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Strategy-proofness and single-crossing

A S

School of Social Sciences, University of Manchester

This paper analyzes strategy-proof collective choice rules when individuals have
single-crossing preferences on a finite and ordered set of social alternatives. It
shows that a social choice rule is anonymous, unanimous, and strategy-proof on
a maximal single-crossing domain if and only if it is an extended median rule with
n−1 fixed ballots distributed over the individuals’ most preferred alternatives. As
a by-product, the paper also proves that strategy-proofness implies the tops-only
property. It also offers a strategic foundation for the so-called “single-crossing
version” of the Median Voter Theorem, by showing that the median ideal point
can be implemented in dominant strategies by a direct mechanism in which every
individual reveals his true preferences.

K. Single-crossing, strategy-proofness, tops-only, peak rules.

JEL . C72, D71, D78.

1. I

In social choice theory, a collective decision making process is usually represented by
a social choice rule. A social choice rule associates a unique alternative from the set
of feasible alternatives to every possible list of preferences of the individuals in the so-
ciety. A social choice rule is said to be strategy-proof if no individual can ever benefit
from misrepresenting his true preferences. A fundamental result in social choice the-
ory, known as the Gibbard (1973)–Satterthwaite (1975) Theorem, shows that, if the set
of alternatives contains at least three possible outcomes and individual preferences are
not restricted in any particular way, then every strategy-proof social choice rule is dic-
tatorial. That is, there is an individual whose preferences always dictate the final choice
regardless of the other individuals’ preferences.

The Gibbard–Satterthwaite Theorem holds under the so called universal domain as-
sumption, which means that every profile of complete and transitive preference rela-
tions is an admissible element of the domain of the social choice rule. In many eco-
nomic and political applications, however, preferences satisfy additional properties. A
case in point is the single-peaked property.

Alejandro Saporiti: alejandro.saporiti@manchester.ac.uk
I am grateful to two anonymous referees and the coeditor, Martin Osborne, for helpful comments and
corrections on an earlier draft. I also thank Nick Baigent, John Duggan, Christian List, Antoine Loeper,
Paola Manzini, Jordi Massó, Marco Mariotti, Bernardo Moreno, Hervé Moulin, Alejandro Neme, Fernando
Tohmé, Rodrigo Velez, John Weymark, and seminar participants at LSE, Manchester, Osnabrück, Queen
Mary, Rochester, Warwick, and the 2005 World Congress of the Econometric Society for useful suggestions
and discussion.

Copyright c© 2009 Alejandro Saporiti. Licensed under the Creative Commons Attribution-NonCommercial
License 3.0. Available at http://econtheory.org.

http://creativecommons.org/licenses/by-nc/3.0
http://creativecommons.org/licenses/by-nc/3.0
http://econtheory.org


128 Alejandro Saporiti Theoretical Economics 4 (2009)

A set of preference relations is single-peaked if there is a linear order of the alter-
natives such that every preference relation has a unique most preferred alternative (or
ideal point) over this ordering, and the preference for any other alternative monotoni-
cally decreases by moving away from the ideal point. Single-peaked preferences natu-
rally arise in economics when a strictly quasi-concave utility function is maximized on
a linear budget set. They were first proposed by Black (1948) to assure the existence of a
Condorcet winner (i.e., an alternative that beats every other alternative in a sequence of
pair-wise majority contests). And they represent a simple case where the conclusion of
the Gibbard–Satterthwaite Theorem does not apply.

To be more specific, consider the family of efficient extended median rules, which
are social choice rules that associate to each preference profile the median alternative
from a list consisting of the n ideal points of the individuals and n − 1 other alterna-
tives from the feasible set of alternatives. An important member of this family is the
well-known median choice rule, which assigns the median ideal point to every profile
of individual preferences.1 These rules are obviously non-dictatorial. In fact, they are
anonymous, because the names of the individuals play no role in making social choices.
They are also unanimous, in the sense that they respect any unanimous consensus in
the society about the most preferred alternative. Furthermore, if individual preferences
are single-peaked, then Moulin (1980) has shown that every member of this family is
strategy-proof. Conversely, every anonymous, unanimous, and strategy-proof social
choice rule on the domain of single-peaked preferences is an efficient extended median
rule.

Although single-peakedness is an intuitive domain restriction, there are interesting
problems in political economy and public economics, such as majority voting over dis-
tortionary tax rates, where individual preferences do not exhibit the single-peaked prop-
erty (see, for example, Romer 1975, p. 181, and Austen-Smith and Banks 1999, pp. 114–
115). In some of these cases, however, preferences do satisfy an alternative restriction
called the single-crossing property. This property appears, for example, in models of in-
come taxation and redistribution (Roberts 1977, Meltzer and Richard 1981), local public
goods and stratification (Westhoff 1977, Epple and Platt 1998, Epple et al. 2001), coali-
tion formation (Demange 1994, Kung 2006) and, more recently, in models that study the
selection of policies in the market for higher education (Epple et al. 2006) and the choice
of constitutional and voting rules (Barberà and Jackson 2004).

Unlike single-peakedness, the single-crossing property does not impose a priori any
restriction on the shape of each individual preference relation. So, for example, it does
not exclude preferences that do not monotonically decrease on both sides of the ideal
point. That is the reason why it accommodates non-convexities that arise in some ap-
plications of majority voting. If preferences are strict orderings, what the single-crossing
property requires is the existence of a linear order over the set of individual preferences
with the property that, for every pair of alternatives x and y , whenever two preference
relations P ′ and P ′′ coincide in ranking x above y , so do all preferences in between, so

1When n is even, ties at the median are broken in favor of either the largest or the smallest median peak
depending upon the tie-breaking rule in place.
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that the subset of preferences ranking one alternative above the other all lie to one side
of those that have the reverse ranking.2 Of course, if indifference between alternatives
is permitted, then the set of preference relations for which x is indifferent to y must be
located between the subsets with a strict ordering of these two alternatives.

In several applications, notably in models of redistribution financed by income tax-
ation, the single-crossing property is implied by more fundamental assumptions about
preferences and technologies. For instance, it holds when the heterogeneity among
individuals is created by a one-dimensional parameter θ (which can be interpreted
as income, productivity, an elasticity of substitution, a discount factor, etc.), and the
utility over social alternatives exhibits increasing differences in θ (Milgrom and Shan-
non 1994). In addition, under differentiability and some mild conditions on indiffer-
ence curves, the single-crossing property is also equivalent to the more familiar Spence–
Mirrlees condition of incentive theory and information economics, which requires that
the marginal rate of substitution be increasing in θ (Milgrom and Shannon 1994).

The single-crossing property has in many cases a substantive interpretation. A work-
ing example is the collective choice of an income tax rate. Suppose a moderately rich
individual prefers a high tax rate to another relatively smaller tax rate, so that he reveals
a preference for a greater redistribution of income. Then, the single-crossing property
requires that a relatively poorer individual, who receives a higher benefit from redistri-
bution, also prefers the higher tax rate. Sometimes this is interpreted in the literature
by saying that there is a complementarity between income and taxation, in the sense
that lower incomes increase the incremental benefit of greater tax rates. For another
example, consider a strong army that prefers a large territorial concession and a small
probability of war to a small concession and a high probability of war. Then, under
single-crossing, a weaker army, with a lower expected payoff from war, should also pre-
fer the large concession (Ashworth and Mesquita 2006, pp. 217–218).

Like the single-peaked property, single-crossing also guarantees the existence of a
Condorcet winner and allows a simple characterization of it. The Condorcet winner is
the ideal point of the median agent, where the latter is the individual whose preference
takes up the median position over the ordering of individual preferences for which the
single-crossing property is satisfied.3 This result appeared first in the seminal works of
Roberts (1977) and Grandmont (1978) and, more recently, in Rothstein (1991), Gans and
Smart (1996), and Austen-Smith and Banks (1999). It is referred to by Myerson (1996)
as the “single-crossing version” of the Median Voter Theorem (MVT). Alternatively, due
to the existence of a median individual who is decisive for every subset of alternatives,
Rothstein (1991) calls it the Representative Voter Theorem (RVT).

The problem with the Representative Voter Theorem is that, unlike the MVT over
single-peaked preferences, whose non-cooperative foundation was provided by Moulin

2When preferences are strict, it is also possible and convenient to derive a linear order over the set of
alternatives from the order of the preference relations, by defining alternative x to be “smaller than” alter-
native y if and only if the preference relations for which x is preferred to y lie on the left of the relations that
rank y above x .

3Instead, under single-peakedness, the Condorcet winner is given by the median ideal point over the
ordering of the alternatives for which the single-peaked property holds.



130 Alejandro Saporiti Theoretical Economics 4 (2009)

(1980), the RVT is based on the assumption that individuals honestly reveal their prefer-
ences. A natural question is therefore how legitimate the Representative Voter Theorem
is when preferences are private information and individuals can report them insincerely.
This question has been recently addressed by Saporiti and Tohmé (2006). They show
that the single-crossing property is sufficient to ensure the existence of social choice
rules that are immune to any individual and group misrepresentation of preferences. In
particular, this is true for the median choice rule.

Building on Saporiti and Tohmé (2006), this paper characterizes the family of anony-
mous, unanimous, and strategy-proof social choice rules on a maximal single-crossing
domain.4 This family coincides with the class of peak rules, which are extended median
rules with n − 1 fixed ballots distributed over the individuals’ most preferred alterna-
tives. This class includes the median choice rule as a particular case. Hence, the main
message of the analysis is that the single-crossing property is another meaningful do-
main restriction where majority voting works with “maximal” incentive properties. The
paper explains the source of this good property of single-crossing domains, and how far
we can go in changing majority rule.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3
contains the main results of the paper, including the characterization of peak rules and
the relationship between strategy-proofness and the tops-only property. As happens
with other preference domains, in our model every strategy-proof social choice rule ig-
nores all information about preferences except individuals’ most preferred alternatives.
The proof of this property constitutes a major step in establishing our characterization,
and we devote considerable space to developing the formal argument that proves this
result. Section 4 analyzes the robustness of our results to preference reports outside
the single-crossing domain. Final remarks appear in Section 5. For expositional conve-
nience, some of the proofs are in the appendices.

2. T 

2.1 Individuals, alternatives and preferences

Let N = {1, . . . , n} be a finite set of individuals. Except where otherwise noted, n ≥ 2. Let
X = {x , y , z , . . .} be a finite set of alternatives, with |X |> 2.5

LetP be the set of all complete, transitive and antisymmetric binary relations on X .
A preference ordering over the elements of X is represented by an element P ofP , with
the usual interpretation that for any pair x , y ∈ X , “x P y ” denotes a strict preference for
x over y . Sometimes we write P = (x y z . . .) to indicate that x P y , y P z , etc. For any
P ∈P , and any Y ⊆ X , let τ|Y (P) = arg maxY (P) be the top (peak) of P on Y . Notice that
the top set τ|Y (P) is a singleton because preferences are antisymmetric. For simplicity,
we denote τ(P) =τ|X (P).

4A set of preference relations with the single-crossing property is maximal if there does not exist an-
other set of preferences that contains the former set and that satisfies single-crossing (see Definition 2,
Section 2.1).

5For every set A, |A | stands for the cardinality of the set, and Ā for the complement of A.
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F 1. Illustration of Definition 1.

D 1. A set of preferences S ⊂ P exhibits the single-crossing property on X if
there is a linear order> of X and a linear order� ofS such that∀x , y ∈X and∀P, P ′ ∈S ,

[y > x , P ′ � P, & y P x ]⇒ y P ′x , SC 1

and
[y > x , P ′ � P, & x P ′ y ]⇒ x P y .6 SC 2

To help the reader gain more insight about this property, Figure 1(a) offers a graphi-
cal illustration of condition SC 1. Figure 1(b) exhibits a case where neither SC 1 nor SC 2
is satisfied. In both graphs, arrows denote “preference direction,” so that, for example,
an arrow from P to y in the presence of x stands for “y P x ”.

In words, a set of preference relations S on the set of alternatives X exhibits the
single-crossing property (or, for conciseness, S is single-crossing) if there is a linear
order> of X and a linear order� ofS such that whenever any preference relation P ∈S
ranks any alternative y above (respectively, below) any other alternative x and y > x ,
then so does every other preference relation P ′ ∈ S for which P ′ � P (respectively, P ′ ≺
P).

The single-crossing property is closely related to other preference restrictions, such
as hierarchical adherence (Roberts 1977), intermediateness (Grandmont 1978), order-
restriction (Rothstein 1990, 1991), and unidimensional alignment (List 2001).7 In all of
these preference domains the salient feature is the existence of a linear order of the pref-
erence relations with the property that, for each pair of alternatives x and y , the relation
x preferred to y (or the reverse) partitions the line over which the preferences are or-
dered into two disjoint intervals. If indifference between alternatives is permitted, then
three such intervals arise.

When individuals differ only in their preferences, these domain restrictions can also
be defined with respect to an ordering of the agents, instead of the preference relations
(see, for example, Rothstein 1990, 1991 and Gans and Smart 1996). That is, the existence
of a linear order over the preference relations with the property described above implies

6For any x , y ∈ X , we write (1) x = y if and only if ¬[x > y ] and ¬[y > x ] and (2) x ≥ y if and only if either
x = y or x > y . For any two distinct preferences P, P ′ ∈S , we say that P ≺ P ′ if and only if ¬[P � P ′].

7See also Barberà and Moreno (2007), who have recently proposed a weaker condition, called top-
monotonicity, that encompasses single-crossing, order-restriction, and single-peakedness.
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that “we can order individuals in such a way that for any pair of alternatives x and y , the
first j (x , y )≥ 0 individuals in the ordering strictly prefer x to y (respectively, y to x ), the
final k (x , y )≥ 0 individuals in the ordering strictly prefer y to x (respectively, x to y ), and
the middle group of individuals, if any, are indifferent between the two” (Austen-Smith
and Banks 1999, p. 107).8

Scenarios where such a strict ordering of individuals exists are quite common in
political economy. “For example, in redistributive politics policy makers are concerned
with reallocating resources from rich to poor people, subject to the constraint (typically)
that such redistributions do not reverse the rank-order of individuals’ wealth. So, while
there does not exist an obvious ordering of the alternative distributions of wealth, there
does exist a natural ordering of individuals and their preferences in terms of individual
wealth” (Austen-Smith and Banks 1999, p. 107).

From a technical perspective, the importance of single-crossing in political econ-
omy and public economics is due to the fact that, like single-peakedness, this domain
restriction is sufficient to guarantee the existence of a Condorcet winner, especially in
cases where the single-peaked property does not hold.9 However, apart from this, it is
worth noting that the conditions are independent, in the sense that neither property is
logically implied by the other. Examples 1 and 2 illustrate this point.

E 1. Consider the set of preference relations {P1, P2, P3} in Table 1(a). Recall that,
for example, P1 = (x y z ) stands for x P1 y P1 z . Simple inspection shows that this set has
the single-crossing property on X = {x , y , z } with respect to z > y > x and P3 � P2 � P1.
However, for every ordering of the alternatives, {P1, P2, P3} violates the single-peaked
property, because every alternative is ranked bottom in one preference relation. ◊

E 2. Consider the set of preferences displayed in Table 1(b). This set has the
single-peaked property on X = {x , y , z , w } with respect to z > y > x > w . How-
ever, {P1, P2, P3} violates Definition 1, because for every ordering of the binary relations
and for every ordering of the alternatives, there exist a pair of preference relations in
{P1, P2, P3} and a pair of alternatives in X such that SC 1 and SC 2 are both contradicted.
(For example, if z > y > x >w , then P1 � P3 contradicts SC 1 and SC 2 for the pair {x , y },
while P3 � P1 does so for {z , w }.) ◊

Since the main purpose of this paper is to characterize the family of strategy-proof
social choice rules on single-crossing domains, in what follows we restrict the analysis
to the largest or maximal sets of preference relations with the single-crossing property.
These sets contain the largest number of possible deviations. Therefore, they are the
appropriate framework in which to study incentive compatibility.

