker sense of interim efficiency. Beyond the linear
inverse hazard rate case, those games entail too much screening with each principal

39Note that f (θ̄) = 0 for that density, so Lemma 6 in the Appendix does not apply. In particular,

∂2p(q�θ)/∂q∂θ 	= 1
2 for β> 0.
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trying to learn the other’s type through the agent compared to a more centralized design
with an uninformed mediator collecting direct messages from the privately informed
principals.

7. Discussion

This section investigates a few extensions of our basic framework and discusses some
modeling assumptions.

7.1 Delegation

The output distortion in our common agency game comes from the fact that each prin-
cipal tries to screen the agent’s endogenous information. This indirect communication
seems overly costly. An alternative to the game of voluntary contributions could be for
one principal, say P−i, to provide the public good himself and to have direct commu-
nication between principals.40 Assuming that the agent has no particular advantage in
producing the public good himself, this would amount to considering that the princi-
pals’ objective functions are now, respectively,

Vi(θi� q� t)= θiq− t and V−i(θ−i� q� t)= θ−iq−C(q)+ t�
Consider now the case where a mechanism is designed by an uninformed mediator

who gives all bargaining power to principal Pi. It is straightforward to check that the
optimal output obtained this way solves41�42

θi + θ−i −R(θ−i)= C ′(qi(θi� θ−i))�

The valuation θ−i of the principal with no bargaining power is replaced by the lower
virtual valuation θ−i −R(θ−i).

Furthermore, assuming now that types are uniformly distributed on [¯θ� θ̄] and that
each principal might have all bargaining power with probability 1

2 , we find

C ′(q(θ1� θ2))= 1
2

(
C ′(q1(θ1� θ2))+C ′(q2(θ2� θ1))

)
�

where q(θ1� θ2) is the (unique from Theorem 4) equilibrium output obtained in the com-
mon agency game that is defined by (16). Indeed, under common agency, both prin-
cipals have the same bargaining power and their valuations θi are replaced by virtual
valuations θi − 1

2R(θi) with only a weight 1
2 on the inverse hazard rate distortion term.

From this, we obtain immediately the following proposition.

Proposition 1. Assume that types are uniformly distributed on [¯θ� θ̄]. Then the average
output implemented with asymmetric bargaining situations 1

2(q1(θ1� θ2)+ q2(θ2� θ1)) is
greater (resp. lower, equal) than the equilibrium output under common agency if C ′(·) is
concave (resp. convex, linear).

40Matthews and Postlewaite (1989) analyze the gains of allowing unmediated communication between
bidders in a double auction. Contrary to us, they do not give any productive role to one of those bidders.

41Assuming that �θ is small enough to get positive output and marginal contributions.
42This result arises also when principal Pi offers himself the mechanism (Mylovanov 2005).
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When C(q) = q2/2 as in our Running Example, the equilibrium output under com-
mon agency is the exact mean between those implemented by delegating the contract-
ing power to either principal with probability 1

2 . Because virtual valuations under com-
mon agency only entail half of the inverse hazard rate distortions, common agency re-
duces output fluctuations around that mean. Strict concavity of the surplus function
implies that an ex ante efficiency criterion would select common agency rather than an
institution that delegates all contracting power to either principal with probability 1

2 .
This result justifies our focus on a game with voluntary contributions in the first place.

7.2 Pooling and bunching

Pooling Equilibria. Our focus on separating informative equilibria where principals
reveal their types through their offers makes the agent’s endogenous information vis-à-
vis each of them clearer. This also makes the analysis of information aggregation more
relevant by stressing the most favorable case for it.

In contrast, it is possible to construct uninformative equilibria. In such equilibria, all
types of a given principal pool and offer the same contribution that specifies a payment
for a given output target q∗, the agent learns nothing from observing that contribution,
and the other principal has nothing to screen about and is forced to agree on this output
target if any production takes place. Consider thus the forcing contribution

t∗(q)=
{ 1

2C(q
∗) > 0 for q= q∗ > 0

0 for q 	= q∗.

When both principals offer this contract, they share equally the cost of producing q∗.
Denote by Ŵ (θ) = maxq θq − C(q) and q̂(θ) = arg maxq θq − C(q), respectively, the

aggregate payoff of a bilateral coalition between a principal with type θ and the agent,
and the corresponding optimal (increasing) output.

Proposition 2. Assume that 2¯θq
∗ −C(q∗)≥ 2Ŵ (¯θ) and q∗ ≥ q̂(θ̄).43 There exists a pool-

ing equilibrium in which both principals offer t∗(q) whatever their types. This equilib-
rium is sustained with arbitrary out-of-equilibrium beliefs.

Running Example continued. The forcing contributions above give us an example
of a nondifferentiable equilibrium. Assuming that the cost function is quadratic, we
immediately observe that the best such symmetric forcing contracts44 implement an
output equal to q∗ = ¯θ + θ̄, giving an ex ante welfare worth W P = 1

2(¯θ + θ̄)2. Instead,
tedious computations show that the linear equilibrium yields a lower ex ante welfare
worthW S =W P −�θ2/16. In other words, principals are somewhat able to weaken com-
petition with those rather inflexible contracts. ♦

43It can be easily seen that the set of such q∗ is nonempty when qFB(¯θ� ¯θ)≥ q̂(θ̄), i.e., 2¯θ≥ θ̄.
44For this to be an equilibrium, we need to check the condition 2¯θq

∗ −C(q∗)≥ 2Ŵ (¯θ) from Proposition 2.

For our Running Example, this amounts to ¯θ ≥ (√2 − 1)θ̄, which is slightly stronger than the assumption
3¯θ≥ θ̄.
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Bunching. The pooling equilibria above are such that all types of principals offer the
same contribution and the agent chooses a fixed output. Starting from the separating
equilibria stressed above, one can construct other equilibria that still induce the agent
to choose a fixed output if his type belongs to some interval with a positive measure even
though the principals’ types are revealed through contract offers. Coming back to our
Running Example, consider indeed the schedules

t(q�θi)=
{

0 if q < q∗( 1
2θi − 1

6 θ̄
)
q+ 1

6q
2 + t0i (θi) otherwise,

where q∗ ∈ (3¯θ− θ̄�2θ̄) and t0i (θi)= (q∗)2/12 − (θi/2 − θ̄/6)q∗. Those schedules are such
that all types (θ1� ¯θ) or (¯θ�θ2) get zero rent. They are discontinuous at some q∗ that lies
in the range of equilibrium outputs defined in (6) for the informative equilibrium. It can
be checked that for all pairs (θ1� θ2) such that 3

2(θ1 + θ2)− θ̄ ≤ q∗, the agent chooses q∗
when offered those contributions. Bunching arises due to the discontinuity at q∗.45

7.3 Communication

Our previous analysis focused on a particular strategy space for competing principals:
the space of nonlinear contributions. Although it is quite natural, it might restrict com-
munication since all information revelation takes place through the choice of a particu-
lar schedule and thus happens prior to the agent’s choices on acceptance and produc-
tion. One may wonder whether there would be any gain for principals to send messages
to their common agent after the offer stage or, equivalently, to offer a menu of such
contributions from which they will later pick one after the agent’s acceptance.

Suppose that principal Pi can offer any more general mechanism consisting of a col-
lection of contribution schedules t̃i(q� ·) = {t̃i(q� θ̂i)}θ̂i∈�. The output q is the agent’s
choice and θ̂i is a message sent by that principal at a communication stage that takes
place following the agent’s acceptance. From the Revelation Principle, there is no loss
of generality from focusing on such direct communication when computing best re-
sponses in any pure strategy equilibrium. For technical reasons, we assume that t̃i(q� θ̂i)
is continuous in q and θ̂i. We consider also the following sequence of events where the
agent chooses an output after principals have picked schedules within the menu of con-
tributions they respectively proposed. Finally, communication opens new possibilities
for contracting and, in particular, principals may find it attractive to offer “inscrutable”
menus of contribution schedules that do not reveal their types, letting the agent only
break even between accepting or declining such an offer in expectations. Accordingly,
the strategy space of contributions is enlarged by allowing also for negative transfers if
needed. Payments follow according to the principals’ and the agent’s choices. Denote
by �∗ the game thereby modified by appending these communication possibilities.

45To check that those schedules are best responses to each other, one has only to check that the forcing
contract region (i.e., q < q∗) does not induce deviation for each principal. The condition is similar to that
in Proposition 2, 2θiq∗ −C(q∗)≥ 2Ŵ (θi) for q̂(θi) < q∗, which becomes q∗ ∈ ((2√

2 − 1)¯θ� (2
√

2 + 1)¯θ).
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We now show the robustness of any separating equilibrium in � as defined through
Theorem 1 to such an extension of the strategy space. An equilibrium in � yields payoffs
to principals that remain equilibrium payoffs in �∗. Given t(q�θ) a separating (equilib-
rium) strategy in �, we define a degenerate extension of this strategy in �∗ as a collection
of contribution schedules t∗(q� ·|θ) such that t∗(q� θ̂i|θ)= t(q�θ) for all θ̂i ∈�. With such
a degenerate extension, principal Pi’s contribution does not depend on his message θ̂i.

Proposition 3. Take any symmetric equilibrium in � corresponding to the contribution
schedule t(q�θi). There exists a perfect Bayesian equilibrium of �∗ such that principal Pi
with type θi offers a degenerate menu t∗(q� θ̂i|θi)= t(q�θi) for all (θ̂i� θi).46

When communication is allowed, we may also ask whether there is the possibility of
sustaining inscrutable equilibria in which all principals pool and offer the same menu of
contributions, so that nothing is learned by the agent and his acceptance decision takes
place in expectations. Such ex ante acceptance could relax participation constraints and
reduce screening distortions.

Two remarks are in order. First, Section 7.2 shows that pooling equilibria with forc-
ing contributions exist, which proves existence of such inscrutable equilibria. However,
pooling is by and large induced by the nature of those nondifferentiable contributions
that force all types of principals to agree on equal sharing of the cost of implementing a
given output target. Second, moving back to more flexible differentiable contributions,
the next proposition shows an impossibility result.

Proposition 4. There does not exist any perfect Bayesian equilibrium of �∗ such that
both principals Pi pool whatever their types θi and offer the same inscrutable menu of
differentiable contribution schedules {t(q� θ̂i)}θ̂i∈�.

