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1 Introduction

The notion that business cycles are asymmetric, with state- or phase-dependent

dynamics, is now widely accepted. Whatever the angle of view or the instrument

used to highlight these asymmetries in aggregate fluctuations, they are typically

considered as an almost undisputed stylized fact of modern economies And since

they are sometimes presented as substantial and pervasive, univariate linear models

should fail to explain the data.

Two major approaches are available to investigate the possibility to dismiss uni-

variate linear models as adequate tools to characterize data from macroeconomic

fluctuations in favour of nonlinear ones: the simple and traditional (non-) linearity

tests and the “features approach”. This one is less well known and consists of as-

sessing the ability of linear and nonlinear (univariate) models to provide simulated

data that display the same features that are observed in real (usually GDP) data.

Somewhat surprisingly, this approach has supported the need to resort to non-

linear models much less often than expected. Generally, linear models are not

clearly dominated by the nonlinear alternatives that are considered. More pre-

cisely, there is little evidence that nonlinear models perform much better than

linear ones: a) either no benefit is found (Hess and Iwata, 1997); b) or they are not

considered sufficiently adequate to mimic asymmetries (Galvão, 2002); c) or their

superiority in some aspects is made at the expense of some undesirable, extreme,

features (Harding and Pagan, 2002, and Engel, Haugh and Pagan, 2005). Also,

sometimes linear models perform much better than expected to reproduce certain

basic features of business cycle data (Morley and Piger, 20061).

The simpler approach of detecting non-linearities in the conditional mean of

business cycle data through testing has been rarely and unsystematically pursued.

Indeed, first, although research on nonlinear modelling has exploded in the last

20 years, the careful analysis of business cycle dynamics has not been a topic

attracting much attention2. Second, linearity tests are very frequently used in

a rather restricted framework only, i.e., where only a test against a particular

specific nonlinear model is envisaged as the alternative, often to illustrate that

particular model. Third, moreover, a frequent departing point is precisely that

1Whom, however, consider that nonlinear models are better than linear ones to reproduce
some of these features.

2Actually, a great effort has been made recently in topics such as unit root testing against
nonlinear alternatives or in the estimation of new models. Empirically, much effort has been
directed recently towards nonlinear modelling of interest rates, exchange rates and public finances.
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specific nonlinear model and the linearity hypothesis is relegated to a secondary

role from the outset. Fourth, on top of this, it is very often the case that these

studies focus almost exclusively on U. S. data (which are used to illustrate a new

model). Fifth, finally, even some results contesting the conventional nonlinear

wisdom remain largely unnoticed, as occurs with those of Psaradakis and Spagnolo

(2002), who also apply a battery of tests on U.S. GNP growth rates but are unable

to find any evidence for nonlinearity, in contradiction with previous results by

Hamilton (1989) and Hansen (1992).

Contrasting with this picture, our aim here is to use the testing approach sys-

tematically, employing a battery of tests carefully selected to maximize detection

power over a large dataset consisting of business cycle data for 29 countries and a

monetary zone (composed of the first seventeen countries of the euro area, EA17).

This makes our study related with the ones of Bradley and Jansen (2000) and

Singh (2012). In both cases substantial but really neither unanimous nor over-

whelming empirical evidence favouring nonlinearity of business cycles dynamics is

found. However, also in both cases and particularly in Singh (2012), the trans-

mitted global image is somewhat distorted in favour of nonlinearity because the

non-rejections of the linear null are quickly overstepped, the attention focusing on

the details of the nonlinear models. Singh (2012) considers the series of quarterly

rates of GDP growth for 10 OECD countries but his major concern is much more

focussed on estimation (SETAR and STAR models) and forecasting than in the de-

tection of non-linearities. Bradley and Jansen (2000) consider a more varied sample

of 26 countries and find strong evidence for nonlinearity using a somewhat wider,

less model driven, set of test statistics. However, their work is mainly directed to

study the presence of homo/heterogeneity in the characterization of business cycle

dynamics. Therefore, it is also much more oriented towards estimation than ours.

Convergence with the approaches in these works is confined to the multi-country

perspective and to a few common test procedures. In every other respect we diverge

from them. Our study is model-free in the sense that we do not intend to estimate

any particular nonlinear model. This deliberate purely testing approach allows us

avoiding any model dependencies. Insulating the detection from the estimation

stage appears to us as essential to provide a neutral or impartial overall picture.

We focus exclusively on the testing perspective and we will not proceed into the

estimation of any model. This allows us to avoid any dependencies on the models

considered under the different alternative hypotheses. In any case, since the number

of alternative possibilities is virtually infinite, selecting the best model for each of

the cases would be also an unfeasible task. Our purpose is restricted to gathering
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evidence on the presence of (univariate) non-linearities in the conditional mean of

business cycle series using a testing framework. This purely testing strategy is

also useful to control its overall size; we try escaping the pitfalls of data mining,

exhaustively searching for rejections that could justify estimating some particular

model. We aim at maximizing general power while controlling overall size, at

the cost of some power loss against specific but unknown alternatives. Spurious

rejections of linearity are therefore avoided. Furthermore, as a secondary purpose,

we also dedicate some attention to level data.

Our results suggest that most previous research containing descriptions with

a strong flavour of nonlinearity must be viewed with a critical perspective. Our

empirical evidence casts serious doubts on the idea that nonlinearity of business

cycles, characterized through the differenced logged series of aggregate output, can

be considered as a global stylized fact. While it appears to be rather common,

its presence does not seem to be so strong and so pervasive as to deserve such a

qualification. Even for the U. S., the source of inspiration for much of previous

research, the evidence for nonlinearity at the short- and medium-term frequencies

is rather weak. Only indirect inference supports the presence of some nonlinear

dynamics, and this is found in fluctuations around a linear trend, not in first

differenced data. That is, to find some nonlinear features for the U.S., we have

to adopt an indirect approach together with the output gap perspective of cycles,

abandoning both direct inference and the classical view.

This indirect approach originates from our interest in GDP level data, which is

an extension of the main focus. Besides the methodological framework previously

mentioned and the (robust) enlargement to level data, possibly nonstationary, we

introduce a few innovations in the way that some tests are performed and, as far

as we are aware, we use unit root tests against nonlinear alternatives for the first

time as an instrument to collect evidence on the nature of business cycles.

The remainder of the paper is organized as follows. The following section dis-

cusses the data, including any transformation that might be required to analyse

business cycles. In section 3 we perform a preliminary data analysis. Unit root

testing techniques are extensively used and this allows us to obtain the first evi-

dence for nonlinearity, albeit indirect. Some methodological principles that guided

our study are presented here. Section 4 is central to the paper. We present further

methodological guidelines, provide a brief description of the statistical procedures,

and present the most important empirical evidence. The final section contains a

brief discussion and the most important conclusions.
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2 Data: transformation and sources

As argued forcefully by Harding and Pagan (2002), when one wishes to follow the

classical NBER tradition, studying the characteristics of business cycles according

to the “alternating-phases definition” (Morley and Piger, 2012), one must utilize

∆yt = ∆ log(Yt), where Yt denotes real (quarterly) GDP, i.e., one must focus on the

(approximate, quarterly) real growth rate of GDP. As Harding and Pagan (2002)

emphasize, it is the behaviour of ∆yt that determines the nature of the business

cycle, even when this is viewed according to the classical perspective, as referring to

the cycles in the level of Yt (or log(Yt)). Moreover, at this stage, this transformation

should not be viewed as the application of a detrending filter, as a way to obtain

deviations to some trend, as in the growth cycle or “output-gap” (Morley and

Piger, 2012) definition. Also at this stage, it should not be viewed as a means to

obtain stationarity as well, although it may be useful in this regard, particularly

to ensure the validity of tests for linearity. Instead, this is because the behaviour

of the first differenced series is crucial to characterize the business cycle in terms

of the level of aggregate activity. For instance, classical cycles are defined by the

turning points in the level series and this definition, this dating, is done with the

sign of the growth rate of the series, a function of its first difference.

This is also the view that we adopt here joining, inter alia, Beaudry and Koop

(1993), Bradley and Jansen (1997, 2000), Clements and Krolzig (2003), Crowley,

Garcia and Quah (2013), Kose, Otrok and Prasad (2008) and Singh (2012). That is,

regardless of the requirement to use stationary data, our main (but not exclusive)

focus of attention will be the series ∆yt as defined above. This is also the case be-

cause our data are seasonally adjusted. Otherwise, it is not unusual to replace first

differencing with seasonal differencing (see e.g., Teräsvirta and Anderson, 1992).

The use of this business cycle representative is not immune to criticism, however.

First, the series ∆yt usually contains a larger component of the high frequency

fluctuations than in some approaches of business cycle analysis, which characterize

this phenomenon as corresponding to periods between 2 and 8 years. We do not

share this (so long) view of business cycles and we believe that the quarterly rates

of GDP growth are the best representative of short- and medium-term aggregate

fluctuations, as they are perceived by common economic agents and observers,

and they are also the most important indicators to follow in conjunctural analysis.