8As the notation indicates, the “cut-off” agents j (·) and k (·) can depend on the pair of alternatives under
consideration. In contrast, the order over the preference relations is the same for every pair.

9A preference relation P ∈ P is single-peaked on X if there is a linear order > of X and an alternative
τ(P) ∈ X such that ∀x , y ∈ X , (i) τ(P) > y > x ⇒ τ(P)P y P x , and (ii) x > y > τ(P)⇒ τ(P)P y P x . A set of
preference relations D ⊂ P exhibits the single-peaked property on X if there is a linear order > of X such
that every P ∈D is single-peaked on X with respect to >.
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P1 = (x y z )
P2 = (x z y )
P3 = (z y x )

a. Single-crossing

P1 = (x y z w )
P2 = (z y x w )
P3 = (y x w z )

b. Single-peakedness

T 1. Single-crossing and single-peakedness

D 2. A set of preferencesS with the single-crossing property on X is maximal
if there does not exist S ′ ⊂ P such that S ⊂ S ′ and S ′ exhibits the single-crossing
property on X .

E 3. To illustrate Definition 2, consider again Example 1. Notice that the set
of preference relations {P1, P2, P3} is not the largest set that satisfies Definition 1 on
X = {x , y , z }, because there exists a preference P4 = (z x y ) such that {P1, P2, P3, P4} is
single-crossing with respect to z > y > x and P3 � P4 � P2 � P1. It is easy to ver-
ify that {P1, P2, P3, P4} is indeed maximal. However, it is not unique. If we consider
the preference relations P5 = (y x z ) and P6 = (y z x ), then the set {P1, P5, P6, P3} is also
single-crossing with respect to z > y > x for P3 � P6 � P5 � P1. Moreover, the union of
{P1, P5, P6, P3} and {P1, P2, P3, P4} covers all preferences on X . ◊

At this point, it may be useful to compare the size of the set of all single-peaked pref-
erences and the size of the maximal sets with the single-crossing property, for a given
ordering of X .10 The former is well-known to be 2|X |−1 (see, for instance, Monjardet 2009,
p. 144 and the references therein). For single-crossing, the largest size is |X |·(|X |−1)/2+1,
which is much smaller. To see why, draw a line for each pair of distinct alternatives in X .
Observe that, under single-crossing, for each pair a ,b ∈ X , the relation a preferred to b
(or the reverse) partitions the line associated with {a ,b} into two disjoint intervals: one
interval where the preferences for which a is preferred to b are ordered and a second in-
terval where the relations with the opposite ranking of a and b are ordered (see Figure 2
for the case where X = {x , y , z }). There are |X | · (|X |−1)/2 such partitions. The projection
of these partitions into a line forms at most |X | · (|X | − 1)/2+ 1 different subintervals. In
each subinterval, the preference relation is fully determined. Hence, the given number
|X |·(|X |−1)/2+1 is an upper bound for the cardinality of the maximal sets of preferences
with the single-crossing property.11

For the rest of the analysis fix a maximal set S ⊂ P of preference relations with
the single-crossing property on X with respect to > and �. Suppose each individual
i ∈ N is endowed with a preference Pi ∈ S . Let Pi be agent i ’s private information.
Assume everybody knows the setS ; everybody knows that every agent has a preference
on X in S ; and so on. The n-fold Cartesian product S n of S is the set of all single-
crossing preference profiles. As usual, for any profile P = (P1, . . . , Pn ) ∈ S n , let P−i =

10As we note in Example 3, there may be several maximal sets of single-crossing preferences for a given
ordering of X . In contrast, the set of all single-peaked preferences is unique once alternatives are ordered.

11I am grateful to Hervé Moulin for making this observation in personal correspondence.
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y P xx P y

y P z

x P y P z x P z P y z P x P y z P y P x

x P z z P x

z P y

F 2. Maximal sets of single-crossing preferences.

(P1, . . . , Pi−1, Pi+1, . . . , Pn ); for each P̂i ∈ S , denote (P̂i , P−i ) = (P1, . . . , Pi−1, P̂i , Pi+1, . . . , Pn );
and, for every set S ⊆N , let PS = (Pi )i∈S .

2.2 Aggregation process

The problem for the society described in Section 2.1 is to make a social choice from the
set of alternatives X . Each individual is entitled to report a preference relation on X
from the set of admissible preferences S , which is assumed to be commonly known.
These reports are intended to provide information about the profile of true preferences,
although agents’ sincerity cannot be ensured.

A social choice rule is a single-valued mapping f : S n → X that associates to each
preference profile P ∈ S n a unique outcome f (P) ∈ X . Denote the range of f by r f =
{x ∈ X : ∃P ∈S n such that f (P) = x }. Given a social choice rule f :S n → X , a nonempty
set S ⊂N , and a profile PS̄ ∈S |S̄|, let

O
f

S (PS̄) = {x ∈X : ∃PS ∈S |S| such that f (PS , PS̄) = x }

be the option set of S, given that the remaining individuals in S̄ =N \S have reported PS̄ .
We are interested in social choice rules that satisfy the following properties on S n .

The main one is that no individual ever has an incentive to misrepresent his preferences.

D 3. A social choice rule f :S n →X is strategy-proof if∀ i ∈N and∀ (Pi , P−i )∈
S n , there is no P̂i ∈S such that f (P̂i , P−i )Pi f (Pi , P−i ).

In words, a social choice rule f on S n is strategy-proof (SP) if for any individual
i ∈N , any possible preference Pi ∈S for i , and any collection of preferences P−i ∈S n−1

that the other individuals could report, individual i is not better off, according to Pi , by
reporting a preference P̂i ∈ S different from Pi . If a social choice rule f is not strategy-
proof, then there must exist one agent, say i ∈N , who can be strictly better off in at least
one case, say at (Pi , P−i ) ∈ S n , by announcing a preference P̂i ∈ S different from his
true ordering Pi . In that case, we say f is manipulable by i ∈ N at (Pi , P−i ) ∈ S n via
P̂i ∈S .

To study the possibility of group deviations, it is also possible to define the concept
of group strategy-proofness (GSP).
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D 4. A social choice rule f : S n → X is group strategy-proof if ∀S ⊆ N and
∀ (PS , PS̄)∈S n , there is no P̂S ∈S |S| such that ∀i ∈S, f (P̂S , PS̄)Pi f (PS , PS̄).

Another property that we may seek in a social choice rule is unanimity (UN). This
property ensures that, if all agents have the same most preferred alternative, then that
alternative is socially selected.

D 5. A social choice rule f : S n → X is unanimous if ∀x ∈ X and ∀P ∈ S n

such that τ(Pi ) = x ∀i ∈N , f (P) = x .

A profile P ∈ S n is a permutation of another profile P̂ ∈ S n if there is a one-to-one
function σ : N → N such that for every i ∈ N , Pi is identical to P̂σ(i ). That is, P is a
permutation of P̂ if the lists of preferences under P and P̂ are identical up to a renaming
of the agents.

D 6. A social choice rule f : S n → X is anonymous if ∀P, P̂ ∈ S n , f (P) = f (P̂)
if P is a permutation of P̂.

In words, a social choice rule is anonymous (AN) if the names of the individuals
holding particular preferences are immaterial in deriving social choices. Notice that
since S n is a Cartesian product domain, if a profile P belongs to S n , then all of its per-
mutations are also inS n . Thus, the anonymity axiom is non-vacuous in our framework.

The last property of a social choice rule that we consider is the tops-only property
(TO). We say that f is tops-only if for any admissible preference profile, the social choice
is exclusively determined by the individuals’ most preferred alternatives on the range of
the social choice rule.

D 7. A social choice rule f : S n → X is tops-only if ∀P, P̂ ∈ S n such that
τ|r f (Pi ) =τ|r f (P̂i )∀ i ∈N , f (P) = f (P̂).

The tops-only property severely constrains the scope for manipulation. No agent
can expect to be able to affect the social outcome without modifying the peak on the
range of his reported preference. Perhaps not surprisingly, we show later in Proposi-
tion 2 that this condition is closely related to strategy-proofness, in the sense that every
strategy-proof social choice rule on a maximal single-crossing domain is tops-only.12

The next remark, which follows immediately from Definition 7, is useful in the proof of
Proposition 2.

R 1. A social choice rule f :S n → X is tops-only if and only if ∀i ∈N , ∀(Pi , P−i ) ∈
S n , and ∀P̂i ∈S such that τ|r f (P̂i ) =τ|r f (Pi ), f (Pi , P−i ) = f (P̂i , P−i ).

Now we define a class of social choice rules that plays a crucial role in Section 3.
To do so, we introduce the following notation. For any odd positive integer k , we say
that m k : X k → X is the k -median function on X k if for each x = (x1, . . . ,xk ) ∈ X k ,

12A similar result holds when preferences are single-peaked, since every strategy-proof social choice rule
whose range is an interval satisfies tops-only. See, for instance, Weymark (2008) and Ching (1997).
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|{x i : m k (x)≥ x i }| ≥ (k +1)/2 and |{x j : x j ≥m k (x)}| ≥ (k +1)/2. Since k is odd, m k (x) is
always well defined.

D 8. A social choice rule f : S n → X is an extended median rule if there are
n + 1 fixed ballots α1, . . . ,αn+1 ∈ X such that for every preference profile P ∈ S n , f (P) =
m 2n+1(τ(P1), . . . ,τ(Pn ), α1, . . . ,αn+1).

We denote by f e a social choice rule that satisfies Definition 8, and by EMR the family
of all such rules. A particular case of interest within this family is the well-known median
choice rule, denoted f m . This rule is obtained from EMR by assigning (n + 1)/2 fixed
ballots at X =min X and the rest at X =max X , if n is odd, and n/2 at X and n/2+1 at X
if n is even. Note that, when n is even, f m breaks the ties in favor of the largest median
peak. Alternatively, f m could break the ties in favor of the smallest median peak, by
placing n/2+1 fixed ballots at X and the remaining n/2 at X .

Proceeding in a similar way, we can derive other rules from EMR by restricting each
αi to a particular value of X . For example, if αi = α ∈ X for all i = 1, . . . , n + 1, then f e

is completely insensitive to the preferences reported by the individuals. We might want
to exclude such undesirable rules and, in particular, require Pareto efficiency. A social
choice rule f :S n → X is Pareto efficient if ∀P ∈ S n there is no y ∈ X such that ∀i ∈N ,
y Pi f (P). To eliminate the possibility of inefficiency, we set αn = X and αn+1 = X . By
doing so, we derive a social choice rule f ∗ with the property that for all P ∈S n , f ∗(P) =
m 2n−1(τ(P1), . . . ,τ(Pn ), α1, . . . ,αn−1). This rule is called an efficient extended median rule,
and it is characterized by n − 1 fixed ballots located on X . The set of all such rules is
denoted by EMR∗.

Finally, we can also restrict each αi to take its value at the peak of a preference. We
call these rules the peak rules and denote the family of all such rules by PR.

D 9. A social choice rule f : S n → X is a peak rule if there are n − 1 fixed
ballots α1, . . . ,αn−1 ∈ {τ(P) ∈ X : P ∈ S } such that for every preference profile P ∈ S n ,
f (P) =m 2n−1(τ(P1), . . . ,τ(Pn ), α1, . . . ,αn−1).

In the next section, we prove that the set of peak rules is the only family of social
choice rules that satisfies unanimity, anonymity, and strategy-proofness on a maximal
single-crossing domain. We show also that this characterization is tight, in the sense
that relaxing any of the previous conditions enlarges the family of social choice rules.

3. C

We start by proving that every peak rule is group strategy-proof.

P 1. Every peak rule f ∈ PR is group strategy-proof onS n .

P. Fix f ∈ PR. Suppose, by contradiction, there exists a coalition S ⊆ N , a profile
(PS , PS̄) ∈ S n , and a joint deviation P̂S ∈ S |S| for S such that f (P̂S , PS̄)Pi f (PS , PS̄) for all
i ∈S. To simplify, denote x = f (PS , PS̄) and y = f (P̂S , PS̄), and let y > x .
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By definition, f ∈ PR implies that for all i = 1, . . . , n − 1, αi ∈ {τ(P) ∈ X : P ∈ S }.
Hence, x and y must coincide with the tops of two preferences. Denote these prefer-
ences by Px and Py , respectively. We show next that, for all i ∈S, τ(Pi )> x . Suppose not.
That is, assume x ≥ τ(Pi ) for some agent i ∈ S. If τ(Pi ) = x , then x Pi y , which contra-
dicts our initial hypothesis. Instead, suppose that x > τ(Pi ). Then, Pi � Px . Otherwise,
y > x , Px � Pi and y Pi x would imply that y Px x , contradicting the assumption that
x = τ(Px ). But then, by SC 1, x Px τ(Pi ) implies x Pi τ(Pi ), a contradiction. Therefore,
∀i ∈S, τ(Pi )> x .

By definition,

x =m 2n−1({τ(Pi )}i∈S ,{τ(Pj )}j∈S̄ ,α1, . . . ,αn−1)

and
y =m 2n−1({τ(P̂i )}i∈S ,{τ(Pj )}j∈S̄ ,α1, . . . ,αn−1).

Hence there must exist i ∈ S for which x > τ(P̂i ). Otherwise, if τ(P̂i ) ≥ x ∀i ∈ S,
we would have y = x because τ(Pi ) > x ∀i ∈ S. Thus, if we rename ({τ(P̂i )}i∈S ,
{τ(Pj )}j∈S̄ ,α1, . . . ,αn−1) as (a 1, . . . , a 2n−1), it follows that |{j ∈ {1, . . . , (2n − 1)} : x ≥ a j }| ≥
n . But then x ≥ m 2n−1(a 1, . . . , a 2n−1). That is, f (PS , PS̄) ≥ f (P̂S , PS̄), contradicting the
assumption that y > x . Therefore, f is GSP onS n . �

As we said in the Introduction, in an influential work Moulin (1980) proved that every
extended median rule is strategy-proof on the domain of single-peaked preferences. In
contrast, Proposition 1 shows only that every peak rule is group strategy-proof (and,
consequently, strategy-proof) on any single-crossing domain. Other extended median
rules, which allow a fixed ballot to be located over an alternative that is not the peak of
a preference, are not guaranteed to be strategy-proof with single-crossing preferences.
The following example illustrates this claim.