The intuition behind this proposition can be grasped in two steps. First, observe
that, with an inscrutable offer by principal P2, principal P1 and the agent have sym-
metric but incomplete information on θ2 at the time of contracting. Under such ex
ante contracting, it is well known that the differentiable “sell-out” contribution schedule
tS1 (q�θ1)= θ1q− V S(θ1) (where V S(θ1) is principal P1’s payoff) maximizes the bilateral

46The literature on informed principal problems (Myerson 1983, Maskin and Tirole 1990, 1992) in mo-
nopolistic screening environments stresses the value of pooling offers where different types of principals
offer the same mechanism (a menu of contribution schedules), delaying communication to a later stage.
Such delayed communication is attractive when the agent is risk-averse (because it allows pooling of incen-
tive constraints) or under common values (because it avoids signaling distortions). With private values and
risk neutrality, no such benefit arises as shown by Mylovanov (2005) in a model like ours with a continuum
of types. Allowing communication does not break equilibrium. Proposition 3 confirms that result. (The
proof in the Appendix constructs the out-of-equilibrium beliefs explicitly and uses the compactness of the
menu to prove that each principal finds it optimal to offer the informative mechanism t∗(q� ·|θi) at a best
response.) More precisely, each principal has also in his best-response correspondence in �∗ a degener-
ate menu of contributions that are all equal to his equilibrium strategy in � and all information revelation
takes place at the offer stage. In a related vein, Peters (2003) finds conditions under which principals do not
gain from offering more than a take-it-or-leave-it offer in common agency environments with complete
information on their preferences.
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payoff of the coalition between that principal and the agent. Provided P2’s offer is itself
differentiable in q, this is the unique way to maximize this bilateral payoff. Offering the
menu {tS(q� θ̂1)}θ̂1∈� is thus part of an inscrutable best response for principal P1. By the
same token, principal P2 also offers a menu of sell-out contracts. Given those offers,
the agent chooses an efficient output. But such ex post efficient allocation cannot be
implemented from Theorem 5, which yields a contradiction.

8. Conclusion

Let us summarize the main findings of our analysis.
First, modeling private information on the principals’ preferences in a common

agency game justifies the use of nonlinear contributions for screening purposes,
whereas such strategy space is given a priori in previous complete information models.
Doing so introduces incentive compatibility conditions that replace the truthfulness re-
quirement used earlier on. Under asymmetric information, principals reveal their types
to the common agent through their mere offer of contributions and try to learn about
the types of others that have been endogenously learned by the common agent from
observing these offers.

Second, ex post inefficiency always arises at equilibrium, contrary to complete in-
formation models. The reason is not the standard free-riding phenomenon stressed by
the centralized mechanism design approach, but it comes now from the desire of each
principal to screen the agent about the endogenous information he has learned from
observing others’ offers. The common agent at the nexus of all information sets may
indeed pretend that each principal contributes less than what he really does.

Third, the weaker criterion of interim efficiency may be satisfied by some separating
equilibria only when the inverse hazard rate of the types distribution is linear. This sug-
gests that principals might generally find it worth agreeing on more centralized mecha-
nisms to improve on the equilibrium outcome achieved with voluntary contributions.

Fourth, and from a more technical viewpoint, we developed techniques to prove
the existence of at least one differentiable equilibrium that solves a complex functional
equation linking the marginal contribution, its type derivative, and its inverse. The dif-
ficulty in solving that equation comes from having boundary conditions at both ends of
the types interval. Existence has to follow from a global approach. The techniques we
developed are likely to be valuable beyond the specific examples analyzed here to tackle
existence in other settings where principals offer contribution schedules in an effort to
control a common agent’s choice. Uniqueness is proved for the uniform distribution.

Finally, although we restricted principals to make single take-it-or-leave-it offers, we
show that the separating equilibria we focus on are robust when principals may enter-
tain more complex communication with their agent. Other extensions that were inves-
tigated dealt with the existence of pooling and uninformative equilibria, and the pos-
sibility of direct communication between principals. The latter provided a justification
for the common agency institution as a means of maximizing ex ante welfare compared
with more random and asymmetric allocations of the bargaining power between prin-
cipals.
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A few other extensions of our framework would be worthwhile to pursue. Indeed,
we have so far focused on the case where principals have no means to communicate
with each other. The motivation for doing so is twofold. First, and from a practical view-
point, this may be viewed as describing equilibrium behavior when principals do not
know each other before contributing or when opening communication channels be-
tween principals is prohibitively costly or even forbidden. Returning to our earlier moti-
vating examples, the first situation may capture what happens when different sovereign
countries contribute to a transnational public good, whereas the second case is more
likely when different governmental bodies, separated by “Chinese walls,” contribute to
the financing of a public good. Second, and from a theoretical viewpoint, this focus on
noncommunication between principals gives us a reference point to analyze, in future
research, the benefits of adding either direct or mediated communication. Following
Agastya et al. (2007), who study equilibria in a game of voluntary contributions for a
0–1 project appended with a cheap-talk stage, we conjecture that more equilibria might
arise when such communication is possible.

A particular way by which communication takes place is when principals contribute
sequentially.47 Distortions might then depend on whether offers are publicly observable
by subsequent principals. In the latter case, we would be back to an analysis of the
Stackelberg timing, whereas our previous analysis focused on simultaneous offers.48 In
the former case, we would have also to take into account how the first contributors may
manipulate beliefs of subsequent contributors to reduce their own contribution.49

Appendix

Proof of Lemma 1. The proof is standard (see, for instance, Laffont and Martimort
2001, Chapter 3) and is thus omitted. �

Proof of Theorem 1. First, we assume that the agent is informed on Pi’s type and
we transform problem Pi(θi) to get P ′

i(θi). Then we compute Pi’s best response
{ti(q�θi)}θi∈� to a strategy profile {t−i(q�θ−i)}θ−i∈� satisfying IT and SMP. From this, we
derive the optimality conditions (7). To do so, we also assume quasi-concavity of the
agent’s problem and the fact that the participation constraint (5) binds only at θ−i = ¯θ.
Second, we show that these conditions are indeed satisfied.

• Pointwise optimization: Consider Pi’s best response to a strategy profile
{t−i(q�θ−i)}θ−i∈� used by P−i and satisfying IT. Thus UD(θ−i|θi) is weakly increasing in
θ−i and (5) is binding only at θ−i = ¯θ provided that the marginal contribution pi(q�θi) is
positive (we show this last claim below). Integrating by parts, we then obtain

Eθ−i [UD(θ−i|θi)] =Eθ−i

[
R(θ−i)

∂t−i
∂θ

(q(θ−i|θi)�θ−i)
]

+ Û−i(¯θ)�

47See the related work of Marx and Matthews (2000).
48With exogenous private information, Martimort (1996b) shows that distortions are exacerbated in a

Stackelberg equilibrium compared with Nash. We conjecture that the same result would be true here also.
49Pavan and Calzolari (2009) analyze sequential common agency games with exogenous information.
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Inserting this latter expression into Pi’s objective function and neglecting the second-
order condition (3) (that will be checked below), we obtain the reduced-form problem

P ′
i(θi) : max

qD(·|θi)
Eθ−i [Si(q(θ−i|θi)�θi� θ−i)]� (27)

where Si(q�θi� θ−i) denotes principal Pi’s virtual surplus defined as

Si(q�θi� θ−i)= θiq+ t−i(q�θ−i)−C(q)−R(θ−i)
∂t−i
∂θ

(q�θ−i)�

Define

ψ−i(q�θ−i)= −p−i(q�θ−i)+C ′(q)+R(θ−i)
∂p−i
∂θ

(q�θ−i)� (28)

Surplus Si(q�θi� θ−i) is concave (resp. strictly concave) in q when

∂2Si

∂q2 (q�θi� θ−i)= ∂p−i
∂q

(q�θ−i)−C ′′(q)−R(θ−i)
∂2p−i
∂θ∂q

(q�θ−i)≤ 0 (resp� < 0)�

which is true when

∂ψ−i
∂q

(q�θ−i)≥ 0 (resp� > 0)� (29)

Equation (29) yields the first condition in (11) for a symmetric equilibrium (where the
index −i has been suppressed). Under strict concavity, optimizing pointwise the virtual
surplus in (27) gives thus a unique output qD(θ−i|θi) (which is interior since Q̄ is large
enough) implemented at a best response that satisfies

∂Si
∂q
(qD(θ−i|θi)�θi� θ−i)= 0 ⇔ θi =ψ−i(qD(θ−i|θi)�θ−i)� (30)

Hence condition (7) holds at a symmetric equilibrium satisfying IT and SMP.
Differentiating (30) with respect to θi, we obtain

∂2Si

∂q2
∂qD

∂θi
= −1�

which yields the monotonicity property, under strict concavity

∂qD

∂θi
> 0�

Therefore, principal Pi offers different output schedules as his type changes so that the
family ti(q�θi) is separating in θi.

Differentiating (30) with respect to θ−i, we obtain

∂2Si

∂q2
∂qD

∂θ−i
=R(θ−i)

∂2p−i
∂θ2 − (1 − Ṙ(θ−i))

∂p−i
∂θ

� (31)
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Differentiating (28) with respect to θ−i allows us to simplify (31) to get

∂2Si

∂q2
∂qD

∂θ−i
= ∂ψ−i

∂θ
�

Hence, the other monotonicity property

∂qD

∂θ−i
(θ−i|θi)≥ 0 (resp� > 0)�

and SMP ensures that the second-order condition for the agent’s problem (3) holds
when

∂ψ−i
∂θ

(q�θ−i)≤ 0 (resp� < 0)� (32)

Again (32) yields the second condition in (11) at a symmetric equilibrium with an output
schedule increasing in both arguments.

