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Abstract

We introduce a new class of Shewhart control charts, namely the φ-chart. This new class is

based on the cumulative paired φ-divergence that generalizes both the cumulative (residual)

entropy and the differential entropy. The φ-chart contains several subclasses; of which one

has as a special case theG-chart, which uses Gini’s mean difference as a measure of dispersion.

We investigate the performance of three of the subclasses of φ-charts in a showcase scenario,

comparing its average run length under the Gaussian and several alternative distributions.

We find especially the new Leik control chart to outperform classical Shewhart charts, which

are based on ranks, standard deviation, or Gini’s mean difference. Monitoring a production

process using φ-charts implies a faster detection of an out-of-control process, which can be

crucial for a variety of application areas.
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1. Introduction

Shewhart control charts are an essential tool for quality control in the context of super-

vising processes of production. These charts, introduced by Shewhart (1931), are essentially

based on interpretation of mean, standard deviation, and range of samples obtained from

production processes.

Control charts try to determine whether processes are still under control. A classical

example is the x̄S-chart, which assumes that the quantity that is to be controlled follows a

normal distribution. In this case, the x̄-chart monitors the process mean and checks whether

the controlled sample values lie between two acceptance boundaries. Additionally, the S-

chart checks if the x̄-chart’s boundaries are still represented by the variance of the monitored

process and shows off limits in which the process variance can vary without being classified

as changed. Here, S is the sample standard deviation, defined as

S =

√√√√ n∑
i=1

(Xi − X̄)2

/
(n− 1).

Burr (1967) analysed the suitability of x̄-chart’s boundaries for samples drawn from non-

normal parent populations. His results showed that the usual boundaries are still reliable if

the sample’s distribution does not deviate too much from the normal distribution. In line

with this results, Chan et al. (1988) concluded that charts, which are designed for normal

distributed data, do not work well if the underlying distribution has extremely heavy or light

tails.

Next to this, Page (1954) and Ewan (1963) used a cumulative sum and Crowder (1987) an

exponentially weighted moving average to supervise production processes and demonstrated

these methods’ advantages in case of small changes in the nature of the process.

Recent research by Riaz and Saghir (2007) as well as Saghir and Lin (2015) employed

Gini’s mean difference for tracing the variability of production processes. They carved out

situations in which a G-chart2 is able to more efficiently detect changes in the variance of a

process than charts that are currently applied in supervision, like the previously explained,

especially in situations, in which the data’s distribution is not normal.

2The G-chart is a control chart based on Gini’s mean difference.
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We introduce a new class of control charts, the φ-chart, which is a generalization based on

a new class of entropy, the cumulative paired φ-entropy (CPEφ) as introduced by Klein et al.

(2016). The CPEφ contains many classes of well-known entropies such as the cumulative

(residual) entropy and the differential entropy. We generalize the results of Riaz and Saghir

(2007) and Saghir and Lin (2015) as follows: First, a class of φ-charts is introduced that

inherits the G-chart as a special case. Second, two new control charts are introduced that

can be of advantageous use as a control chart in situations, in which a sample of the process

is not drawn from a normal population.

This paper is organized as follows: At the beginning, we introduce the G-chart by Riaz

and Saghir (2007) and Saghir and Lin (2015). Then we introduce the new class of φ-charts3.

Section 3 compares the φ-charts to the established S- and G-charts in a showcase scenario.

Section 4 summarizes and discusses our findings.

2. Methodology

Throughout this paper, we analyse methods to monitor the variability of a process.

Information about location is not focus of this research. Therefore, we assume in the following

that any sample mean values lie in their control limits, meaning process location is under

control.

Control limits for the variability of a sample with n observations are defined as

Lower Control Limit, LCL = σ qα
2
,n

Upper Control Limit, UCL = σ q1−α
2
,n.

If the populations standard deviation σ is unknown, it can be replaced by an unbiased

estimator σ̂ in the case of a normal distribution. The quantiles qα are obtained from a

Monte Carlo simulation, since exact distributions can be difficult to determine for finite n4.