E 4. Consider a society with three agents, N = {1, 2, 3}, and three alternatives,
X = {x , y , z }. LetS = {(x y z ), (x z y ), (z x y ), (z y x )}. As we said in Example 3, these pref-
erences constitute a maximal set with the single-crossing property. Fix a social choice
rule f ∈ EMR∗ and assume that α1 = y and α2 = z . Note that α1 does not coincide with
the most preferred alternative for any preference. Moreover, if P1 = (x y z ), P2 = (x z y ),
and P3 = (z y x ), then f (P) = m 5(x ,x , z ,α1,α2) = y . Thus, individual 2, who prefers
that the group’s choice be either x or z instead of alternative y , can manipulate f by
declaring the insincere preference P̂2 = (z y x ). This causes the outcome to become
f (P̂2, P−2) = m 5(x , z , z ,α1,α2) = z . Therefore, agent 2’s deviation is profitable and in-
dividual manipulation cannot be excluded. ◊

This example shows that strategy-proofness is not assured for every efficient ex-
tended median rule because, with the exception of the subclass of peak rules, all of the
other extended median rules do not guarantee that the chosen alternative is always the
most preferred alternative for a preference. However, as the proof of Proposition 1 il-
lustrates, this information is used in a fundamental way to rule out orderings that may
create incentives for manipulation.
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The reason lies in the fact that the single-crossing property is a restriction on the
distribution of preferences across individuals, but does not exclude a priori any pref-
erence relation. Thus, to get rid of the undesirable orderings, i.e., those which provide
incentives to misrepresent the true preferences, the argument cannot rely on the shape
of each individual preference, as happens in the case of single-peakedness. Instead, the
proof of Proposition 1 shows that the argument exploits (i) the fact that the social choice
the most preferred alternative for some preference, (ii) the structure and location of that
ordering, and (iii) the correlation between preferences in a set with the single-crossing
property. Remarkably, no information about the shape of the preference relations is
necessary to guarantee strategy-proofness.

Of course, the conjecture that only peak rules are not manipulable on a maxi-
mal single-crossing domain stands in sharp contrast with the main result with the
single-peakedness restriction, where every extended median rule (not just peak rules)
is strategy-proof. In the next theorem, we formalize this conjecture by showing that the
family of peak rules can be characterized by strategy-proofness, anonymity, and una-
nimity.

T 1. Let S be a maximal set of single-crossing preferences. A social choice rule
f :S n →X is unanimous, anonymous, and strategy-proof if and only if f is a peak rule.

The proof of this theorem, which is given in Appendix C, relies on three main re-
sults, each important in its own right. The first result, summarized in Proposition 2 and
proved in Appendix B, shows that on a maximal set of single-crossing preferences the
tops-only property is implied by strategy-proofness. This result is a major step in the
proof of Theorem 1, and is consistent with other results in the literature on strategy-
proofness. In short, it captures the intuitive idea that social choice rules that use too
much information about individuals’ preferences are easy to manipulate.

P 2. Let S be a maximal set of single-crossing preferences. A social choice rule
f :S n →X is strategy-proof only if f is tops-only.

The proof of Theorem 1 involves two further results in addition to Proposition 2,
namely Lemmas 1 and 2. The first lemma points out that if a social choice rule is unan-
imous and strategy-proof (and therefore tops-only), then no individual must be able to
profit by reporting extreme preference relations, unless such extreme preferences con-
stitute the individual’s true ordering. This “median property” at the individual level must
simultaneously hold for every agent.

To present this result more formally, in the sequel we use P (respectively, P) to de-
note the most leftist (respectively, rightist) preference relation on X according to the lin-
ear order of X , so that for all x , y ∈X , x P y (respectively, y P x ) if and only if y > x .13 It is
easy to check that these rankings always belong toS . Moreover, τ(P) =X and τ(P) =X .

13Obviously, for any i ∈N , we denote by P i (respectively, P i ) agent i ’s preference P (respectively, P).
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L 1. Let S be a maximal set of single-crossing preferences. A social choice rule f :
S n →X is unanimous and strategy-proof only if for all i ∈N and all P∈S n ,

f (Pi , P−i ) =m 3(τ(Pi ), f (P i , P−i ), f (P i , P−i )).

The proof of Lemma 1, carried out below for didactic reasons, is useful to illustrate
how the structure of the single-crossing domain is used to justify the existence of certain
preferences that are needed in several of the remaining proofs.

P  L . Let f be UN and SP on S n . By Proposition 2, f is TO on S n .
Fix a profile P ∈ S n and an individual i ∈ N . If f (P i , P−i ) > f (P i , P−i ), then
f (P i , P−i )P i f (P i , P−i ). Thus, agent i can manipulate f at (P i , P−i ) via P i , a contradic-
tion. Hence, f (P i , P−i )≥ f (P i , P−i ).

There are two cases to consider: (1) f (P i , P−i ) ≥ τ(Pi ) and (2) f (P i , P−i ) > τ(Pi ) >
f (P i , P−i ). The remaining case where τ(Pi )≥ f (P i , P−i ) is similar to (1).

Case 1: f (P i , P−i ) ≥ τ(Pi ). Then, m 3(τ(Pi ), f (P i , P−i ), f (P i , P−i )) = f (P i , P−i ). Assume,
by way of contradiction, that f (P) 6= f (P i , P−i ). First, suppose that f (P i , P−i ) > f (P).
Then, by the definition of P , we would have f (P)P i f (P i , P−i ), contradicting SP. Sec-
ond, suppose that f (P) > f (P i , P−i ), which implies that f (Pi , P−i ) > τ(Pi ). By SP,
f (Pi , P−i )Pi f (P i , P−i ). Hence, τ(Pi ) 6= f (P i , P−i ). Furthermore, f (P i , P−i ) 6= τ(P i ) be-
cause f (P i , P−i ) > τ(Pi ) ≥ τ(P i ) = X . In fact, as can be inferred from Figure 3(a),
f (P i , P−i ) 6= τ(Pj ) for all j 6= i . Otherwise, if f (P i , P−i ) = τ(Pj ) for some j ∈ N \ {i },
then Pj � Pi because f (P i , P−i )>τ(Pi ). However, by SC 2, Pj � Pi , f (Pi , P−i )> f (P i , P−i ),
and f (P i , P−i )Pj f (Pi , P−i )would imply f (P i , P−i )Pi f (Pi , P−i ), a contradiction.

Step 1. Consider any preference Pαi ∈ P such that (i) τ(Pαi ) = τ(Pi ) and
(ii) f (P i , P−i )Pαi f (Pi , P−i ) (see Figure 3(a)). If Pαi ∈ S , then by TO, f (Pαi , P−i ) =
f (Pi , P−i ).14 Using the definition of Pαi , we have f (P i , P−i )Pαi f (Pαi , P−i ), which contra-
dicts SP.

Step 2. If Pαi 6∈ S , then there must exist a preference P
β
i ∈ S that prevents Pαi from

being part of S . Specifically, as we show in Appendix A, there has to be a P
β
i ∈ S such

that (i) τ(Pi ) > τ(P
β
i ) and (ii) f (Pi , P−i )P

β
i f (P i , P−i ) (see Figure 3(a)).15 Clearly, Pi must

be above P
β
i because the ideal point τ(Pi ) is greater than τ(Pβi ).

Step 3. If f (P i , P−i ) > f (Pβi , P−i ), then individual i can manipulate f at (P i , P−i ) via

P
β
i because, by the definition of P i , a smaller alternative is always preferred. Equally,

if f (Pβi , P−i ) = f (P i , P−i ), then i can manipulate f at (Pβi , P−i ) via Pi because, by the

definition of P
β
i , f (Pi , P−i )P

β
i f (P i , P−i ). Hence f (Pβi , P−i ) > f (P i , P−i ). Furthermore,

f (Pi , P−i ) ≥ f (Pβi , P−i ). On the contrary, assume f (Pβi , P−i ) > f (Pi , P−i ). Recall that

Pi � P
β
i and, by SP, f (Pβi , P−i )P

β
i f (Pi , P−i ). Thus, by SC 1, f (Pβi , P−i )Pi f (Pi , P−i ), a con-

tradiction. To summarize, f (Pi , P−i )≥ f (Pβi , P−i )> f (P i , P−i ).

14Note that unanimity implies that, for all i ∈N , and all Pi ∈S , τ(Pi )∈ r f . Hence, τ(Pi ) =τ|r f (Pi ).
15The reader should bear in mind that in the figures in which there are Pαi –Pβi pairs (with a common inte-

ger possibly added to α and β ), it is not possible for each preference in the pair to be in the domain. Thus,
showing them both ordered on the same line in the diagrams is only for the purpose of the explanation.
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τ(Pi ) f (P i ,P−i ) f (Pi ,P−i )

Pi

Pαi Pi Pj

Pαi

PβiP i

τ(Pβi )

Pβi

(a) Illustration of Case 1.

τ(Pi )f (P) f (P i ,P−i )

Pαi

Pi Pαi P i

Pi

P i

Pβi

τ(Pβi )

Pβi

(b) Illustration of Case 2.

F 3. Illustrations of Cases 1 and 2.

Step 4. Repeating Step 1, suppose that there is a preference Pα+1
i ∈S between P i and

P
β
i such that (i) τ(Pα+1

i ) =τ(Pβi ) and (ii) f (P i , P−i )Pα+1
i f (Pβi , P−i ). By TO, f (Pα+1

i , P−i ) =
f (Pβi , P−i ). Hence, f (P i , P−i )Pα+1

i f (Pα+1
i , P−i ), contradicting the assumption that f is

SP.
If instead Pα+1

i 6∈ S , then repeating the argument of Step 2, there must exist P
β+1
i ∈

S with P
β+1
i ≺ P

β
i such that (i) τ(Pβi )>τ(P

β+1
i ) and (ii) f (Pβi , P−i )P

β+1
i f (P i , P−i ). Using

the argument of Step 3, f (Pβi , P−i )≥ f (Pβ+1
i , P−i )> f (P i , P−i ).

Notice that since X is a finite set and in each step the peak of the “blocking order-

ing” P
β+k
i becomes smaller and smaller, the sequence τ(Pβi ), τ(P

β+1
i ), . . . approaches

τ(P i ). Thus, if we continue applying Steps 1 to 3 repeatedly, then either (i) we eventu-
ally get the desired contradiction or (ii) after a finite number of repetitions, say `, we

obtain a preference P
β+`
i ∈ S between P i and P

β+`−1
i such that τ(Pβ+`i ) = τ(P i ) and

f (Pβ+`−1
i , P−i )P

β+`
i f (P i , P−i ). By TO, f (Pβ+`i , P−i ) = f (P i , P−i ). Therefore, i can manip-

ulate f at (Pβ+`i , P−i ) via P
β+`−1
i .

Case 2: f (P i , P−i ) > τ(Pi ) > f (P i , P−i ). Then m 3(τ(Pi ), f (P i , P−i ), f (P i , P−i )) = τ(Pi ).
Assume, by way of contradiction, that f (P) 6= τ(Pi ). Without loss of generality, suppose
that τ(Pi )> f (P), so that f (P i , P−i )> f (P). By SP, f (Pi , P−i )Pi f (P i , P−i ).

Step 1. Consider any preference Pαi ∈ P such that (i) τ(Pαi ) = τ(Pi ) and
(ii) f (P i , P−i )Pαi f (Pi , P−i ) (see Figure 3(b)). If Pαi ∈ S , we are done: by TO, f (Pαi , P−i ) =
f (Pi , P−i ). Thus, by the definition of Pαi , f (P i , P−i )Pαi f (Pαi , P−i ), which contradicts SP.

Step 2. On the contrary, if Pαi 6∈ S , then using a reasoning analogous to the reasoning
of Appendix A, Pαi must be blocked by a preference P∗ ∈ S with the property that (i)
τ(P∗) > τ(Pi ) and (ii) f (Pi , P−i )P∗ f (P i , P−i ). That is, there must be a preference P∗ in
S that is more leftist than Pαi with respect to the pair { f (Pi , P−i ), f (P i , P−i )} and more
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rightist regarding {τ(P∗),τ(Pi )}. Let P
β
i =min�{P ′ ∈ S : τ(P ′)> τ(Pi )} (see Figure 3(b)).

It is easy to verify that f (Pi , P−i )P
β
i f (P i , P−i ), because either P

β
i coincides with P∗ or

P∗ � P
β
i .

Step 3. If f (Pβi , P−i ) > f (P i , P−i ), then agent i can manipulate f at (P i , P−i ) via

P
β
i because, by the definition of P i , a greater alternative is always preferred. Equally,

if f (Pβi , P−i ) = f (P i , P−i ), then i can manipulate f at (Pβi , P−i ) via Pi because, by the

definition of P
β
i , f (Pi , P−i )P

β
i f (P i , P−i ). Hence, f (P i , P−i ) > f (Pβi , P−i ). Furthermore,

f (Pβi , P−i ) ≥ f (Pi , P−i ). To see why, assume f (Pi , P−i ) > f (Pβi , P−i ). Recall that Pi ≺ P
β
i

and, by SP, f (Pβi , P−i )P
β
i f (Pi , P−i ). Thus, by SC 2, f (Pβi , P−i )Pi f (Pi , P−i ), a contradic-

tion. To summarize, f (P i , P−i )> f (Pβi , P−i )≥ f (Pi , P−i ).
Step 4. Suppose f (Pβi , P−i ) = τ(P

β
i ). Then f (Pβi , P−i ) > f (Pi , P−i ) because τ(Pβi ) >

τ(Pi ) > f (Pi , P−i ). Since S is maximal, there is Pα
′

i ∈ S with the property that τ(Pα
′

i ) =
τ(Pi ) and f (Pβi , P−i )Pα

′
i f (Pi , P−i ). In effect, to prevent Pα

′
i from belonging to S , there

should be P∗ ∈ S such that τ(P∗) > τ(Pi ) and f (Pi , P−i )P∗ f (Pβi , P−i ), which is not pos-

sible because, by SP, f (Pβi , P−i )P
β
i f (Pi , P−i ) (remember that P

β
i =min�{P ′ ∈S :τ(P ′)>

τ(Pi )}). By TO, f (Pα
′

i P−i ) = f (Pi , P−i ); hence, agent i can manipulate f at (Pi , P−i ) via

P
β
i , a contradiction. Therefore, f (Pβi , P−i ) 6=τ(Pβi ).

Step 5. Repeating Step 1, suppose that there is a preference Pα+1
i ∈S between P i and

P
β
i such that (i) τ(Pα+1

i ) =τ(Pβi ) and (ii) f (P i , P−i )Pα+1
i f (Pβi , P−i ). By TO, f (Pα+1

i , P−i ) =
f (Pβi , P−i ), and we are done; i.e., agent i can manipulate f at (Pα+1

i , P−i ) via P i .
On the contrary, if Pα+1

i 6∈ S , then by the argument of Step 2, there must ex-

ist a preference P
β+1
i ∈ S with P

β+1
i � P

β
i such that (i) τ(Pβ+1

i ) > τ(Pβi ) and

(ii) f (Pβi , P−i )P
β+1
i f (P i , P−i ). Using the reasoning of Step 3, f (P i , P−i )> f (Pβ+1

i , P−i )≥
f (Pβi , P−i ).

If we go back to Step 1 and continue applying Steps 1 to 4 repeatedly, then in the
end either (i) we get the desired contradiction or (ii) after a finite number of repeti-

tions, say `, we find P
β+`
i ∈ S between P i and P

β+`−1
i such that τ(Pβ+`i ) = τ(P i ) and

f (Pβ+`−1
i , P−i )P

β+`
i f (P i , P−i ). By TO, f (Pβ+`i , P−i ) = f (P i , P−i ). Therefore, i can manip-

ulate f at (Pβ+`i , P−i ) via P
β+`−1
i , contradicting the assumption that f is SP. �

Finally, the proof of Theorem 1 also uses Lemma 2, according to which a strategy-
proof and unanimous social choice rule must satisfy a property called top-monotonicity
(TM). Roughly speaking, this property ensures that collective choices do not respond
perversely to changes in individuals’ ideal points.