• Implementation of the best response through a nonlinear contribution ti(q�θi): At a
best response to P−i’s offer t−i(q�θ−i) (with marginp−i(q�θ−i)), Pi cannot do better than
offering himself a direct revelation mechanism that implements the increasing output
qD(·|θi) satisfying

θi +p−i(qD(θ−i|θi)�θ−i)−C ′(qD(θ−i|θi)) = θi −pi(qD(θ−i|θi)�θi)
= R(θ−i)

∂pi
∂θ
(qD(θ−i|θi)�θ−i)

(which gives (7) at a symmetric equilibrium).
Denote the inverse function for qD(θ−i|θi) by θD−i(·|θi). We can reconstruct the non-

linear schedule ti(q�θi) that Pi could as well offer as ti(q�θi) = tDi (θ
D
−i(q|θi)|θi) for q in

the range of qD(·|θi). For q ≥ qD(θ̄|θi), we extend that schedule in a smooth-pasting
way with a constant slope pi(q�θi)= θi, i.e., ti(q�θi)= ti(qD(θ̄|θi)�θi)+θi(q−qD(θ̄|θi)),
where ti(qD(θ̄|θi)�θi) = ti(q

D(¯θ|θi)�θi) + ∫ qD(θ̄|θi)
qD(¯θ|θi)

pi(q�θi)dq and ti(qD(¯θ|θi)�θi) is de-

termined through the binding participation constraint UD(¯θ|θi) = Û−i(¯θ). Note that
this upward extension satisfies IT and SMP. For q ≤ qD(¯θ|θi), ti(q�θi) is also extended
in a smooth-pasting way below qD(¯θ|θi) as a nonnegative schedule by the formula
ti(q�θi) = max{0� ti(qD(¯θ|θi)�θi) + ∫ q

qD(¯θ|θi)
p(x�θi)dx}, where we take the extension

p(x�θi) = ∫ θi
¯θ
∂p(qD(¯θ|y)� y)/∂θi dy for all x ≤ qD(¯θ|θi). This downward extension sat-

isfies IT and SMP by construction.
Written in terms of contribution schedules, the first- and second-order conditions

for the agent’s problem can be expressed as

pi(q
D(θ−i|θi)�θi)+p−i(qD(θ−i|θi)�θ−i)= C ′(qD(θ−i|θi)) (33)

and
∂pi
∂q
(qD(θ−i|θi)�θi)+ ∂p−i

∂q
(qD(θ−i|θi)�θ−i)−C ′′(qD(θ−i|θi))≤ 0�

which give (8) and (9) at a symmetric equilibrium.
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• The agent’s participation constraint (5) binds at ¯θ: We proceed with several lem-
mata. Define first the output level q̂−i(θ−i) when the agent does not take Pi’s con-
tribution as an arbitrary selection in the correspondence arg maxq∈Qt−i(q�θ−i) − C(q)

with q̂−i(θ−i) = 0 (resp. > 0) if maxq∈Q t−i(q�θ−i) − C(q) = 0 (resp. maxq∈Qt−i(q�θ−i) −
C(q) > 0).

Lemma 4. Assume that pi(q�θi) ≥ 0 for all (q�θi) and that ti(q�θi) satisfies SMP. Then,
for any (θi� θ−i), we have

qD(θ−i|θi)≥ qD(θ−i|¯θ)≥ q̂−i(θ−i)� (34)

Proof. By the definitions of q̂(θ−i) and qD(θ−i|¯θ), respectively, we have

t−i(q̂(θ−i)� θ−i)−C(q̂(θ−i))≥ t−i(qD(θ−i|¯θ)�θ−i)−C(qD(θ−i|¯θ))

ti(q
D(θ−i|¯θ)� ¯θ)+ t−i(qD(θ−i|¯θ)�θ−i)−C(qD(θ−i|¯θ))

≥ ti(q̂(θ−i)� ¯θ)+ t−i(q̂(θ−i)� θ−i)−C(q̂(θ−i))�

Adding up these inequalities, we get

ti(q
D(θ−i|¯θ)� ¯θ)− ti(q̂(θ−i)� ¯θ)=

∫ qD(θ−i|¯θ)

q̂(θ−i)
pi(x� ¯θ)dx≥ 0�

Since marginal transfers are positive, the last inequality is true only if qD(θ−i|¯θ)≥ q̂(θ−i).
Moreover, if pi(q�θi) satisfies SMP, pi(qD(θ−i|θi)�θi) ≥ pi(q

D(θ−i|θi)� ¯θ) and,
from (33), we obtain

pi(q
D(θ−i|θi)� ¯θ)+p−i(qD(θ−i|θi)�θ−i)−C ′(qD(θ−i|θi))≤ 0�

Quasi-concavity of the agent’s problem at (¯θ�θ−i) yields finally qD(θ−i|θi)≥ qD(θ−i|¯θ).Thus, we necessarily have q̂−i(θ−i)≤ qD(θi|θ−i)= qD(θ−i|θi) for all θi. �

Lemma 5. Assume that pi(q�θi) ≥ 0 for all (q�θi). Then UD(θ−i|θi) ≥ Û−i(θ−i) for any
(θi� θ−i) if UD(¯θ|θi)≥ Û−i(¯θ) holds.

Proof. Using the Envelope Theorem, we get ∂UD(θ−i|θi)/∂θ−i = ∂t−i(qD(θ−i|θi)�θ−i)/
∂θ and ∂Û−i(θ−i)/∂θ−i = ∂t−i(q̂−i(θ−i)� θ−i)/∂θ. Hence, we always get

∂Û−i
∂θ−i

(θ−i)= ∂t−i
∂θ

(q̂−i(θ−i)� θ−i)≤ ∂t−i
∂θ

(qD(θ−i|θi)�θ−i)= ∂UD

∂θ−i
(θ−i|θi)�

where the last inequality follows from (34) and the fact that t−i(q�θ−i) satisfies SMP.
Therefore, UD(θ−i|θi)≥ Û−i(θ−i) for any (θi� θ−i) if UD(¯θ|θi)≥ Û−i(¯θ) holds. �

Lemma 5 shows that the agent’s participation constraint (5) binds necessarily at ¯θ,
and UD(¯θ|θi) = Û−i(¯θ) at any Pi’s best response to a strategy profile {t−i(q�θ−i)}θ−i∈�
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satisfying IT and SMP used by P−i when this best response also satisfies SMP and has a
positive marginal contribution.

• Nonnegative transfers: Observe also that UD(¯θ|θi)= Û−i(¯θ) implies

ti(q
D(¯θ|θi))= ti(q̂(¯θ))−C(q̂(¯θ))− (

ti(q
D(¯θ|θi))−C(qD(¯θ|θi))

) ≥ 0�

where the last inequality follows from the definition of q̂(¯θ). This gives, for any θ−i,

ti(q
D(θ−i|θi))− ti(qD(¯θ|θi))=

∫ qD(¯θ|θi)

qD(θ−i|θi)
p(x|θi)dx≥ 0

when marginal contributions are positive. This in turn implies that ti(qD(θ−i|θi))≥ 0 for
any equilibrium output. Finally, the extension defined above respects nonnegativity.

• Out-of-equilibrium beliefs and best responses in �: The analysis above has assumed
that the agent was informed on Pi’s type when the latter computes his best response to
the strategy profile {t−i(q�θ−i)}θ−i∈� satisfying IT and SMP used by P−i. We show first
that the strategy profile {ti(q�θi)}θi∈� is also a best response to {t−i(q�θ−i)}θ−i∈� in the
game � where the agent is a priori uninformed on Pi’s type. Second, we show that any
off-equilibrium beliefs sustain the strategy profile {ti(q�θi)}θi∈� as a best response in the
game � where principals are privately informed.

Consider the collection of strategies {ti(q� θ̂i)}θ̂i∈�. These strategies are all distinct
so that, if played in a separating equilibrium, Pi reveals his type θi to the agent when
he chooses ti(q�θi). We want to prove that this menu of contributions is incentive com-
patible for Pi. Denote by Ṽi(θi� θ̂i) principal Pi’s payoff when his type is θi and he picks
the strategy ti(q� θ̂i) for some θ̂i ∈ �. Denote also Vi(θi) = Ṽi(θi� θi) as the equilibrium
payoff.

Facing the contributions ti(q� θ̂i) and t−i(q�θ−i), the agent chooses the quantity
qD(θ−i|θ̂i). Payoff Ṽi(θi� θ̂i) can be written as

Ṽi(θi� θ̂i) = Eθ−i
[
θiq

D(θ−i|θ̂i)− ti(qD(θ−i|θ̂i)� θ̂i)
]

= Eθ−i
[
Si(q

D(θ−i|θ̂i)� θ̂i� θ−i)+ (θi − θ̂i)qD(θ−i|θ̂i)
] − Û−i(¯θ)�

We can now compute

∂Ṽi

∂θ̂i
(θi� θ̂i)=Eθ−i

[
∂Si
∂q
(qD(θ−i|θ̂i)� θi� θ−i)

∂qD

∂θ̂i
(θ−i|θ̂i)

]
�

Since Si(·� θi� θ−i) is a strictly concave function with critical point at q = qD(θ−i|θi) and
∂qD(θ−i|θ̂i)/∂θ̂i ≥ 0, we have

∂Ṽi

∂θ̂i
(θi� θ̂i)≥ 0 (resp. =) if and only if θi ≥ θ̂i (resp. =)� (35)

Condition (35) shows then that the collection of strategies {ti(q� θ̂i)}θ̂i∈� is incentive
compatible from principal Pi’s viewpoint.
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Consider now a deviation by principal Pi with type θi to a contribution schedule
zi(q) such that zi(q) /∈ {ti(q� θ̂i)}θ̂i∈�. Facing the contributions zi(q) and t−i(q�θ−i), the
agent chooses a quantity q̃(θ−i|θi) in the correspondence arg maxq zi(q)+ t−i(q�θ−i)−
C(q) regardless of his beliefs on Pi’s type. Now observe that an upper bound on the pay-
off for such deviation is obtained when we replace the agent’s participation constraint
(5) by the weaker requirement

UD(θ−i|θi)≥ 0�

In this relaxed problem, the agent’s participation constraint binds necessarily at ¯θ only.
The payoff in any such deviation is thus no greater than

Eθ−i [Si(q̃(θ−i|θi)�θi� θ−i)] − Û−i(¯θ)≤ Vi(θi)=Eθ−i [Si(qD(θ−i|θi)�θi� θ−i)] − Û−i(¯θ)�
where the right-hand side is principal Pi’s payoff when he offers ti(q�θi). This proves
that ti(q�θi) is a best response in � when principal Pi’s type is θi. �

Proof of Theorem 2.
• First-best at the top: Using (7) for θ1 = θ2 = θ̄ and (8) yields the result.
• Downward distortions: Observe that SMP and (7) together imply θi ≥ p(q(θ1� θ2)�

θi). Summing over i and taking into account (8) yield θ1 + θ2 = C ′(qFB(θ1� θ2)) ≥
C ′(q(θ1� θ2)) with equality only when θ1 = θ2 = θ̄.