Second, some authors prefer analysing the growth rates of industrial production

because they are more timely and contain more cyclical variation than those of

GDP. Actually, some empirical evidence (see Granger and Teräsvirta, 1993) and
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Table 1 — Countries, sample periods and data sources

country sample source country sample source

Argentina 1980:1—2013:3 Datastream Italy 1980:1—2013:4 Datastream
Australia 1959:3—2013:4 OECD Japan 1980:1—2013:4 Datastream
Austria 1980:1—2013:4 Datastream Mexico 1980:1—2013:4 Datastream
Belgium 1980:1—2013:4 Datastream Netherlands 1977:1—2013:4 Datastream
Brazil 1980:1—2013:4 Datastream Norway 1978:1—2013:4 OECD
Canada 1980:1—2013:4 Datastream Philippinnes 1980:1—2013:4 Datastream
Chile 1980:1—2013:4 Datastream Portugal 1978:1—2013:4 Ban. de Port.
China 1980:1—2013:4 Datastream South Africa 1960:1—2013:4 OECD
Denmark 1980:1—2013:4 Datastream South Korea 1970:1—2013:3 OECD
Finland 1980:1—2013:4 Datastream Spain 1980:1—2013:4 Datastream
France 1978:1—2013:4 OECD Switzerland 1980:1—2013:4 Datastream
Germany 1980:1—2013:4 Datastream Taiwan 1980:1—2013:4 Datastream
Greece 1980:1—2013:4 Datastream U. K. 1955:1—2013:4 OECD
India 1980:1—2013:4 Datastream U. S. 1947:1—2013:4 OECD
Ireland 1980:1—2013:4 Datastream EA17 1970:1—2011:4 EABCN

the simulation study in Granger and Lee (1999) suggest that it is easier to find

non-linearities in industrial production than in GDP, particularly when the first

variable is observed monthly and because it represents a less aggregated entity from

the cross-sectional perspective as well. However, in many of the countries analysed

industrial production currently represents only a minor proportion of economic

activity and GDP growth is a much better indicator of aggregate fluctuations.

Table 1 contains the list of the 29 countries and the monetary zone (euro area—

17, EA17 for short) that we analyse, together with the corresponding sample pe-

riods and sources. Our dataset concerns data on Australia, one African country

(South Africa), 6 American countries (Argentina, Brazil, Canada, Chile, Mexico

and the U.S.), 6 Asian countries (China, India, Japan, Philippines, South Korea

and Taiwan), 15 European countries (Austria, Belgium, Denmark, Finland, France,

Germany, Greece, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Switzer-

land and the U.K.) and the EA17.

The most frequent sample period begins in 1980:1 and ends in 2013:4, corre-

sponding to a sample size with T = 136 observations, which is reasonable for most

purposes but may be considered low for the power of many linearity tests to attain

a satisfactory level (see Psaradakis and Spagnolo, 2002). We also present the plots

for some of the most important countries and for the EA17 of the (approximate)

real growth rates. In some of the cases, the beginning of the current Global Crisis
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is clearly discernible.
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Figure 1. The ∆yt series for some countries.
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3 Preliminary data analysis: unit roots

Although our primary interest lies in ∆yt, the first differenced logged series of GDP,

the analysis of the non-transformed series, yt = log(GDPt), with log denoting the

natural logarithm, may be also revealing. Regardless of the business cycle definition

that one adopts, finding the presence of non-linearities in aggregate macro data is

important in its own right, especially when this concerns aggregate output.

Therefore, a preliminary data analysis testing for unit roots is required to avoid

spurious inference procedures. In particular, linearity tests usually demand that

data series are stationary to be valid. Otherwise the tests may produce spurious

evidence against linearity, over-rejecting the true null hypothesis (see Kiliç, 2004).

Unit root tests then become useful in another respect: in case the level series is

considered trend stationary, unit root tests against nonlinear alternatives become

specially relevant from the business cycle perspective because the real object of

analysis are the deviations or fluctuations around the trend. In other words, em-

pirical evidence about the level series becomes relevant from the growth cycle or

output gap perspective as well. Actually, when the level series is analyzed, it is the

properties of deviations from trend that are being investigated.

3.1 Standard unit root tests

In a first stage, we will use standard or conventional, i.e., “linear”, unit root tests.

We opted to use the popular ADF tests and the more powerful ADF—GLS tests of

Elliot, Rothenberg and Stock (1996), employing always as deterministic regressors

an intercept and a (linear) trend term. In both cases, trying to get robust results,

we choose the number of augmenting lags using three distinct methods: the AIC

and the modified AIC (MAIC) criteria of Ng and Perron (2001), and the general-

to-specific (GTS) t-sig method; in all the cases we have set at 12 the maximum

number of augmenting lags.

We relegate the presentation of the results for these tests to a separate appendix.

Table A.1 contains the results of ADF test statistics. As expected, the vast majority

of results does not allow the rejection of the unit root null hypothesis, providing

empirical support for the I(1) hypothesis. The only cases diverging from this almost

unanimity are those of Australia, China and Mexico, and in this case only with

one test statistic. We postpone a more detailed analysis until the presentation of

ADF-GLS test statistics.

These are presented in table A.2, also for the same 3 different strategies of lag
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truncation selection. Since ADF-GLS tests are known to be better than ADF tests,

particularly in terms of power, in case of dissonant results we tend to give more

credit to the results of the former. Therefore, we consider that for Australia the

most appropriate order of integration is I(1). Also, the minor evidence of rejection

of the unit root null for Brazil, Mexico and South Africa, tends to vanish with

ADF-GLS test statistics.

A rather different case is that of China, where the issue initially seems to lie

in the number of augmenting lags. Actually, using the MAIC in this case seems

to produce an underparametrized test regression because some lags appear to be

really needed to capture the dynamics of the series. Hence, it appears that there

is no supporting evidence for the unit root. A closer inspection, however, reveals

that the main problem is one of heteroskedasticity, already apparent in figure 1.

As the decrease in variance occurs relatively early in the sample, this can be a case

of a spurious rejection of the unit root. Further, as noted by Kim, Leybourne and

Newbold (2002), a simple FGLS transformation will not solve the problem in this

case because it introduces a problem of a break in the level and the trend of the

series. Therefore, the adequate framework (for the transformed series) is that of

Perron’s tests and, in particular, his “model C” case (change in level and trend).

After having estimated that the break in variance occurs around 1985:1, and using

the test regression of section 5 of Kim, Leybourne and Newbold (2002), we get a

test statistic of −2.885 which is clearly insufficient to reject the unit root, even at

the 10% level. Therefore, it seems that also in the case of China the I(1) hypothesis

appears to be better than the I(0).

3.2 Tests allowing for breaks

The case of Switzerland, with two 5% rejections and one at 10% with ADF-GLS

statistics, raises the issue of a possible contamination of unit root test statistics by

outliers and structural breaks. In fact, the graph of the ∆yt series is very similar to

that of Germany (see figure 1), for instance, with what appears to be an outlier in

2008-2009. Correspondingly, as in the case of many other countries, the (log)level

series, yt, presents a marked and abrupt change in level, a crash, at the same time,

certainly associated with the emergence of the Global Crisis in Europe. Therefore,

it is convenient to analyze to what extent the previous results are robust to testing

strategies that allow for the presence of such data problems.

While some authors view the detection and accommodation of structural breaks

in unit root tests as a component of a non-linear analysis, we are skeptical about
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this view. This is because although their presence always represents a change in

regime, and even when such breaks are specified as non-linear, this change is only

a function of the time variable. In other words, the transition variable in the

nonlinear function, the variable that commands the change in regime, is simply

the time variable, a statistically convenient variable but one that is deprived of

real economic meaning. Identifying such a change is useful but does not add much

to economic knowledge. In particular, neither the size nor the sign of shocks are

explicitly considered as potential triggers of the change. Also, neither the level

of the series nor the position in the cycle are allowed to perform any role. If a

change in regime occurred, the cause must be identified and the transition variable

must be specified accordingly. Simply specifying the nonlinear function as driven

by the time variable does not seem to be sufficient for a real nonlinear analysis;

such a specification appears to be poor. Therefore, we do not attribute a particular

significance to the tests of this subsection, even when they change qualitatively the

previous evidence. This same reasoning justifies that we do not use the family of

unit root tests initiated by Leybourne, Newbold and Vougas (1998).

Also, structural breaks in unit root tests are associated with large shocks that

change the long-run behaviour of the series, their trend behaviour. As we are

mainly interested in non-linearities in business cycle type fluctuations, we tend to

view such low frequency phenomena as marginally interesting only, similar to a

nuisance in a preliminary procedure. For our purposes, the main objective of this

analysis is to guard against non-valid inferences due to non-stationarities.

To investigate the presence of a unit root while allowing for a break in the level

of the series, we resorted to the very flexible approach by Lanne, Lütkepohl and

Saikkonen (2003, LLS), also summarized in Lütkepohl (2004), which introduces

a rational shift function in the trend, i.e., a rational function in the lag opera-

tor applied on a common step dummy variable that is added to the deterministic

regressors, permitting general nonlinear changes in level. Besides its flexibility,

covering both the classical additive outlier and innovational outlier cases, the ap-

proach possesses a further advantage: it is robust to errors in the estimation of the

break date.