D 10. A social choice rule f : S n → X is top-monotonic if ∀i ∈ N , ∀(Pi , P−i ) ∈
S n , and ∀P̂i ∈S such that τ(P̂i )≥τ(Pi ), f (P̂i , P−i )≥ f (Pi , P−i ).

L 2. Let S be a maximal set of single-crossing preferences. If a social choice rule
f :S n →X is unanimous and strategy-proof, then f is top-monotonic.

P. Let f be UN and SP onS n . Consider any individual i ∈N , any profile (Pi , P−i )∈
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S n , and any admissible deviation P ′i ∈S such that τ(P ′i )≥ τ(Pi ). We want to show that
f (P ′i , P−i )≥ f (Pi , P−i ). Three cases are possible.

Case 1: If τ(Pi )≥ f (P i , P−i ), then

m 3(τ(Pi ), f (P i , P−i ), f (P i , P−i )) =m 3(τ(P ′i ), f (P i , P−i ), f (P i , P−i ))

because SP implies that f (P i , P−i )≥ f (P i , P−i ) and, by hypothesis, τ(P ′i )≥ τ(Pi ). There-
fore, by Lemma 1, f (P ′i , P−i ) = f (Pi , P−i ).

Case 2: If f (P i , P−i ) > τ(Pi ) > f (P i , P−i ), then m 3(τ(Pi ), f (P i , P−i ), f (P i , P−i )) = τ(Pi ),
and, given that τ(P ′i ) ≥ τ(Pi ), m 3(τ(P ′i ), f (P i , P−i ), f (P i , P−i )) ≥ τ(Pi ). Therefore, by
Lemma 1, f (P ′i , P−i )≥ f (Pi , P−i ).

Case 3: Finally, if f (P i , P−i ) ≥ τ(Pi ), then by Lemma 1, f (P ′i , P−i ) ≥ f (Pi , P−i ) because
m 3(τ(P ′i ), f (P i , P−i ), f (P i , P−i ))≥m 3(τ(Pi ), f (P i , P−i ), f (P i , P−i )) = f (P i , P−i ). �

Under the hypotheses of Theorem 1, the social choice always coincides with the
peak of a preference. Thus, a corollary that can be immediately established is that, on
a maximal set of single-crossing preferences, every UN, AN, and SP social choice rule
satisfies Pareto efficiency.

C 1. Let S be a maximal set of single-crossing preferences. If a social choice rule
f :S n →X is unanimous, anonymous, and strategy-proof, then f is Pareto efficient.

P. Fix a UN, AN and SP social choice rule f : S n → X . By Theorem 1, f is a peak
rule. Without loss of generality, suppose there exist x , y ∈X , y > x , and a profile P∈S n

such that f (P) = x and y Pi x for all i ∈ N . Then, for all i = 1, . . . n , τ(Pi ) 6= x . By Theo-
rem 1, there exists Px ∈ S such that τ(Px ) = x . For all i ∈ N , Pi � Px . Otherwise, SC 1
would imply y Px x . Therefore, min>{τ(P1), . . . ,τ(Pn )}> x and, by Definition 9, f (P)> x ,
a contradiction. Thus, f is Pareto efficient. �

In addition to showing Corollary 1, under the hypotheses of Theorem 1 it is also pos-
sible to show that the set of admissible preferences has the single-peaked property over
the range of the social choice rule. More formally, for any set Y ⊂ X and any preference
P ∈ S , let P |Y be the restriction of the relation P to the elements of Y . Denote by S |Y
the set containing the restriction of each preference P ∈ S to Y . We refer to S |Y as the
restriction ofS to Y .

L 3. Let S be a maximal set of single-crossing preferences. If a social choice rule
f : S n → X is unanimous, anonymous, and strategy-proof, then the restriction of S to
the range of f has the single-peaked property.

P. The proof is based on Saporiti and Tohmé (2006). Fix a maximal set S ⊂ P
with the single-crossing property with respect to > and �. Take a UN, AN, and SP social
choice rule f :S n → X . Assume, by contradiction, there exists a preference P |r f ∈ S |r f

that is not single-peaked on r f with respect to the linear order > of X . Then there must
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be a triple x , y , z ∈ r f such that x > y > z and x P y and z P y . By Theorem 1, y = τ|r f (P ′)
for some P ′ ∈ S . If P ′ � P , then by SC 1, x > y and x P y imply x P ′ y , contradicting
the assumption that y = τ|r f (P ′). Hence, P � P ′. However, since y > z and z P y , SC 2
implies z P ′ y , a contradiction. Therefore, the set S |r f has the single-peaked property
on r f . �

A social choice rule f : S n → X has a regular domain if for every α ∈ r f there is a
preference Pα ∈ S such that τ|r f (Pα) = α (Le Breton and Weymark 1999). As we state
in Corollary 2, another immediate consequence of Theorem 1 is that every UN, AN, and
SP social choice rule f : S n → X has a regular domain. The result follows immediately
from Theorem 1 and Definition 9.

C 2. Let S be a maximal set of single-crossing preferences. If a social choice rule
f :S n →X is unanimous, anonymous, and strategy-proof, thenS n is a regular domain.

Finally, we close this section by discussing the independence of the axioms used in
Theorem 1, as well as the role of the maximal domain condition. First, consider the con-
sequence of relaxing strategy-proofness. As we have explained, any efficient extended
median rule that it is not a peak rule may be subject to individual manipulation on a
single-crossing domain. However, all such rules are anonymous and unanimous. Thus,
the family that satisfies these two axioms onS n is larger than the set of peak rules.

Second, consider the consequence of relaxing unanimity. Define a social choice rule
f in such a way that, for each P ∈ S n , f (P) = a ∈ X . It is clear that f is anonymous and
strategy-proof. However, f violates unanimity since r f = {a }. Hence, f 6∈ PR.

Third, relax anonymity by fixing an agent j ∈N and defining a social choice rule f in
such a way that, for all P ∈S n , f (P) = τ(Pj ). It is immediate to see that f is unanimous
and strategy-proof. However, it violates anonymity because f is dictatorial.

Lastly, to illustrate why the maximal domain condition is needed to derive the main
results of this paper, let N = {1, 2}, X = {x , y , z } with z > y > x , and S = {P , P}, where
P = (x y z ) and P = (z y x ). As is clear from Example 3, the set of preferences S is not a
maximal set with the single-crossing property. Define f by setting f (P , P) = x , f (P , P) =
z , and f (P , P) = f (P , P) = y . This function satisfies unanimity, anonymity, and strategy-
proofness. However, f is not a peak rule because y is chosen at (P , P) and at (P , P), but
y 6=τ(P) for all P ∈S = {P , P}.

4. R

So far, we have assumed that every individual i ∈ N is endowed with a preference Pi

drawn from the restricted domain S and is entitled to report a preference relation (not
necessarily the true one) from the same admissible set. That is, we have restricted both
the true preferences of all individuals and their strategies, i.e., the orderings they are
permitted to announce, to the same maximal set of single-crossing preferences. The
main result obtained from this assumption is that a social choice rule is anonymous,
unanimous, and strategy-proof if and only if it is a peak rule.
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There are two main concerns regarding this result. First, there is a question of how
easy it is to describe the set of admissible preferences. We said in the Introduction that
the set of individual preferences with the single-crossing property can be derived from
standard assumptions in economics. However, to be able to describe this set, the mech-
anism designer would probably need to possess some information about individuals’
preferences, though not about any particular individual’s ordering. Given that the goal
of this paper is to study social choice problems where individual preferences are pri-
vately observed, the information required by the planner to specify the set of admissible
reports weakens the contribution of Theorem 1.

Nevertheless, as Campbell and Kelly (2003, p. 567) say, “there is a sense in which
results based on a domain of single-peaked preferences have the same drawback: Al-
though single-peaked domains can be defined as product sets, single-peakedness is
characterized by means of a particular linear ordering, and an individual would have
to know the linear ordering to which the reported preference is admissible, before being
convinced that his own reported preference is admissible.”

Furthermore, while in some cases this ordering is natural and, therefore, the as-
sumption that it is commonly known (included by the planner) is not too demanding,
in others it is not necessarily obvious. Suppose, for example, that alternatives are po-
litical candidates. Then, the way in which individuals agree to locate these candidates
on a one-dimensional political scale is not immediate. Moreover, that ordering not only
determines which preferences can be declared, but it also provides information about
other individuals’ preferences. For instance, if X = {x , y , z } and (Pi )i∈N is single-peaked
with respect to x > y > z , then the order of the alternatives reveals that nobody holds a
preference that ranks y bottom (such as the relations P = (x z y ) and P ′ = (z x y )).

Apart from the difficulty of specifying the set of possible reports, a second concern is
that, even if the mechanism designer has the information to do so, it is still unclear how
to deal with declarations that are not in the admissible set. Can we tell an individual that,
despite the fact that preferences are not directly observed, on the basis of our beliefs
about “how they should be,” he cannot submit a certain preference relation because we
consider it somehow “unreasonable” and, therefore, it has been removed from the set of
possible declarations?

Once again, this affects not only the analysis with single-crossing preferences, but
also with other domain restrictions. Consider, for instance, the case where preferences
satisfy the single-peaked property over the real line. For the planner, it would not be
difficult to describe the set of admissible preferences because alternatives are ordered
according to the usual order of the real numbers. However, suppose that individual i
reports a preference that is not single-peaked on that order. What can we do in such a
situation? Can we say to individual i that he is not entitled to have such a preference re-
lation? In a free society, every individual can order the alternatives in the way he wishes,
independently of how sensible we think these orderings are. Thus, assuming that pref-
erence relations that do not satisfy the domain restriction will not be permitted seems
neither realistic nor democratic.
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To deal with this problem, in this section we analyze the possibility of strengthen-
ing the result of Theorem 1 by eliminating the requirement that individual reports be
restricted to be in the set S . The analysis is inspired by Blin and Satterthwaite (1976),
who have undertaken a similar exercise to assess the robustness of the strategy-proof re-
sult of majority rule with Borda completion on the domain of single-peaked preferences
when individual reports are allowed to be outside the single-peaked domain.

Our findings are positive: If the true preferences of the society satisfy the single-
crossing property, then no individual can ever profitably manipulate a peak rule by re-
porting a preference that is not his true preference relation, independently of whether
the insincere preference belongs to the single-crossing domain or not. Conversely, if
we allow deviations outside the single-crossing domain, every anonymous, unanimous,
and strategy-proof social choice rule must be a peak rule on the set of preferences with
the single-crossing property.

To see this more formally, let us now redefine a social choice rule so that it associates
a feasible alternative to every profile of complete, transitive, and antisymmetric prefer-
ences; i.e., let f :P n →X . Following Blin and Satterthwaite (1976), a social choice rule f
is said to be manipulable onS n if there exist an individual i ∈N , a profile (Pi , P−i )∈S n ,
and a deviation P̂i ∈ P such that f (P̂i , P−i )Pi f (Pi , P−i ). A social choice rule is strategy-
proof on S n if and only if it is not manipulable on S n . Notice that, when we defined
strategy-proofness in Definition 3, we omitted the qualification “onS n ” because that is
also the domain of the social choice rule. Instead, here the social choice rule is defined
on a larger domain, actually on the set of all strict preferences; but it is required to satisfy
strategy-proofness only on the domain of individual true preferences.

Proceeding in a similar way, we can redefine unanimity and anonymity. A social
choice rule f : P n → X is unanimous on S n if ∀x ∈ X and ∀P ∈ S n such that
τ(Pi ) = x ∀i ∈ N , f (P) = x . Similarly, f : P n → X is anonymous on S n if for all
P, P̂ ∈ S n , f (P) = f (P̂) whenever P is a permutation of P̂. Finally, we say that a social
choice rule f :P n →X , defined over the set of all complete, transitive, and antisymmet-
ric preference profiles, is a peak rule on S n if there are n −1 fixed ballots α1, . . . ,αn−1 ∈
{τ(P)∈X :P ∈S } such that ∀P∈S n , f (P) =m 2n−1(τ(P1), . . . ,τ(Pn ), α1, . . . ,αn−1).

T 2. Every peak rule f : P n → X on S n is strategy-proof on S n . Conversely, if
S is a maximal set of single-crossing preferences, then every social choice rule f :P n →X
that is unanimous, anonymous, and strategy-proof onS n is a peak rule onS n .

P. To prove the first part of the theorem, fix any peak rule f : P n → X on S n .
Suppose that f is manipulable by i ∈ N at a profile (Pi , P−i ) ∈ S n via a preference
relation P̂i ∈ P that is not necessarily in S . Without loss of generality, suppose that
f (P̂i , P−i ) > f (Pi , P−i ). Since f always chooses the most preferred alternative of a pref-
erence, let f (Pi , P−i ) coincide with τ(P∗) for some P∗ ∈ S . By SC 1, (Pi , P−i ) ∈ S n

and f (P̂i , P−i )Pi f (Pi , P−i ) imply that Pi � P∗. Therefore, τ(Pi ) > f (Pi , P−i ). Moreover,
f (Pi , P−i )>τ(P̂i ). Otherwise, we would have f (P̂i , P−i ) = f (Pi , P−i ). Hence, by the defini-
tion of f , f (Pi , P−i )≥ f (P̂i , P−i ), which contradicts the initial hypothesis that f (P̂i , P−i )>
f (Pi , P−i ). Therefore, f is SP onS n .
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The proof of the second part of the theorem is immediate. Consider a social choice
rule f :P n →X that is UN, AN, and SP onS n . Define the social choice rule g :S n →X
in such a way that, for all P∈S n , g (P) = f (P). Since g is AN, UN, and SP, by Theorem 1,
g ∈ PR. Hence, f is a peak rule onS n . �

Notice that the first part of Theorem 2 is proved applying the same argument used
in the proof to Proposition 1. This is because the latter does not exploit the structure of
the deviation profile (P̂i , P−i ). On the contrary, what matters is that (Pi , P−i ) belongs to
S n . The second part of the theorem holds because every social choice rule that is not
manipulable when individuals can report any strict preference relation must also not be
manipulable when they are allowed to declare only preferences from a strictly smaller
subset. However, we have already shown in Theorem 1 that, when reports are restricted
toS , every unanimous, anonymous, and strategy-proof social choice rule is a peak rule.
Hence, if we dispense with the assumption that declarations are restricted to the set of
preferences with the single-crossing property, we must obtain the same family of rules
on the restricted domain.

Finally, note that Theorem 2 does not provide a full characterization because we
have not determined the form of a unanimous, anonymous, and strategy-proof social
choice rule outside the domain of preferences with the single-crossing property. How-
ever, it does show that the rules obtained in any such characterization coincide over
a maximal single-crossing domain with the rules characterized in Theorem 1. This,
together with the fact that every peak rule is strategy-proof on the domain of single-
crossing preferences, allows us to conclude that the result stated in Theorem 1 is robust
to the kind of perturbations introduced in this section.

5. F 

This paper analyzes strategy-proof collective choice rules when individuals have single-
crossing preferences on a finite and ordered set of social alternatives. While the single-
crossing property has been shown to be sufficient to ensure the existence of a Condorcet
winner, this result has been derived assuming that individuals sincerely declare their
preferences. This naturally raises the issue of potential individual and group manipula-
tion, motivating the current research.