3Note, that we will not provide an analysis with respect to the R-chart, which is based on ranks of a

sample. This decision is based on the finding of Riaz and Saghir (2007), who showed that the R-chart is

either dominated by one, the S- or the G-chart.
4See Riaz and Saghir (2007) for further details on the critical values for S- and G-charts under normality.
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2.1. G-chart

A G-chart is based on Gini’s mean difference measure:

G =
2

n(n− 1)

 n∑
i=1
i 6= j

n∑
j=1

|xi − xj|

 .

David (1968) showed, that (
√
π/2)G is an unbiased estimator for the true underlying process

variability. Saghir and Lin (2015) analyzed the performance of G-charts under several vio-

lations of assumptions as non-normality and shifts in the standard deviation of the process.

2.2. φ-charts

Klein et al. (2016) introduced a new kind of entropy whose special cases have been used

in a variety of fields of research, such as Fuzzy set theory (c.f. de Luca and Termini (1972)),

Uncertainty theory (c.f. Liu (2015)), and Reliability theory (c.f. Ebrahimi (1996)). This new

class of entropy, cumulative paired φ-entropy (CPEφ), is based on an absolute continuous

probability distribution function F . For every concave function φ with φ(0) = φ(1) = 0, the

CPEφ is defined as

CPEφ(F ) =

∫
R
φ(F (x)) + φ(1− F (x))dx.

φ is called entropy generating function. Next, we use the following four CPEφ as measures

of variability resulting in four φ-charts:

1. Cumulative paired Leik entropy (CPEL, following Leik (1966)) is generated by

φ(u) = min{u, 1− u} =
1

2
−
∣∣∣∣u− 1

2

∣∣∣∣ , u ∈ [0, 1],

which results in

CPEL(F ) = 2

∫
R
min{F (x), 1− F (x)}dx.

2. Cumulative paired α-entropy (CPEα, following Havrda and Charvát (1967)) is gener-

ated by

φ(u) = u
uα−1 − 1

1− α
, u ∈ [0, 1] and α > 1,
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which results in

CPEα(F ) =

∫
R

(
F (x)

F (x)α−1 − 1

1− α
+ (1− F (x))

(1− F (x))α−1 − 1

1− α

)
dx.

3. Cumulative paired Shannon entropy (CPES, following Burbea and Rao (1982)) is

generated by

φ(u) = −u lnu, u ∈ [0, 1],

which results in

CPES(F ) = −
∫
R

(F (x) lnF (x) + (1− F (x)) ln(1− F (x))) dx.

The CPES is a special case of CPEα for α→ 1.

4. Cumulative paired Gini entropy (CPEG), which is a special case of CPEα for α = 2,

results in

CPEG(F ) = 2

∫
R
F (x)(1− F (x))dx.

Note, that since G = 4CPEφ, G-charts can be generalized to α-charts or even more general

φ-charts, that contain the G-chart as a special case. See Klein et al. (2016) for information

about the estimation of CPEφ.

We compare this generalizations to the established results in literature in the next section.

3. Results

Following Riaz and Saghir (2007) and Saghir and Lin (2015), we evaluate the charts’ per-

formance via a simulation study. For simulating quantiles that are required for the control

limit, we use a Monte Carlo simulation with 2,000,000 random samples of size n = 6 and a

significance level of 1% as reference case. Table 1 gives an overview on the probability distri-

butions used throughout the simulation. For the Normal, logistic, Laplace, and exponential

distribution, a standardizing parametrization is used. We choose ν = 5 degrees of freedom

for the Student t distribution for modelling heavy tails, while ensuring the existence of the

first four moments.
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Distribution Density function Parameters

Normal 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
µ = 0, σ = 1

Student t
Γ( ν+1

2 )
√
νπΓ( ν2 )

(
1 + x2

ν

)− ν+1
2

ν = 5

Logistic
exp(−x−µσ )

σ(1+exp(x−µσ ))
2 µ = 0, σ = 1

Gamma 1
Γ(τ)θτ

xτ−1exp
(
−x
θ

)
τ ≥ 0, θ ≥ 0

Laplace 1
2b

exp
(
− |x−µ|

b

)
µ = 0, b = 1

Exponential λexp (−λx) λ = 1

Table 1: Density functions of the analyzed probability distributions.

