
Vasilev, Aleksandar

Research Report

Notes on Exogenous Growth Models

Suggested Citation: Vasilev, Aleksandar (2017) : Notes on Exogenous Growth Models, ZBW - Deutsche
Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft, Kiel und
Hamburg

This Version is available at:
https://hdl.handle.net/10419/149875

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/149875
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Notes on Exogenous Growth Models

Aleksandar Vasilev

February 7, 2017

1 Exogenous Growth Models

Note: Macroeconomics was invented by John Maynard Keynes, particularly to describe one

event - the Great Depression in the US in the late 1920s, early 1930s. He wanted to under-

stand aggregate behavior.

Nowadays, there are three important ingredients of the analysis when thinking about modern

macroeconomics. These are:

(1) The analysis should be conducted within a general equilibrium framework - not only

what happens in one sector of the economy, but also in all the others.

(2) Dynamics is important - e.g. the investment process. It is important for the process

of economic growth (and business cycle analysis). In addition, firms solve forward-looking

dynamic optimization problems.

(3) Uncertainty is important - economies are subject to shocks. [In this course, however, we

will stick mostly to deterministic setups.]

Note: In other words, modern macroeconomics is concerned with dynamic stochastic gen-

eral equilibrium models. Used in growth literature, business cycles studies, labor economics.

MATLAB, GAUSS programming needed to solve numerically this class of models. The

methodology, the tools needed to address those ingredients/issues were not developed at the

time of Keynes. What Keynes did was to try to take a shortcut. In 60− 70 those shortcuts

failed. Economists in the 70s went back to the micro-foundations.

When thinking about an economy, one should always think in terms of a resource allo-
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cation problem. A full description of an economy should imply resource allocation. The

following classic macroeconomics problems are expressed in terms of resource allocation:

(i) Growth - Why is it that per capita consumption in the U.S. is 10 times higher than

it was 100 years ago? (time series analysis)

A follow-up question is: How much is produced, consumed, allocation of free time?

(ii)Business Cycles - Why (and by what magnitude) does aggregate output fluctuate over

time?

(iii)Development - Why is per capita consumption in the U.S. 15 times larger than, say,

India? (cross-section issue)

(iv) Labor - Why is time devoted to market work in the U.S. 25 % higher than in Europe?

In turn, the question of allocations leads to the issue of welfare. Note that prices are not

part of the fundamentals of the economy - but they influence resource allocation through

the relative valuation of the commodities. In addition, macroeconomists are interested in

the quantitative nature of the issue, not the qualitative one. A good model should be able

to explain the magnitudes (by resorting to MATLAB).

To begin, we consider only the first ingredient listed above: general equilibrium. The fol-

lowing section presents the simplest exposition of a model in general equilibrium without

dynamics and uncertainty.
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1.1 Static General Equilibrium Models: Abstract Theoretical Setup

1.1.1 The Endowment Economy

An economy, E, is described as a list, {(xi, ui, wi), i = 1, ..., I}, where:

Xi ⊂ <K+
ui : Xi → <
wi ∈ Xi.

That is, the list describes the consumption set for agent i, a utility function for agent i, and

an endowment for each agent i, where there are I individuals and K goods.

The above is a clearly defined economy; with the information we can tell i) what alloca-

tions are feasible, and ii) given a choice of anything that is feasible, we can say what is the

utility out of those choices.

Definition An allocation for economy E is a vector {x1, x2, ..., xI} with xi ∈ Xi for i =

1, ..., I. That is, each individual is described by the vector of goods in their consumption

set. Note that at this point there are no constraints on feasibility.

Definition A feasible allocation for this economy is an allocation {x1, x2, ..., xI} with xi ∈
Xi for i = 1, ..., I and,

I∑
i=1

xi =
I∑
i=1

wi.

The individual is described by a vector of goods in their consumption set that satisfy the

total resources available in the economy E.

Note each xi is a vector and we could also write the constraint as:
∑I

i=1 xik =
∑I

i=1wik,

k = 1, ...K.

Note that there may be commodities that are not good (radioactive waste, pollution, envi-

ronmental degradation). In this case we will have strict inequality.

The analysis is judgement-free, because we are not discussing issues like fairness.

Pareto efficient allocation - we cannot change it so that we can make somebody better

off, without making someone else worse off.

Definition An allocation is Pareto efficient if,
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1. {x1, x2, ..., xI} is feasible, AND

2. there does not exist another feasible allocation {x′1, x′2, ..., x′I} with ui(x
′
i) ≥ ui(xi), for

i = 1, ..., I, with strict inequality for at least one i.