• Nonnegative rent for the agent and equilibrium contributions: From Lemma 5, we
know that in any symmetric equilibrium,

U(θi� ¯θ)= t(q(θi� ¯θ)� ¯θ)+ t(q(θi� ¯θ)�θi)−C(q(θi� ¯θ))= Û−i(¯θ) for all θi�

where, using the above notations, Û−i(¯θ)= t(q̂(¯θ)� ¯θ)−C(q̂(¯θ))≥ 0. For θi = ¯θ, we get

U(¯θ� ¯θ)= 2t(q(¯θ� ¯θ)� ¯θ)−C(q(¯θ� ¯θ))= t(q̂(¯θ)� ¯θ)−C(q̂(¯θ))�
Suppose Û−i(¯θ) > 0. Then observe that t(q̂(¯θ)� ¯θ) > C(q̂(¯θ)) > 0 and thus U(¯θ� ¯θ) <2t(q̂(¯θ)� ¯θ)−C(q̂(¯θ)), a contradiction to the definition of q(¯θ� ¯θ). Hence, we have neces-
sarily U(¯θ� ¯θ)= 0, which means t(q(¯θ� ¯θ)� ¯θ)= C(q(¯θ� ¯θ))/2> 0. Therefore, we get

U(θi� ¯θ)= Û−i(¯θ)= 0 for all θi� (36)

For θi ≥ ¯θ, observe that

t(q(θi� ¯θ)� ¯θ)= t(q(¯θ� ¯θ)� ¯θ)+
∫ q(θi�¯θ)

q(¯θ�¯θ)
p(x� ¯θ)dx

so that (36) yields

t(q(θi� ¯θ)�θi)= C(q(θi� ¯θ))− C(q(¯θ� ¯θ))2
−

∫ q(θi�¯θ)

q(¯θ�¯θ)
p(x� ¯θ)dx� (37)

Differentiating with respect to θi yields

∂t

∂θi
(q(θi� ¯θ)�θi)+ (

p(q(θi� ¯θ)�θi)+p(q(θi� ¯θ)� ¯θ)−C ′(q(θi� ¯θ))
) ∂q
∂θi

(θi� ¯θ)= 0�
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Taking into account the agent’s first-order condition (8), we obtain ∂t(q(θi� ¯θ)�θi)/∂θi = 0
and finally (12).

Moreover, we have

t(q(θi� θj)� θi)− t(q(θi� ¯θ)�θi)=
∫ q(θi�θj)

q(θi�¯θ)
p(x�θi)dx > 0�

which, taken in tandem with (37), defines the transfer t(q(θi� θj)� θi) on the range of
equilibrium outputs q(θi� θj).

Note also that

∂t

∂θi
(q(θi� θj)� θi)= ∂t

∂θi
(q(θi� ¯θ)�θi)+

∫ q(θi�θj)

q(θi�¯θ)
∂p

∂θ
(x�θi)dx=

∫ q(θi�θj)

q(θi�¯θ)
∂p

∂θ
(x�θi)dx≥ 0

and thus
∂t

∂θi
(q(θi� θj)� θi)≥ 0 for θj ≥ ¯θ

when SMP holds. Using (2), we deduce that the agent’s rent is everywhere nonnegative
and zero only when θi = ¯θ for at least one i. �

Boundaries conditions for the system (18)

Lemma 6. The following properties hold.

• For q such that 2θ̄ ≥ C ′(q) ≥ θ̄+ ¯θ− 1/(2f (¯θ)), the highest type on the q isoquant
is θ̄, whereas the lowest type ¯θ(q) ≥ ¯θ is increasing in q and defined by the condi-
tion

C ′(q)= θ̄+ ¯θ(q)− 1
2R(¯θ(q))� (38)

Marginal contributions at these boundaries satisfy

p(q� ¯θ(q))= ¯θ(q)�
∂p

∂θ
(q� ¯θ(q))= 1

2
(39)

p(q� θ̄)= C ′(q)− ¯θ(q) < θ̄�
∂p

∂θ
(q� θ̄) > 0� (40)

• For q such that C ′(q)≤ θ̄+ ¯θ− 1/(2f (¯θ)), the lowest type on the q isoquant is ¯θ and
the highest type is θ̄(q)with

p(q� θ̄(q))= θ̄(q)−R(¯θ)
∂p

∂θ
(q� ¯θ)�

∂p

∂θ
(q� θ̄(q))= ¯θ−p(q� ¯θ)

R(θ̄(q))
> 0 (41)

p(q� ¯θ) < ¯θ�
∂p

∂θ
(q� ¯θ) > 0� (42)

Proof. First consider a q isoquant that crosses the vertical axis at θ̄. Define ¯θ(q) such
that ¯θ(q) = ψ(q� θ̄) (and thus θ̄ = ψ(q� ¯θ(q))). From the equilibrium conditions (18)
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taken, respectively, at ¯θ(q) and θ̄, we get

p(q� ¯θ(q))= ¯θ(q) and θ̄+p(q� ¯θ(q))−C ′(q)=R(¯θ(q))
∂p

∂θ
(q� ¯θ(q))� (43)

which is the first part of (39).
From SMP and ¯θ(q) < θ̄, we get θ̄ > p(q� θ̄), which gives the first part of (40).
Using (18), we get

∂ψ

∂θ
(q�θ)= −

∂p
∂θ (q�θ)

∂p
∂θ (q�ψ(q�θ))

= −R(ψ(q�θ))(ψ(q�θ)+p(q�θ)−C ′(q))
R(θ)(θ−p(q�θ)) � (44)

Using (44) to evaluate ∂ψ
∂θ (q�θ) at ¯θ(q) and using l’Hospital’s rule yield

∂ψ

∂θ
(q� ¯θ(q))= −∂ψ

∂θ
(q� ¯θ(q))

Ṙ(θ̄)
(
θ̄+p(q� ¯θ(q))−C ′(q)

)
R(¯θ(q))

(
1 − ∂p

∂θ (q� ¯θ(q))
) = ∂ψ

∂θ
(q� ¯θ(q))

∂p
∂θ (q� ¯θ(q))

1 − ∂p
∂θ (q� ¯θ(q))

�

where we have used Ṙ(θ̄)= −1 and (43) to get the last equality. The only possibility for
having ∂ψ(q� ¯θ(q))/∂θ < 0 is ∂p(q� ¯θ(q))/∂θ = 1

2 , which is the second part of (39) and
gives also (38). This and (44) yield the second part of (40). Therefore, ¯θ(q) is defined
by (38) and, given that R(·) is decreasing, this can only be possible when C ′(q)≥ θ̄+ ¯θ−
1/(2f (¯θ)).For C ′(q) < θ̄+ ¯θ− 1/(2f (¯θ)), the conditions coming from the equilibrium behavior
of types ¯θ and θ̄(q) are given by (41) and (42). �

Proof of Theorem 3. Fix q such that 2θ̄ ≥ C ′(q) ≥ θ̄ + ¯θ − 1/(2f (¯θ)). The boundary
condition (39) can be used to integrate (21) and getG(·� q) as a solution to

1 −G(p�q)= (
1 − F(¯θ(q))

)
exp

(
−

∫ p

¯θ(q)
dx

F−1(G(C ′(q)− x�q))−C ′(q)+ x
)
�

Consider now the mapping �(·) such that

1 −�(G)(p)= (
1 − F(¯θ(q))

)
exp

(
−

∫ p

¯θ(q)
dx

F−1(G(C ′(q)− x))−C ′(q)+ x
)
� (45)

An equilibrium distribution G(·� q) (defined on [¯θ(q)�C
′(q) − ¯θ(q)] and extended on

[¯θ�C
′(q)− ¯θ(q)] as explained in the text) is thus a fixed point of the mapping �(·).

Several facts immediately follow from the definition (45).

• Boundary conditions: �(G)(¯θ(q))= F(¯θ(q)) and �(G)(C ′(q)− ¯θ(q))= 150 when
G(¯θ(q)�q)= F(¯θ(q)).

• The function �(·) is monotonically decreasing and thus �2(·) is monotonically
increasing: G1 ≤G2 implies �(G1)≥�(G2).

50Notice that from (45) limp→C ′(q)−¯θ(q)
�(G)(p) ≤ 1. Hence, �(G) is then a distribution function well

defined at C ′(q)− ¯θ(q) as 1.
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Consider the function

I(p)=
{

1 if p ∈ (¯θ(q)�C
′(q)− ¯θ(q)]

F(p) if p ∈ [¯θ� ¯θ(q)].
This is not a distribution admitting a density function as required by our formalism.
However, we may still apply twice to it the mapping�(·) above to generate such distrib-
ution. For p ∈ [¯θ(q)�C

′(q)− ¯θ(q)), we have

1 −�(I)(p) = (
1 − F(¯θ(q))

)
exp

(
−

∫ p

¯θ(q)
dx

θ̄−C ′(q)+ x
)

= (
1 − F(¯θ(q))

)( θ̄+ ¯θ(q)−C ′(q)
θ̄−C ′(q)+p

)
with

�(I)(C ′(q)− ¯θ(q))= 1 and lim
p→C ′(q)−¯θ(q)

�(I)(p) < 1�

One can check that

�(F)(p)=
{

1 if p> ¯θ(q)
¯θ(q) if p= ¯θ(q)

and �2(F)=�(I)�

Moreover, to avoid infinite terms in the denominator on the right-hand side of (45), we
want to find a condition ensuring that the mapping �(·) will be onto and that the dis-
tribution of price at any iteration starting from �(I)(·) never crosses F(·). A sufficient
condition is that �(I)(p)≥ F(p) for all p ∈ [¯θ(q)�C

′(q)− ¯θ(q)]. This amounts to

χ(p)= (1 − F(p))(θ̄+p−C ′(q))− (
1 − F(¯θ(q))

)
(θ̄+ ¯θ(q)−C ′(q))≥ 0� (46)

Note that χ(¯θ(q)) = 0 and that χ(·), which is quasi-concave under the assumption
Ṙ(p) ≤ 0, achieves its maximum at p∗ < C ′(q) − ¯θ(q) such that θ̄ + p∗ − C ′(q) =
(1−F(p∗))/f (p∗). Hence, (46) holds when χ(C ′(q)− ¯θ(q)) > 0. This last condition holds
when (1 − F(x))/θ̄− x increases with x; a sufficient condition is minθ∈� θ+R(θ)= θ̄.

Consider now the sequence φn = �n(φ0) with φ0 = F . One can easily show that
φ2k is increasing, whereas φ2k+1 is decreasing in k. Moreover, φ2 < 1 = φ1 and thus,
by iterating, we get φ2k ≤ φ2k+1. Moreover, as soon as n ≥ 2, φn(¯θ(q)) = F(¯θ(q)) and
φn(C

′(q) − ¯θ(q)) = 1. Now denote by
¯
φ and φ̄ the respective limits of φ2k and φ2k+1.