3.1. Evaluation metric

Following Saghir and Lin (2015), we use the average run length (ARL) as performance

criterion for the suitability of the proposed charts in several scenarios. The ARL is defined

as 1
1−β , hence a transformation of the testing procedure’s power. It can be interpreted as the

average required amount of observations from the process until a out-of-control situation is

detected. We distinguish between ARL0 (run length when a process is under control) and

ARL1 (run length when a process is not under control). For a suitable chart, ARL0 has to

be large – since an alarm would be a wrong decision – and ARL1 has to be small – to detect

out-of-control situations as quickly as possible. The ARL values that are displayed in the

following are the result of a Monte Carlo experiment with 200,000 repetitions.

The reference standard deviation σ for each distribution is defined by the corresponding

parameters in table 1. The violation of the process’ assumptions is implemented by shifting

the reference standard deviation for each distribution from σ to kσ with k > 1. Furthermore

we change the actual distribution of the process, implemented by using one of the other 5

distributions from table 1 instead of the Gaussian distribution.
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3.2. Performance of φ-charts

α-charts for α 6= 2

First, we are interested in analyzing the close surrounding of the special case α = 2. We

compared ARL0 and ARL1. As it turns out, there is no relevant improvement in neither

ARL0 or ARL1 from using the G-chart5 to any value α 6= 2, neither if the variance increases

while the distribution remains Gaussian nor if other distributions from table 1 are applied.

Figure 1 illustrates this finding exemplarily by showing the standardized ARL0 (left) and

ARL1 values (right) of the α-charts (including the G-chart) as ratio with respect to the

ARL0 and ARL1 values of the S-charts – for different values of α, for the Gaussian and the

exponential distribution.
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Figure 1: Ratios of ARL of α-charts for 1 < α < 2 and the ARL of S. Left: ARL0 for standard Gaussian

data. Right: ARL1 of sample from exponential distribution with λ = 0.625.

We see that figure 1 shows nearly no difference between the performance of α-charts and

the S-charts for any value of α ∈ (1, 2]. This seems to be surprising at first sight – a closer

look at the entropy generating function φ clarifies this finding. All functions weight data

points in a similar manner, the more they are located in the tails of a distribution. Since

those observations are responsible for tremendous changes in variability, the detection of

out-of-control situations by α-charts for any value of α is similar. The functional form of

the CPEφ’s integrand φ(u) + φ(1 − u) for different values of α is displayed in figure 2. As

5The G-chart is an α-chart with α = 2
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we will see in the following section, more advantageous behavior of a φ-chart can only be

expected if the shape of φ(u) + φ(1− u) varies considerably, as with the Leik-chart.

u

Φ
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-u
)
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Figure 2: The integrands of: CPEα for α = 1.01, 2, 3 (left); The integrands of: CPEG, CPES , and CPEL

(right).

Shannon- and Leik-charts

In this section we analyze the ARL of charts that are based on the Leik entropy CPEL as

well as on the Shannon entropy CPES. As can be seen from figure 2, the integrands of

the resulting CPEφ have substantially different slopes in the tail regions. In the following,

we take a closer look on how this affects the ARL of the associated φ-charts. We use the

Shannon-chart and the G-chart as representatives of the α-charts, since the previous section

showed very similar behaviour referring different values of α.

At first we evaluate the Leik- and Shannon-chart in the default setting, shifting the

standard deviation of a Gaussian distribution. Figure 3 summarizes the ARL-values of G-

charts in comparison to Shannon- and Leik-charts. All values are displayed relative to the

respective ARL of the benchmarking S-chart. Results show that neither of the new φ-charts

outperforms the S-chart in the sense of a higher ARL0 or a lower ARL1. However, the

ARL0 of the G-, Leik-, and Shannon-charts are not significantly different from values of the

S-chart. All ARL1 values converge as the multiplicative shift k of the standard deviation

increases. However, the Leik-chart has difficulties detecting smaller shifts around k ∈ (1, 2].