Consider I = 2, K = 1, ui(xi) = xi, xi = <+, and wi = 1, i = 1, 2. Here all allocations

are Pareto efficient - we cannot make consumer 1 better off, without making consumer 2

worse off.

Definition A competitive equilibrium for economy E is a price vector p∗ ∈ <K and an

allocation {x∗1, x∗2, ..., x∗I} ∈ X1 × X2 × ... × XI (dimensionality of the price vector) subject

to:

1. (Consumer Maximization)

For each i = 1, ..., I taking p∗ as given, x∗i is a solution to:

max
xi

ui(xi)

s.t. p∗ · xi ≤ p∗ · wi
xi ∈ Xi

2. (Market Clearing)
∑I

i=1 x
∗
i =

∑I
i=1wi

Note in 1, the agent does not do what is feasible in the economy as a whole - the agent

will go out and purchase goods that are not there, i.e. do not satisfy market clearing, even

if they satisfy the budget constraint. Market clearing ensures that agents act according to

what is feasible in the economy E.

Assuming preferences and consumption sets are well behaved (i.e. continuous, monotone

and convex), then a competitive equilibrium exists. Existence can be shown to exist given

certain weak conditions. Later the setup can be extended to consider markets with monopoly

power and monopolistic competition, bargaining between workers and firms (search), and

strategic equilibria in industrial organization (IO).

Two other questions are also of great interest for macroeconomists:

(1)If (p∗, x∗1, x
∗
2, ..., x

∗
I) represents a competitive equilibrium, under what conditions is (x∗1, x

∗
2, ..., x

∗
I)

Pareto efficient? (First Welfare Theorem)

- weaker conditions than those for existence are required.

(2) If (x∗1, x
∗
2, ..., x

∗
I) is a Pareto efficient allocation, is it possible to achieve it as part of a

competitive equilibrium, subject to allowing redistribution of endowments (Second Welfare

Theorem)?
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These questions comprise the two welfare theorems. Again, note that equilibrium allocations

do not imply fairness.

Next, we extend the static framework to incorporate firms and production.

[END OF LECTURE 1]

1.1.2 Static Production Economy

Economy E is described by the list {(xi, ui, wi), i = 1, ..., I, Yj, j = 1, ..., J}, where:

Xi ⊂ <K+
ui : Xi → <
wi ∈ Xi.

Yj ⊂ <K , j = 1, ..., J

The production economy is described by J firms, and each Yj denote the technology of a

firm. Yj describes feasible choice of inputs and outputs, where a negative number is an input

and a positive number an output. yj ∈ Yj means yj is a feasible choice of inputs and outputs

for firm j.

Note we are denoting production using sets and not production functions. Later we will

use production functions, but in essence they are equivalent. For example, we if we specify

a production function y = f(h) where h is labor input and y is the output good, then we

can also specify a set Y = {(z1, z2) ∈ <2 : z2 = f(−z1), z1 ≤ 0}

Definition An allocation for economy E is a list {x1, x2, ..., xI , y1, y2, ..., yJ} with xi ∈ Xi∀i
and yj ∈ Yj∀j.

Definition A feasible allocation for E is a list {x1, x2, ..., xI , y1, y2, ..., yJ} with xi ∈ Xi∀i
and yj ∈ Yj, ∀j and,

I∑
i=1

xi =
I∑
i=1

wi +
J∑
j=1

yj

Definition An allocation is Pareto efficient if,

1. {x1, x2, ..., xI , y1, y2, ..., yJ} is feasible,

2. there does not exist another feasible allocation {x′1, x′2, ..., x′I , y′1, y′2, ..., y′J} with ui(x
′
i) ≥

ui(xi), i = 1, ..., I, with one strict inequality for at least one i.

5



Note that here individuals own firms. Therefore, let θij represent the fraction of firm j that

is owned by individual i. We require 0 ≤ θij ≤ 1 for all ij and
∑I

i=1 θij = 1, ∀j.

