
Cullmann, Astrid; Nieswand, Maria; Rechlitz, Julia

Working Paper

Productive efficiency and ownership when market
restructuring affects production technologies

DIW Discussion Papers, No. 1641

Provided in Cooperation with:
German Institute for Economic Research (DIW Berlin)

Suggested Citation: Cullmann, Astrid; Nieswand, Maria; Rechlitz, Julia (2017) : Productive efficiency
and ownership when market restructuring affects production technologies, DIW Discussion Papers,
No. 1641, Deutsches Institut für Wirtschaftsforschung (DIW), Berlin

This Version is available at:
https://hdl.handle.net/10419/149904

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/149904
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Discussion 
Papers

Productive Effi  ciency and Owner-
ship When Market Restructuring 
Aff ects Production Technologies

Astrid Cullmann, Maria Nieswand and Julia Rechlitz

1641

Deutsches Institut für Wirtschaftsforschung  2017



Opinions expressed in this paper are those of the author(s) and do not necessarily reflect views of the institute. 

IMPRESSUM 

© DIW Berlin, 2017 

DIW Berlin 
German Institute for Economic Research 
Mohrenstr. 58 
10117 Berlin 

Tel. +49 (30) 897 89-0 
Fax +49 (30) 897 89-200 
http://www.diw.de 

ISSN electronic edition 1619-4535 

Papers can be downloaded free of charge from the DIW Berlin website: 
http://www.diw.de/discussionpapers 

Discussion Papers of DIW Berlin are indexed in RePEc and SSRN: 
http://ideas.repec.org/s/diw/diwwpp.html 
http://www.ssrn.com/link/DIW-Berlin-German-Inst-Econ-Res.html 

http://www.diw.de/
http://www.diw.de/discussionpapers
http://www.ssrn.com/link/DIW-Berlin-German-Inst-Econ-Res.html


Productive Efficiency and Ownership When Market
Restructuring Affects Production Technologies

Astrid Cullmann ∗ Maria Nieswand† Julia Rechlitz‡

January 2017

Abstract

While the link between the ownership and productive efficiency of firms has
been discussed extensively, no consensus exists regarding the superiority of one or
the other in non-competitive, regulated environments. This paper applies a flexible
production model to test for efficiency differences associated with ownership types
while allowing the production to adapt to market restructuring over time. Our em-
pirical setting is based on a new, rich micro dataset of electricity distribution firms
operating between 2006 and 2012 in Germany, where the energy transition enforces
the adjustment of energy infrastructure. First, our results show that electricity dis-
tribution system operators adapted their production technologies over time. Second,
there is no empirical evidence that public firms operated any less efficiently than
private firms. The empirical findings are relevant to the (re)municipalization de-
bate, which appears to have exaggerated the dichotomy between public and private
utilities’ efficiency.
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1 Introduction

The debate on private versus state ownership and efficiency of firms has not yet reached
a conclusion. On the one hand, arguments based on property rights, public choice, and
agency theory provide multiple rationales for the economic superiority of private firms
in terms of productive efficiency. On the other hand, the performance of privately and
state-owned firms1 should be the same in regulated environments, at least under complete
regulatory contracts (Laffont and Tirole, 1993). Uncertainties regarding the performance
differences between privately and publicly owned firms are particularly evident in the
recent intensive debates on (re)municipalization in infrastructure industries such as the
energy sector.2 Much of the relevant empirical literature on public infrastructure in-
dustries report no statistically significant differences in productivity or production costs
between public and private firms (Atkinson and Halvorsen, 1986), yet some studies show
that private firms outperform publicly owned ones (Kumbhakar and Hjalmarsson, 1998).
Still other studies emphasize that public firms operating electricity grids achieve a higher
level of efficiency (Kwoka, 2005).
Variations in the empirical studies are mainly attributed to sample characteristics, the
modeling techniques used, and the difficulties in disentangling the sources of productive
efficiency. Moreover, structural changes that affect production technologies challenge
the performance evaluation. The energy sector is a prominent example of the exten-
sive transformation required to build a low-carbon energy system. Hence, in empirically
investigating the productive efficiency of distribution networks, the challenge is how to
account for changes in the production technology caused by sectoral restructuring.
To our knowledge, this paper is the first empirical study of the efficiency differences be-
tween private and public electricity distribution companies (DSOs) that allows for time-
varying technologies and firm-specific technology adaption. We propose a semiparametric
production model and use flexible techniques according to Sun et al. (2015) to estimate
productive efficiency where the coefficients of the function can vary over time. Thus,
we explicitly allow for heterogeneous technologies over time without making assumptions
about how the time trend influences the coefficients. We measure productive efficiency
based on an input distance function (IDF), instead of estimating a cost function.3

We apply our framework to the German electricity sector for the period 2006 to 2012 and
1We use the terms state-owned and public firms interchangeably and emphasize that public ownership

does not relate to firms listed on a stock exchange.
2The term (re)municipalization refers to buying back previously privatized firms, the increase of public

shares in firms, and the new foundation of state-owned firms.
3When input ratios can be assumed to be exogenous, and additionally due to duality this approach

is economically meaningful and does not require information on input prices (Färe and Primont, 1995;
Das and Kumbhakar, 2012).
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use new micro data on German electricity distribution system operators. Germany is an
ideal empirical setting for our purpose. The country, which occupies a prominent position
in Europe’s transition to a decentralized low-carbon energy system, has adopted one of
the most ambitious energy transition programs in the world. Thus, our approach and
results are also relevant for countries considering less carbon-intensive energy networks.
Further, interest in the performance capabilities of different ownership types is extremely
high as local governments have begun to reinforce economic activities by re-purchasing
privatized firms (also referred to as deprivatization or remunicipalization). Another fea-
ture is Germany’s intense policy debate, particularly since the competition authorities,
the German Monopolies Commission and the Bundeskartellamt, BKartA, have adopted
a critical attitude towards remunicipalization.
Our empirical findings show that both publicly and privately owned distribution firms
have adapted their production technology to restructuring. For both types of owner-
ship, productive efficiency slightly increases during the time period. Our results do not
support any efficiency differences between public and private firms. Various robustness
checks confirm our findings.
The remainder of this paper is structured as follows: Section 2 surveys the relevant lit-
erature; section 3 describes the German situation; section 4 introduces the data set and
defines the variables; section 5 presents the empirical model and estimation strategy;
section 6 discusses the empirical findings and presents robustness checks, finally section
7 concludes.