We have
¯
φ ≤ φ̄�

¯
φ = �(φ̄), and φ̄ = �(

¯
φ). Note that

¯
φ(¯θ(q)) = φ̄(¯θ(q)) = F(¯θ(q))and

¯
φ(C ′(q)− ¯θ(q)) = φ̄(C ′(q)− ¯θ(q)) = 1, where

¯
φ(·) and φ̄(·) are by definition both

differentiable at C ′(q) − ¯θ(q). Moreover, φ̇2k(C
′(q) − ¯θ(q)) is decreasing in k and

φ̇2k+1(C
′(q) − ¯θ(q)) is increasing in k so that, in the limit, +∞ > ˙

¯
φ(C ′(q) − ¯θ(q)) ≥

˙̄φ(C ′(q)− ¯θ(q)) > 0 = φ̇1(C
′(q)− ¯θ(q)).Define first N = {G(·) | G(·) is increasing and

¯
φ(p) ≤ G(p) ≤ φ̄(p) for all p ∈

[¯θ(q)�C
′(q)− ¯θ(q)]}. Clearly,N is convex and nonempty. Let us also define

N∗ = {
G(·) |G(·) is increasing and

¯
φ(p)≤G(p)≤ φ̄(p) for all

p ∈ [¯θ(q)�C
′(q)− ¯θ(q)] and |G(p)−G(p′)| ≤K|p−p′|}�
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where K < +∞ is chosen below. The function �(·) maps N into N∗. Indeed, from the
Theorem of Intermediate Values, we have

|�(G)(p)−�(G)(p′)| = |�̇(G)(ζ)||p−p′|
for some ζ ∈ [p�p′], where

|�̇(G)(ζ)| = 1 − F(¯θ(q))
F−1(G(C ′(q)− ζ))−C ′(q)+ ζ

× exp
(

−
∫ ζ

¯θ(q)
dx

F−1(G(C ′(q)− x))−C ′(q)+ x
)
�

Using that
¯
φ≤G≤ φ̄, we get

|�̇(G)(ζ)| ≤ 1 − F(¯θ(q))
F−1(

¯
φ(C ′(q)− ζ))−C ′(q)+ ζ

× exp
(

−
∫ ζ

¯θ(q)
dx

F−1(φ̄(C ′(q)− x))−C ′(q)+ x
)

= 1 −
¯
φ(ζ)

F−1(
¯
φ(C ′(q)− ζ))−C ′(q)+ ζ �

The right-hand side above is, in fact, a bounded function of ζ over [¯θ(q)�C
′(q)− ¯θ(q)].Indeed, using l’Hospital rule, we have

lim
ζ→C ′(q)−¯θ(q)

1 −
¯
φ(ζ)

F−1(
¯
φ(C ′(q)− ζ))−C ′(q)+ ζ = −

˙
¯
φ(C ′(q)− ¯θ(q))

1 − ˙
¯
φ(¯θ(q))
f (¯θ(q))

�

Using
¯
φ=�(φ̄) and thus

˙
¯
φ(p)

1 −
¯
φ(p)

= 1
F−1(φ̄(C ′(q)−p))−C ′(q)+p

taken at p= ¯θ(q) yields

˙
¯
φ(¯θ(q))= 1 − F(¯θ(q))

θ̄+ ¯θ(q)−C ′(q)
= 2f (¯θ(q))�

Hence, we get

lim
ζ→C ′(q)−¯θ(q)

1 −
¯
φ(ζ)

F−1(
¯
φ(C ′(q)− ζ))−C ′(q)+ ζ = ˙

¯
φ(C ′(q)− ¯θ(q))�

Finally, denote K′ = supζ∈[¯θ(q)�C
′(q)−¯θ(q)]

(1 −
¯
φ(ζ))/(F−1(

¯
φ(C ′(q) − ζ)) − C ′(q) + ζ) <

+∞. Take now K = sup{K′� supζ ˙
¯
φ(ζ)� supζ

˙̄φ(ζ)}. Such value of K ensures that N∗ is
nonempty because at least

¯
φ and φ̄ are in it. Moreover, by the Ascoli Theorem, N∗ is

compact.
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Finally, �(·) is continuous on N . To show that, consider two distributions G and H
inN . We have

�(G)(p)−�(H)(p)= (
1 − F(¯θ(q))

)
×

(
exp

(
−

∫ p

¯θ(q)
dx

F−1(H(C ′(q)− x))−C ′(q)+ x
)

(47)

− exp
(

−
∫ p

¯θ(q)
dx

F−1(G(C ′(q)− x))−C ′(q)+ x
))
�

First, note thatH ≤ φ̄ implies

exp
(

−
∫ p

¯θ(q)
dx

F−1(H(C ′(q)− x))−C ′(q)+ x
)

≤ exp
(

−
∫ p

¯θ(q)
dx

F−1(φ̄(C ′(q)− x))−C ′(q)+ x
)

and, similarly,G≤ φ̄ implies

exp
(

−
∫ p

¯θ(q)
dx

F−1(G(C ′(q)− x))−C ′(q)+ x
)

≤ exp
(

−
∫ p

¯θ(q)
dx

F−1(φ̄(C ′(q)− x))−C ′(q)+ x
)
�

Now fix ε arbitrarily small. There exists η such that for p ≥ C ′(q) − ¯θ(q) − η, both
right-hand sides above are less than ε and thus |�(G)(p) − �(H)(p)| ≤ 2ε. For p ∈
[¯θ(q)�C

′(q)− ¯θ(q)−η], the right-hand side of (47) can be made arbitrarily small, say less
than 2ε, by taking H close enough to G with respect to ‖ · ‖∞. By, gathering everything,
‖�(G)−�(H)‖∞ = supp |�(G)(p)−�(H)(p)| ≤ 2ε, which ensures continuity.

Therefore �(·) is a compact mapping from N onto N∗ ⊆N . The existence of G(·� q)
then follows Schauder’s Second Theorem (Burton 2005, p. 184), which states that a com-
pact mapping on a convex nonempty subset of a Banach spaceN has a fixed point. �

Proof of Theorem 4. If G(·) (we omit the dependence on q for simplicity) corre-
sponds to the marginal price distribution in a symmetric equilibrium, then it must be a
solution of the system of ordinary differential equations (whereH(p)=G(C ′(q)−p))

Ġ(p)

1 −G(p) = 1
F−1(H(p))−C ′(q)+p (48)

Ḣ(p)

1 −H(p) = − 1
F−1(G(p))−p (49)

for all p ∈ [¯θ(q)�C
′(q)− ¯θ(q)] with the boundary conditions

G(¯θ(q))=H(C ′(q)− ¯θ(q))= F(¯θ(q))� G(C ′(q)− ¯θ(q))=H(¯θ(q))= 1�
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Let F(θ)= (θ− ¯θ)/(�θ) be the uniform cumulative distribution on the interval [¯θ� θ̄](where �θ = θ̄− ¯θ). Then F−1(x) = �θx+ ¯θ and ¯θ(q) = 2
3(C

′(q)− θ̄) (¯θ(q) ≥ ¯θ requires
thus 3¯θ+ θ̄≥ C ′(q)). The system becomes

Ġ(p)(�θH(p)+ ¯θ−C ′(q)+p)= 1 −G(p)� Ḣ(p)(�θG(p)+ ¯θ− t)= −1 +H(p)�
Adding up these equations, we get

�θ[Ġ(p)H(p)+G(p)Ḣ(p)] + (¯θ−C ′(q))Ġ(p)+ ¯θḢ(p)+p[Ġ(p)− Ḣ(p)]
=G(p)−H(p)�

Integrating, there exists a constant of integration K such that

�θG(p)H(p)+p(G(p)−H(p))+ (¯θ−C ′(q))G(p)+ ¯θH(p)=K�
At any equilibrium, this constant is uniquely determined. Indeed, at t = ¯θ(q) we
have that G(p) = F(¯θ(q)) and H(¯θ(q)) = 1, and, therefore, K = (¯θ(q) + ¯θ − C ′(q)) ×
(¯θ(q)− ¯θ)/�θ > 0. Inserting into (49) yields

H(p)= K + (C ′(q)−β−p)G(p)
�θG(p)+ ¯θ−p �

Substituting into (48), we get

Ġ(p)

1 −G(p) = �θG(p)+ ¯θ−p
�θK + (C ′(q)− ¯θ−p)(p− ¯θ)

� (50)

Notice that, given that G(p) is an equilibrium, �θK + (C ′(q)− ¯θ− p)(p− ¯θ) > 0 for all
p ∈ (¯θ(q)�C

′(q)− ¯θ(q)). This implies that (50) is an ordinary differential equation that is
regular on �θK+ (C ′(q)− ¯θ−p)(p− ¯θ) > 0 and the local uniqueness of a solution holds
at any such p.

Suppose then that there are two symmetric equilibria distributions in two putative
distinct equilibria with the same boundary conditions, i.e., two fixed points G1 and
G2 for �(·) such that G1(¯θ(q)) = G2(¯θ(q)) = F(¯θ(q)), G1(C

′(q) − ¯θ(q)) = G2(C
′(q) −

¯θ(q)) = 1. Then one of these distributions cannot dominate the other in the sense
of first-order stochastic dominance; they necessarily cross each other at least once on
(¯θ(q)�C

′(q)− ¯θ(q)). Suppose otherwise, i.e.,G1(p)≤G2(p) for p ∈ (¯θ(q)�C
′(q)− ¯θ(q)).Using that �(·) is monotonic, we get G1 = �(G1) ≥G2 = �(G2) and, finally, G1 =G2.