The main contributions of this paper are the following. First, the paper shows that, in
addition to single-peakedness, single-crossing is another meaningful domain that guar-
antees the existence of strategy-proof social choice rules. Specifically, it proves that ev-
ery peak rule is group strategy-proof on any set of preferences with the single-crossing
property. Conversely, it shows that every social choice rule that satisfies anonymity, una-
nimity, and strategy-proofness on a maximal single-crossing domain is a member of this
family. These results are robust to deviations outside the single-crossing domain, pro-
vided that individuals’ true preferences belong to that set.

A natural consequence of the previous characterization is that anonymity, una-
nimity, and strategy-proofness imply Pareto efficiency. Furthermore, although in our
framework individual preferences need not be convex over the set of alternatives,
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anonymity, unanimity, and strategy-proofness also imply that preferences must satisfy
single-peakedness over the range of the social choice rule.16 Thus, our results indicate
that to rule out incentives to misrepresent individual preferences some convexity and
regularity of the domain are necessary.

Another important conclusion of this research is that on a maximal single-crossing
domain, strategy-proofness implies the tops-only property. The proof of this claim
does not completely follow the proof strategy recently proposed by Weymark (2008) be-
cause the non-convexities of single-crossing preferences make it quite difficult to di-
rectly prove that the Le Breton and Weymark (1999) regularity condition is satisfied. To
circumvent this problem, first we prove the claim in a two-person case, where unanim-
ity over the range can be used without further complications. We then obtain a partial
characterization of the social choice rule for the case with only two individuals, which
allows the claim to be established for more than two agents by reducing the analysis to
a situation where only two tops are different.

Finally, this paper also shows that the Representative Voter Theorem has a well de-
fined strategic foundation, in the sense that the median voter’s ideal point can be imple-
mented in dominant strategies by a direct mechanism. However, this conclusion holds
on a subdomain of single-crossing preferences, the Cartesian product domain. There-
fore, relaxing the assumption that individuals sincerely reveal their preferences is not
free.

A

A. F      L 

The second step of the proof of Lemma 1, Case 1, argues that

[Pαi 6∈ S ]⇒ [∃P
β
i ∈S such that (i) τ(Pi )>τ(P

β
i ) and (ii) f (Pi , P−i )P

β
i f (P i , P−i )]. (∗)

If such a preference P
β
i exists in S , it is clear that Pi � P

β
i because τ(Pi )> τ(P

β
i ). Thus,

in what follows we focus on the existence of P
β
i .

Assume that Pαi 6∈ S and suppose, by way of contradiction, that (∗) is not true.
Recall that we are working under the assumption that f (Pi , P−i ) > f (P i , P−i ). That
means τ(Pi ) 6= τ(P i ) (remember that f is TO). Thus there exists a preference P ′ ∈ S
such that τ(Pi ) > τ(P ′). In particular, this is true for P i . Hence, it must be that for
all P ′ ∈ S with the property that τ(Pi ) > τ(P ′), f (P i , P−i )P ′ f (Pi , P−i ) (otherwise, we
would have a preference P

β
i that satisfies (∗)). Define the set Z (Pi ) = {P ′ ∈ S : τ(Pi ) >

τ(P ′) and f (P i , P−i )P ′ f (Pi , P−i )}. Once again, Z (Pi ) 6= ∅ because P i ∈ Z (Pi ). Take the
greatest element of Z (Pi )with respect to � and denote it by max� Z (Pi )≡ Pmax.

Recall from Step 1 that Pαi is any preference for which (i) τ(Pαi ) = τ(Pi ) and
(ii) f (P i , P−i )Pαi f (Pi , P−i ). Moreover, by hypothesis, none of these orderings belong to
S . (Otherwise, the argument of Step 1 would provide the desired result.) Therefore, it
must be that for all P ′′ ∈ S with the property that τ(P ′′) = τ(Pi ), f (Pi , P−i )P ′′ f (P i , P−i ).

16Given a set X and a linear order > of X , a preference P ∈P on X is convex with respect to > if for every
three distinct alternatives x , y , z ∈X , x P y ⇒ y P z whenever y is between x and z .
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Define the set Y (Pi ) = {P ′′ ∈ S : τ(P ′′) = τ(Pi ) and f (Pi , P−i )P ′′ f (P i , P−i )}. Notice that
Y (Pi ) 6= ∅ because Pi ∈ Y (Pi ). Take the smallest element of Y (Pi ) with respect to �
and denote it by min�Y (Pi ) ≡ Pmin. Obviously, Pmin � Pmax because τ(Pmin) = τ(Pi ) >
τ(Pmax).

For every pair of distinct alternatives x , y ∈X , with y > x , notice that either Pmax and
Pmin coincide in ranking x and y , or x Pmax y and y Pmin x . This is because Pmax, Pmin ∈
S , Pmin � Pmax, and y > x .

Consider the following mixture Pα∗ of Pmax and Pmin. For every pair of distinct alter-
natives x , y ∈ X , with y > x , (i) if x Pmin y , then x Pα∗ y ; (ii) if y Pmax x , then y Pα∗ x ; and
(iii) if x Pmax y and y Pmin x , then x Pα∗ y if y 6= τ(Pi ), and y Pα∗ x otherwise. In words,
for every pair of distinct alternatives x , y ∈ X , with y > x , Pα∗ ranks x and y like Pmax

and Pmin whenever these two preferences coincide; it ranks x and y like Pmax if Pmax

and Pmin do not coincide and the greatest alternative, i.e. y , is not the peak of Pmin;
and, otherwise, Pα∗ follows Pmin. Just to illustrate this mixture, it is easy to see that if
Pmax = (a b c d ), Pmin = (b d c a ), and d > c >b > a , then Pα∗ = (b a c d ).

First, note that Pα∗ is a linear order; hence, Pα∗ ∈P . Second, f (P i , P−i )Pα
∗ f (Pi , P−i )

because f (Pi , P−i ) > f (P i , P−i ), f (Pi , P−i ) 6= τ(Pi ), and f (P i , P−i )Pmax f (Pi , P−i ). Third,
τ(Pα∗ ) = τ(Pmin) = τ(Pi ). Finally, since S is maximal, by construction Pα∗ ∈ S , contra-
dicting the initial hypothesis that any preference Pαi for which (i) τ(Pαi ) = τ(Pi ) and (ii)
f (P i , P−i )Pαi f (Pi , P−i ) does not belong toS . Therefore, (∗) holds.

B. P  P 

In order to prove Proposition 2, the following lemma, which is a special case of Proposi-
tion 2 in Le Breton and Weymark (1999), is extremely useful.

L 4. Suppose f : S n → X is a strategy-proof social choice rule with n ≥ 1. For any
nonempty set S ⊆N , any x ∈ r f , and every profile (PS , PS̄) ∈S n such that τ|

O
f

S (PS̄ )
(Pi ) = x

for all i ∈S, f (PS , PS̄) = x .17

From Lemma 4, we can derive Corollaries 3 and 4, whose proofs follow immediately
by setting S = {i } and S =N , respectively.

C 3. If f :S n →X is a strategy-proof social choice rule, then for all i ∈N , every
x ∈ r f , and all (Pi , P−i )∈S n such that τ|

O
f
i (P−i )

(Pi ) = x , f (Pi , P−i ) = x .

C 4. If f :S n → X is a strategy-proof social choice rule, then for all x ∈ r f and
all (Pi , P−i )∈S n such that τ|r f (Pi ) = x for all i ∈N , f (Pi , P−i ) = x .

In words, Corollary 4 points out that a strategy-proof social choice rule must respect
unanimity over the range, in the sense that if everyone has the same most preferred
alternative on the range of the social choice rule, then that alternative must be the social
choice.

Finally, the following additional result can be derived from Lemma 4.

17If S =N , it is assumed that O f
N (P∅) = r f .
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C 5. If f :S n → X is a strategy-proof social choice rule, then for any nonempty
set S ⊂N , every x ∈ r f , and all (PS , PS̄)∈S n such that τ|r f (Pi ) = x for all i ∈S, x ∈O

f
S̄
(PS).

Corollary 5 is immediate from Corollary 4 (just take a preference relation for each
individual in the set S̄ with the most preferred alternative over the range equal to x ).
Roughly speaking, it says that if a social choice rule is strategy-proof and all agents in a
certain coalition agree on the most preferred alternative over the range of the rule, then
that alternative must be available in the option set of the remaining agents.

The next lemma shows that, when there are two individuals in the society, a social
choice rule is strategy-proof only if it satisfies the tops-only property. This, in turn, im-
plies that any two preferences in the admissible domain, with the same most preferred
alternative over the range of the rule, must have the same top on any option set gen-
erated by the preference of the other individual. This is an immediate consequence of
Remark 1 and Corollary 3.

L 5. Let |N |= 2 and suppose that S is a maximal set of single-crossing preferences.
A social choice rule f :S 2→X is strategy-proof only if f is tops-only.

P. Assume, by way of contradiction, that there exists a strategy-proof social choice
rule f :S 2→X that is not tops-only. By Remark 1, there must exist a profile (P1, P2)∈S 2

and a preference P̂1 ∈ S such that τ|r f (P̂1) = τ|r f (P1) and f (P̂1, P2) = y 6= x = f (P1, P2).
By Corollary 3, τ|

O
f
1 (P2)
(P1) = x and τ|

O
f
1 (P2)
(P̂1) = y . The rest of the proof consists in

showing that this supposition leads to a contradiction with the fact that f is a strategy-
proof social choice rule. A similar argument is used in the proof of Lemma 7.

Without loss of generality, assume τ|
O

f
1 (P2)
(P̂1) = y > x = τ|

O
f
1 (P2)
(P1). Hence, P̂1 �

P1. Obviously, x P1 y , y P̂1 x , τ|r f (P1) 6= x , and τ|r f (P̂1) 6= y . Furthermore, note that
x P2τ|r f (P1). Otherwise, by Corollary 4, agent 2 can manipulate f at (P1, P2) via a P̃2 equal
to P1 (which results in τ|r f (P1) being chosen). Using a similar argument, y P2τ|r f (P1).

There are two cases to consider: (1) y > τ|r f (P1) > x and (2) y > x > τ|r f (P1). The
remaining situation, i.e., τ|r f (P1)> y > x , is similar to the second case.

Case 1: y > τ|r f (P1) > x . If P2 � P1, then by SC 2, τ|r f (P1) > x and x P2τ|r f (P1) imply
that x P1τ|r f (P1), a contradiction. Thus, P1 � P2. But then, by SC 1, y > τ|r f (P1) and
y P2τ|r f (P1) imply that y P1τ|r f (P1), a contradiction.

Case 2: y > x >τ|r f (P1). First, suppose that τ|r f (P2) = x . Then, P2 � P1. Otherwise, by
SC 1, P1 � P2, x > τ|r f (P1), and x P2τ|r f (P1) would imply that x P1τ|r f (P1). Similarly, P̂1 �
P2, since x P2 y implies x P y∀P ≺ P2, and y P̂1 x by hypothesis. However, τ|r f (P̂1) P̂1 x and
τ|r f (P̂1) =τ|r f (P1) imply τ|r f (P1)P x∀P ≺ P̂1, contradicting the assumption that τ|r f (P2) =
x . Hence, for all j = 1, 2, x 6=τ|r f (Pj ).

Second, if P1 � P2, then τ|r f (P1)P1 x implies τ|r f (P1)P2 x , a contradiction. Thus, P2 �
P1 and, therefore, τ|r f (P2) > τ|r f (P1). Similarly, if P̂1 � P2, then τ|r f (P1) P̂1τ|r f (P2) implies
τ|r f (P1)P2τ|r f (P2). So, P2 � P̂1. Moreover, y P2 x , since x P2 y would imply x P̂1 y . Finally,
if y > τ|r f (P2), then τ|r f (P2)P2 y would imply τ|r f (P2) P̂1 y , contradicting SP because, by
Corollary 4, agent 1 would profitably manipulate f at (P̂1, P2) via a P̃1 equal to P2. Hence,
τ|r f (P2)≥ y , and we face a situation as in Figure 4(a).
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F 4. Illustrations of Case 2 and of Pβ2 , Pα+1
2 and Pβ+1

2

Note that y 6∈O
f
2 (P1). Otherwise, there must be P ′2 ∈ S such that f (P1, P ′2) = y . Be-

cause y P2 x , it would then follow that agent 2 could manipulate f at (P1, P2) via P ′2.
Step 1. Consider any preference Pα2 ∈P such that

(i) τ|
O

f
2 (P̂1)
(Pα2 ) = y =τ|

O
f
2 (P̂1)
(P2) and (ii) τ|

O
f
2 (P1)
(Pα2 ) =τ|r f (P1)

(see Figure 4(a)). If Pα2 ∈S , by Corollary 3, f (P̂1, Pα2 ) = y and f (P1, Pα2 ) = τ|r f (P1). Hence,
agent 1 can manipulate f at (P̂1, Pα2 ) via P1, contradicting that f is SP, and we are done.

Step 2. If Pα2 6∈ S , then applying the reasoning of Appendix A, there must exist a
preference P∗ ∈S such that

(i) y >τ|
O

f
2 (P̂1)
(P∗) and (ii) τ|

O
f
2 (P1)
(P∗)>τ|r f (P1).

That is, if Pα2 6∈ S , there has to be P∗ in S such that (i) P∗ is more leftist than Pα2 with
respect to the top on O

f
2 (P̂1) and (ii) P∗ is more rightist than Pα2 with respect to the top

on O
f
2 (P1).18 Let

P
β
2 =max� {P

∗ ∈S : y >τ|
O

f
2 (P̂1)
(P∗) and τ|

O
f
2 (P1)
(P∗)>τ|r f (P1)}.

Obviously, P̂1 ≺ P
β
2 ≺ P2 because τ|

O
f
2 (P̂1)
(P2) = y and τ|

O
f
2 (P1)
(P̂1) = τ|r f (P1) (see Fig-

ure 4(b)). Denote τ|
O

f
2 (P1)
(Pβ2 ) = zβ .

Step 3. By Corollary 3, f (P̂1, P
β
2 ) = τ|O f

2 (P̂1)
(Pβ2 ) and f (P1, P

β
2 ) = zβ > τ|r f (P1).

If τ|
O

f
2 (P̂1)
(Pβ2 ) = τ|r f (P1), then agent 1 can manipulate f at (P1, P

β
2 ) via P̂1. Hence

18The other possibility that can prevent Pα2 from being inS is a preference with a top lower than τ|r f (P1)
on O f

2 (P1) and a top greater than y on O f
2 (P̂1). However, the existence of such order inS is ruled out by P1.
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τ|
O

f
2 (P̂1)
(Pβ2 ) 6= τ|r f (P1). Furthermore, if zβ > x , then P2 � P

β
2 and zβ P

β
2 x imply zβ P2 x ,

contradicting the assumption that x =τ|
O

f
2 (P1)
(P2). Therefore, x ≥ zβ >τ|r f (P1).