Further, the testing strategy does not require any previous information con-

cerning this date. In the context of this investigation, with such a wide variety

of countries, this is a very useful feature. Actually, this date is estimated in a

first step, and the results presented in table 2 illustrate this variety. Although an

estimated break date lying in 2007-2009 is the most frequent, as expected, it is far

from representing the majority of cases (11 in 30).
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Table 2 — Unit root test (LLS τ(η̂, p)) statistics allowing a break in level

country statistic date lagn country statistic date lagn

Argentina −1.331 1990:1 10 Italy −1.212 1991:1 4
Australia −2.503 1997:2 2 Japan −0.370 2009:1 0
Austria −1.117 1988:2 8 Mexico −2.220 1995:1 2
Belgium −1.241 1986:4 5 Netherlands −1.907 1988:1 5
Brazil −2.553 1991:2 8 Norway −1.205 1998:3 1
Canada −2.008 1987:1 1 Phillippinnes −1.162 1983:3 1
Chile −2.391 1983:4 7 Portugal −1.254 1992:1 3
China −3.985*** 1984:4 5 South Africa −1.085 1969:3 4
Denmark −2.250 2008:4 1 South Korea −1.416 1998:1 5
Finland −3.302** 2009:1 3 Spain −2.035 1990:4 3
France −1.989 2009:1 2 Switzerland −2.187 2008:4 9
Germany −1.712 2009:1 0 Taiwan −0.840 2008:4 0
Greece −1.661 1990:4 5 U.K. −2.008 2009:1 1
India −1.247 1988:2 0 U.S. −2.708 2008:4 3
Ireland −1.496 2007:4 8 EA17 −1.601 2009:1 1

“Date” denotes the estimated break date and “lagn” denotes the number of augmenting lags.

“***”, “**”, and “*” represent rejections of the (unit root) null hypothesis at the 1%, 5% and

10%, respectively. The asymptotic critical values are −3.55, −3.03 and −2.76, respectively.

A surprising general outcome is the robustness of the previous results. Allowing

for a break in level changes the decision only for Finland, now classified as trend

stationary. For all the other countries the I(1) hypothesis still remains supported3.

Therefore, even if one embraces the view of interpreting changes in decision associ-

ated with the accommodation of breaks as signalling the presence of non-linearities,

the evidence that is found for such presence is extremely feeble.

3.3 Tests against nonlinear alternatives

It is well known that standard unit root tests are designed against linear alternatives

and may lack power when a process is nonlinear and globally stationary (see e.g.

Pippenger and Goering, 1993). But unit root tests against nonlinear alternatives

also possess a more direct relevance for our purposes. As previously mentioned,

they allow assessing the behaviour of the deviations from the (traditional, linear)

trend, and hence they are useful from the growth cycle or output gap perspective

3This is the case for China as well, because this test is not robust to the change in the variance
of innovations previously detected
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of business cycles.

The two-stage procedure adopted in all these tests – the first stage consisting

of the trend removal – makes this point very clear. This is even more clear when a

standard test does not allow rejecting the unit root null but a nonlinear one does:

since the assumption of a linear trend is common to both procedures, it is the

fluctuations around the trend that must be responsible for the rejection; they must

contain some nonlinear behaviour that confounds the standard tests. Obviously,

some evidence for non-linearity in the level series must be also recorded in this

case.

The restriction previously mentioned of neglecting tests against nonlinear struc-

tural break models – as those of Leyboune et al. (1998) – allows us to dismiss

several tests but still leaves a plethora of available statistics to consider. To further

restrain this set we resorted mainly to two criteria:

a) popularity, simplicity and availability of asymptotic critical values for the test

statistics, and

b) a good power performance behaviour, documented in Monte Carlo studies,

even against alternatives that are different from those that originated the test

statistic.

The adoption of these criteria allows us to neglect the tests designed against

threshold autoregressive (TAR) models, considering only those tests with smooth

transition autoregressive (STAR) models as alternatives. Usually these are simpler

and, according to available simulation studies, have reasonable power even against

TAR processes, a feature that generally does not occur in reverse. In other words,

simulation studies suggest that tests against STAR models encompass tests against

TAR alternatives but the reverse does not seem to hold (see e.g. Sollis, 2011). This

test selection is also supported by the simulation study of Choi and Moh (2007),

whose main conclusion is that the particular type of non-linearity is somewhat

irrelevant to explain the power behaviour of these unit root tests; what really

matters for their performance is the distance between the unit root process and

the alternative model.

Two examples of test statistics that we will not use are those of Enders and

Granger (1998) and Bec, Guay and Guerre (2008): though simple, the first one is

clearly disappointing in terms of power; considering a set of four tests, the second

is the most powerful against TAR alternatives, but in this case the test by Kiliç

(2011) is also powerful and besides relatively simpler it is also more powerful than
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the Bec et al. (2008) test for several other DGPs (see Kiliç, 2011). On the con-

trary, we will use the Kapetanios, Shin and Snell (2003, KSS hereafter) test against

the exponential STAR (ESTAR) alternative due to its popularity and simplicity;

its power performance in simulation studies is generally poor but surprisingly, ac-

cording to Choi and Moh (2007), the test is one of the most powerful against the

equilibrium-TAR (EQ-TAR) alternative.

Previous to presenting and analysing the results of these tests, two observations

are worth mentioning. First, according to the available simulation studies, to attain

a satisfactory power performance the tests usually require samples with at least

150 to 200 observations. Second, in spite of motivating criticisms, DF (OLS) tests

are frequently the most powerful to detect stationarity of nonlinear alternatives,

particularly for small sample sizes.

In table 3 we present the evidence produced by our preferred tests in conjunction

with the AIC method to determine the lag length. In a separate appendix we

present a brief description of the test statistics: the tNL statistic of KSS, the Sollis

(2009) FAE,t and Shintani’s (2013) inf −tE,τ tests, and Kiliç’s tESTAR statistic.

Although the results obtained with the GTS and the MAIC methods are also

available, they do not differ much from those presented here, and the AIC appears

to produce the most sensible choices4. Note also that although the test regressions

are different, the estimated lag truncation parameter rarely changes.

Seen with the light of the previous observations, when the transition variable

is x̂t−1 – which represents the lagged OLS residual of the regression of log(GDPt)

on a linear trend, not the lagged level of log(GDP ) (see subsection 6.3 in the

appendix)–, the results are not surprising:

a) the number of new rejections of the unit root null is very low, i.e., the wide

support to the unit root hypothesis gathered through standard tests does not

appear to be attributable to the presence of non-linearities;

b) in particular, the rejection evidence for Brazil, Mexico and South Africa is

relatively weak and, in the case of China, it is likely that the much stronger

rejections are due to the seemingly presence of heteroskedasticity;

c) the only real important new information provided by these tests appears to be

the relatively strong rejection evidence for Germany and, to a lesser extent,

for Australia.

4While the GTS t-sig method appears to show a slight tendency to overparametrize in relation
to the AIC, the MAIC frequently appears to produce lag lengths that are too short.
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A rather different picture emerges from the only test that uses ∆ x̂t−1 as tran-

sition variable, the tESTAR test of Kiliç (2011):

a) strong rejections now appear for Australia (shared with tNL, however), Chile

and Finland;

b) standard, 5% rejection evidence is now found for Austria, Belgium, Brazil,

Canada, Ireland, Spain, the U. S. and the EA17;

c) weak rejection evidence, at the 10% level, is obtained for Mexico and South

Africa;

d) on the contrary, the previously found evidence for stationary behaviour of

the GDP of China and Germany now disappears.

In table A.3 of the appendix we present further evidence on unit root tests

against nonlinear alternatives using additional test statistics. Possibly due to the

fact that all these tests use a version of x̂t−1, not its first difference, as the transition

variable, additional rejection information is almost nonexistent. It is worth noting,

however, that somewhat weak evidence on stationarity is now provided by the FGLS
AE,t

test for Argentina and for Greece, and that this same test rejects the unit root null

for the U.S. at the 5% level.

4 Testing for (non-)linearity

In this section we first present a brief description of the tests employed to detect the

presence of non-linearities, and subsequently we focus on the empirical evidence.