But then G1 and G2 must cross at some p0 ∈ (¯θ(q)�C
′(q) − ¯θ(q)) and both satisfy (50)

for the same K. However, this is a contradiction to the local uniqueness for a solution
to (50). Hence, global uniqueness of a solution follows. �

Proof of Example 2 continued. Equations (17) and (18) first can be transformed
into a system of first-order differential equations to get both the marginal contribution
of a given type and the identity of his conjugate. Using (17), we get

∂p

∂θ
(q�θ)= r(ψ(q�θ)+p(q�θ)−C ′(q))� (51)
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From equation (44), we obtain

∂p

∂θ
(q�θ)= −∂p

∂θ
(q�ψ(q�θ))

∂ψ

∂θ
(q�θ)�

Differentiating (51) with respect to θ, using the last expression, and replacing θ by
ψ(q�θ) in (51) and (17) yield

∂p

∂θ
(q�θ)

(
1 − r(θ−p(q�θ))) + (θ−p(q�θ))∂

2p

∂θ2 (q�θ)= 0� (52)

The solutions to this differential equation do not depend on q and we denote u(θ) =
θ− 1/r − p(q�θ). We look for such nonnegative solutions u(·) with 0< u̇(θ) ≤ 1, where
the last inequality is needed to satisfy SMP. Equation (52) can also be written as

ü(θ)(ru(θ)+ 1)+ ru(θ)(1 − u̇(θ))= 0�

Defining φ(·) as u̇(θ)=φ(u(θ)), we get

φ′(u) φ(u)

1 −φ(u) = − ru

1 + ru �

A first quadrature yields

φ(u)+ ln(1 −φ(u))= −λ+ u− 1
r ln(1 + ru)�

where λ is some constant. Since the function φ+ ln(1 −φ) is monotonically decreasing
on [0�1), it is invertible. Denote byG(·) its inverse defined over R−. We obtain

u̇(θ)=G(−λ+ u(θ)− 1
r ln(1 + ru(θ)))� (53)

Take now any initial value u(¯θ) ∈ (0� ¯θ− 1/r) and consider the solution u(·) to (53) with
this initial condition when λ > u(¯θ)− (1/r) ln(1 + ru(¯θ)). The function u(·) is nonnega-
tive, strictly increasing, and has a slope less than 1, so that it never reaches the boundary
v(θ)= θ− 1/r. Using the Theorem of Uniqueness for the solution to such a differential
equation (Hirsch and Smale 1974, p. 164), it can also be shown that such a solution con-
verges without extending it toward a limit u∞ defined as λ= u∞ − (1/r) ln(1 + ru∞). �

Proof of Lemma 2. Denote Pi’s ex post payoff for a given pair (θi� θ−i) as

Vi(θi� θ−i)= θiq(θi� θ−i)− t(q(θi� θ−i)� θi)�

Simple algebra gives

U(θ1� θ2)+
2∑
i=1

Vi(θi� θ−i)=
( 2∑
i=1

θi

)
q(θ1� θ2)−C(q(θ1� θ2))� (54)

From the fact that U(¯θ� ¯θ)= 0 in any symmetric equilibrium, we must have

2V (¯θ� ¯θ)= 2¯θq(¯θ� ¯θ)−C(q(¯θ� ¯θ)) > 0� (55)
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Indeed, we have ¯θ−p(q(¯θ� ¯θ)� ¯θ) > 0 from SMP and (7). Using (8), we get

2¯θ > C
′(q(¯θ� ¯θ)) >

C(q(¯θ� ¯θ))
q(¯θ� ¯θ)

�

where the last inequality follows from the strict convexity of C(·), C(0)= 0, and the fact
that q(¯θ� ¯θ) > 0 when p(q� ¯θ) > 0 and C ′(0)= 0.

We also obtain the following expressions of the partial derivatives of V (·):
∂Vi
∂θ−i

(θi� θ−i) = (
θi −p(q(θi� θ−i)� θi)

) ∂q
∂θ−i

(θi� θ−i)

= R(θ−i)
∂p

∂θ
(q(θi� θ−i)� θ−i)

∂q

∂θ−i
(θi� θ−i)

and

∂Vi
∂θi

(θi� θ−i) = q(θi� θ−i)+ (
θi −p(q(θi� θ−i)� θi)

) ∂q
∂θi

(θi� θ−i)− ∂t

∂θ
(q(θi� θ−i)� θi)

(56)

= q(θi� θ−i)+R(θ−i)
∂2U

∂θ1 ∂θ2
(θ1� θ2)− ∂U

∂θi
(θ1� θ2)�

Integrating (56) yields

Vi(θi� θ−i)=φ(θ−i)+
∫ θi

¯θ
q(x�θ−i) dx+R(θ−i)

∂U

∂θ−i
(θi� θ−i)−U(θi�θ−i) (57)

for some function φ(·). Because U(¯θ�θ−i)= 0 for all θ−i, one gets

Vi(¯θ�θ−i)=φ(θ−i)� (58)

Inserting the expressions obtained from (57) and (58) into (54) yields

−U(θi�θ−i)+
2∑
i=1

R(θi)
∂U

∂θi
(θi� θ−i)

=
( 2∑
i=1

θi

)
q(θ1� θ2)−C(q(θ1� θ2))−

2∑
i=1

(
φ(θi)+

∫ θi

¯θ
q(x�θ−i) dx

)
�

(59)

Simple integrations by parts show that

E(θ1�θ2)

[
−U(θ1� θ2)+

2∑
i=1

R(θi)
∂U

∂θi
(θ1� θ2)

]
=E(θ1�θ2)[U(θ1� θ2)]�

Because in any equilibrium U(θ1� θ2)≥ 0, we must have, from (59),

E(θ1�θ2)

[( 2∑
i=1

θi

)
q(θ1� θ2)−C(q(θ1� θ2))−

2∑
i=1

∫ θi

¯θ
q(x�θ−i) dx

]
≥

2∑
i=1

Eθi [φ(θi)]�
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Integrating by parts the left-hand side above yields the inequality

E(θ1�θ2)

[( 2∑
i=1

θi −R(θi)
)
q(θ1� θ2)−C(q(θ1� θ2))

]
≥

2∑
i=1

Eθi [φ(θi)]�

To get (24), note that φ′(θ−i)≥ 0 from (58) and that φ(¯θ) > 0 is given by (55).
In passing, using (57), integrating by parts, and taking into account that U(θi� ¯θ)= 0

show also that

Eθ−i [V (θi� θ−i)] =Eθ−i [φ(θ−i)] +
∫ θi

¯θ
Eθ−i [q(x�θ−i)]dx≥φ(¯θ) > 0�

Hence, the principals’ interim participation constraints are satisfied. �

Proof of Theorem 5. Define first

J(θ2)=Eθ1

[( 2∑
i=1

θi −R(θi)
)
qFB(θ1� θ2)−C(qFB(θ1� θ2))

]
and I =Eθ2[J(θ2)]�

Integrating by parts and using d(x(F(x)− 1))/dx= xf(x)− 1 + F(x), we have

J(θ2)= (¯θ+ θ2 −R(θ2))q
FB(¯θ�θ2)−C(qFB(¯θ�θ2))

+
∫ θ̄

¯θ
∂qFB

∂θ1
(θ1� θ2)

(
θ1 + θ2 −R(θ2)−C ′(qFB(θ1� θ2))

)
(1 − F(θ1))dθ1�

Using the definition of qFB(·) to simplify the last integral yields

J(θ2)= (¯θ+ θ2 −R(θ2))q
FB(¯θ�θ2)−C(qFB(¯θ�θ2))

−R(θ2)

∫ θ̄

¯θ
∂qFB

∂θ1
(θ1� θ2)(1 − F(θ1))dθ1�

Therefore, taking expectations with respect to θ2 yields

I =Eθ2

[
(¯θ+ θ2 −R(θ2))q

FB(¯θ�θ2)−C(qFB(¯θ�θ2))
]

−
∫ θ̄

¯θ

∫ θ̄

¯θ
∂qFB

∂θ1
(θ1� θ2)(1 − F(θ2))(1 − F(θ1))dθ1 dθ2�

The first term can again be integrated by parts to get

Eθ2

[
(¯θ+ θ2 −R(θ2))q

FB(¯θ�θ2)−C(qFB(¯θ�θ2))
]

= 2¯θq
FB(¯θ� ¯θ)−C(qFB(¯θ� ¯θ))

−
∫ θ̄

¯θ
∂qFB

∂θ2
(¯θ�θ2)

(
¯θ+ θ2 −C ′(qFB(¯θ�θ2))

)
(1 − F(θ2))dθ2�
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where the last integral is zero by the definition of qFB(·). Gathering everything, we get

I = 2¯θq
FB(¯θ� ¯θ)−C(qFB(¯θ� ¯θ))−

∫ θ̄

¯θ

∫ θ̄

¯θ
∂qFB

∂θ1
(θ1� θ2)(1 − F(θ2))(1 − F(θ1))dθ1 dθ2

< 2¯θq
FB(¯θ� ¯θ)−C(qFB(¯θ� ¯θ))�

Hence, (24) does not hold for the first-best. �

Proof of Lemma 3. The uninformed mediator offers a centralized mechanism
{T1(θi� θ−i)�T2(θi� θ−i)� q(θi� θ−i)}. Denote Pi’s expected payoff when his type is θi as

Vi(θi)= θiEθ−i [q(θi� θ−i)− Ti(θi� θ−i)]�
Denote also the agent’s payoff as

U(θ1� θ2)=
2∑
i=1

Ti(θi� θ−i)−C(q(θi� θ−i))�

Incentive compatibility implies

V̇i(θi)=Eθ−i [q(θi� θ−i)] (60)

and

Eθ−i [q(θi� θ−i)] nondecreasing in θi� (61)

Voluntary participation by the principals and the agent requires, respectively,

Vi(θi) ≥ 0 ∀θi (62)

U(θ1� θ2) ≥ 0 ∀(θ1� θ2)� (63)

The uninformed mediator maximizes now the objective function51

E(θ1�θ2)

[ 2∑
i=1

α′(θi)f (θi)V (θi)+βU(θ1� θ2)

]
subject to (60), (62), and (63)

for some weights α′(·) to be made precise below. The characterization of those interim
efficient allocations then follows closely Ledyard and Palfrey (1999). First, (60) implies

Vi(θi)= V (¯θ)+
∫ θi

¯θ
Eθ−i [q(x�θ−i)]dx�

where we use symmetry to set V1(¯θ)= V2(¯θ)= V (¯θ)≥ 0. Then observe that

E(θ1�θ2)

[( 2∑
i=1

θi

)
q(θ1� θ2)−C(q(θ1� θ2))−

2∑
i=1

Vi(θi)

]
=E(θ1�θ2)[U(θ1� θ2)] ≥ 0�

51We neglect (61), which is checked ex post.
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where the last inequality follows from (63). Integrating by parts the left-hand side above,
one gets

E(θ1�θ2)

[( 2∑
i=1

θi −R(θi)
)
q(θ1� θ2)−C(q(θ1� θ2))

]
≥ 2V (¯θ)� (64)

Integrating by parts the mediator’s objective function, we get

β

(
E(θ1�θ2)

[( 2∑
i=1

θi −R(θi)
)
q(θ1� θ2)−C(q(θ1� θ2))

])

+
2∑
i=1

∫ θ̄

¯θ
(1 − F(θi))α̃′(θi)Eθ−i [q(θi� θ−i)]dθi + 2V (¯θ)

(∫ θ̄

¯θ
α′(θ)f (θ)dθ−β

)
�

(65)

where α̃′(θi) = (1/(1 − F(θi)))
∫ θ̄
θi
α′(θ)f (θ)dθ. Hence, any interim efficient allocation

must maximize (65) subject to (64). Denote by λ the multiplier of this last constraint.
Optimizing the corresponding Lagrangian pointwise yields

C ′(q(θ1� θ2))=
2∑
i=1

θi −R(θi)
(

1 − α̃′(θi)
λ+β

)
�

which is the solution when the monotonicity condition (61) holds, and V (¯θ) is not infi-
nite when α̃′(θ̄)/(β+ λ)≤ 1. Denoting α(θ)= α̃′(θ)/(β+ λ) yields (25).