Step 4. If τ|
O

f
2 (P̂1)
(Pβ2 ) = zβ , then zβ P

β
2 y because y ∈O

f
2 (P̂1). Moreover, zβ ≤ x < y

and P̂1 ≺ P
β
2 imply, by SC 2, that zβ P̂1 y and zβ P1 y . SinceS is maximal, there is Pα

′
2 ∈S

with the property that τ|
O

f
2 (P̂1)
(Pα

′
2 ) = y and τ|

O
f
2 (P1)
(Pα

′
2 ) = zβ . In effect, to prevent Pα

′
2

from belonging to S , there should be P∗ ∈ S such that τ|
O

f
2 (P̂1)
(P∗) < y = τ|

O
f
2 (P̂1)
(Pα

′
2 )

and τ|
O

f
2 (P1)
(P∗) > zβ = τ|

O
f
2 (P1)
(Pα

′
2 ), which is not possible due to the definition of P

β
2

(remember that P
β
2 = max�{P∗ ∈ S : y > τ|

O
f
2 (P̂1)
(P∗) and τ|

O
f
2 (P1)
(P∗) > τ|r f (P1)}). By

Corollary 3, f (P1, Pα
′

2 ) = zβ and f (P̂1, Pα
′

2 ) = y . Hence, agent 1 manipulates f at (P̂1, Pα
′

2 )
via P1, a contradiction. Therefore, τ|

O
f
2 (P̂1)
(Pβ2 ) 6= zβ .

Step 5. Proceeding as in Step 1, consider any preference Pα+1
2 ∈P such that

(i) τ|
O

f
2 (P̂1)
(Pα+1

2 ) =τ|
O

f
2 (P̂1)
(Pβ2 ) and (ii) τ|

O
f
2 (P1)
(Pα+1

2 ) =τ|r f (P1)

(see Figure 4(b)). If Pα+1
2 ∈ S , by Corollary 3, we have f (P1, Pα+1

2 ) = τ|r f (P1) and

f (P̂1, Pα+1
2 ) = τ|

O
f
2 (P̂1)
(Pβ2 ) 6= τ|r f (P1). Hence, agent 1 can manipulate f at (P̂1, Pα+1

2 ) via

P1, contradicting the assumption that f is SP, and we are done.

If Pα+1
2 6∈ S , then using the reasoning of Step 2, there must exist a preference P

β+1
2 ∈

S with P
β+1
2 ≺ P

β
2 such that

(i) τ|
O

f
2 (P̂1)
(Pβ2 )>τ|O f

2 (P̂1)
(Pβ+1

2 ) and (ii) τ|
O

f
2 (P1)
(Pβ+1

2 ) = zβ+1 >τ|r f (P1)

(see Figure 4(b)). By the argument of Step 3, zβ ≥ zβ+1 >τ|r f (P1).
Going back to Step 1 and performing the analysis repeatedly, in the end either (i) we

get the desired contradiction at some point in the process or (ii) after a finite number of

repetitions, say `, we eventually arrive at a preference P
β+`
2 ∈S between P

β+`−1
2 and P̂1

such that

(i) τ|
O

f
2 (P̂1)
(Pβ+`2 ) =τ|r f (P1) and (ii) τ|

O
f
2 (P1)
(Pβ+`2 ) = zβ+` >τ|r f (P1).

By Corollary 3, f (P̂1, P
β+`
2 ) = τ|r f (P1) and f (P1, P

β+`
2 ) = zβ+` 6= τ|r f (P1). Hence, agent 1

can manipulate f at (P1, P
β+`
2 ) via P̂1, a contradiction. Therefore, f is TO onS 2. �

The following corollary follows immediately from Lemma 5 and the argument of
Lemma 1.

C 6. Let |N |= 2 and suppose that S is a maximal set of single-crossing prefer-
ences. A social choice rule f :S 2→X is strategy-proof only if for all i ∈N and all P∈S 2,
f (Pi , P−i ) =m 3(τ|r f (Pi ), f (P i , P−i ), f (P i , P−i )).

Now, before generalizing Lemma 5 to the case where |N |> 2, we first extend the tops-
only property to the option sets generated by a strategy-proof social choice rule. We do
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this in two steps. First, we prove in Lemma 6 that the option set of any single individual
i ∈ N satisfies a tops-only property when there is agreement among the individuals in
N \{i } as to which alternative is best on the range. Then, in Lemma 7, we generalize this
result to the option set of any individual when the remaining agents do not necessarily
agree on the most preferred alternative over the range.

L 6. Let S be a maximal set of single-crossing preferences. If a social choice rule
f : S n → X is strategy-proof, then for each individual i ∈ N and every pair of profiles

P′−i , P′′−i ∈S n−1 for which τ|r f (P
′
j ) =τ|r f (P

′′
k ) for all j , k ∈N \ {i }, O

f
i (P

′
−i ) =O

f
i (P

′′
−i ).

P. Consider any i ∈N and any two profiles P′−i , P′′−i ∈S n−1,

P′−i = (P
′
1, . . . , P ′i−1, P ′i+1, . . . , P ′n )

P′′−i = (P
′′
1 , . . . , P ′′i−1, P ′′i+1, . . . , P ′′n )

such that, for all j , k ∈ N \ {i }, τ|r f (P
′
j ) = τ|r f (P

′′
k ) = z for some z ∈ X . To simplify the

notation, assume P ′j = P ′k and P ′′j = P ′′k for all j , k ∈N \ {i }, so that we can write19

P′−i = (P
′, . . . , P ′
︸ ︷︷ ︸

n−1 times

) and P′′−i = (P
′′, . . . , P ′′
︸ ︷︷ ︸

n−1 times

).

We want to show that O
f
i (P

′
−i ) =O

f
i (P

′′
−i ). To do that, define the sequence of profiles

P0
−i = (P

′, . . . , P ′), P1
−i = (P

′′, P ′, . . . , P ′), . . . , Pn−1
−i = (P ′′, . . . , P ′′). To establish the result,

it is enough to prove that, for all j = 1, . . . , n − 1, O
f
i (P

j
−i ) = O

f
i (P

j−1
−i ). Without loss of

generality, assume that there exists x ∈X such that for some 1≤ j ∗ ≤ n−1, x ∈O
f
i (P

j ∗−1
−i )

and x 6∈ O
f
i (P

j ∗
−i ). By Corollary 5, z ∈ O

f
i (P

j ∗−1
−i ) ∩O

f
i (P

j ∗
−i ). Therefore z 6= x . Moreover,

since x ∈O
f
i (P

j ∗−1
−i ), there exists ePi ∈S such that f ( ePi , Pj ∗−1

−i ) = x .

Notice that the preference profiles Pj ∗−1
−i and Pj ∗

−i differ only in one preference rela-
tion. Without loss of generality, suppose that it is the preference of agent `∈N \ {i }:

Pj ∗−1
−i =

�

P ′′, . . . , P ′′
︸ ︷︷ ︸

j ∗−1

, P ′` , P ′, . . . , P ′
︸ ︷︷ ︸

n−j ∗−1

�

Pj ∗
−i =

�

P ′′, . . . , P ′′
︸ ︷︷ ︸

j ∗−1

, P ′′` , P ′, . . . , P ′
︸ ︷︷ ︸

n−j ∗−1

�

.

Fix
Pj ∗−1
−{i ,`} =

�

P ′′, . . . , P ′′
︸ ︷︷ ︸

j ∗−1

, P ′, . . . , P ′
︸ ︷︷ ︸

n−j ∗−1

�

=Pj ∗
−{i ,`}.

Define the two-person social choice rule g :S 2→ X in such a way that, for all (Pi , P`) ∈
S 2, g (Pi , P`) = f (Pi , P`, Pj ∗−1

−{i ,`}). It is easy to show that g is strategy-proof and rg =

O
f
{i ,`}(P

j ∗−1
−{i ,`}). By Corollary 5, z ∈ rg . Hence, τ|rg (P

′′
` ) = τ|rg (P

′
`) = z because rg ⊆ r f and,

19To avoid any misunderstanding, it is worth emphasizing that the fact that the preference relations in the
profile P′−i (respectively, P′′−i ) are identical does not play any role in the proof. The only thing that matters
is that they have a common most preferred alternative over r f .
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by hypothesis, τ|r f (P
′′
` ) =τ|r f (P

′
`) = z . By Lemma 5, g is tops-only. Therefore, g (ePi , P ′′` ) =

g (ePi , P ′`). By the definition of g , g (ePi , P ′`) = f ( ePi , Pj ∗−1
−i ) = x . Thus, g (ePi , P ′′` ) = x . That is,

f ( ePi , Pj ∗
−i ) = x . Therefore, x ∈O

f
i (P

j ∗
−i ), a contradiction. Hence, O

f
i (P

′
−i ) =O

f
i (P

′′
−i ). �

L 7. Let S be a maximal set of single-crossing preferences. If a social choice rule
f :S n →X is strategy-proof, then for each i ∈N and every pair of profiles P′−i , P′′−i ∈S n−1

such that τ|r f (P
′
j ) =τ|r f (P

′′
j ) for all j ∈N \ {i }, O

f
i (P

′
−i ) =O

f
i (P

′′
−i ).

P. Consider any individual i ∈ N and any two profiles P̂−i , P̌−i ∈ S n−1 such that
for all j , k ∈N \ {i }, P̂j = P̂k , and P̌j = P̌k , and for each j ∈N \ {i }, τ|r f (P̂j ) = τ|r f (P̌j ) = z

for some z ∈X . By Lemma 6, O
f
i (P̂−i ) =O

f
i (P̌−i ).

Step 1. Fix any individual j 6= i and any two preferences P ′j , P ′′j ∈ S such that

τ|r f (P
′
j ) = w = τ|r f (P

′′
j ) for some w ∈ X . We want to show that O

f
i (P

′
j , P̂−{i ,j }) =

O
f
i (P

′′
j , P̂−{i ,j }). Define the two-person social choice rule g : S 2 → X in such a way

that for all (Pi , Pj ) ∈ S 2, g (Pi , Pj ) = f (Pi , Pj , P̂−{i ,j }). Since f is SP on S n , g is SP on

S 2, with range rg = O
f
{i ,j }(P̂−{i ,j }). If τ|rg (P

′
j ) = τ|rg (P

′′
j ), then by applying Lemma 6 to

g we get O
g
i (P

′
j ) =O

g
i (P

′′
j ), and we are done; i.e., by the definition of g , O

f
i (P

′
j , P̂−{i ,j }) =

O
f
i (P

′′
j , P̂−{i ,j }).

Instead, if τ|rg (P
′
j ) = a 6=b =τ|rg (P

′′
j ), then Lemma 6 cannot be used because it relies

on the existence of a common peak on the range of the social choice rule. So, we proceed
as follows. Without loss of generality, let b > a , implying that P ′′j � P ′j . Assume, by way

of contradiction, that O
g
i (P

′
j ) 6=O

g
i (P

′′
j ). That is, suppose that there is α ∈ rg such that

α ∈O
g
i (P

′
j ) and α 6∈O

g
i (P

′′
j ). Hence, there must be a ePi ∈S such that g ( ePi , P ′j ) = α. Since

α 6∈O
g
i (P

′′
j ), let g ( ePi , P ′′j ) = β 6= α. By SP, αP ′j β and β P ′′j α. By single-crossing, P ′′j � P ′j

implies β >α.

We would like to find two preferences Pαi , P
β
i ∈ S , not necessarily different, such

that (i) τ|r f (P
α
i ) =w , (ii) g (Pαi , P ′j ) =α, (iii) τ|r f (P

β
i ) =w , and (iv) g (Pβi , P ′′j ) =β . We show

below that such preferences exist in S . First, note that if ePi is between P ′j and P ′′j , then

we already have the desired preferences, because in that case τ|r f ( ePi ) = w . So, without

loss of generality, suppose that ePi � P ′′j , implying that τ|rg ( ePi ) = c ≥ b . Clearly, β ePi α

because β P ′′j α. Therefore, τ|rg ( ePi ) = c 6=α. By Lemma 5, g is TO over rg . By Corollary 6,

g (ePi , P ′j ) =m 3(τ|rg (ePi ), g (P i , P ′j ), g (P i , P ′j )). (1)

Applying Corollary 6 once again to g (P i , P ′j ) and to g (P i , P ′j ), we get

g (P i , P ′j ) =m 3(τ|rg (P
′
j ), g (P i , P j ), g (P i , P j )) (2)

g (P i , P ′j ) =m 3(τ|rg (P
′
j ), g (P i , P j ), g (P i , P j )). (3)

By Corollary 4, g (P i , P j ) = X rg
and g (P i , P j ) = X rg , where X rg

=min(rg ) and X rg =

max(rg ). Therefore, (2) can be rewritten as g (P i , P ′j ) =m 3(a , X rg
, g (P i , P j )), while (3) be-

comes g (P i , P ′j ) =m 3(a , g (P i , P j ), X rg ). It is immediate to see that g (P i , P ′j ) ≥ g (P i , P ′j ),
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because (3) is at least a , whereas (2) is at most a . Hence, c > g (P i , P ′j ) because c ≥b > a .

Moreover, τ|rg (ePi ) = c cannot be between g (P i , P ′j ) and g (P i , P ′j ). Otherwise, (1) would

imply that g (ePi , P ′j ) = c , contradicting the initial hypothesis that g (ePi , P ′j ) =α (recall that

c 6=α because β ePi α). Thus, c > g (P i , P ′j )≥ g (P i , P ′j ) and, therefore, α= g (P i , P ′j ).
Take a preference Pαi equal to P ′′j . By Corollary 6, we have g (Pαi , P ′j ) =

m 3(b , g (P i , P ′j ), g (P i , P ′j )).

• If b ≥ g (P i , P ′j ), we have found a preference Pαi satisfying properties (i) and (ii)
above, since g (Pαi , P ′j ) =α and, by definition, τ|r f (P

α
i ) =τ|r f (P

′′
j ) =w .

• If, instead, g (P i , P ′j ) > b , then α > b . Moreover, α > a because b > a ; and,
by (3), α = m 3(a , g (P i , P j ), X rg ) = g (P i , P j ). Consider g (ePi , P ′′j ). By Corollary 6,
g (ePi , P ′′j ) =m 3(b , g (ePi , P j ), g (ePi , P j )), where

g (ePi , P j ) =m 3(c , X rg
, g (P i , P j )) (4)

g (ePi , P j ) =m 3(c , g (P i , P j ), X rg ). (5)

Note that (4) can be rewritten as g (ePi , P j ) = m 3(c , X rg
,α) = α because c > α (re-

call that c > g (P i , P ′j ) = α). Moreover, since (5) is at least equal to c and we have
assumed above that α > b , it follows that g (ePi , P ′′j ) =m 3(b ,α, g (ePi , P j )) = α, con-
tradicting the hypothesis that g (ePi , P ′′j ) =β 6=α.

Therefore, the previous argument shows that a preference Pαi with the properties
specified above exists in S . In fact, it says that Pαi can be taken equal to P ′′j . Following
a similar reasoning, it can be shown that a relation P

β
i with the properties stated in (iii)

and (iv) also exists in S . In fact, the desired preference can be obtained by setting P
β
i

equal to P ′′j .
Now, to complete the analysis, we proceed as in the proof of Lemma 5. First, recall

that w 6= α and w 6= β because w 6∈ rg . Otherwise, we would have τ|rg (P
′
j ) = τ|rg (P

′′
j ).

Moreover, w 6= z because, by Corollary 5, z ∈ rg .
Case 1. Suppose β > w > α. If P̂ � P ′j , then w P ′j α implies w P̂α (remember that P̂

is the common preference relation of the profile P̂−{i ,j }). Define the sequence of profiles
P0
−{i ,j } = (P̂ , . . . , P̂), P1

−{i ,j } = (Pα, P̂ , . . . , P̂), . . . , Pn−2
−{i ,j } = (Pα, . . . , Pα). For each k = 0, . . . , n −

2, let x k = f (Pαi , P ′j , Pk
−{i ,j }). By SP of f , for each k = 0, . . . , n − 3, either x k P̂ x k+1 or

x k = x k+1. Thus, α= x 0 P̂ . . .x k P̂ . . .x n−2 =w (recall α 6=w ). Hence, by transitivity of P̂ ,
α P̂ w , a contradiction.