4.1 The selected tests: a brief description

Broadly speaking, the available tests can be classified in two groups: a) tests against

an unspecified alternative, which are designed without a particular nonlinear alter-

native model in mind, and b), tests designed to distinguish linearity from a specific

nonlinear model. A priori, we prefer the first class of tests because the power of

those of the second group may be low in many circumstances. However, since there

are not many general tests, we will resort to tests from both classes. Moreover, we

have selected them using the same criteria that in subsection 3.3. The only excep-

tion is the CDR (“current depth of recession”) test, which is not very popular and
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Table 3 — Unit root tests against nonlinear alternatives

tNL (lagn) FAE,t (lagn) inf −tE,τ (lagn) tESTAR (lagn)
Argentina −2.494 (12) 3.227 (12) −2.494 (12) −1.428 (11)
Australia −3.975 (9)*** 7.995 (9)** −3.587 (8)* −3.336 (8)***
Austria −0.351 (9) 1.552 (9) −1.073 (9) −2.623 (9)**
Belgium −0.177 (4) 1.901 (5) −1.693 (5) −2.706 (5)**
Brazil −3.408 (8)** 5.913 (8)* −3.834 (8)** −2.991 (8)**
Canada −2.977 (1) 4.421 (1) −2.977 (1) −2.557 (1)**
Chile −2.640 (12) 4.728 (12) −2.640 (12) −3.635 (12)***
China −5.562 (10)*** 15.395 (10)*** −6.392 (12)*** −1.970 (10)
Denmark 0.339 (1) 1.179 (1) −1.108 (3) −1.360 (3)
Finland −2.319 (3) 3.136 (3) −2.709 (3) −4.715 (3)***
France −0.664 (2) 2.339 (2) −1.631 (2) −2.114 (2)
Germany −3.902 (4)** 8.885 (4)*** −2.233 (0) −1.710 (1)
Greece −0.481 (5) 0.506 (5) −2.474 (9) −1.295 (5)
India −1.184 (0) 1.551 (0) −1.184 (0) −0.617 (0)
Ireland −0.956 (12) 1.803 (12) −1.704 (12) −2.828 (12)**
Italy 0.305 (4) 1.176 (4) −0.573 (4) −1.792 (4)
Japan −1.807 (3) 1.625 (3) −1.808 (3) −1.195 (3)
Mexico −2.953 (3) 6.190 (3)* −3.043 (3) −2.333 (3)*
Netherlands −0.100 (0) 0.920 (0) −0.421 (0) −0.750 (1)
Norway −0.786 (5) 1.202 (5) −1.159 (5) −1.286 (5)
Philippines −0.027 (0) 0.369 (0) −0.598 (0) −0.644 (0)
Portugal −0.684 (4) 0.639 (4) −0.747 (4) −0.450 (3)
South Africa −3.133 (7)* 5.082 (7) −3.200 (7)* −2.303 (7)*
South Korea −0.025 (1) 0.932 (1) −0.705 (2) −2.118 (2)
Spain −0.215 (8) 0.769 (8) −1.433 (8) −3.115 (8)**
Switzerland −2.397 (1) 4.410 (2) −2.928 (2) −2.549 (1)
Taiwan −1.051 (1) 0.549 (1) −1.051 (1) −1.152 (0)
U.K. −1.994 (3) 5.235 (3) −2.298 (3) −1.811 (3)
U.S. −1.691 (2) 3.343 (2) −2.225 (2) −2.671 (3)**
EA17 −0.816 (1) 2.499 (1) −1.966 (2) −2.886 (5)**

In all the cases the lag length (“lagn”) was estimated using the AIC statistic. For the KSS

test the asymptotic critical values are −3.13, −3.40, and −3.93 at the 10%, 5% and 1% levels,

respectively. For the FAE,t statistic of Sollis (2009) they are 5.372, 6.292 and 8.344. For the

Shintani test statistic, inf −tE,τ , they are −3.35, −3.64 and −4.18, and for the Kiliç tESTAR test

they are −2.23, −2.57 and −3.19.
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whose power properties are not well known; instead, its relevance here stems from

the fact that it is designed specifically for business cycle data.

4.1.1 General tests

Simulation studies such as those of Lee, White and Granger (1993, LWG) and

Psaradakis and Spagnolo (2002) are useful to select tests because a wide spectra

of alternatives are considered. LWG show that White tests are generally powerful,

and that the RESET test outperforms most of the other popular general tests for

many of the alternatives. Psadarakis and Spagnolo (2002) concluded that these

two tests also have a good power performance against MSAR (Markov-switching

AR) models. While the White tests are generally powerful for the seven DGPs used

in the experiments, RESET tests are more powerful in the presence of switching

autoregressive dynamics. In this paper, we will use a version of each of these two

tests.

RESET is very well-known and the version that we use employs the squared

and cubed terms. Although not so popular, the White test that we chose has a

long tradition; it is called the White dynamic information matrix test, it appears

in the study by LWG under the heading of “White3” and it seems to be even more

powerful than the White test based on artificial neural network (ANN) models. As

far as we know, it was first proposed in White (1982).

4.1.2 A test for threshold nonlinearity

Although specifically designed against self-exciting TAR (SETAR) models, the

Tsay (1989) test is sufficiently general to deserve special attention. It makes use of

arranged autoregressions and recursive estimation, and although it has been rarely

employed, its characteristics make it attractive as a general specification test.

For a SETAR(p) model for yt, the observations can be arranged in ascending

order of the threshold variable, yt−d, as {yπ1
, yπ2

, . . . , yT−d−h+1}, h = max{1, p +

1 − d} and πi denoting the index of the ith smallest observation. An arranged

autoregression can be written as

yπi+d = φ0 +

p∑

v=1

φv yπi+d−v + aπi+d,

aπi+d denoting the error term. Recursive regressions can be performed beginning

with b observations, making available T −d−b−h+1 one-step predictive residuals,
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âπi+d. Then, threshold nonlinearity is tested by verifying the orthogonality prop-

erty between the predictive residuals and the regressors, {yπi+d−v | v = 1, . . . , p},

because it will not hold in case the true model is a nonlinear SETAR. Hence, the

global F statistic in the regression

êπi+d = ω0 +

p∑

v=1

ωv yπi+d−v + ǫπ+d, i = b + 1, . . . , T − d− h+ 1,

where êπi+d denote the standardized predictive residuals, is used to test the or-

thogonality conditions. Under the null of linearity, it follows approximately an F

distribution with p + 1 and T − d − b − p − h degrees of freedom. As usual with

other tests, we performed this test only with d = 1, i.e., with yt−1 (∆yt−1 in our

case) as transition variable.

4.1.3 The LM-STAR test

Although it is not strictly model-free, the LM-STAR test is usually considered one

of the best tests to detect non-linearities, one of the most powerful for a wide range

of alternatives. Consider the STAR(p) model

yt = φ′
wt + θ′

wtG(yt−d, γ, c) + ut, γ > 0, t = 1, 2, . . . , T,

where φ = (φ0, φ1, . . . , φp)
′, θ = (θ0, θ1, . . . , θp)

′, G(yt−d, γ, c) is the transition

function, c is the switch parameter and yt−d is the transition variable. Its two most

popular versions are the logistic, LSTAR, and the exponential, ESTAR, when the

transition function is the logistic and the exponential function, respectively. The

first order LSTAR model is capable of characterizing asymmetric behavior, i.e.,

different dynamics for small and large values of yt−d, and it is therefore considered

particularly adequate to describe business cycle data.

When γ = 0 the model becomes a linear AR(p) and hence testing linearity

can be expressed as testing H0 : γ = 0 vs. H1 : γ > 0; this also makes the LM

or score principle particularly attractive. The problem, the Davies problem –

once again – is that the model becomes unidentified under H0; in particular, with

this null hypothesis the parameters c and θ become unidentified. A solution to

circumvent this problem was proposed by Luukkonen, Saikkonen and Teräsvirta

(1988); it consists of replacing the transition function by a suitable Taylor series

approximation around γ = 0. In the most general case, that of the LSTAR model,
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a third order expansion is used to produce the auxiliary test regression

yt = β ′
0wt +

3∑

j=1

β′
j w̃t y

j
t−d + et,

where βj = (βj1, . . . , βjp), see e.g. Teräsvirta (1994). Testing linearity now entails

testing H0 : β
1

= β
2

= β
3

= 0 and the LM statistic is, as usual, asymptotically

χ2
(3p) under H0. However, as this test can be severely oversized in small sam-

ples, Teräsvirta (2004) recommends using instead the corresponding F -statistic

approximation. It is worth noting that a rejection may also imply the presence of

ESTAR-type nonlinearity because a first order expansion of the transition function

around γ = 0 in this case produces the previous equation with β
3

= 0.

Since our purpose is only to detect non-linearities, not to build a STAR model,

and since we also employ several other test statistics, trying to prevent serious over-

rejection problems of the null of linearity we perform this test only with d = 1.