2 Related Literature

2.1 Theoretical literature

Studies of the ownership-performance link encompass agency theory, property rights, and
public choice, which all provide different rationales for the superiority of private firms due
to the differences in objectives, incentives, and control mechanisms.4 For example, agency
theory assumes that private firms are better able to handle the principal-agent dilemma.
Agents (managers) seek to maximize their own utility rather than that of the whole firm or
its principals (owners), and consequently are more likely to achieve a lower efficiency level.
Considering property rights, Alchian and Demsetz (1973) and Demsetz (1967) suggest
that public ownership attenuates property rights, thus reducing the incentives to mini-
mize costs. Property rights theory also postulates that potential divergences of interests
between private firms’ owners and managers are further reduced by external mechanisms,

4See Megginson (2001) for a detailed literature overview.
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such as a market for ownership rights that enables owners to sell their shares if they are
dissatisfied with managerial performance, the threat of takeover, or bankruptcy, or an
extensive managerial labor market. The public choice literature, particularly the theory
of bureaucracy (Shleifer and Vishny, 1994) assumes that politicians impose their objec-
tives on public organizations in order to gain votes, and that these objectives may be
at odds with profit maximization and, consequently, harm efficiency (Villalonga, 2000).
For example, in some public firms, an inefficiently high labor share has been observed to
decrease unemployment (Shleifer and Vishny, 1994).
Understanding the environment in which firms operate is an important factor in the pri-
vate versus public ownership and performance debate (Bartel and Harrison, 2005). In
competitive markets firms are forced to set prices close to marginal costs and provide
owners with information on costs and managerial effort,5 whereas in a regulated envi-
ronment the incentive effect as well as the information effect are diminished.6 Under
complete regulatory contracts, the outcome of private and public firms should be the
same.7

Electricity distribution exhibits the characteristics of typical natural monopolies. In this
context Leibenstein (1966) derives the theory of X-inefficency and argues that regulated
monopolies in general are likely to be inefficient regardless of ownership.8 Button and
Weyman-Jones (1994) relate the theory of X-inefficiency to the measurement of ineffi-
ciency by means of both parametric and nonparametric efficiency analysis.

2.2 Empircal studies

The majority of empirical studies on performance differences according to different own-
ership structure in the electricity sector have focused on utilities operating from the 1960s
to the 1990s in the United States. In general, the conclusions drawn about the perfor-
mance differences between public and private firms during this period are rather weak, in
part due to small sample sizes, overly restrictive assumptions, and failing to account for

5Further, owners can create incentives for management to reduce the asymmetric information closing
the managerial slack (Hart, 1983; Shirley and Walsh, 2001).

6The incentive effect is mainly driven by managerial concern over losing market share due to inefficient
performance. Information effect refers to the principal-agent relationship between owners and managers,
and hence, becomes more important by assuming a situation of separated ownership and management
(Leibenstein, 1966).

7Laffont and Tirole (1993) show that the superiority of private versus public firms depends on the
contract setting the provision of the goods or services of a regulated monopoly. Laffont and Tirole
(1991) show that the implementation of a regulator produces a more complex principal-agent relationship
because private firms now have two principals (the regulator and the owner) who may have opposing
objectives. This does not apply to publicly owned firms, since their model assumes that the political
objectives of the regulator and the public owner are well matched.

8Leibenstein (1966) shows that economic agents may not achieve maximal efficiency in their productive
decisions and behavior.
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the impact of market structure, regulation, and vertical integration (Peters, 1993; Pollitt,
1995; Atkinson and Halvorsen, 1986).
Early studies also use different estimation methods; topics include managers’ turnover
rates (De Alessi, 1974), price discrimination (Peltzman, 1971), investment behavior (Rose
and Joskow, 1990), and cost efficiency (Neuberg, 1977). A more recent study by Kwoka
(2005) using cross-sectional data from 1989 on cost efficiency finds cost advantages for
public firms in electricity distribution, but cost advantages for private firms in electricity
generation. Boylan (2016) who investigates DSOs’ investment behavior in order to pre-
vent outages due to storms finds that publicly owned firms spend more on maintaining
their distribution lines, but better storm preparedness does not necessarily follow.
Studies of the EU’s power markets are scarce, partly due to the absence of data. Kumb-
hakar and Hjalmarsson (1998) conclude that private distributors in Sweden are relatively
more cost efficient. Borghi et al. (2016) analyse the impact of ownership and governance
quality on total factor productivity for DSOs in 16 EU countries. Not accounting for
technology adaptions due to market restructuring they find that depending on the qual-
ity of the institutional framework publicly owned firms exhibit a higher/lower level of
productivity compared to privately owned ones. For Germany they find no significant
difference in productivity between the two ownership types. Despite the attention that
economic theory attributes to alleged performance differences between public and private
firms, the empirical evidence for the electricity sector, an important sector of public in-
volvement in Europe, is rare.
In summary, meta-surveys summarize the empirical evidence on performance differences
between state-owned and private firms across countries and sectors, (see e.g., Meggin-
son, 2001; Vining and Boardman, 1992) but neglect any differences in regulation, market
structure and firms across industries, countries, and time. None of the empirical papers
account for the restructuring processes needed to implement a different energy system or
the sector’s flexible production functions.