Reciprocally, the fact that a common agency equilibrium satisfies (25) implies that
one can find transfers that implement the corresponding output. Take Ti(θi� θ−i) =
t(q(θi� θ−i)� θi), where t(·) is the symmetric contribution schedule. �

Proof of Theorem 6. Interim efficient equilibrium links necessarily the equilibrium
outputQ(θ)= q(θ�θ) along the diagonal and the function b(θ) because (25) also implies

C ′(Q(θ))= 2b(θ)

with the extra condition thatQ(θ̄)= qFB(θ̄� θ̄) since b(θ̄)= θ̄.
We now prove a lemma that significantly restricts the kind of equilibrium schedules

that may be sought.

Lemma 7. Any informative equilibrium of a common agency game that is interim effi-
cient satisfies

∂2p

∂θ∂q
(Q(θ)�θ)= 0 ∀θ ∈�� (66)

Proof. Along the diagonal where both principals have the same type θ, we must have

b(θ)= p(Q(θ)�θ) and θ− b(θ)=R(θ)∂p
∂θ
(Q(θ)�θ)� (67)
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Let us fix an isoquant defined as θ2 =ψ(Q(θ̃)�θ1) for some θ̃ ∈�. From (67), we have

2∑
i=1

θi −C ′(Q(θ̃))=
2∑
i=1

R(θi)
∂p

∂θ
(Q(θi)� θi)� (68)

Along such isoquant, we have also

θi −p(Q(θ̃)�θi)=R(θ−i)
∂p

∂θ
(Q(θ̃)�θ−i) for i= 1�2�

Summing over i, we get

2∑
i=1

θi −C ′(Q(θ̃))=
2∑
i=1

R(θi)
∂p

∂θ
(Q(θ̃)�θi)� (69)

Along the isoquant, gathering (68) and (69) yields

R(θ1)
∂p

∂θ
(Q(θ̃)�θ1)+R(ψ(Q(θ̃)�θ1))

∂p

∂θ
(Q(θ̃)�ψ(Q(θ̃)�θ1))

=R(θ1)
∂p

∂θ
(Q(θ1)�θ1)+R(ψ(Q(θ̃)�θ1))

∂p

∂θ
(Q(ψ(Q(θ̃)�θ1))�ψ(Q(θ̃)�θ1))�

(70)

This identity should hold for all θ1. We now look at the Taylor expansions of both the
right- and left-hand sides of (70) around θ̃.

Using (44) and the fact that θ̃=ψ(Q(θ̃)�θ) yields first

∂ψ

∂θ
(Q(θ̃)� θ̃)= −1�

Differentiating (44) once more with respect to θ and evaluating at θ̃ yields also

∂2ψ

∂θ2 (Q(θ̃)� θ̃)= −2

⎛⎝ Ṙ(θ̃)
R(θ̃)

− 1 − ∂p
∂θ (Q(θ̃)� θ̃)

θ̃− C ′(Q(θ̃))
2

⎞⎠ �
For an interim efficient equilibrium (if any), it must be that 0 ≤ 2θ̃ − C ′(Q(θ̃)) =

2R(θ̃)(1 − α̃(θ̃))≤ 2R(θ̃) and 2θ̃− C ′(Q(θ̃))= 2R(θ̃)∂p(Q(θ̃)� θ̃)/∂θ so that ∂p(Q(θ̃)� θ̃)/
∂θ ≤ 1. Since Ṙ(θ̃) < 0, we have ∂2ψ(Q(θ̃)� θ̃)/∂θ2 > 0. The right- and left-hand sides
of (70) are equal at θ1 = θ̃ and both have zero first-order derivative at this point. The
second-order derivative for the left-hand side evaluated at θ1 = θ̃ is

∂2ψ

∂θ2 (Q(θ̃)� θ̃)

(
Ṙ(θ̃)

∂p

∂θ
(Q(θ̃)� θ̃)+R(θ̃)∂

2p

∂θ2 (Q(θ̃)� θ̃)

)
�

The second-order derivative for the right-hand side at θ1 = θ̃ is instead

∂2ψ

∂θ2 (Q(θ̃)� θ̃)

(
Ṙ(θ̃)

∂p

∂θ
(Q(θ̃)� θ̃)+R(θ̃)

(
∂2p

∂θ2 (Q(θ̃)� θ̃)+ ∂2p

∂θ∂q
(Q(θ̃)� θ̃)Q̇(θ̃)

))
�
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Since Q̇(θ̃) > 0 holds, these second-order derivatives can only be equal when (66)
holds. �

Condition (66) is of course very demanding, since, taken with the equilibrium con-
ditions, it fully characterizes the equilibriumQ(·) along the diagonal.

From (13) that we differentiate with respect to q, we have indeed

∂ψ

∂q
(Q(θ)�θ)−C ′′(Q(θ))+ ∂p

∂q
(Q(θ)�θ)=R(θ) ∂

2p

∂θ∂q
(Q(θ)�θ)= 0�

Using also the identity ψ(Q(θ)�θ)= θ and differentiating with respect to θ yield

∂ψ

∂q
(Q(θ)�θ)Q̇(θ)+ ∂ψ

∂θ
(Q(θ)�θ)= 1�

Using ∂ψ(Q(θ)�θ)/∂θ= −1, we finally find

∂p

∂q
(Q(θ)�θ)= C ′′(Q(θ))+ 2

Q̇(θ)
�

Moreover, using 2p(Q(θ)�θ)= C ′(Q(θ)) and differentiating with respect to θ yield(
2
∂p

∂q
(Q(θ)�θ)−C ′′(Q(θ))

)
Q̇(θ)+ ∂p

∂θ
(Q(θ)�θ)= 0�

Finally, we have

2θ−C ′(Q(θ))=R(θ)∂p
∂θ
(Q(θ)�θ)= (

4 −C ′′(Q(θ))Q̇(θ)
)
R(θ)� (71)

Integrating the differential equation (71) inQ(·)with the boundary condition requested
by interim efficiency (i.e., C ′(Q(θ̄)) = 2θ̄) shows that the only candidate for an interim
efficient equilibrium has an increasing output along the diagonal given by

C ′(Q(θ))= 2b(θ)= 2
(
θ− 1

1 − F(θ)
∫ θ̄

θ
(1 − F(x))dx

)
� (72)

Putting equations (26) (for θ= θ1 = θ2) and (72) together, we get

b(θ) = θ− 1
1 − F(θ)

∫ θ̄

θ
(1 − F(x))dx

(73)

b(θ) = 1
1 − F(θ)

∫ θ̄

θ
b−1(2b(θ)− b(x))f (x)dx�

Simple differentiation of those two equalities with respect to θ shows that necessarily

ḃ(θ)= 2 − f (θ)

(1 − F(θ))2
∫ θ̄

θ
(1 − F(x))dx

ḃ(θ)

1 − F(θ)
∫ θ̄

θ

f (x)

ḃ(b−1(2b(θ)− b(x))) dx= 1�
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Suppose now that ḃ(θ), which must be positive (by assumption), is not every-
where constant. Then, because � is compact, ḃ(θ) achieves its maximum (resp.
its minimum) at some θ̃ (resp. θ̃′). Either θ̃ or θ̃′ is necessarily different from θ̄ if
ḃ(θ) is not constant. Assume thus θ̃ < θ̄. Then for any x > θ̃, b(·) increasing im-
plies b−1(2b(θ̃) − b(x)) < θ̃ and thus ḃ(b−1(2b(θ̃) − b(x))) < ḃ(θ̃), and finally (ḃ(θ̃)/

(1 − F(θ̃)))∫ θ̄
θ̃
f (x)/ḃ(b−1(2b(θ̃) − b(x)))dx > 1, which is contradiction. If θ̃′ < θ̄, one

shows similarly that (ḃ(θ̃′)/(1 − F(θ̃′)))
∫ θ̄
θ̃′ f (x)/ḃ(b−1(2b(θ̃′)− b(x)))dx < 1.

Since ḃ(θ) = β for some β ≥ 0 and b(θ̄) = β̄, we immediately obtain b(θ) = β̄ +
β(θ− β̄). Inserting into (73) yields that R(θ)= ((2 − β)/(1 − β))(θ̄− θ). This gives a β
density function f (θ)= ((1 +η)/(θ̄− ¯θ)

1+η)(θ̄− θ)η, where β= 2 + 1/η, which ensures
that Ṙ(θ) < 0. �

Proof of Proposition 1. Immediate from the text. �

Proof of Proposition 2. Suppose that principal P2 offers t∗(q) whatever his own
type. The agent learns nothing from this offer and has no endogenous private infor-
mation. Consider principal P1’s best response. Two possibilities arises. First, he may
agree with principal P2 and induce the agent to produce q∗. This is done by offering also
t∗(q) whatever P1’s type. This yields payoff

W ∗(θ1)= θ1q
∗ − 1

2C(q
∗)�

The second possibility is that principal P1 deviates and induces another output. The
best of such deviation should solve

max
{q�t1(·�θ1)}

θ1q− t1(q�θ1) subject to t1(q�θ1)−C(q)≥ max
{
0�− 1

2C(q
∗)

} = 0�

where the latter condition is the agent’s participation constraint.52 This best deviation
implements the output q̂(θ) with a forcing contract

t(q�θ1)=
{
C(q̂(θ1)) > 0 for q= q̂(θ1)

0 for q 	= q̂(θ1)

and gives payoff Ŵ (θ1) to the deviating principal. This deviation is unprofitable for all θ1

when

W ∗(θ1)= θ1q
∗ − 1

2C(q
∗)≥ Ŵ (θ1) ∀θ1 ∈�� (74)

Since W ∗′(θ1) = q∗ ≥ q̂(θ̄) ≥ q̂(θ1) = Ŵ ′(θ1), (74) holds everywhere if it holds also at ¯θ.
Hence, offering t∗(q) is a best response for all θ1 under the assumptions of the proposi-
tion. �

52This participation constraint takes into account, first, the possibility to produce q∗ at a loss and, sec-
ond, the possibility of refusing all contracts. Note again that this participation constraint is the same for
any beliefs that the agent may have following principal P1’s unexpected deviation.
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Proof of Proposition 3. Suppose that P−i with type θ−i offers t∗(q� ·|θ−i) such that
t∗(q� θ̂i|θ−i)= t(q�θ−i) for all θ̂−i ∈� on the equilibrium path when playing in �∗. This
choice reveals, of course, all information on P−i’s type to the agent who gets endogenous
private information on P−i’s type against Pi from that exactly as when playing �.