4.1.4 The CDR test

Beaudry and Koop (1993) introduced a model specifically designed to capture

asymmetric persistence in GDP according to the business cycle phase. Nonlinearity

is generated augmenting the autoregressive representation of the process with the

inclusion of the current depth of recession (CDR) variable,

CDRt = max{yt−j}j≥0 − yt,

where yt = log(GDPt), in order to examine whether the dynamics of the process

in recessions differ from those in expansions. This variable measures the distance

between the level of current output and its previous peak, how deep the recession

is, and is nonzero when the economy is in recession or in the recovery phase. The

CDR model is thus defined by

∆yt = φ0 +

p∑

i=1

φi ∆yt−i +

q∑

j=1

δj CDRt−j + ǫt, (1)

To facilitate the interpretation, consider the simplest case with q = 1. The model

then contains two regimes with endogenous switching. The “floor regime”, when

CDRt−1 is nonzero, is activated when output falls and remains activated until it

18



grows back to its pre-recession level. Notice however that, unlike threshold models,

the transition variable is not fixed. If, as expected, δ1 > 0, output growth is

greater when CDRt−1 is nonzero, and the economy tends to recover quickly from

a recession. This is the case where the effects of negative shocks tend to be mainly

temporary, less persistent than the effects of positive shocks. Beaudry and Koop

(1993) and Bradley and Jansen (2000) found evidence for the presence of this

“bounce-back” effect for the U.S. real GNP and for the real GDP of some countries

(U.S. included), respectively.

As there are no nuisance parameters under the null hypothesis of AR linearity,

the CDR model is estimated and the linearity test consists simply on testing the

joint significance of the CDR terms by means of the usual F -statistic.

4.1.5 A test for linearity robust to stationarity issues

We now abandon temporarily our main purpose and focus our attention on a test

designed to detect nonlinear behaviour in yt, the level series, which is robust to

stationarity issues. Harvey, Leybourne and Xiao (2008, HLX) designed such a test

against STAR-type nonlinearity. It allows investigating the presence of nonlinear

dynamics either in the business cycle component or in the deviations from trend

without requiring any knowledge on the long-run properties of the (level) series.

It consists of a data-dependent weighted average of the Wald test statistics from

two linearity tests. While one of them assumes that the series is I(0), the other

considers that it must be differenced. A function of a unit root test statistic and

of a nonparametric stationary statistic, taking values between zero and one, is

then used to assign a weight to each Wald statistic. The weight assigned to the

nonstationary (stationary) statistic tends to one (zero) if there is strong evidence

for a unit root in the series, and tends to zero (one) when the series appears to be

stationary.

Considering a nonlinear AR(1) model for an I(0) time series yt and assuming

that additional dynamics enter linearly, one obtains the auxiliary regression

yt = β0 + b t +
3∑

i=1

βi y
i
t−1 +

p∑

j=1

β4j ∆yt−j + εt.

Under the null of linearity, H0,0 : β2 = β3 = 0, the Wald standard statistic W0 is

asymptotically χ2
(2). Now consider the corresponding regression assuming that yt

19



is I(1):

∆ yt = λ0 +
3∑

i=1

λi∆y
i
t−1 +

p∑

j=1

λ4j ∆yt−j + εt.

Standard large sample theory assures that the Wald statistic W1 is asymptotically

distributed as χ2
(2) under H0,1 : λ2 = λ3 = 0. The HLX statistic asymptotically

selects W0 when the data are stationary and W1 when the series contains a unit

root, using a weighted average,

Wλ = (1 − λ)W0 + λW1,

with λ = exp [−g(U/S)2], where g is some finite positive constant – HLX recom-

mend g = 0.1 –, U is the usual ADF test statistic, and the S statistic is given

by

S =
T−1/2

∑T
t=k+1 ỹt ỹt−k

ω̂{ỹtỹt−k}
,

where ỹt denote the OLS residuals of a regression on a linear trend, ỹt = yt− â− b̂ t,

and ω̂2{at,k} is the Bartlett kernel-based estimator of the long-run variance of a

sequence of variables a1,k, . . . , aT,k
5. Under the null of either I(0) or I(1) linearity,

Wλ selects the efficient, adequate test in the limit and it is asymptotically χ2
(2).

4.2 Empirical evidence

We first concentrate on our main purpose, the analysis of business cycle data, and

then proceed to the detection of nonlinear behaviour in level data.

4.2.1 Non-linearities in business cycles

The first five tests just described were used to detect the presence of non-linearities

in business cycle data, i.e., in the ∆yt series (regardless of the order of integra-

tion defined for yt). A linear autoregressive model had to be selected and esti-

mated first for each of the 30 cases. A defensive strategy was followed to select

the autoregressive order for each case: as the SIC criterion could lead to overly

parsimonious models, possibly with insufficient dynamics, potentially leading to

5Recall that it is defined by ω̂2{at,k} = γ̂0{at,k} + 2
∑l

j=1
(1 − j

l )γ̂j{at,k}, γ̂j{at,k} =

T−1
∑T

t=j+k+1
at,kat−j,k, with at,k = ỹyỹt−k, k = (2T )1/2 and l = 12(T/100)1/4 rounded to

the nearest integer.
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spurious evidence for nonlinearity, we adopted instead the AIC criterion, consider-

ing a maximum lag length (pMAX) of 12 lags for all the five tests. But the nature

of our testing strategy, designed to control overall size as strictly as possible, is also

apparent in the following features:

a) we have used a single version for each test statistic,

b) and we have selected it a priori on the basis of a plausibility criterion only.

While this appears to be a common practice for the RESET test, it is rather

unusual for the LM-STAR or the CDR tests, where a search for the delay parame-

ters producing the most favourable outcomes for nonlinearity is typically carried

out. Actually, as far as we know, ours is the only empirical study where these two

tests were performed along these lines. For the LM-STAR and the Tsay tests we

have fixed d = 1, and for the CDR test we considered q = 2 only and tested the

joint significance of the two terms.

In table 4 we present a qualitative synthesis of the empirical results for all the

tests and in table 5 we present the numerical results for the growth data; these

assume the p-value form, both to save space and to allow a clear interpretation.

Another distinctive feature of our conservative approach concerns the interpre-

tation of the test results. With so many and diversified tests, we consider that a

union of rejections strategy is not admissible, as it would inflate overall size far

above the usual nominal 5%. In other words, a single rejection is deemed insuf-

ficient to proclaim nonlinear behaviour, particularly if it occurs at the 10% level

only. Instead, we have considered that every country could be classified into one of

four groups, according to the number and strength of the rejections of the null of

linearity. The first group is formed by those countries whose evidence for nonlin-

earity is very weak, simply nonexistent or with only one rejection at the 10% level.

These are Canada, Germany, India, Japan, Norway, South Korea, Switzerland and

the U.S. . Notice that four of the G7 countries are in this group – Canada, Ger-

many, Japan and the U.S. –, whose business cycle dynamics seems to dispense

completely a description based on a nonlinear model.

Then, we considered a very small group of (small) countries which present

stronger evidence against linearity, but only marginally, i.e., only one of the 5 tests

rejects it at the usual 5% level: Denmark, Portugal and Taiwan, but in this last

case there is also a further rejection at the 10% level. For a third group, the number

of rejections of the linearity null is two or three at 5% or lower, suggesting that

a nonlinear model is really needed to explain asymmetric behaviour. This group
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Table 4 — A synthesis of results for the linearity tests

RESET White Tsay LM-STAR CDR HLX
Argentina – 5 – 1 5 1
Australia – 1 1 1 10 –
Austria 10 1 5 1 – 1
Belgium – 5 5 1 – 1
Brazil 1 1 1 1 – 5
Canada – – – – – 5
Chile 1 10 5 1 – 10
China – 1 10 1 – 10
Denmark – 5 – – – –
Finland 1 1 1 5 – 5
France – 5 – 1 – 1
Germany – 10 – – – –
Greece – 5 5 – – 5
India – – – – – –
Ireland – 1 – 1 – –
Italy 5 1 – 1 – 1
Japan – 10 – – – –
Mexico 5 5 1 5 – –
Netherlands 10 5 – 5 – 5
Norway – – – – – 10
Philippines 1 10 5 1 – 1
Portugal – – 5 – – –
South Africa 10 1 5 1 1 1
South Korea – – – – – –
Spain 5 1 1 1 1 1
Switzerland – – – – – –
Taiwan 10 – – – 5 5
U.K. 5 1 1 1 – –
U.S. – – – – – –
EA17 – 5 1 5 – 1

“1”, “5” and “10” mean that the test rejects the null hypothesis at the 1%, 5% and 10%, respec-

tively. A “–” means that the p-value for the test statistic is larger than 0.10.
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includes Argentina, Belgium, China, France, Greece, Ireland, Italy, Netherlands

and the EA17. Notice that some of these rejections occur already at the 1% signif-

icance level: one for Argentina, Belgium, France and the EA17, and two for China,

Ireland and Italy. We could have further split this group according to the number

(and/or strength) of the rejections but what appears to be relevant is that we con-

sider that beginning with this third group, i.e., for 19 of the 30 cases – 63.3(3)%

– there is clear evidence that a simple linear model is not satisfactory to describe

business cycle dynamic behaviour, and therefore that some kind of nonlinear model

is required to perform this role satisfactorily.

Finally, for a fourth group of countries the evidence for nonlinearity is either

very strong or even overwhelming, with at least 4 of the 5 linearity tests rejecting

the null. These countries are the remaining 10: Australia, Austria, Brazil, Chile,

Finland, Mexico, Philippines, South Africa, Spain and the U. K. . This is a very

diversified group of countries, containing only one of the G7 countries (U. K.)

but also the large economies of Australia and Brazil, or 5 of the G20 countries6:

Australia, Brazil, Mexico, South Africa and the U. K. .