In a similar way, if P ′j � P̂ , then w P ′j β implies w P̂ β . Define the sequence of profiles

P0
−{i ,j } = (P̂ , . . . , P̂), P1

−{i ,j } = (Pβ , P̂ , . . . , P̂), . . . , Pn−2
−{i ,j } = (Pβ , . . . , Pβ ). For each k = 0, . . . , n −

2, let y k = f (Pβi , P ′′j , Pk
−{i ,j }). By SP of f , for each k = 0, . . . , n − 3, either y k P̂ y k+1 or

y k = y k+1. Thus, β = y 0 P̂ . . . y k P̂ . . . y n−2 =w (recall β 6=w ). Therefore, by transitivity
of P̂ , β P̂ w , a contradiction.
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Case 2. Suppose that β >α>w . The remaining case, where w >β >α, is similar. If
P ′′j � P̂ , then w P̂α, and we can use the argument of Case 1. Hence, assume that P̂ � P ′′j .

By SP, β P ′′j α. By SC 1, β P̂α. If β ∈O
f
−{i ,j }(P

α
i , P ′j ), then there must be a ¯̄P−{i ,j } ∈ S n−2

such that f (Pαi , P ′j , ¯̄P−{i ,j }) =β . Define the sequence of profiles

P0
−{i ,j } = (P̂ , . . . , P̂), P1

−{i ,j } = (
¯̄P`1 , P̂ , . . . , P̂), . . . , Pn−2

−{i ,j } = (
¯̄P`1 , . . . , ¯̄P`n−2 ).

For each k = 0, . . . , n−2, let x k = f (Pαi , P ′j , Pk
−{i ,j }). By strategy-proofness, α= x 0 P̂ . . .x k P̂

. . .x n−2 =β . By transitivity of P̂ , α P̂ β , a contradiction. Therefore, β 6∈O
f
−{i ,j }(P

α
i , P ′j ).

By Corollary 5, w ∈O
f
−{i ,j }(P

α
i , P ′j )∩O

f
−{i ,j }(P

α
i , P ′′j ). Moreover, β ∈O

f
−{i ,j }(P

α
i , P ′′j ) be-

cause f (Pαi , P ′′j , P̂−{i ,j }) = β (recall that Pαi and P
β
i are identical to P ′′j ). Consider any

Pε ∈P such that

(i) τ|
O

f
−{i ,j }(P

α
i ,P ′′j )
(Pε) =β =τ|

O
f
−{i ,j }(P

α
i ,P ′′j )
(P̂)

(ii) τ|
O

f
−{i ,j }(P

α
i ,P ′j )
(Pε) =w =τ|

O
f
−{i ,j }(P

α
i ,P ′j )
(P ′′j ).

If Pε ∈ S , then by Lemma 4, f (Pαi , P ′′j , Pε−{i ,j }) = β and f (Pαi , P ′j , Pε−{i ,j }) = w . Therefore

agent j can manipulate f at (Pαi , P ′′j , Pε−{i ,j }) via P ′j , and we are done. If, on the contrary,
Pε 6∈ S , then the desired contradiction is found following the argument of Case 2 in the
proof of Lemma 5.

Hence, by Case 1 and 2, we conclude that O
f
i (P

′
j , P̂−{i ,j }) =O

f
i (P

′′
j , P̂−{i ,j }). Applying a

similar reasoning, we also have O
f
i (P

′
j , P̌−{i ,j }) =O

f
i (P

′′
j , P̌−{i ,j }).

Step 2. Next, we prove that O
f
i (P

′
j , P̂−{i ,j }) = O

f
i (P

′′
j , P̌−{i ,j }). From Step 1, we know

that O
f
i (P

′′
j , P̌−{i ,j }) = O

f
i (P

′
j , P̌−{i ,j }). Hence, it is enough to show that O

f
i (P

′
j , P̂−{i ,j }) =

O
f
i (P

′
j , P̌−{i ,j }). Define the sequence of profiles P0

−{i ,j } = (P̂ , . . . , P̂), P1
−{i ,j } = (P̌ , P̂ , . . . , P̂),

. . ., Pn−2
−{i ,j } = (P̌ , . . . , P̌). To show that O

f
i (P

′
j , P̂−{i ,j }) =O

f
i (P

′
j , P̌−{i ,j }), it is enough to prove

that for all k = 1, . . . , n − 2, O
f
i (P

′
j , Pk−1

−{i ,j }) = O
f
i (P

′
j , Pk

−{i ,j }). Suppose, by contradiction,
there exists 1≤ k ∗ ≤ n −2 such that

O
f
i (P

′
j , Pk ∗−1

−{i ,j }) 6=O
f
i (P

′
j , Pk ∗

−{i ,j }). (6)

Recall that

Pk ∗−1
−{i ,j } =

�

P̌ , . . . , P̌
︸ ︷︷ ︸

k ∗−1

, P̂ , . . . , P̂
︸ ︷︷ ︸

n−k ∗−1

�

and Pk ∗
−{i ,j } =

�

P̌ , . . . , P̌ , P̌
︸ ︷︷ ︸

k ∗

, P̂ , . . . , P̂
︸ ︷︷ ︸

n−k ∗−2

�

.

That is, the profiles Pk ∗−1
−{i ,j } and Pk ∗

−{i ,j } differ only in one preference relation. Abusing the
notation, assume this ordering corresponds to agent k ∗. Then, (6) can be rewritten as

O
f
i (P

′
j , P̂k ∗ , Pk ∗−1

−{i ,j ,k ∗}) 6=O
f
i (P

′
j , P̌k ∗ , Pk ∗

−{i ,j ,k ∗}). (7)
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Fix
Pk ∗−1
−{i ,j ,k ∗} =

�

P̌ , . . . , P̌
︸ ︷︷ ︸

k ∗−1

, P̂ , . . . , P̂
︸ ︷︷ ︸

n−k ∗−2

�

=Pk ∗
−{i ,j ,k ∗}.

Define the social choice rule g : S 3 → X in such a way that for all (Pi , Pj , Pk ∗ ) ∈ S 3,

g (Pi , Pj , Pk ∗ ) = f (Pi , Pj , Pk ∗ , Pk ∗−1
−{i ,j ,k ∗}). By Corollary 5, z ∈ rg =O

f
{i ,j ,k ∗}(P

k ∗−1
−{i ,j ,k ∗}). Hence,

τ|rg (P̂k ∗ ) = τ|rg (P̌k ∗ ) = z because, by hypothesis, τ|r f (P̂k ∗ ) = τ|r f (P̌k ∗ ) = z . Since g is SP,

by Step 1, O
g
i (P

′
j , P̂k ∗ ) = O

g
i (P

′
j , P̌k ∗ ), which contradicts (7). Therefore, O

f
i (P

′
j , P̂−{i ,j }) =

O
f
i (P

′′
j , P̌−{i ,j }).

Step 3. Suppose now that for some K ⊂N \ {i } and any P′K , P′′K ∈S K with the prop-
erty that ∀j ∈ K , τ|r f (P

′
j ) =τ|r f (P

′′
j ),

O
f
i (P

′
K , P̂K̄ \{i }) =O

f
i (P

′′
K , P̌K̄ \{i }). (8)

Notice that Step 2 deals with the particular case where K = {j }. Fix any h ∈ K̄ \ {i }
and any two preferences P ′h , P ′′h ∈S for which τ|r f (P

′
h ) =τ|r f (P

′′
h ). We want to show that

O
f
i (P

′
K∪{h}, P̂K̄ \{i ,h}) =O

f
i (P

′′
K∪{h}, P̌K̄ \{i ,h}). (9)

To fix the notation, let K = {`1, . . . ,`|K |}. Define the sequence of profiles

P0
K∪{h} = (P

′
`1

, . . . , P ′`|K | , P ′h ) =P′K∪{h}
P1

K∪{h} = (P
′′
`1

, P ′`2
, . . . , P ′`|K | , P ′h )

...

P|K |+1
K∪{h} = (P

′′
`1

, . . . , P ′′`|K | , P ′′h ) =P′′K∪{h}.

We argue next that the proof of (9) can be reduced to showing that

∀t = 1, . . . , |K |+1, O
f
i (P

t−1
K∪{h}, P̂K̄ \{i ,h}) =O

f
i (P

t
K∪{h}, P̂K̄ \{i ,h}). (10)

In effect, if (10) holds, then O
f
i (P

′
K∪{h}, P̂K̄ \{i ,h}) =O

f
i (P

′′
K∪{h}, P̂K̄ \{i ,h}). Using a similar

reasoning, it also follows that O
f
i (P

′
K∪{h}, P̌K̄ \{i ,h}) = O

f
i (P

′′
K∪{h}, P̌K̄ \{i ,h}). Therefore, in

order to prove (9), it would be enough to show that

O
f
i (P

′
K∪{h}, P̂K̄ \{i ,h}) =O

f
i (P

′
K∪{h}, P̌K̄ \{i ,h}). (11)

Following the argument of Step 2, consider a sequence of profiles

P0
K̄ \{i ,h} = (P̂ , . . . , P̂) = P̂K̄ \{i ,h}

P1
K̄ \{i ,h} = (P̌ , P̂ , . . . , P̂)

...

P|K̄ |−2
K̄ \{i ,h} = (P̌ , . . . , P̌) = P̌K̄ \{i ,h}.



Theoretical Economics 4 (2009) Strategy-proofness and single-crossing 157

To show (11), it is sufficient to prove that for each t = 1, . . . , |K̄ | −2,

O
f
i (P

′
K∪{h}, Pt−1

K̄ \{i ,h}) =O
f
i (P

′
K∪{h}, Pt

K̄ \{i ,h}).

Notice that Pt−1
K̄ \{i ,h} and Pt

K̄ \{i ,h} differ only in one preference relation. Without loss of

generality, assume that they differ in agent `’s ordering. Fix Pt−1
K̄ \{i ,h,`} (= Pt

K̄ \{i ,h,`}). De-

fine the social choice rule g :S |K |+3→ X in such a way that for every PK∪{i ,h,`} ∈S |K |+3,

g (PK∪{i ,h,`}) = f (PK∪{i ,h,`}, Pt−1
K̄ \{i ,h,`}). By Corollary 5, z ∈ rg =O

f
K∪{i ,h,`}(P

t−1
K̄ \{i ,h,`}) (recall

that τ|r f (P̂) = τ|r f (P̌) = z ). Hence, since g is SP and τ|rg (P̂`) = τ|rg (P̌`), using the argu-
ment behind (10) (with the proviso that the roles of h and ` are interchanged, so that
K̄ \ {i ,`}= {h}), we have that O

g
i (P

′
K , P̂`, P ′h ) =O

g
i (P

′
K , P̌`, P ′h ),20 and we are done: i.e., (11)

follows from the definition of g .
So, as we said above, Step 3 requires only that (10) be valid. That is, we need to prove

that for each t = 1, . . . , |K |+1,

O
f
i (P

t−1
K∪{h}, P̂K̄ \{i ,h}) =O

f
i (P

t
K∪{h}, P̂K̄ \{i ,h}).

Once again, since Pt−1
K∪{h} and Pt

K∪{h} differ only in one preference relation, without loss

of generality and to simplify the notation, assume Pt−1
K∪{h} = (P

′′
`1

, . . . , P ′′`|K | , P ′h ) and Pt
K∪{h} =

(P ′′`1
, . . . , P ′′`|K | , P ′′h ).

Fix P̂K̄ \{i ,h}. Define the social choice rule g 1 : S |K |+2 → X in such a way that for all
PK∪{i ,h} ∈S |K |+2, g 1(PK∪{i ,h}) = f (PK∪{i ,h}, P̂K̄ \{i ,h}). Since g 1 is SP, if τ|rg 1

(P ′′h ) =τ|rg 1
(P ′h ),

then we can use the argument behind (8) to conclude that O
g 1

i (P
′′
`1

, . . . , P ′′`|K | , P ′h ) =
O

g 1

i (P
′′
`1

, . . . , P ′′`|K | , P ′′h ), and we are done.

If, on the contrary, τ|rg 1
(P ′′h ) 6= τ|rg 1

(P ′h ), then fix (P ′′`1
, . . . , P ′′`|K | ) ≡ P′′K and define the

social choice rule g 2 :S 2→X such that for each (Pi , Ph )∈S 2, g 2(Pi , Ph ) = g 1(Pi , Ph , P′′K ).
Obviously, g 2 is SP with rg 2 = O

g 1

{i ,h}(P
′′
K ). If τ|rg 2

(P ′′h ) = τ|rg 2
(P ′h ), then by Lemma 6,

O
g 2

i (P
′
h ) = O

g 2

i (P
′′
h ), and we are done. Thus, suppose that τ|rg 2

(P ′′h ) = b > a = τ|rg 2
(P ′h )

for some a ,b ∈ rg 2 , implying that P ′′h � P ′h . The desired result is then obtained following
the reasoning of Step 1.

Specifically, assume by way of contradiction that O
g 2

i (P
′
h ) 6=O

g 2

i (P
′′
h ). Without loss of

generality, suppose there exists α ∈ rg 2 such that α ∈O
g 2

i (P
′
h ) and α 6∈O

g 2

i (P
′′
h ). Hence,

there must be a ePi ∈ S such that g 2( ePi , P ′h ) = α 6= β = g 2( ePi , P ′′h ) for some β ∈ rg 2 . By SP,
αP ′h β and β P ′′h α. By single-crossing, P ′′h � P ′h implies β >α.

Let τ|r f (P
′
h ) = wh . By hypothesis, τ|r f (P

′′
h ) = wh . Following the argument of

Step 1 (i.e., exploiting that g 2 is a median function), there exist Pαi , P
β
i ∈ S such that

(i) τ|r f (P
α
i ) =wh , (ii) g 2(Pαi , P ′h ) = α, (iii) τ|r f (P

β
i ) =wh , and (iv) g 2(P

β
i , P ′′h ) = β . Actually,

Pαi and P
β
i can be taken to be identical to each other.

Next, fix any ` ∈ K = {`1, . . . ,`|K |} and (ePi , P′′K \{`}). Define the social choice rule g ` :

S 2→X in such a way that for all (P`, Ph )∈S 2, g `(P`, Ph ) = g 1(ePi , Ph , P`, P′′K \{`}). Note that

20Bear in mind that, by construction, in (10) the profiles Pt−1
K∪{h} and Pt

K∪{h} differ only with respect to a
single preference relation.
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g ` is SP; and, by the definition of g `, g `(P ′′` , P ′h ) = α and g `(P ′′` , P ′′h ) = β . Thus, since by
Lemma 5, g ` is TO, τ|rg `

(P ′′h ) 6= τ|rg `
(P ′h ). Once again, following the argument of Step 1,

there exist Pα` , P
β
` ∈ S such that (i) τ|r f (P

α
` ) =wh , (ii) g `(Pα` , P ′h ) = α, (iii) τ|r f (P

β
` ) =wh ,

and (iv) g `(Pβ` , P ′′h ) =β . Furthermore, Pα` and P
β
` are identical.