Definition A competitive equilibrium for the economy E is a price vector p∗ ∈ <K ( we

can allow for negative prices if there are ”bads” such as radioactive waste) and an allocation

{x∗1, x∗2, ..., x∗I , y∗1, y∗2, ..., y∗J}, and profits {π∗1, π∗2, ..., π∗J} subject to:

1. (Consumer Maximization)

For each i = 1, ...I, taking p∗ and {π∗1, π∗2, ..., π∗J} as given, x∗i is a solution to:

max
xi

ui(xi)

s.t. p∗ · xi ≤ p∗ · wi +
J∑
j=1

θijπ
∗
i

xi ∈ Xi

2. (Firm Maximization)

For each j = 1, ..., J , taking p∗ as given, y∗j is a solution to:

max
yj

p∗ · yj

s.t. yj ∈ Yi

3. (Market Clearing)
∑I

i=1 x
∗
i =

∑I
i=1wi +

∑J
j=1 y

∗
j

Note: we do not know whether the equilibrium is unique. If the technology features Con-

stant Returns to Scale (CRS), in equilibrium profits will be zero. If profits of a firm are not

zero, it is not a competitive equilibrium. Generically, the solution of a general equilibrium

problem is not unique.

Note: The budget constraint may hold with a weak inequality - you may prefer not to

spend all.

Note: Primitives of a model are preferences, technology, endowments. Those have to be

specified for every economy.

General remarks about models: What is the objective of a certain model? - to be used

to analyze certain issues. Obviously, the ultimate model is too complicated, and unman-

ageable for a single individual to handle. A good model is thus a parsimonious one. What

issues need to be addressed? The relevence of the details in the model should be evaluated
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on a case by case basis.

DSGE Modeler’s Motto: ”All models are wrong, but some are useful” (N. Kocherlakota)

For all models we can find an assumption that somewhere in the real world does not hold.

We should accept that deficiency and move forward. We want to capture the important

forces at play and abstract away from the unimportant ones. To isolate the quantitatively

important issue, to keep it clean. Research is a learning process, literal descriptions are not

very important. We do not evaluate the models only based on assumptions.

We now expand our simple model to include dynamics.

2 Neoclassical Growth Model with Infinitely Lived Agents

The natural starting point for this is the neoclassical growth model. This model is also useful

to analyze business cycles, questions related to the standard of living, fiscal and monetary

policy. The model is the first word on those (but not the last). The growth model captures

non-neutral (non-degenerate) trade-offs. In general, a resource allocation problem implicitly

defines trade-offs. Two fundamental trade-offs relevant to many aggregate issues are:

1. leisure ←→ consumption: One way to get more consumption is to give up leisure and

work more.

2. consumption ←→ investment: This is equivalent to a trade-off between consumption

today and consumption in the future. Investment goods cannot be consumed imme-

diately, but can be used to produce stuff to be consumed in the future. Investment

influences how much capital the household owns, and how much it works. Production

is split between consumption and investment.

The neoclassicial growth model is the simplest framework to address those issues and the

interesting trade-offs. But what makes the growth model simple? The common simplifying

assumptions of the growth model are (1) there is only one good. Obviously this setup cannot

be used for countries that invest a lot in education or health services;

(2) all individuals are identical. In many contexts that is identical to having one agent. What

happens in the economy if everyone is the same? This allows us to compare avergades, and

to abstract away from distributional aspects of the analysis;

(3) the same good is used for consumption and investment. We will not distinguish between

consumption and investment goods for now.
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2.1 Dynamic General Equilibrium Model with Production, Part I

When writing down a model, we must always begin by specifying preferences, technology,

and endowment. In this case time is discrete, t = 0, 1, 2, ..., and infinite.

Preferences : There is a single consumer with preferences defined over consumption,

{ct}∞t=0 and leisure, {1− ht}∞t=0, given by,

∞∑
t=0

βtu(ct, 1− ht) = u(c0, 1− h0) + βu(c1, 1− h1) + ...

where u : <+ × [0, 1] → < and the discount factor β ∈ (0, 1). Assume ui(ct, 1 − ht) > 0

and uii(ct, 1 − ht) < 0 for i = 1, 2, and u ∈ C2. That is, u is strictly increasing in both

arguments, strictly concave and is twice differentiable. Under this assumptions, the utility

function describes the preferences of the households (but may not be unique), how much

they consume and how much utility they obtain out of it. ht is the time spent working.

The discount factor β reflects the fact that the household obtains less utility from stuff in

the future. u(., .) is called the momentary (period) utility function, and we will assume it is

additively separable over time.