With at least three rejections at the 1% level, for six countries the inadequacy of

the linear autoregression seems especially conspicuous; these are Australia, Finland,

South Africa, and the U.K. with three rejections, and Brazil and Spain with four.

However, there is no single country for which all the five tests produce no evidence

for linearity.

In summary, although substantial, our evidence in favour of non-linearity does

not conform with some detailed descriptions of business cycles. It is neither as

generalized nor so strong as to permit dismissing linear autoregressions as useful

instruments to describe them in many cases.

As the case of the U. S. motivated most research both about business cycles

and about nonlinear models, the results for this country are particularly interesting.

Somewhat surprisingly, none of the five tests detects significant nonlinear effects in

the conditional mean, not even the CDR test, specially designed to detect the post-

recession bounce-back effect found by Beaudry and Koop (1993) and confirmed,

inter alia, by Bradley and Jansen (1997, 2000). With the largest available data

sample, from 1947:1 to 2013:4, even the “usual suspect” – the low power of the

tests originated by small sample sizes – does not appear to have a strong alibi

here. This is not, however, neither a completely new nor a totally surprising finding.

Actually, our results are consistent with those of Psaradakis and Spagnolo (2002),

6Notice that we could not find data for several countries of this group: Indonesia, Russia,
Saudi Arabia and Turkey.
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Table 5 — Linearity tests for business cycle data (p-values)

lagn(p) RESET White Tsay LM-STAR CDR
Argentina 11 0.675 0.045 0.211 0.009 0.041
Australia 8 0.260 0.001 0.001 0.001 0.060
Austria 9 0.084 0.001 0.047 0.000 0.562
Belgium 4 0.107 0.027 0.045 0.001 0.794
Brazil 8 0.000 0.002 0.000 0.000 0.744
Canada 1 0.529 0.516 0.725 0.733 0.268
Chile 7 0.000 0.076 0.033 0.005 0.731
China 10 0.829 0.009 0.065 0.000 0.176
Denmark 1 0.183 0.017 0.162 0.332 0.377
Finland 3 0.000 0.000 0.000 0.010 0.305
France 2 0.305 0.040 0.198 0.002 0.399
Germany 1 0.773 0.062 0.537 0.916 0.416
Greece 5 0.991 0.016 0.026 0.175 0.254
India 1 0.850 0.605 0.742 0.955 0.422
Ireland 8 0.953 0.001 0.256 0.001 0.720
Italy 4 0.019 0.000 0.118 0.000 0.345
Japan 1 0.664 0.079 0.276 0.303 0.962
Mexico 3 0.015 0.011 0.008 0.011 0.212
Netherlands 1 0.053 0.034 0.296 0.013 0.214
Norway 1 0.475 0.589 0.789 0.406 0.417
Philippinnes 1 0.009 0.064 0.022 0.002 0.542
Portugal 3 0.124 0.345 0.016 0.117 0.760
South Africa 7 0.077 0.001 0.019 0.003 0.002
South Korea 2 0.113 0.395 0.343 0.186 0.196
Spain 8 0.032 0.000 0.000 0.000 0.000
Switzerland 1 0.415 0.179 0.670 0.448 0.669
Taiwan 1 0.093 0.106 0.102 0.141 0.032
U.K. 3 0.038 0.000 0.008 0.006 0.331
U.S. 1 0.806 0.601 0.402 0.920 0.276
EA17 1 0.123 0.017 0.003 0.033 0.440
“Lagn” or “p” now denotes the order of the autoregression which serves as the basis for the

calculation of the test statistics.
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who do not find also any significant evidence for nonlinearity in U. S. real GNP

with a different set of tests (but containing the RESET and the White tests in

common with us) and a much shorter sample, from 1953:2 to 1984:4. They are also

broadly consistent with the findings of the features approach briefly described in

the introduction section, where the relative failure of nonlinear models is reported.

Further investigation of these results is beyond the purposes of this study. We

conjecture that they might be related with the special characteristics of the last

three recessions in the U. S., all originating in the financial sector and all followed

by slow recoveries 7. Furthermore, notice also that the robust HLX test does not

detect any trace of nonlinear dynamic behaviour in the level of the series. There-

fore, the only support for some nonlinearity is indirect and comes from the unit root

tests, particularly from the contradictory evidence provided by the classical, linear

tests and those against nonlinear alternatives; in this case it is the Kiliç (2011)

tESTAR and the Su and Nguyen (2013) FGLS
AE,t tests that suggest trend stationary,

with nonlinear fluctuations around the deterministic trend, contradicting the com-

fortable evidence for the unit root hypothesis provided by ADF and ADF-GLS

tests. Besides corresponding to the output gap view of cycles, not to the classical

view, this is only an indirect indication, which is left open to explore in the future.

Seen from a rather different angle, table 4 suggests that the general White test is

possibly the most powerful, with 22 rejections, conforming with simulation studies.

The case for a size problem seems weak because for 3 countries only does the test

produce the single rejection. Notwithstanding our rather conservative strategy,

the stronger rejections, however, are those from the LM-STAR test: 14 at the 1%

level. This is an expected outcome, according well with previous research. On

the other hand, a very small number of rejections is produced by the CDR test,

only 5, suggesting that bounce-back effects occurring after recessions are much less

frequent and/or much weaker then was previously identified in business cycles 8.

4.2.2 Analysing level data

In Table 6 we present the results for the HLX test, detailing the last column of table

5. Eighteen (60%) rejections of the linearity null are obtained for the level series,

7I n a recent investigation, Bec, Bouabdallah and Ferrara (2015) sucessfully specify and esti-
mate a substantially modified version of Hamilton’s (1989) Markov-Switching model; one of the
most important modifications consists of allowing the bounce-back effect to appear only with
some delay after the trough, which our conservative testing strategy did not allowed.

8However, this is not a completely new finding; Bradley and Jansen (1997) did not find evidence
for asymmetry with the CDR test for Canada, France and Japan.
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independently of their order of integration, and it is worth noting that for fifteen of

these countries strong evidence for nonlinearity at business cycle frequencies had al-

ready been detected. These are Argentina, Austria, Belgium, Brazil, Chile, China,

Finland, France, Greece, Italy, Netherlands, Philippines, South Africa, Spain and

the EA17. It thus appears that this test is really helpful detecting nonlinear dy-

namics regardless of the long-run properties of the data.

Only for three countries – Australia, Ireland and the U. K. – does strong evi-

dence for nonlinearity at the short- and medium-term frequencies does not translate

into a rejection by the HLX test. For the cases of Australia and the U. K. this ap-

pears to be due to the presence of a strong linear trend, leaving only a small role to

fluctuations around that trend, which therefore represent only a minor variation of

the series. This is exemplified through the plots of the (logged) series for Australia

and for South Africa, together with their fitted values of a simple regression on a

linear deterministic trend term. The case of South Africa was chosen as a basis of

comparison with that of Australia due to the similarity of the available samples.

This explanation does not seem to adhere to the case of Ireland, however, where

fluctuations around the linear trend are relatively important when compared to

those of Australia and the U. K. .
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Figure 2. Logged GDP and the fitted linear trend for Australia and South Africa.

On the other hand, the HLX test detects nonlinear behaviour for three coun-

tries, Canada, Norway and Taiwan, where it was previously (almost) unnoticed.

However, for one of them, Norway, the rejection occurs only at the 10% level.

5 Concluding remarks

Using quarterly data for 29 countries and the euro zone, we adopted a purely test-

ing approach to assess the need to resort to nonlinear models to describe business
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Table 6 — Results for the HLX linearity test

W0 W1 λ Wλp-val. W0 W1 λ Wλp-val.

Argentina 12.54 7.51 0.551 0.008 Italy 2.14 20.45 0.997 0.000
Australia 0.09 0.213 0.260 0.940 Japan 13.91 2.12 0.901 0.193
Austria 12.84 30.41 0.880 0.000 Mexico 4.88 1.57 0.169 0.115
Belgium 14.27 4.37 0.187 0.002 Netherlan. 7.06 7.33 0.996 0.026
Brazil 8.05 3.15 0.046 0.020 Norway 12.64 3.06 0.731 0.060
Canada 6.27 1.62 0.000 0.043 Philippin. 23.46 10.27 0.977 0.005
Chile 25.05 1.27 0.802 0.051 Portugal 7.68 0.60 1.000 0.741
China 0.03 7.22 0.721 0.074 South Af. 4.52 16.26 0.816 0.001
Denmark 3.74 2.45 0.976 0.290 South Ko. 19.74 4.45 1.000 0.108
Finland 7.22 22.96 0.000 0.027 Spain 5.18 25.14 0.428 0.001
France 10.73 0.95 0.017 0.005 Switzerl. 0.97 1.28 0.397 0.578
Germany 19.36 0.54 0.847 0.181 Taiwan 16.24 7.61 0.994 0.022
Greece 7.15 1.14 0.000 0.028 U. K. 1.33 6.07 0.066 0.440
India 14.27 0.34 0.957 0.627 U. S. 8.11 0.442 0.916 0.580
Ireland 10.71 0.10 0.871 0.480 EA17 9.50 3.79 0.000 0.009

Following Harvey et al. (2008), in this case the lag augmentation of the ADF statistics was based

on the general-to-specific t-sig procedure.

cycle data. Linear autoregressive models are our departure base and to maxi-

mize power to detect non-linearities we use several tests, carefully selected, and

as model-free as possible. Simultaneously, a neutral or impartial standing requires

that our approach must be also conservative or cautious in size terms; we do not

purchase power at any price (size). For instance, we consider inadequate a simple

union of rejections strategy, as this would increase overall size well above the usual

nominal 5%. Instead, we take into consideration the number and strength of re-

jections of the linear null, and we do not follow a data mining procedure, one of

aggressively searching for rejections. Therefore, we manage to control overall size

inside reasonable limits.