3 The German Electricity Sector

3.1 Liberalization, regulation and energy transition

Germany’s electricity sector has undergone intense transition and restructuring since 1998
when the sector was liberalized. Prior to 1998, electricity was supplied by more than 800
local, mostly small monopolies that were vertically and horizontally integrated. Most
offered other products, such as natural gas supply and district heating. EU Directives
96/92/EC and 2003/54/EC, which initiated the European electricity sector’s reorgani-
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zation, envisioned a gradual opening of end-consumer markets until 2007.9 In 2005,
Germany’s regulatory authority was put in charge of supervising the German electricity
sector. Centralized regulation and unbundling reforms10 in 2007 significantly reduced
discrimination in network access for third parties.
In addition to the liberalization and regulation efforts, Germany’s energy transition (En-
ergiewende)11 to a low-carbon energy system, requires structural changes in its energy
sector. Continued integration of renewable energy sources has led to a fundamental
transformation of the power system that affects both Germany’s power plant fleet and
the transmission and distribution grids. This development has been supported by Ger-
man legislation, e.g., in 1991, the first electricity feed-in tariff was enacted to support the
expansion of renewables. Its revision during the 1990s resulted in the German Renew-
able Energy Sources Act (EEG), which became effective in 2000. Including higher and
technology-specific remuneration tariffs, investments in renewables have gained momen-
tum. In addition to large wind parks and hydro plants also small scale renewable power
plants became profitable (Brüggemeier, 2015). Germany’s development of the installed
capacities of renewables demonstrates the success of supporting them: renewable capacity
rose from 4.2 GW in 1990 to 97.1 GW in 2015 (Bundesministerium für Wirtschaft und
Energie, 2016).
Germany’s DSOs adapted to the Energiewende because they were obligated to accept
steadily increasing amounts of renewable power from the growing number of small decen-
tralized sources rather than large generating plants. Stochastic weather conditions, e.g.,
for wind and solar, which make quantities unpredictable and cause a supply and demand
mismatch and reversed load flows forced grid operators to change their investment and
network expansion strategies and modes of operation (Deutsche Energie-Agentur, 2012).
The need for the electricity supply infrastructure to adapt was recognized in the second
amendment to the EEG in 2009. It obliges DSOs to invest, strengthen and optimize
networks to cope with large share of fluctuating renewables.12 While DSOs’ investments
and expenses varied between 5,108 and 5,752 million Euro between 2007 and 2009, a
significant increase can be observed in the time period between 2010 and 2012 reaching

9Contrary to France and Italy, the German government decided to liberalize supply to all consumers
classes (large industrial, businesses, residential consumers) in 1998. Full competition, however, in par-
ticular for residential customers, took some time to develop.

10These reforms imposed the legal separation of the distribution networks with the typical character-
istics of a natural monopoly from the generation and retail segments of integrated companies with more
than 100,000 customers.

11The energy transition launched in the 1990s, after controversial political discussions in the early
stages, gained broad political consensus. Its major objectives are to combat climate change and to
reduce greenhouse gas emissions. By 2050 renewable energy must account for at least 80 percent of
Germany’s electricity consumption. Germany has taken a leading role internationally, e.g.,the Paris
Agreement negotiated at the 2015 United Nations Climate Change Conference (COP 21).

12See article 9(1) EEG.
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its maximum in 2011 with investments and expenses of 6,930 million Euro (Bundesnetza-
gentur, 2014). Also the number of DSOs adapting their networks to handle the increasing
share of renewables according to article 9(1) EEG steadily increased from 2009 to 2012.13

3.2 German DSO ownership

The expiration of numerous concession contracts for distribution grids gave local public
authorities the opportunity to decide whether to renew existing contracts, grant the con-
cession to third parties, or reverse the privatization.14

In the 1990s, many public authorities divested their shares in electricity distribution firms.
Too often, however, deregulation and privatization have failed to realize the expected cost
savings for producers and price reductions for consumers. In response to this observation
and income seeking, municipal governments have recently begun to reinforce economic
activities by re-purchasing privatized firms, by increasing their shares of ownership in
partially privatized firms, or by establishing new publicly owned firms. Besides local
public authorities have the aim to increase their public influence to implement ecological,
socio-economic and fiscal objectives, and receive at the same time an intense support
form the local population.15

The rising economic activities of the public sector in the electricity sector combined with
citizens’ concerns about the environment intensified the larger policy debate. The com-
petition authorities, the German Monopolies Commission and the BKartA, adopted a
critical attitude towards remunicipalization. They found no sufficient reasons for an ex-
pansion of the public sector and even feared a decreasing efficiency of Germany’s publicly
owned utilities (Monopolkommission, 2014).

13There is a distinction between measures optimizing the grid, grid reinforcement, and grid expansion.
The number of DSOs which undertook grid optimization rose from 112 in 2009 to 404 in 2012. DSOs
undertaking reinforcement and grid expansion rose from 147 to 438 and 189 to 413, respectively between
2009 and 2012 (Bundesnetzagentur, 2014).

14About 8,000 of 14,000 concessions in the electricity sector expired between 2010 and 2015 (Berlo and
Wagner, 2013).

15Hamburg and Berlin are two prominent examples. Recent efforts in these large cities to take over
the utilities had a major impact on the public. After acquiring 25.1 percent of the shares in local energy,
gas, and district heating utilities in 2012, Hamburg took over the entire electricity distribution network
in 2014 and negotiated a repurchase option with the previous owner, Vattenfall, for the district heating
networks (Monopolkommission, 2014). In Berlin, although a 2013 referendum for the repurchase of
the electricity distribution network failed, on March 14, 2016, the state-owned company Berlin Energie
submitted a proposal for a complete buyback (Berlin Energie, 2016). Similar actions have been observed
elsewhere and in other energy sectors. The number of public electricity network operatore increased by
11 percent (Berlo and Wagner, 2013).
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Table 1: Sample size

Year 2006 2007 2008 2009 2010 2011 2012 Sum

Number of observations 179 225 280 306 311 293 303 1897

Public ownership 155 187 237 264 263 245 260 1611
Private ownership 24 38 43 42 48 48 43 286