Since ` ∈ K has been arbitrarily chosen, we conclude from the previous paragraph

that there must exist Pα`1
, . . . , Pα`|K | ∈S and P

β
`1

, . . . , P
β
`|K | ∈S such that, for all s = `1, . . . ,`|K |,

τ|r f (Pαs ) = τ|r f (P
β
s ) = wh , f (Pαi , P ′h , PαK , P̂K̄ \{i ,h}) = α, and f (Pβi , P ′′h , PβK , P̂K̄ \{i ,h}) = β ,

where PαK = (P
α
`1

, . . . , Pα`|K | ) and PβK = (P
β
`1

, . . . , P
β
`|K | ).

Notice that wh 6= α because α ∈ rg 2 and wh 6∈ rg 2 . Similarly, β 6= wh and z 6= wh

(recall that τ|rg 2
(P ′′h ) 6=τ|rg 2

(P ′h ) and τ|rg 1
(P ′′h ) 6=τ|rg 1

(P ′h )). Thus, to complete the analysis
we repeat the argument of Cases 1 and 2 in Step 1. That is, if for example β > wh > α

and P̂ � P ′h , then wh P ′h α implies wh P̂α. Define the sequence of profiles

P0
K̄ \{i ,h} = (P̂ , . . . , P̂)

P1
K̄ \{i ,h} = (P

α, P̂ , . . . , P̂)

...

P|K̄ |−2
K̄ \{i ,h} = (P

α, . . . , Pα).

where Pα is set identical to Pαi . For each s = 0, . . . , |K̄ | − 2, let x s = f (Pαi , P ′h , PαK , Ps
K̄ \{i ,h}).

By SP of f , for any s = 0, . . . , |K̄ |−3, either x s = x s+1 or, if x s 6= x s+1, then x s P̂ x s+1. Hence,
since wh 6= α, we have α = x 0 P̂ . . .x s P̂ . . .x |K̄ |−2 = wh , and, by transitivity of P̂ , α P̂ wh ,
a contradiction. (The remaining cases are solved in a similar fashion.) Therefore, (10)
holds.

Finally, by Step 2, (8) is satisfied for K = {j } for all j ∈ N \ {i }. By the induction
argument, (8) holds for any K ⊂ N \ {i }. In particular, by setting K = N \ {i , k }, for

any k 6= i , we have that O
f
i (P

′
N \{i ,k }, P̂k ) =O

f
i (P

′′
N \{i ,k }, P̌k ). Therefore, since i , k , P ′N \{i ,k },

P̂k , P ′′N \{i ,k }, and P̌k were arbitrarily chosen, for each i ∈ N and every pair of profiles

P′−i , P′′−i ∈ S n−1 with the property that τ|r f (P
′
j ) = τ|r f (P

′′
j ) for all j ∈ N \ {i }, O

f
i (P

′
−i ) =

O
f
i (P

′′
−i ). �

We are now ready to prove Proposition 2.

P  P . Suppose, by contradiction, there exist i ∈ N , (P ′i , P′−i ) ∈ S n ,
and P ′′i ∈ S such that τ|r f (P

′
i ) = τ|r f (P

′′
i ) and f (P ′i , P′−i ) = x 6= y = f (P ′′i , P′−i ). Fix any

j 6= i . Since preferences are strict, x 6= y implies that either x P ′j y or y P ′j x . Without

loss of generality, assume that y P ′j x . By Lemma 7, O
f
j (P

′
i , P′−{i ,j }) =O

f
j (P

′′
i , P′−{i ,j }). Thus,

y ∈O
f
j (P

′
i , P′−{i ,j }). That is, ∃bPj ∈ S such that f (bPj , P ′i , P′−{i ,j }) = y . However, since y P ′j x ,

this means that j can manipulate f at (P ′i , P′−i ) via bPj , a contradiction. Hence, f is TO.�
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X z X

P
β
1

P1 Pα1 P2

P1 P2

τ(Pβ1 ) z β

Pβ1 Pα+1
1 Pβ+1

1 . . .

Pα1

Pα+1
1

P
β+1
1

F 5. Fixed ballots over X .

C. P  T 

The sufficiency is immediate from Proposition 1 and Definition 9. To show the necessity,
suppose that f is UN, AN and SP onS n . By Proposition 2, f is also TO onS n .

Consider first the case where |N | = 2. Fix any profile P ∈ S 2. By Lemma 1,
f (P1, P2) = m 3(τ(P1), f (P1, P2), f (P1, P2)). Applying Lemma 1 once again, f (P1, P2) =
m 3(τ(P2), f (P1, P2), f (P1, P2)) and f (P1, P2) =m 3(τ(P2), f (P1, P2), f (P1, P2)). By unanim-
ity, f (P1, P2) =X and f (P1, P2) =X . By anonymity, f (P1, P2) = f (P1, P2).

Next, we show that f (P1, P2) ∈ {τ(P) ∈ X : P ∈ S }. Suppose not. Without loss of
generality, assume that f (P1, P2) = z 6= τ(P) for all P ∈ S . Consider a preference Pα1 ∈
P with the property that τ(Pα1 ) = τ(P1) and X Pα1 z . If Pα1 ∈ S , we are done. By TO,
f (Pα1 , P2) = z , and agent 1 can manipulate f at (Pα1 , P2) via P1.

If, instead, Pα1 6∈ S , there must exist a P∗ ∈S such that τ(P∗)>τ(P1) and z P∗X . Let

P
β
1 =min�{P ′ ∈ S : τ(P ′) > X }. Clearly, z P

β
1 X because either P

β
1 coincides with P∗ or

P
β
1 ≺ P∗. Let f (Pβ1 , P2) = zβ . If z > zβ , agent 1 would manipulate f at (P1, P2) via P

β
1 .

Similarly, if zβ =X , then 1 would manipulate f at (Pβ1 , P2) via P1. Hence, X > zβ ≥ z .

Suppose zβ = τ(Pβ1 ). Then, zβ > z . Furthermore, there exists a Pα
′

1 ∈ S such that
τ(Pα

′
1 ) = X and zβ Pα

′
1 z . Indeed, to rule out Pα

′
1 from S there should be a P∗∗ ∈ S

such that τ(P∗∗) > X and z P∗∗ zβ . By the definition of P
β
1 , P∗∗ � P

β
1 (note that they

cannot be equal because by hypothesis zβ =τ(Pβ1 ) and z P∗∗ zβ ), and, by SC 2, we would

have z P
β
1 zβ , a contradiction. Thus, Pα

′
1 ∈ S . By TO, f (Pα

′
1 , P2) = z . Hence agent 1 can

manipulate f at (Pα
′

1 , P2) via P
β
1 , a contradiction. Therefore, zβ 6=τ(Pβ1 ).

Consider a preference Pα+1
1 ∈ P such that τ(Pα+1

1 ) = τ(Pβ1 ) and X Pα+1
1 zβ (see Fig-

ure 5). If Pα+1
1 ∈S , by TO, f (Pα+1

1 , P2) = zβ . Thus, agent 1 can manipulate f at (Pα+1
1 , P2)

via P1. If, on the contrary, Pα+1
1 6∈ S , then we can repeat the previous argument and
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find a preference P
β+1
1 ∈ S such that τ(Pβ+1

1 ) > τ(Pβ1 ) and zβ P
β+1
1 X . Since X is fi-

nite and in each step the top of the blocking ordering becomes larger, the sequence

τ(Pβ1 ),τ(P
β+1
1 ), . . . approaches τ(P1). Therefore, if we continue applying the same argu-

ment repeatedly, at some point we will either find the desired contradiction, or a pref-

erence P
β+`
1 ∈ S such that (i) τ(Pβ+`1 ) = τ(P1) and (ii) zβ+`−1 P

β+`
1 X , which leads to a

violation of SP (because f (Pβ+`1 , P2) =X ). Hence, f (P1, P2)∈ {τ(P)∈X : P ∈S }.
Let f (P1, P2) = τ(P) for some P ∈ S . Then, from Lemma 1, either f (P1, P2) = τ(P)

and f (P1, P2) =τ(P2) if P2 � P or, otherwise, f (P1, P2) =τ(P2) and f (P1, P2) =τ(P). There-
fore, f (P1, P2) = m 3(τ(P1),τ(P2),τ(P)). Thus, since (P1, P2) ∈ S 2 was arbitrarily chosen
and f (P1, P2) is independent of (P1, P2), we conclude that f ∈ PR.

Let us now extend the proof for |N | = n > 2. For all K ⊆ N , let a |K | = f (PK , PK̄ ),
where K̄ =N \K . By UN, K =∅ implies a 0 = f (P1, . . . , Pn ) = X . Similarly, K =N implies
a n = f (P1, . . . , Pn ) = X . By AN, a 1 = f (P i , P−i ), ∀{i } ⊂ N ; a 2 = f (P{i ,j }, P−{i ,j })∀{i , j } ⊆
N ; . . . ; and, a n−1 = f (P−j , P j ),∀{j } ⊂N . By TM, a 0 ≥ a 1 ≥ a 2 ≥ · · · ≥ a n−1 ≥ a n .

Next, notice that a k ∈ {τ(P) ∈ X : P ∈ S } for all k = 0, 1, . . . , n . In effect, if k = 0
or k = n , the result follows from UN. Assume that a k = f (P1, . . . , Pk , Pk+1, . . . , Pn ) ∈
{τ(P) ∈ X : P ∈S } for some k = 0, 1, . . . , n −2 and let us prove the claim for a k+1. On the
contrary, suppose that a k+1 = f (P1, . . . , Pk+1, Pk+2, . . . , Pn ) 6= τ(P) for all P ∈ S . Then,
a k > a k+1. Following the argument illustrated in Figure 5 for |N | = 2, there exist Pαk+1 ∈
S and P

β
k+1 ∈S such that τ(Pαk+1) =τ(P

β
k+1) and a k Pαk+1 f (P1, . . . , Pk , P

β
k+1, Pk+2, . . . , Pn ).

By TO, f (P1, . . . , Pk , Pαk+1, Pk+2, . . . , Pn ) = f (P1, . . . , Pk , P
β
k+1, Pk+2, . . . , Pn ). Hence, agent

k + 1 can manipulate f at (P1, . . . , Pk , Pαk+1, Pk+2, . . . , Pn ) via Pk+1 (which results in a k

being chosen), a contradiction. Therefore, a k+1 ∈ {τ(P)∈X : P ∈S }.
Now, fix any profile P = (P1, . . . , Pn ) ∈ S n and relabel N if necessary so that τ(Pn ) ≥

τ(Pn−1)≥ · · · ≥τ(P1). Exactly one of the following must hold:

τ(P1) ≥ a 0

a 0 > τ(P1) > a 1

τ(P2) ≥ a 1 ≥ τ(P1)
a 1 > τ(P2) > a 2

· · ·
τ(Pn ) ≥ a n−1 ≥ τ(Pn−1)
a n−1 > τ(Pn ) > a n

a n ≥ τ(Pn ).

There are three cases to analyze.
Case 1: either τ(P1) ≥ a 0 or a n ≥ τ(Pn ). Without loss of generality, suppose

τ(P1) ≥ a 0. Then, ∀i ∈ N , τ(Pi ) = X . By UN, f (P1, . . . , Pn ) = X =m 2n−1(τ(P1), . . . ,τ(Pn ),
a 1, . . . , a n−1) as desired.

Case 2: a j−1 >τ(Pj )> a j for some j ∈N . Note that

τ(Pj ) =m 2n−1(τ(P1), . . . ,τ(Pj−1),τ(Pj ),τ(Pj+1), . . . ,τ(Pn ), a 1, . . . , a j−1, a j , . . . , a n−1),

because the elements τ(P1), . . . ,τ(Pj−1), a j , . . . , a n−1 are smaller than or equal to
τ(Pj ). Assume, by way of contradiction, that f (P1, . . . , Pn ) 6= τ(Pj ). Without loss of



Theoretical Economics 4 (2009) Strategy-proofness and single-crossing 161

generality, suppose f (P1, . . . , Pn ) > τ(Pj ). By TM, f (P1, . . . , Pn−1, Pn ) ≥ f (P1, . . . , Pn );
hence f (P1, . . . , Pn−1, Pn ) > τ(Pj ). Repeating the step for all i > j eventually yields
f (P1, . . . , Pj , P j+1, . . . , Pn )>τ(Pj ). By Lemma 1,

f (P1, . . . , Pj−1, Pj , P j+1, . . . , Pn )

=m 3(τ(Pj ), f (P1, . . . , Pj−1, P j , P j+1, . . . , Pn ), f (P1, . . . , Pj−1, P j , P j+1, . . . , Pn )).

Therefore,

f (P1, . . . , Pj−1, Pj , P j+1, . . . , Pn ) = f (P1, . . . , Pj−1, P j , P j+1, . . . , Pn ),

because by TM, f (P1, . . . , Pj−1, P j , P j+1, . . . , Pn ) ≥ f (P1, . . . , Pj−1, P j , P j+1, . . . , Pn ) and, by

hypothesis, f (P1, . . . , Pj , P j+1, . . . , Pn ) > τ(Pj ). Thus, repeating the argument for all i =
1, . . . , j −1, we get

f (P1, . . . , P j , P j+1, . . . , Pn )>τ(Pj ),

which contradicts the initial hypothesis that τ(Pj ) > a j . Therefore, f (P) = τ(Pj ) =
m 2n−1(τ(P1), . . . ,τ(Pn ), a 1, . . . , a n−1), as required.

Case 3: τ(Pj )≥ a j−1 ≥τ(Pj−1) for some j = 2, . . . , n . Note that

a j−1 =m 2n−1(τ(P1), . . . ,τ(Pj−1),τ(Pj ), . . . ,τ(Pn ), a 1, . . . , a j−1, a j , . . . , a n−1),

because elements τ(P1), . . . ,τ(Pj−1), a j , . . . , a n−1 are smaller than or equal to a j−1. Sup-
pose, by way of contradiction, that f (P1, . . . , Pn ) 6= a j−1. Without loss of generality, as-
sume f (P1, . . . , Pn ) > a j−1. By TM, f (P1, . . . , Pn−1, Pn ) > a j−1. Repeating the step for all
i ≥ j eventually yields f (P1, . . . , Pj−1, P j , . . . , Pn )> a j−1, which implies that

f (P1, . . . , Pj−1, P j , . . . , Pn )>τ(Pj−1), (12)

because by hypothesis a j−1 ≥ τ(Pj−1). By Lemma 1, f (P1, . . . , Pj−1, P j , . . . , Pn ) =
m 3(τ(Pj−1), f (P1, . . . , Pj−2, P j−1, P j , . . . , Pn ), f (P1, . . . , Pj−2, P j−1, P j , . . . , Pn )). Therefore,

f (P1, . . . , Pj−2, Pj−1, P j , . . . , Pn ) = f (P1, . . . , Pj−2, P j−1, P j , . . . , Pn ),

because by TM, f (P1, . . . , Pj−2, P j−1, P j , . . . , Pn ) ≥ f (P1, . . . , Pj−2, P j−1, P j , . . . , Pn ) and, by

(12), f (P1, . . . , Pj−1, P j , . . . , Pn ) > τ(Pj−1). Thus, f (P1, . . . , Pj−2, P j−1, P j , . . . , Pn ) > a j−1;

and, repeating the step for all i = 1, . . . , j −2, we get that f (P1, . . . , P j−1, P j , . . . , Pn )> a j−1,
a contradiction. Therefore, f (P) = a j−1 =m 2n−1(τ(P1), . . . ,τ(Pn ), a 1, . . . , a n−1).
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