Though finding substantial evidence for nonlinear dynamics, our results cast se-

rious doubts on the common belief that business cycles are clearly and everywhere

nonlinear, as would be the case if linear models always and noticeably fail. Actu-

ally, we consider that for almost 2/3 of the cases there is clear evidence that simple

autoregressions are not totally adequate to describe short- and medium-term fluc-

tuations of aggregate output. But for a rather significant group of 8 countries –

including Canada, Germany, India, Japan and the U. S. –, evidence for nonlin-

earity at those frequencies is very weak or simply inexistent. Neither our general
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purpose tests nor the specific current depth of recession test corroborate strong

nonlinear features previously found for the U.S..

True, our study is limited in several ways: a) we do not analyse the duration

and amplitude of cycles and their phases; b) data could have a higher frequency,

and c) could be less aggregated to increase power, and d) the sample size is also

a serious limitation for the power of the tests, particularly for those cases where

it begins in 1980:1. Notwithstanding these limitations, our evidence is far from

providing full support to some descriptions, which appear to us as exaggerating

some characteristics of business cycles. Our conjecture is that they are somewhat

period- and/or country-specific; linear models maintain some usefulness for many

cases, and cannot be simply dismissed. In short, our conclusions broadly agree

with those of the “features approach”.

A rather different but likely limitation concerns the issue of the robustness of

these results in relation to heteroskedasticity. This issue was previously addressed

in the context of the unit root test for the (log level of) output of China and a

simple look at some of the plots for the differenced series – particularly for the

cases of India, South Africa (S.A.), the U.K. and the U.S. – clearly suggests that it

may influence the results for the linearity tests. It is widely known that it tends to

inflate the size of these tests but a thorough analysis is clearly beyond the purposes

of this paper. Actually, the results previously presented appear already sufficient

to demonstrate the usefulness of linear models, making a lengthy discussion dis-

pensable. Furthermore, in cases such as ours, where the purpose is only to detect

non-linearities, robustification “cannot be recommended” (van Dick et al., 2002,

p. 16, our italics) because it tends to substantially reduce the power of the tests.

None the less, we have calculated the heteroskedasticity robust versions of the two

general tests – RESET and White statistics – and the seemingly most powerful

specific test – the LM test statistic for STAR non-linearity – and, as expected,

the results became (much) more favourable to our thesis. While with the RESET

test the evidence for non-linearity is only marginally weaker, large differences are

found for the White and (particularly) for the LM tests: the first now produces (5%

level) evidence for non-linearity for 12 series only (down from 18), and the second

detects non-linearity (again at 5%) for two countries only (Brazil and Ireland)9.

Therefore, we may conclude this small discussion stating that, in what concerns

heteroskedasticity issues, the evidence that we have found for non-linearity appears

to perform the role of an upper bound, i.e., the maximum of the possible evidence

9The complete results are available from the authors upon request.
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that one can get. When the likely presence of heteroskedasticity is accommodated,

linear autoregressive models appear to become even more attractive.

On the other hand, using our unit root test based approach, we have also

found some evidence for nonlinear dynamics in level data for 3 of the 8 countries

mentioned above, namely Canada, Germany and the U.S.; it is strong only for the

European country and rather feeble for the two American economies. Although

this evidence is only indirect, it may be validly interpreted in terms of business

cycle dynamics as well. However, as it refers to the fluctuations around a linear

trend, it is the output gap, not the classical view of business cycles that can be

invoked to justify such an interpretation. Hence, its relevance for our main purpose

is limited.

6 Appendix

6.1 Standard unit root test results

In this appendix we present the tables with the results for the standard unit root

tests. See tables A.1 and A.2.
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Table A.1 — ADF unit root tests

ADFAIC lagn ADFGTS lagn ADFMAIC lagn
Argentina −2.037 12 −1.636 11 −1.448 10
Australia −3.408* 8 −3.408* 8 −3.408* 8
Austria −0.346 9 −0.760 8 −0.346 9
Belgium −0.744 4 −1.360 5 −0.744 4
Brazil −3.218* 8 −3.218* 8 −2.223 5
Canada −2.389 1 −2.390 1 −2.389 1
Chile −1.758 12 −1.758 12 −1.637 7
China −4.056*** 12 −4.056*** 12 −2.524 0
Denmark −0.262 1 −1.267 10 −0.262 1
Finland −2.540 3 −2.540 3 −2.540 3
France −1.486 2 −1.164 9 −0.825 4
Germany −1.300 0 −2.104 4 −1.230 0
Greece −0.644 5 −1.906 8 −0.644 5
India −0.995 0 −1.323 10 −0.995 0
Ireland −1.195 12 −1.195 12 −1.185 8
Italy +0.295 4 +0.295 4 +0.295 4
Japan −1.665 0 −2.001 9 −1.665 0
Mexico −3.045 3 −3.427** 2 −3.045 3
Netherlands −0.356 0 −0.918 12 −0.356 0
Norway −0.578 1 −0.417 12 −0.578 1
Philippinnes −0.529 0 −0.640 9 −0.530 0
Portugal −0.377 3 −0.403 12 −0.377 3
South Africa −3.059 7 −3.059 7 −3.059 7
South Korea −0.311 1 0.0923 8 −0.311 1
Spain −0.838 8 −0.838 8 −0.838 8
Switzerland −2.907 2 −2.949 9 −2.627 1
Taiwan −0.436 6 −0.531 5 −0.436 6
U.K. −2.068 3 −2.068 3 −1.589 2
U.S. −1.938 2 −1.037 12 −1.595 1
EA17 −1.588 1 −1.714 5 −1.714 5

“Lagn” denotes the number of augmenting lags. “***”, “**”, and “*” represent rejections of the

(unit root) null hypothesis at the 1%, 5% and 10%, respectively. The asymptotic critical values

are −3.96, −3.41 and −3.13, respectively.
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Table A.2 — ADF-GLS unit root tests

ADF-GLSAIC lagn ADF-GLSGTS lagn ADF-GLSMAIC lagn
Argentina −1.419 12 −1.183 11 −1.183 11
Australia −1.060 8 −1.060 8 −1.060 8
Austria −1.535 9 −1.535 9 −1.535 9
Belgium −1.541 5 −1.541 5 −1.286 4
Brazil −2.393 8 −2.393 8 −2.393 8
Canada −2.428 1 −2.428 1 −2.428 1
Chile −2.694* 12 −2.694* 12 −1.470 7
China −4.008*** 12 −4.008*** 12 −2.560 0
Denmark −1.325 3 −1.803 10 −0.713 1
Finland −2.637* 3 −2.637 * 3 −2.637* 3
France −1.590 2 −1.446 9 −1.590 2
Germany −1.404 0 −2.199 4 −1.404 0
Greece −1.524 5 −2.007 8 −1.524 5
India −0.541 0 −1.173 10 −0.541 0
Ireland −1.898 12 −1.898 12 −1.688 8
Italy −0.404 4 −0.777 11 −0.404 4
Japan −0.513 3 −0.816 9 −0.341 1
Mexico −2.810* 3 −2.301 10 −2.810* 3
Netherlands −0.776 0 −1.395 12 −0.776 0
Norway −1.002 5 −0.908 12 −0.520 1
Philippinnes −0.698 0 −1.124 9 −0.698 0
Portugal −0.698 4 −0.719 3 −0.719 3
South Africa −0.876 7 −1.003 6 −0.876 7
South Korea −0.064 2 −0.231 9 −0.064 2
Spain −1.731 8 −1.731 8 −1.731 8
Switzerland −2.918** 2 −2.994** 9 −2.637* 1
Taiwan −0.342 0 −0.309 5 −0.342 0
U.K. −2.105 3 −2.314 6 −2.105 3
U.S. −1.314 2 −0.672 12 −1.063 1
EA17 −0.535 1 −0.783 2 −0.535 1

“Lagn” denotes the number of augmenting lags. “***”, “**”, and “*” represent rejections of the

(unit root) null hypothesis at the 1%, 5% and 10%, respectively. The asymptotic critical values

are −3.48, −2.89 and −2.57, respectively.
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6.2 Overview of unit root tests against nonlinear alterna-

tives

To understand the mechanics of some of the tests consider a zero-mean stochastic

process {xt}. To build a unit root test, instead of the usual linear autoregression

let us consider the following nonlinear dynamic model:

∆xt = φxt−1G(zt−d; γ) + ut, t = 1, . . . , T,

where G(.) is the transition function, a nonlinear function taking values between

0 and 1, zt−d is the transition variable, d(≥ 1) is the delay parameter, and ut is

a stationary and invertible zero-mean process. When G = 0 the process is in the

middle regime and contains a unit root. On the other hand, when the function G

satisfies the condition that it approaches 1 when zt−d → ±∞, as the exponential,

provided that φ < 0 the process is globally stationary and it is in the outer regime

in that case, showing a tendency to revert to its mean.