4 Dataset and Definitions of Variables

Our analysis is based on two data sources: a new and rich panel data set of firm-specific
micro data provided by the German Federal Statistical Office (FDZ) and the physical
network characteristics provided by the German data service provider ene’t. The FDZ
data include various cost components, output, revenue structures, labor input, and other
variables related to the production process. It comprises how many German utilities have
more than ten employees which provide electricity, natural gas, district heating, water
supply, sewerage, and waste treatment. The utilities have different degrees of vertical
and horizontal integration. We use a subsample of electricity distribution companies
from 2006 on when most required unbundling was completed. The ene’t data include
physical information about the distribution networks, grid-specific network charges and
other levies, and characteristic attributes of the municipalities served. Merging the two
data sets and cleaning the data obtains an unbalanced panel of 1897 observations from
2006 to 2012.16 Table 1 lists the number of observations for each year.
To assess productive efficiency, we use firms’ production data, because the data on phys-
ical inputs and outputs are generally reliable, readily available, and well defined.17 To
model the production process, we use the output and input variables and the exogenous
factors derived from the empirical literature on efficiency analysis of electricity distribu-
tion companies (see Cullmann, 2010; Jamasb and Pollitt, 2000).
A DSO’s common outputs are number of customers served (yC) measured by total num-
ber of connected customers summed up over all voltage levels18 and annual amount of
distributed electricity (yE), i.e., total annual amount of electricity distributed through
the grid over all voltage levels. The common input factors are labor (xL), given by the
annual amount of hours worked, and grid length (xN) as capital input, i.e., line length

16From 2007 on, the data represent 40 to 60 percent of actual electricity consumption by residential,
trade, commerce, and service users (Arbeitsgemeinschaft Energiebilanzen, 2016).

17Further, input price data is not available and requires constructing proxies from further data sources.
18The actual measure counts the points of withdrawal. For convenience, we name the variable cus-

tomers. The points of withdrawal can be interpreted as the lower bound of the actual number of cus-
tomers because multiple households can be linked to one point of withdrawal. More detailed information
is absent.
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Table 2: Definitions of variables

Variable Name Type Definition and unit of measurement

yC customers output variable number of customers in thousands
yE electricity output variable electricity distributed in MWh
xN network input variable grid length in km
xL labor input variable amount of hours worked in hours
zD density exogenous factor customer density in km2

zO overhead exogenous factor share of overhead lines in percent
own ownership dummy variable

summed up over all voltage levels and line types (underground cable and overhead lines).
Two exogenous factors control for observed heterogeneity between firms: density (zD) is
computed as the ratio of customers and the area served, and zO captures the share of
the length of overhead lines to the length of the complete distribution grid. A dummy
variable (own) representing ownership takes the value of one if the firm is publicly owned
with more than a 50 percent share in nominal capital and zero otherwise,

own =

1 if firm publicly owned

0 otherwise, privately owned.
(1)

Table 2 describes the selected variables and Table 3 lists the summary statistics by own-
ership type. From the statistics, the large variance between observations becomes clear.
For example, 25 percent of state-owned firms serve less than 8 million customers, whereas
the upper quarter serves more than 37 million customers. In the case of private firms,
25 percent of the firms serve less than 2.9 and more than 72.6 million customers, respec-
tively. While the median values of yC , xL, and zD are smaller for private firms compared
to publicly owned firms, the median values of yE, xN , and zO are larger. Hence, the data
set does not appear to be subject to the systematic differences existing between privately
and publicly owned firms.

5 Estimating Productive Efficiency with Time Varying

Production Technology

We build our production model on the input distance function representation of the trans-
formation function (see Kumbhakar and Sun, 2012) which is able to model multi-output
production in opposition to a single output production function.19 The transformation

19One can derive all of the primal formulations from a transformation function by using different
normalizing (identifying) restrictions (Kumbhakar and Sun, 2012).
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Table 3: Summary statistics of the variables

Variable Name Type 25% Quart. Median Mean 75% Quart. Std. Dev.

yC customers public 7,996 15,707 25,572 26,776 36,998
private 2,889 14,361 45,906 44,176 72,686

yE electricity public 96,729 192,643 432,171 372,441 1,158,509
private 40,624 240,329 1,033,875 891,961 2,158,137

xN network public 253 431 674 732 928
private 183 519 1,676 1,426 2,788

xL labor public 47,672 94,241 133,304 163,870 141,701
private 8,098 22,329 91,693 108,181 163,029

zD density public 486 1,062 1,165 1,670 814
private 466 833 1,085 1,509 896

zO overhead public 0.02 0.06 0.08 0.12 0.08
private 0.04 0.12 0.20 0.32 0.21

function is given by A ∗ T (X, Y, Z, t) = 1, where X is a vector of P different inputs, Y is
a vector of Q different outputs, Z a vector of K different exogenous factors, and t is the
time trend. T () is the transformation function. Our assumption that T () is homogeneous
of degree 1 in X obtains the input distance function20 x−11 = Λ ∗H(X̃, Y, Z, t), where x1
is the numeraire input and X̃ is a vector of input ratios, with x̃p = xp/x1, p = 2, ..., P .
IDFs are extensively used for modeling inefficiency (Kumbhakar and Sun, 2012), especially
in regulated network infrastructure industries. To analyze efficiency within the electricity
distribution sector the input distance function formulation is economically appropriate,
because the inputs are endogenous and the outputs (electricity distributed; number of
customers/connections) are exogenous for the firms in this sector.21 Furthermore, DSOs
minimize cost to produce the exogenously given (determined by demand) output.22

In the general form, the IDF in logs is given by

− lnx1,it = θ + φ′ lnBit + vit, (2)

where lnx1,it is the numeraire input for firm i in year t in logs, θ is the intercept, and
Bit = [X̃, Y, Z] is a matrix of covariates including p = 2, . . . , P input ratios, q = 1, . . . , Q

outputs, and k = 1, . . . , K exogenous factors. vit is a noise term and φ is the slope
20This coincides with the input distance function as a representation of a technology introduced by