Consider Pi’s best response. First, notice that Pi can achieve the same payoff as in
� by offering also the degenerate menu t∗(q� ·|θi) such that t∗(q� θ̂i|θi) = t(q�θi) for all
θ̂i ∈ �. Indeed, the agent’s decision to accept that degenerate menu and to produce
accordingly are the same as in �.

Suppose now that Pi makes any other offer, say a menu t̃i(q� ·) 	= t∗(q� ·|θi). We want
to find out-of-equilibrium beliefs for the agent that make offering this menu a subopti-
mal strategy for the deviating principal. Consider first the lower envelope of the offered
menu defined as zi(q) = minθ̂i∈� t̃i(q� θ̂i) for all q ∈ Q. By continuity of t̃i(q� ·) in θ̂i and
compactness of �, the Theorem of the Maximum ensures that such a lower envelope
zi(q) is well defined and continuous in q. Define also accordingly any arbitrary selec-
tion within the nonempty compact values and upper semicontinuous correspondence
arg minθ̂i∈�t̃i(q� θ̂i) as θ̂0

i (q). For any θ−i, define also q(θ−i) to be a measurable selector
from the nonempty compact values correspondence arg maxq∈Qzi(q)+ t(q�θ−i)−C(q).
Such a selector exists from the Measurable Maximum Theorem (Aliprantis and Border
1999, p. 570) since the above maximand is a Carathéodory function. Such a measurable
selector allows us to compute the deviating principal’s expected payoff in a meaningful
way. Choose now out-of-equilibrium beliefs that put mass 1 on θ̂0

i (q(θ−i)) following any
deviation by principal Pi. These beliefs minimize the agent’s rent from his endogenous
private information. Using the definition of zi(q), observe that, following the deviating
menu offer t̃i(q� ·), Pi gets thus at most the expected payoff Eθ−i [θiq(θ−i)− zi(q(θ−i))].

Note then that the contribution zi(q) could also have been offered when playing �
and accepted by any type of the agent if maxq∈Q zi(q)+ t(q�θ−i)−C(q)≥ 0 for any type
θ−i. Such contribution implements the output schedule q(θ−i). Then, by definition of
the equilibrium strategy t(q�θi) in �, we necessarily have

Eθ−i
[
θiq(θ−i)− zi(q(θ−i))

] ≤Eθ−i
[
θiq(θi� θ−i)− t(q(θi� θ−i)� θ−i)

]
�

where q(θi� θ−i) is the equilibrium output in �. This ends the proof that the deviating
offer t̃i(q� ·) is dominated. �

Proof of Proposition 4. Take any menu of differentiable contribution schedules
{t∗2 (q� θ̂2)}θ̂2∈� that is incentive compatible for principal P2 and inscrutable, i.e., all types
of that principal offer this menu and the agent’s prior beliefs on principal P2’s types are
unchanged following such an offer. By either accepting or refusing this menu, the agent
gets

Û2 = max
{

0�Eθ2

[
max
q
t∗2 (q�θ2)−C(q)

]}
�

Take a menu of contribution schedules {t1(q� θ̂1)}θ̂1∈� that is incentive compatible for
principal P1 and also inscrutable. For the agent to accept both menus of contributions,
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the following participation constraint must hold:

E(θ1�θ2)

[
max
q

{t1(q�θ1)+ t∗2 (q�θ2)−C(q)}
]

≥ Û2�

For differentiable schedules, incentive compatibility for the agent implies the fol-
lowing first-order condition at any equilibrium output q(θ1� θ2):

∂t1
∂q
(q(θ1� θ2)�θ1)+ ∂t∗2

∂q
(q(θ1� θ2)�θ2)= C ′(q(θ1� θ2))� (75)

Lemma 8. In any best response to the inscrutable menu {t∗2 (q� θ̂2)}θ̂2∈�, principal P1 with
type θ1 gets

V S1 (θ1)=Eθ2

[
max
q

{θ1q+ t∗2 (q�θ2)−C(q)}
]
− Û2� (76)

Proof. Consider principal P1 with type θ1. He can always deviate by offering a degen-
erate menu {t1(q� θ̂1)}θ̂1∈� such that t1(q� θ̂1)= tS1 (q�θ1) for all θ̂1, where tS1 (q�θ1) is the
sell-out contract

tS1 (q�θ1)= θ1q− V S1 (θ1)

with V S1 (θ1) satisfying (76) and being the principal’s deviation payoff.
Such a sell-out contract aligns the objective of principal P1 with that of the agent. It

induces an output q(θ1� θ2) that is efficient for their bilateral coalition (given the con-
tributions received from principal P2) and it maximizes their expected bilateral payoff
when expectations are taken over principal P2’s type, which is unknown at the time of
acceptance in any inscrutable equilibrium. This output is thus such that

θ1 + ∂t∗2
∂q
(q(θ1� θ2)�θ2)=C ′(q(θ1� θ2))� (77)

Finally, V S1 (θ1) is adjusted to leave the agent indifferent between taking this degenerate
menu, in which case his beliefs on the principal’s deviating types are irrelevant, or not.

Last, at any best response in the game �∗, principal P1 gets precisely V S1 (θ1)whatever
his type. Indeed, such best response would give a set of incentive compatible payoffs
(V1(θ1))θ1∈� for principal P1 that, by definition, must weakly Pareto dominate the payoff
vector (V S1 (θ1))θ1∈�. However, the payoff vector (V S1 (θ1))θ1∈� is undominated within the
set of payoffs achievable with incentive compatible allocations and thus there cannot be
other equilibrium payoffs.

To see that the payoff vector (V S1 (θ1))θ1∈� is undominated, observe first that this
payoff vector also maximizes the ex ante payoff of principal P1, namely E(θ1�θ2)[θ1q −
t1(q�θ1)], over the set of all incentive feasible allocations that induce the agent to accept
principal P1’s contract. Indeed, because of risk neutrality and ex ante contracting, the
best ex ante incentive compatible mechanism obviously implements the bilateral effi-
cient output that solves (77). It does so with menus of contributions {t1(q�θ1)}θ1∈� of
the form t1(q�θ1)= θ1q−α(θ1), which leave the agent a residual claimant for his output
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decision. Note that Eθ1[α(θ1)] is then the principal’s ex ante payoff, which is set so that
the agent’s ex ante participation constraint holds as an equality, namely

Eθ1[α(θ1)] = E(θ1�θ2)

[
max
q

{θ1q+ t∗2 (q�θ2)−C(q)}
]
− Û2 =Eθ1[V S(θ1)]�

This last equality shows that the payoff vector (V S1 (θ1))θ1∈� is indeed undominated.53 �

Lemma 9. In any best response to the inscrutable menu {t∗2 (q� θ̂2)}θ̂2∈� such that t1(q�θ1)

is differentiable in q, principal P1 with type θ1 offers tS1 (q�θ1) as part of his menu
{t1(q� θ̂1)}θ̂1∈�.

Proof. Any menu of differentiable schedules {t1(q� θ̂1)}θ̂1∈� in principal P1’s best-
response correspondence must actually satisfy both (75) and (77) when his type is
θ1. Hence, we necessarily have ∂t1(q�θ1)/∂q = θ1. This implies, after integration, that
t1(q�θ1)= θ1q−h(θ1) for some h(·), but we know that h(θ1)= V S(θ1) from Lemma 8. �

Altogether, Lemmata 8 and 9 imply also that principal P1 offering the inscrutable
incentive compatible menu {tS1 (q� θ̂1)}θ̂1∈� of sell-out contracts is a best response what-
ever his type θ1. This is the unique such menu with differentiable schedules. By the
same token, if there exists any inscrutable equilibrium of �∗, principal 2 also does the
same and offers the inscrutable menu {tS2 (q� θ̂2)}θ̂1∈�, where

tS2 (q�θ2)= θ2q− V S2 (θ2)�

Finally, inserting into (77) yields the first-best output q(θ1� θ2)= qFB(θ1� θ2). From (76),
and denoting first-best welfare as W FB(θ1� θ2) = (θ1 + θ2)q

FB(θ1� θ2) − C(qFB(θ1� θ2)),
equilibrium payoffs for the principals satisfy the system of equations

V Si (θi)=Eθ−i [W FB(θi� θ−i)− V S−i(θ−i)] − Û−i for i= 1�2 (78)

with

Û−i = max
{
0�Eθ−i [Ŵ (θ−i)− V S−i(θ−i)]

}
�

It is immediate to derive from (78) that

V̇ Si (θi)=Eθ−i [qFB(θi� θ−i)]

and thus

V Si (θi)= V Si (¯θ)+
∫ θi

¯θ
Eθ−i [qFB(x�θ−i)]dx� (79)

53As this proof shows, there may be many different ways of distributing payoffs between the different
types θ1 of principal P1 from an ex ante viewpoint, but only one such allocation corresponds to a best
response in the game where the principal already knows his type when making his offer to the agent.



Theoretical Economics 5 (2010) Common agency and public good provision 209

From (78) and taking expectations over θi, we get also

2∑
i=1

Eθi [V Si (θi)] =E(θ1�θ2)[W FB(θ1� θ2)] − Ûj for j = 1�2 (80)

and thus

Û1 = Û2 = Û�
Using (79) and integrating by parts in the left-hand side of (80) yields

2∑
i=1

V Si (¯θ)=E(θ1�θ2)

[ 2∑
i=1

(θi −R(θi))qFB(θ1� θ2)−C(qFB(θ1� θ2))

]
− Û� (81)

But using (78) to express V S1 (¯θ), (79) to express V S2 (θ2), and integrating by parts, we get
also

2∑
i=1

V Si (¯θ)=Eθ2

[
(¯θ+ θ2 −R(θ2))q

FB(¯θ�θ2)−C(qFB(¯θ�θ2))
] − Û�

We already know from the proof of Theorem 5 that

Eθ2

[
(¯θ+ θ2 −R(θ2))q

FB(¯θ�θ2)−C(qFB(¯θ�θ2))
] = 2¯θq

FB(¯θ� ¯θ)−C(qFB(¯θ� ¯θ))�

Hence, we get

2∑
i=1

V Si (¯θ)= 2¯θq
FB(¯θ� ¯θ)−C(qFB(¯θ� ¯θ))− Û�

Inserting into (81) implies

2¯θq
FB(¯θ� ¯θ)−C(qFB(¯θ� ¯θ))=E(θ1�θ2)

[ 2∑
i=1

(θi −R(θi))qFB(θ1� θ2)−C(qFB(θ1� θ2))

]
�

But we know from Theorem 5 that this equality never holds. Hence, there does not exist
any equilibrium where both principals offer inscrutable mechanisms with differentiable
schedules. �
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