Adopting the most popular transition function, the exponential function, and

making zt ≡ xt and d = 1, the process becomes the exponential STAR (ESTAR)

∆xt = φxt−1 [1 − exp(−γ x2t−1)] + ut, γ ≥ 0, (2)

where γ is a parameter controlling the smoothness of the function G. In this

context, the test for a unit root is the test of

H0 : φ = 0 vs. H1 : φ < 0 (and γ > 0).

This model can be easily extended to more empirically relevant cases, with

a non-zero constant mean or a linear deterministic trend. In the first case xt is

replaced with x∗t = xt − µx, where µx represents the constant mean of xt, and in

the second, which is the relevant one for our purposes, the original observed time

series, yt, is detrended, i. e. xt is replaced with

x∗t = yt − (α + β t),

where α and β are parameters to be estimated, usually by OLS, producing x̂t
(where we have dropped the asterisk to simplify the notation).

The problem with testing the previous hypothesis, the so-called “Davies prob-

32



lem”, is that the parameter γ is not identified under the null 10. To circumvent it

two main approaches have been used so far:

a) to employ a first-order Taylor series expansion of the nonlinear model around

γ = 0 and to formulate a test in terms of the corresponding parameters of

the new (linear) model;

b) to construct a test statistic based on an extremum over the parameter space

of the original nonlinear model.

The well KSS test follows the first route and owes its popularity to the simplicity

of the auxiliary test regression. The second route is followed in the test of Shin-

tani (2013), who extends the work of Park and Shintani (2005) to trending data.

Shintani uses the parametrization γ = θ2 and proposes running the regressions

∆ x̂t = φ x̂t−1 [1 − exp(−θ2x̂2t−1)] +
k∑

i=1

αi ∆x̂t−i + εt,

for all θ ∈ Θn = [10−1, 10] × Pn, where Pn = (
∑

x̂2t−1/T )−1/2. The test statistic is

the infimum of the t-ratios of φ̂(θ) over Θn, i.e.,

inf −tE,τ = inf
θ∈Θn

φ̂(θ)

se(φ̂(θ))
.

In the same vein, Kiliç (2011) proposes using the infimum of the t-ratios of φ

in the auxiliary regressions

∆ x̂t = φ∆x̂t−1 [1 − exp(−γ∆x̂2t−1)] +
k∑

i=1

βi ∆x̂t−i + ǫt,

over all the possible values of γ, that is, the transition variable is the lagged differ-

ence of the (detrended) variable, not its lagged level. The test statistic is defined

as

tESTAR = inf
γ∈ΓT

φ̂(γ)

se(φ̂(γ))
,

10The fact that testing for the unit root may also be formulated as H0 : γ = 0 vs. H1 : γ > 0,
as in KSS, is also a manifestation of this problem; in this case it is the parameter φ that is not
identified under H0.
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where γ ∈ ΓT = [ 1
100szT

; 100
szT

], szT representing the sample standard deviation of

the transition variable, ∆ x̂t−1, which Kiliç finds having good power properties for

several DGPs, even when they follow not a smooth transition model but a threshold

one.

The Sollis (2009) FAE,t test adopts the Taylor series expansion approach but de-

parts from a model that generalizes the ESTAR, permitting asymmetric behaviour

in the adjustment towards the mean under the (globally stationary) alternative.

The extended model is called asymmetric ESTAR (AESTAR) and combines both

an exponential and a logistic transition function, i.e., instead of (2) the model

becomes

∆xt = Gt(γ1, xt−1)[St(γ2, xt−1)] ρ1 + [1 − St(γ2, xt−1) ρ2]xt−1 + ǫt,

where

Gt(γ1, xt−1) = 1 − exp[−γ1(x
2
t−1)], γ1 ≥ 0, and

St(γ2, xt−1) = [1 + exp(−γ2xt−1)]
−1, γ2 ≥ 0.

Taking several Taylor series expansions, Sollis shows that the test regression is

∆ x̂t = φ1 x̂
3
t−1 + φ2 x̂

4
t−1 +

k∑

i=1

κi ∆ x̂t−1 + ηt,

where testing for the unit root amounts to testing H0 : φ1 = φ2 = 0

6.3 Further nonlinear unit root test results

Besides using the previous test statistics, we have gathered more evidence through

further unit root tests against nonlinear alternatives. These are all based on the

Taylor series expansion approach and are: i) the GLS version of the KSS test,

as proposed by Kapetanios and Shin (2008); b) the Fs,ct statistic of Sollis (2011)

derived against a stationary STAR model that resorts to a second-order logistic

transition function (replacing the usual exponential) and that nests a three-regime

TAR model; iii) the GLS version of the FAE,t statistic, proposed by Su and Nguyen

(2013); iv) and the FABG test of Addo, Billio and Guégan (2014, ABG), which is

derived against a MT-STAR stationary alternative model that allows asymmetric

adjustment towards equilibrium (see ABG for details).
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Table A.3 — Further unit root tests against nonlinear alternatives

tGLS
NL (lagn) Fs,ct (lagn) FGLS

AE,t (lagn) ABG (lagn)

Argentina −2.873 (12) 3.154 (12) 4.547 (12)* 2.313 (12)
Australia −3.511 (8)** 7.869 (9)** 1.131 (8) 5.327 (9)**
Austria −2.494 (9) 0.499 (9) 3.048 (9) 1.143 (9)
Belgium −1.818 (5) 1.461 (5) 1.804 (5) 1.776 (5)
Brazil −2.859 (8) 6.464 (8)* 5.154 (8)* 5.157 (8)**
Canada −2.747 (1) 4.616 (1) 3.829 (1) 4.364 (1)
Chile −2.870 (12) 3.464 (12) 4.168 (12) 2.400 (12)
China −6.697 (12)** 16.026 (10)*** 22.677(12)*** 10.566 (10)***
Denmark −0.869 (3) 1.441 (3) 1.077 (1) 0.988 (3)
Finland −2.551 (3) 3.377 (3) 3.297 (3) 2.607 (3)
France −1.171 (2) 1.723 (2) 2.134 (2) 1.459 (2)
Germany −3.680 (4)** 10.042 (4)*** 8.412 (4)*** 6.315 (4)**
Greece −1.561 (5) 0.718 (5) 4.581 (9)* 0.715 (5)
India −0.928 (0) 1.406 (0) 1.276 (0) 0.755 (0)
Ireland −2.115 (12) 1.607 (12) 2.196 (12) 1.245 (8)
Italy −0.018 (4) 0.378 (4) 1.413 (4) 0.886 (4)
Japan −1.173 (3) 1.880 (3) 0.854 (3) 2.013 (3)
Mexico −3.107 (3)** 4.974 (3) 4.913 (3)* 3.002 (3)
Netherlands −1.135 (0) 0.937 (0) 1.191 (3) 0.933 (0)
Norway −1.175 (5) 0.688 (5) 1.448 (5) 0.385 (5)
Philippines −0.172 (0) 0.845 (0) 0.446 (0) 0.132 (0)
Portugal −0.966 (4) 0.232 (4) 0.837 (4) 2.017 (4)
South Africa −1.726 (7) 4.900 (7) 2.536 (7) 3.413 (7)
South Korea −0.137 (2) 0.444 (2) 1.635 (1) 0.614 (2)
Spain −1.362 (8) 2.103 (9) 1.089 (8) 0.630 (8)
Switzerland −2.461 (1) 4.436 (2) 4.511 (2) 3.531 (1)
Taiwan −0.455 (0) 0.549 (1) 0.125 (0) 0.433 (1)
U.K. −2.609 (3) 2.400 (3) 3.734 (3) 1.903 (3)
U.S. −1.117 (2) 1.998 (2) 6.001 (2)** 2.234 (2)
EA17 −1.965 (2) 2.724 (2) 4.020 (2) 1.955 (2)

In all the cases the lag length (“lagn”) was estimated using the AIC statistic. For the tGLS
NL test

the 5% asymptotic critical value, the only one made available by Kapetanios and Shin (2008) is

−2.93. For the Fs,ct statistic the asymptotic critical values are 5.727, 6.717 and 8.617. For the

FGLS
AE,t statistic they are 4.531, 5.373 and 7.286 and for the FABG test they are 4.444, 5.132 and

6.602, respectively.
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