Shephard (1953).
21The firms are legally obliged to connect and serve all customers. This is stated in the Energy

Economy Law (EnWG).
22Das and Kumbhakar (2012) show that input ratios are exogenous under cost minimization. Färe

and Primont (1995) show that the input distance function is dual to the cost function; hence, the input
distance function is ideal to use when input prices are not available or do not vary much. Duality
also means that input coefficients are equal to the cost shares and that output coefficients equal to the
negative cost elasticities.
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coefficient vector.
To model the restructuring and transformation process in the production technology, we
allow the technology parameters to vary over time. Additionally, the intercept varies
over firms to capture firm fixed effects. Hence, θ is an unknown function of time and firm
effects while φ is an unknown function of t such that

− lnx1,it = θ(i, t) + φ′(t) lnBit + vit. (3)

The IDF has the same shape for all firms in time period t and is semi-parametric, be-
cause it is of some functional form that needs to be specified, but the coefficients are
nonparametric functions of t. Hence, there is no a priori assumption on how time affects
the shape of the input distance function.
We measure firm-specific productive efficiency within the frontier concept23 where a tech-
nology frontier is determined by the most efficient firms, i.e. firms using the lowest
input quantities to produce a given output. Firms that span the frontier are considered
productively efficient. Deviations from that frontier can occur due to firm fixed effects,
inefficiency and noise. To construct a yearly frontier technology, we define

θ(i, t) = α(t) +mit (4)

with

α(t) = maxi{θ(i, t)}.

Given that α(t) is the largest intercept θ(i, t) among the firms in period t, mit can be
interpreted as some time and firm-specific distance to a yearly frontier technology. Since
m depends on i and t, it captures the time and firm-specific effects, that can be caused
by the fixed effects µi, transient inefficiency, uit, and persistent inefficiency ηi.
Hence, for the IDF specified in (3), mit is defined by

mit = µi − uit − ηi. (5)

Substituting θ(i, t) in (3) by (4) and (5) and rearranging obtains

− lnx1,it = α(t) + φ(t)′ lnBit + µi − uit − ηi︸ ︷︷ ︸
mit

+vit︸ ︷︷ ︸
εit

(6)

23The frontier concept is also applied in standard stochastic frontier models.
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with

εit = mit + vit = µi − uit − ηi + vit (7)

denoting the composed error term. εit incorporates all potential deviation from the yearly
frontier that is firm-specific.
Assuming a general Cobb-Douglas type stochastic input distance function, Equation 6
becomes

− lnx1,it = α(t) (8)

+
∑

p∈P|−p=1

βp(t) ln x̃p,it

+
∑
q∈Q

γq(t) ln yq,it

+
∑
k∈K

δk(t) ln zk,it + µi − uit − ηi︸ ︷︷ ︸
mit

+vit︸ ︷︷ ︸
εit

.

with the maximum annual intercept α(t), a noise term vit, firm fixed-effect µi, persistent
inefficiency ηi, and transient inefficiency uit. Applying this Cobb-Douglas specification to
our data sample, the numeraire input becomes xL,it, the amount of hours worked. The
right side of Equation 8 only has a single input ratio xN,it/xL,it so that the first summa-
tion becomes trivial. The two outputs considered are yC,it and yE,it, and the exogenous
factors are zD,it and zO,it.
Our estimation strategy to estimate the coefficients βp(t), γq(t), δk(t) is explained in the
Appendix A. The firm specific efficiencies are then determined from the estimated error
terms η̂i and ûit: we differentiate between persistent and transitent efficiency. Persistent
efficiency is calculated by TEpers,i = exp(−η̂i), transient efficiency TEtran,it = exp(−ûit),
and overall efficiency TEov,it with TEpers,i ∗ TEtran,it. Hence, the overall productive ef-
ficiency is always strictly smaller than TEpers,i and TEtran,it except that at least one of
them is equal to one.
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6 Empirical Results

6.1 Interpretation of estimated slope coefficients

Table 4 reports the estimated smoothed coefficients of the IDF separately for each year
in the study period 2006-201224 and the levels of statistical significance obtained by wild
bootstrap. In general, the estimated coefficients, and thus, the elasticities of the IDF,
have the expected signs across the entire time, i.e. β̂N(t) and δ̂D(t) are positive and and
γ̂C(t) and γ̂E(t) are negative which supports our production model.25 The input coef-
ficient β̂N(t) differs significantly from zero in all years, whereas the output coefficients
γ̂C(t) and γ̂E(t) are only statistically significant from 2010-2012. We reiterate that all
technology parameters vary significantly over time, hence favoring a flexible semipara-
metric IDF that captures the transformations in the production process.

Table 4: Estimated coefficients of the input distance function

Year β̂N (t) γ̂C(t) γ̂E(t) δ̂D(t) δ̂O(t)

2006 0.4512* -0.0088 -0.0029 0.0159 0.0139
2007 0.5407* -0.0057 -0.0065 0.0151 0.0391*
2008 0.6531* -0.0035 -0.0108 0.0125 0.0675*
2009 0.7300* -0.0137 -0.0149* 0.0196 0.0480*
2010 0.7705* -0.0347* -0.0166* 0.0367* -0.0085
2011 0.8051* -0.0653* -0.0236* 0.0575* -0.0419*
2012 0.8393* -0.1051* -0.0410* 0.0783* -0.0526*
Note: * denotes the significance at the 10 percent level.