In contrast to the S-chart, the Leik-chart needs up to 20% more observations to detect a
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Figure 3: ARL of CPEG, CPES , and CPEL for a standard Gaussian distribution where the standard

deviations are multiplied by the shift-factor k. All ARL-values are reported as ratios compared to the

ARL-value of the S-chart.

shift in the process’ variance and is therefore not recommended for usage in this particular

scenario.

Nonetheless, we assume that there are situations, in which the Leik-chart outperforms

every other control chart. For this purpose, we analyses the φ-chart’s behavior under several

alternative families of distributions, which are summarized in table 1. Figure 4 compares the

G-, Leik-, and Shannon-chart at a non-normal distribution of the production process. Again,

all ARL-values are reported as ratio of the chart’s ARL compared to the ARL of the S-chart.

Three results can be derived by interpreting the ratio of the ARL-values. As first result, it

seems that for heavy tail symmetric distributions (excess curtosis of 6), deviations can be

detected similarly by any of the applied procedures. If the process is e.g. from a Student

t distribution with ν = 5, extreme observations occur way more often as under a Gaussian

distribution. In our simulation, the S-chart can detect such outliers very quickly, since an

arbitrarily large value has an arbitrarily large effect on S which makes S very sensitive to

outliers.

Nonetheless, in this scenario, the G-chart, as already discussed by Riaz and Saghir (2007),

and the Shannon-chart perform similar to the regular S-chart. Merely the Leik-chart needs
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(a) ARL-ratios for samples from the Student t distri-

bution with ν = 5.
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(b) ARL-ratios for samples from the standardized lo-

gistic distribution.
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(c) ARL-ratios for samples from the standardized

Laplace distribution.
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(d) ARL-ratios for samples from the exponential dis-

tribution with λ = 1.
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Figure 4: ARL of G-, Shannon-, and Leik-chart for the Student t (a), the logistic (b), the Laplace (c), and the

exponential distribution (d). The standard deviations of each distribution are multiplied by the shift-factor

k – the horizontal axis displays the shift of the applied distributions (k = 1 refers to ARL0, k > 1 to ARL1).

All ARL-values are reported as ratios compared to the ARL-value of the S-chart.
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about 5% more observations in order to detect an out-of-control process.

The second result is that at symmetric distributions with lighter tails than the t(5)-

distribution6, all three charts (G-, Shannon-, Leik-chart) require less observations to detect

an out-of-control process than the classical S-chart. Shannon- and G-chart perform similar,

while both are dominated by the Leik-chart which requires the lowest amount of observations.

All the three analysed alternative distributions – Student t, logistic, and Laplace dis-

tribution – share one common feature: The larger the shift in variability, the more similar

are Shannon-, Leik-, and G-charts to each other as well as they are to the S-chart. This

convergence seems to be accelerated if the tails of the distribution are heavy.

The third result is that with increasing shift in the standard deviation at non-symmetric

distributions (up to see figure 4 (d)), the better the improvement achieved by using the

Leik-chart compared to any other chart (up to 25% less observations needed on average to

detect an out-of-control process). However, for large shift values this improvement seems to

vanish again as the ARL curve converges to 1 again.

The exponential distribution, used as non-symmetric distribution, is commonly used for

modeling waiting time in production processes, see e.g. Qiu (2014). Therefore, we apply the

Leik-chart in the next section to a more general family of distributions with a half-bounded

domain that contains the exponential family and as a special case, the gamma distribution.

3.3. φ-charts for the gamma distribution

In some situations, especially when some kind of waiting time is involved in a production

process, the quantity of interest follows a gamma distribution (c.f. Zhang et al. (2007)). The

shape parameter τ of a gamma distribution regulates the hazard rate – one can distinguish

between

τ < 1 : monotonically decreasing hazard rate,

τ = 1 : constant hazard rate (exponential distribution),

τ > 1 : monotonically increasing hazard rate.

We showcase two parametrizations of the gamma distribution from table 1 covering both

decreasing (τ = 0.5, figure 5 (a)) as well as increasing (τ = 2, figure 5 (b)) hazard rates.