In addition to Table 4, Figure 1 shows that the estimated values of the input coeffi-
cient β̂N(t) increases steadily from 0.45 in 2006 to 0.84 in 2012.26 This coefficient can
be interpreted as the share of total costs associated with a network (Färe et al., 1993).
Equivalently, β̂L(t) = 1 − β̂N(t) is the share of total costs associated with labor input.
In this context, our results indicate that since 2007, the cost share of a network exceeds
the cost share of labor, hence reflecting the capital-intensity of the sector. The increasing
cost share of network, relative to labor, indicates the ongoing expansion and modification
of the network necessary to achieve Energiewende, the rise in decentralized generation,
and the imposed connection of more renewables.
Figure 2 shows the development of the output coefficients over time. Both coefficients de-
crease, i.e. more labor is required when more output is produced. The output coefficients

24We estimate the smoothed coefficients non-parametrically using a bandwidth of 1.1281.
25Due to duality between the distance function and the cost function (Färe et al., 1993), the slope

coefficient of the output is the first derivative of the distance function with respect to this output, which
corresponds to the negative cost elasticity.

26The vertical lines in Figure 1 visualize the 90 percent confidence interval for the annual estimates of
the slope coefficient. The same applies also to the vertical lines in Figure 2 and Figure 3.
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Figure 1: Input coefficient, β̂N(t), over time
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decreases after 2009, which coincides with the politically driven expansion of connecting
more renewable energy.27 This finding indicates that operating the grid (producing addi-
tional output) becomes more costly due to more network complexity and the fluctuations
caused by renewable sources. It is intuitive that γ̂C(t) has a stronger affect on costs
than γ̂E(t), because it is more expensive to build new connections than to increase the
distributed electricity through an existing grid.28

Figure 3 shows the development of the exogenous variables’ coefficients during the study
period. δ̂D(t) is positive, indicating that an increase in the customer density leads to a
decrease in the amount of hours worked. A distribution grid serving a dense area requires
less labor, is a commonly noted empirical result (Filippini and Wild, 2001). Comparing
the left panels of Figures 2 and 3 reveals an interesting pattern of consumer density
(δ̂D(t)), which is inversely related to the temporal progress of γ̂C(t). One explanation is
grid expansion and the associated increased cost of local renewable energy sources. It is
also reasonable that network costs decrease due to increasing consumer density, whereas
the expansion of renewable energy sources affects rural DSOs (Büchner et al., 2014).
While the estimated coefficient δ̂O(t) indicates that overhead power lines are less costly

27While large power plants are normally connected to a transmission network, small-scale renewable
energy sources are mostly connected to distribution grids. As pointed out in 3.1 the forced expansion of
decentralized capacity of small-scale renewables adds to the cost elasticity of the consumers served.

28Connecting a customer to an electricity supply network implies that the grid needs to be expanded.
The increase in fixed costs for installing new distribution lines far exceeds the variable costs for operation.
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Figure 2: output coefficients, γ̂C(t) and γ̂E(t), over time
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than underground cable from 2006 to 2009, they become more expensive in latter years.

6.2 Analysis of efficiency scores

Decomposing the firm-specific distance m̂it to the frontier, according to Equation 5, we
derive time-varying, TEtran,it, and persistent, TEpers,i, efficiency estimates for every DSO.
The results show very high, persistent efficiency scores throughout the sample which vary
between 0.9964 and 0.9965.29 Thus, the overall efficiency score follow the pattern of
TEtran,it. We therefore focus on the time-varying efficiency.
Table 5 lists the summary statistics of the estimated transient efficiency scores, TEtran,it,
by ownership type. In general, the efficiency estimates between 0.78 and 0.98 indicate a
significant variance in performance levels between DSOs for public and private firms. In
2008, the 25 percent quantile of private (state-owned) DSO has an efficiency of 0.8294
(0.8206), whereas the 75 percent qunatile of private (state-owned) DSO has an efficiency
of 0.8819 (0.8728).
Table 5 also lists median efficiency scores between 0.80 and 0.90 over all years and owner-
ship types. Looking at the ownership types separately, the median scores tend to increase
slightly until 2009 and then stabilize. It is worth emphasizing that this is an expected
finding, given that in Germany implemented a more efficiency-oriented regulatory scheme

29The values show the variation between the 25 and 75 percent quantile. Maximum and minimum
persistent efficiency scores cannot be reported due to data privacy, which apply for the whole section.
For convenience, we do not report all results in detail.
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Figure 3: Exogenous factor coefficients, δ̂D(t) and δ̂O(t), over time
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Table 5: Transient efficiency scores TEtran,it = exp(−uit)

Year Type 25% Quart. Median Mean 75% Quart.

2006 public 0.7953 0.8248 0.8230 0.8631
private 0.8758 0.8985 0.8744 0.9240

2007 public 0.7777 0.8021 0.8090 0.8370
private 0.8265 0.8627 0.8594 0.9150

2008 public 0.8206 0.8445 0.8433 0.8728
private 0.8294 0.8525 0.8535 0.8819

2009 public 0.8820 0.8927 0.8931 0.9068
private 0.8539 0.8788 0.8740 0.9097

2010 public 0.8754 0.8895 0.8874 0.9039
private 0.8613 0.8742 0.8706 0.8894

2011 public 0.8716 0.8965 0.8873 0.9130
private 0.8515 0.8702 0.8666 0.8855

2012 public 0.8685 0.8956 0.8829 0.9144
private 0.8244 0.8718 0.8527 0.8942

in 2009. Comparing the median scores of private and state-owned DSOs reveals that pub-
lic firms are on median less efficient before 2007, and catch up in 2008, whereas there is
a negligible difference between the median scores of public and private firms after 2008.
We conclude that private and public firms perform on comparable efficiency levels. Com-
paring the mean efficiency scores reveals the same pattern. A formal Wilcoxon rank-sum
test on average differences supports our conclusion. The Null hypothesis of this test is
that the location shift between the group means is zero. With a p-value of 0.1919 we
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cannot reject the Null. Figure 4 shows the distributions of the transient efficiency scores
for private (solid line) and public (dashed line) firms. The vertical lines represent the cor-
responding means of the distribution. Clearly, both mean values are almost identical.30

Hence, we find empirical evidence that DSOs of both ownership types perform equally
efficiently and adapt equally well to the energy transition.

Figure 4: Distribution of the transient productive efficiency scores, public vs. private

6.3 Robustness Checks

6.3.1 Alternative estimators and specifications

To validate our estimation results and underline the importance of our approach we
compare our smoothed semiparametric slope coefficients with two alternative estimation
procedures. First, we estimate the model as described in Section 5, but with coefficients
that are independent of time.31 As Figure 5 shows, the slope coefficients obtained av-
erage between the time-varying semiparametric coefficients.32 While the slope estimates
we obtained are reasonable, we conclude that an approach with fixed slope coefficients is
not able to capture the technical progress taking place.

30Same applies when comparing the mean values of the overall productive efficiency scores. With a
p-value of 0.1921 we cannot reject the Null hypothesis of the Wilcoxon rank-sum test either.

31Again, we follow the estimation strategy described in the Appendix A until Equation 10. Since the
slope coefficients no longer depend on t, thei estimation becomes an OLS estimation.

32The time independet coefficients are all significantly different from zero on a 1 percent level except
coefficient γ2.

17



Second, we estimate the specified production model using a pooled standard stochas-
tic frontier model33 with and without firm effects. These estimation procedures allow
us to compare our semi-parametric estimation to more common parametric procedures.
Further, it allows comparing the slope coefficients in both time-dependent and time-
independent cases. Table 6, which records the obtained estimated values, shows that the
signs of the slope coefficients are economically reasonable and in line with the findings
from our semiparametric approach. The estimated values of β̂N(t) remain similar. When
comparing the estimates of the slope coefficients associated with the two outputs, γ̂C(t)

and γ̂E(t), it is striking that only those coefficients obtained, including a firm effect, are
similar to those of our semiparametric estimates. It seems that the values of the coeffi-
cients drop as soon as a firm effect is included regardless of whether we use a parametric
or semiparametric model.

Table 6: Estimated coefficients of the input distance function using stochastic frontier
model

Model β̂N (t) γ̂C(t) γ̂E(t) δ̂D(t) δ̂O(t)

SFA without firm effect 0.8958*** -0.4381*** -0.3019*** 0.1538*** -0.0157*
SFA with firm effect 0.8979*** -0.0120 -0.0269 0.0289 0.0259
Note:*** denotes a significance level smaller than 0.1 percent, * denotes the significance
at the 5 percent level.

6.3.2 Estimation with no change in ownership

Since our original sample includes firms that change ownership over time, we perform
the same analysis on a sample which only includes firms having the same ownership in
each year of observation. This robustness check addresses the concern that possibly very
efficient private (public) firms become publicly (privately) owned, and therefore, skew the
results in favor of public (private) ownership.
Table 7 lists the values of the smoothed coefficients of the estimation excluding firms
changing ownership. Comparing these results with those reported in Table 4 shows they
only differ after the third decimal, the shape of this technical production frontier is very
similar to the one estimated beforehand. Since the annual shape of the frontier changes
very little, it is reasonable that the firm-specific efficiency scores also differ very little
between the estimations.
Again, we find mostly efficient and inefficient firms among both state-owned and private
ownership types. The persistent efficiency scores are always close to one and do not differ
between ownership type. Transient efficiency scores are also close to the obtained results.

33More precisely, we use the estimator proposed by Battese and Coelli (1992).
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Table 7: Estimated coefficients of the input distance function, without ownership
changers

Year β̂N (t) γ̂C(t) γ̂E(t) δ̂D(t) δ̂O(t)

2006 0.4567* -0.0081 -0.0030 0.0158 0.0134
2007 0.5458* -0.0047 -0.0066 0.0146 0.0385
2008 0.6585* -0.0028 -0.0109 0.0117 0.0667
2009 0.7350* -0.0135 -0.0149 0.0192 0.0467
2010 0.7742* -0.0347 -0.0165 0.0368 -0.0100
2011 0.8094* -0.0658* -0.0237 0.0581 -0.0424
2012 0.8452* -0.1064* -0.0415 0.0794* -0.0526*
Note: * denotes the significance at the 10 percent level.

The median values for public (private) firms ranges between 0.7997 and 0.895 (0.8494 and
0.9022). While the median of publicly owned firms lags slightly in terms of productive
efficiency until 2008, they catch up later. The Wilcxon rank-sum test with continuity
confirms the result given in Section 6.2 and does not reject the Null with a p-value of
0.3434. Hence, we rebut the argument that firms changing ownership over time influence
the results of this study.

7 Conclusion

Against the background of the ongoing policy debate on ownership in the energy sec-
tor, this paper aimed to understand the performance differences between publicly and
privately owned firms in a sector experiencing significant restructuring. A semiparamet-
ric input distance function model, flexible enough to account for the required changes in
technology and the decomposition of efficiency across ownership type, was proposed. The
model was validated with a rich panel data set of 1897 observations of Germany’s public
and private electricity distribution firms operating between 2006 and 2012. The results
showed that the DSOs’ production frontier changed shape over time, clearly indicating
that firms adapted their technology in response to Energiewende. There was no empirical
evidence that public firms operated any less efficiently than private firms.
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Figure 5: Comparison of slope coefficient, with and without time trend
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A Estimation Strategy

We estimate Equation 3 with 4 in a two-step approach based on Sun et al. (2015).34 In the
first step, we estimate the slope coefficients and intercept of the input distance function.
In the second step we identify the two inefficiency components by making distributional
assumptions on the inefficiency components and on the random firm-effect.35

A.1 Step1: Estimation of slopes and intercept

Assuming a Cobb-Douglas type stochastic input distance function and inserting the
varaibles from our dataset, Equation 3 becomes

− lnxL,it = θ(i, t) (9)

+ βN(t) ln(x̃N,it)

+ γC(t) ln(yC,it) + γE(t) ln(yE,it)

+ δD(t) ln(zD,it) + δO(t) ln(zO,it) + vit.