6that is e.g. the logistic or the Laplace distribution.
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As we can see in figure 5, in case of monotonically increasing as well as decreasing hazard

rates the Leik-chart outperforms the S-chart by far in detecting out-of-control situations.

The Leik-chart has an even lower value of the ARL1 than the G-chart or the Shannon-chart

(k > 1). It needs approximately 5-15% less observations to detect an out-of-control situation.

All four control charts show a similar ARL0 value if the process’ standard deviation lies in

between its boundaries (k = 1).

(a) ARL-ratios for samples from the gamma distri-

bution with τ = 0.5.
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(b) ARL-ratios for samples from the gamma distri-

bution with τ = 2.
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Figure 5: ARL ratios between Shannon-, G-, and Leik-chart compared to the S-chart when the population’s

distribution is a gamma distribution with shape parameter τ = 0.5 (a) and τ = 2 (b) for different shifts k.

This promising result encourages us to apply the new control charts to an actual data

set from a refrigerator production process.

3.4. Application to real data

In this section, we evaluate the S-, Leik-, Shannon- and Gini-charts to a data set from

Wild and Seber (2000), which contains the thickness of paint on refrigerators for a sample

of size n = 5 from 20 shifts of production. The first 15 shifts are set as training data and

for the last 5 shifts (test data) a quality check is performed to determine whether or not the

process is still under control. Table 2 lists all available data, normalized using the standard

deviation from the first 15 shifts.
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A goodness of fit test for the first 75 observations results in p-values of 0.4112 for the

gamma and 0.3073 for the Gaussian distribution. Therefore we use the gamma distribution

for determining the critical values of the control charts. Maximum likelihood estimation

leads to parameters τ = 78.8544 and θ = 0.1102. After the training set, the control charts

are initialized using simulated UCL and LCL based on 1,000,000 samples of size n = 5 at

a level of 0.5%. Figure 6 lists the four resulting processes and the application to the 5 test

shifts.

(a) S-chart.

Shift

S

1 5 10 15 20

0.
0

1.
0

2.
0
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0

4.
0

5.
0

(b) G-chart.
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(c) Leik-chart.
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(d) Shannon-chart.
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Figure 6: S-, G-, Leik-, and Shannon-chart of the data set from table 2. The first 15 shifts have been used

to calibrate the control chart by estimating LCL and UCL. The charts are applied to the last 5 test shifts.

Horizontal lines denote the UCL, the mean of the process, and LCL (top down). Red dashed line indicates

an out-of-control situation.

Clearly, all four control charts detect an out-of-control situation in the shifts 17 and 18,
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which would in practice result in a termination of the production process. To strengthen the

results from the Monte Carlo simulations of the previous sections however, more data would

be required together with the information if the process has been out-of-control or not.

4. Conclusions

This paper introduced a general class of entropy based control charts, the φ-charts. We

analysed the performance of φ-charts at monitoring the variance of production processes

compared to other established Shewhart control charts.

Our results showed, that the wide class of α-charts, containing the well known G-chart as

a special case for α = 2 as well as the Shannon-chart as a limiting case for α→ 1, does not

provide any improvement over the classical Shewhart control charts for values of α 6= 2. The

ARL of α-charts is very similar to the ARL of the G-chart in the analyzed scenarios. One

reason for this finding could be the almost equally shaped kernel functions of the underlying

CPEα, which weight observations in a similar manner.

However, we discovered that the usage of Leik control charts can be advantageous com-

pared to established Shewhart control charts if the underlying process follows an exponential,

Laplacian, or gamma distributed law. Leik control charts are found to outperform both the

classical S-chart and the G-chart if the variability of the process is out-of-control. Further

research should apply this Leik-chart to actual data from production processes following a

gamma distribution and investigate the economically advantageous implications of using this

new φ-chart compared to using a classical Shewhart control chart.

Furthermore, for processes which follow a distribution with domain R+ the analysis of

the performance of a control chart, that is based on the cumulative residual entropy (as in

Wang et al. (2003)), could be of interest for further research.
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