For estimation reasons, we only estimate the frontier with its time-varying slope coeffi-
cients, but without intercept. We apply the Robinson type transformation (Robinson,
1989) and rewrite Equation 9 as:

− lnx∗L,it = βN(t) ln(x̃∗N,it) (10)

+ γC(t) ln(y∗C,it) + γE(t) ln(y∗E,it)

+ δD(t) ln(z∗D,it) + δO(t) ln(z∗O,it) + vit.

where, for estimation purposes, the expected conditional mean of each variable is sub-
tracted from the original variable’s values, i.e., ln(x∗L,it) = ln(xL,it) − E(ln(xL,it)|i, t),
ln(x̃∗N,it) = ln(x̃N,it) − E(ln(x̃N,it)|i, t), ln(y∗q,it) = ln(yq,it) − E(ln(yq,it)|i, t) ∀q ∈ {C,E},
and ln(z∗k,it) = ln(zk,it)− E(ln(zk,it)|i, t) ∀k ∈ {D,O}.
To estimate the conditional expectations E(ln(xL,it)|i, t) and E(ln(Bit)|i, t) we apply the
nonparametric Nadaraya-Watson kernel estimator used in Sun et al. (2015). The es-

34While Sun et al. (2015) used the semiparametric smooth coefficient model to estimate a cost function
we adapted to estimate an IDF.

35This approach could also be extended to describe firms’ productivity changes and the possible causes.
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timation of Equation 10 follows the estimation strategy of a semi-parametric smooth
coefficients model without intercept (Sun et al., 2015) and provides the nonparametric
functions of the slope coefficients, i.e. β̂N(t), γ̂C(t), γ̂E(t), δ̂D(t) and δ̂O(t).
To estimate the intercept, θ(i, t), in Equation 9, we compute the residuals, ω̂it, of the
estimated distance function using the observed left and right side variables, lnxL,it,
ln yq,it ∀q ∈ {C,E}, and ln zk,it ∀k ∈ {D,O}, and the estimated coefficients as

ω̂it = − lnxL,it − β̂N(t) ln(x̃N,it) (11)

−
∑
q∈Q

γ̂q(t) ln(yq,it)

−
∑
k∈K

δ̂k(t) ln(zk,it).

The residual term ω̂it consists of an intercept and a noise term, i.e., ω̂it = θ(i, t) + vit.
The best predictor for θ(i, t) is its conditional mean E(ωit|i, t), under the assumption that
the noise term vit is uncorrelated with the intercept and has a zero conditional mean,
i.e., E(vit|i, t) = 0. Again, we use the Nadaraya-Watson kernel estimator to estimate
E(ω̂it|i, t). Using the predicted values of θ(i, t), i.e. θ̂(i, t), and Equation 4, we obtain
α̂(t) as the annual maximum observed θ̂(i, t) and m̂it which we interpret as distance from
an observation to the estimated IDF due to inefficiency and firm effect.

A.2 Step 2: Decomposing inefficiency

According to Equation 5, we want to decompose the total distance m̂it into three compo-
nents: persistent and time-varying inefficiency, and a firm effect. We can also interpret
firm effect ηi as unobserved heterogeneity which is constant over time and cannot be
influenced by the firms. Thus, we aim to separate it from inefficiency. For estimation
purposes, however, we use the overall deviation from the IDF, i.e., ε̂it obtained by adding
m̂it and v̂it following Equation 7.
To decompose Equation 7 empirically, we re-define εit as:

εit = a0 + ψi + χit, (12)

where a0 is an intercept which is time-invariant and the same across all observations
and captures the expected means of each of the components shown in Equation 7, i.e.,
a0 = E[vit] + E[µi] + E[−uit] + E[−ηi]. Assuming that noise vit and firm effects µi

are variables of zero mean, yields to a0 = E[−uit] + E[−ηi]. Further, ψi captures all
time-invariant observation-specific components in Equation 7 and is defined as ψi =

27



µi − [ηi + E[−ηi]] = µi − ηi − E[−ηi]. χit captures instead all time-varying observation-
specific effects and is given by χit = vit − [uit + E[−uit] = vit − uit − E[−uit].

Random firm effects ψi represents a firm-specific fixed effect entered explicitly in
the model. To obtain an estimate of the firm effects, we introduce firm-specific dummy
variables di that becomes 1, if firm i is observed in the year t considered.
Hence, Equation 12 becomes

εit = a0 +
N∑
j=1

ψidj + χit, (13)

where index j is an alias of index i. We estimate the model using ordinary least squares
(OLS) where the dependent variable εit is substituted by ε̂it = m̂it + v̂it. From that we
obtain ψ̂i0 and χ̂it.

Persistent inefficiency ηi, is part of the firm effect ψi. Since ψi := µi + [ηi − E(ηi)]

and b0 = −E[−ηi], we can write

ψi = b0 + µi − ηi. (14)

We use the typical stochastic frontier approach for production functions, where b0 repre-
sents the constant term, µi, the i.i.d. persistent noise term (firm effect) and ηi represents
half normally distributed noise, i.e., persistent inefficiency. We estimate the model by
substituting ψi with ψ̂i obtained from Equation 13 and determine the persistent TEpers,i

following Jondrow et al. (1982) as E(−η̂i|ri), with ri = µ̂i + η̂i.

Transient inefficiency Similar to determining persistent inefficiency estimates, we use
the definition χit = vit + [uit − E(uit)] and write

χit = c0 + vit − uit (15)

with the intercept c0 = −E(−uit). uit follows a half normal distribution representing
the inefficiency term, and vit, normally distributed term with zero mean, accounts for
noise. To estimate Equation 15, we replace χit by its estimate χ̂it. Again, we determine
time-varying inefficiency, TEtran,it by computing E(−ûit|sit) (Jondrow et al., 1982). sit
describes the complete residual term, which is composed of ûit + v̂it.
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