Technology : Aggregate production function:

yt = F (kt, ht)

where yt is output, kt is capital input and ht is labor input at t and F : <+ ×<+ → < (not

defined on negative values). Output can be used for either consumption or investment,

ct + it = yt

and ct ≥ 0. Investment leads to increased capital in the next period along with capital

depreciation,

kt+1 = (1− δ)kt + it

where δ ∈ (0, 1) and kt ≥ 0. The assumption that it is allowed to be negative corresponds to

having a ”putty-putty” technology: output can be invested and turned back into consump-

tion. Compare this to ”putty-clay” technology, where once output is turned into investment,

it cannot be turned back into consumption.

Assumptions on the production function:

1. F satisfies constant returns to scale (∀a ≥ 0, k, h ≥ 0, F (ak, ah) = aF (k, h)). Repli-

cation should be the worst case, not DRS (decreasing returns to scale), which is not

interesting possibility on agregate level.
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Example: oil is a finite resource, hence we will not be able to always upscale the use

of a resource. However, the returns to scale is only a description of the technology. It

says nothing about the availability of a resource.

2. F (0, h) = 0∀h. This is also called ”no free lunch” condition.

3. Fi(kt, ht) > 0 for i = 1, 2 and kt, ht > 0,

4. Fii(kt, ht) < 0 for i = 1, 2 and Fij(kt, ht) ≤ 0 when i 6= j. In other words, the function

is strictly concave in each argument individually, and weakly concave jointly (CRS).

5. F ∈ C2,

6. (Inada Conditions)

lim
k→0

F1(k, h) = +∞

lim
k→∞

F1(k, h) = 0

where h > 0.

Endowment The consumer is endowed with one unit of time in each period. Capital

stock for t = 0 is defined as k0 > 0.

Given that we defined preferences, technology, and endowment, the economy now de-

fines a resource allocation problem.

Definition An allocation for this economy is a list of sequences {cct}∞t=0, {hct}∞t=0,

{yft }∞t=0, {h
f
t }∞t=0, {k

f
t }∞t=0 subject to,

(a) cct ≥ 0∀t

(b) hct ∈ [0, 1]∀t

(c) hft ≥ 0, kft ≥ 0∀t

(d) yft = F (kft , h
f
t )∀t

We can express the following definition more succinctly by doing away with superscripts

found above.
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Definition A feasible allocation for this economy is an allocation {ct}∞t=0, {kt}∞t=0,

{yt}∞t=0, {ht}∞t=0 subject to,

kt+1 = (1− δ)kt + yt − ct∀t
yt = F (kt, ht)∀t
ht ∈ [0, 1], ct ≥ 0, kt ≥ 0∀t and k0 is given.

Before we go any further, in the next section we present a special case of the growth

model.

2.2 Solow Growth Model

Given the above description of the environment, we impose a few ad-hoc restrictions

that yield the Solow-Swan growth model (what follows is a discrete time version of

Chapter 1 in Barro and Sala-i-Martin). Assume that for each period:

(a) ht = 1 (consumer spends all time working)

(b) it = syt, s ∈ [0, 1] (savings rate is constant)

[END LECTURE 2]

Now define f(kt) ≡ F (kt, 1). Our first task, given these decision rules, is to find

what allocation will emerge for this economy. We can completely characterize the

economy by iterating. To start, we are given an initial k0, and h0 = 1. Therefore, at

t = 0 we have:

y0 = f(k0)

i0 = sy0

c0 = (1− s)y0

Substituting in these values yields the equivalent for t = 1:

k1 = (1− δ)k0 + sy0

h1 = 1

y1 = f(k1)

c1 = (1− s)y1
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Repeating this process infinitely more times, we obtain the required sequences. In

general, kt+1 = (1 − δ)kt + sf(kt), for every t with k0 given, is a first-order difference

equation. We can also understand some of the properties the solution will have. Define:

g(k) = (1− δ)k + sf(k)

It follows that the sequence {kt}∞t=0 is defined by kt+1 = g(kt)∀t and k0 is given.

Next we examine g(·) for the case s > 0:

(a) g(0) = 0 (because f(0) = 0)

(b) g is strictly increasing (because f is strictly increasing)

(c) g is strictly concave (because f is strictly concave)

(d) limk→0 g
′(k) = +∞ (Inada conditions on f)

(e) limk→∞ g
′(k) = (1− δ) < 1 (Inada conditions on f). At some point the function

crosses the 45 degree line from above. The slope is less than unity at the point

of crossing and ever after.

From a graph of g(k) we can reach the following conclusions:

(a) There exists a unique k∗ > 0 such that g(k∗) = k∗,

(b) if 0 < k < k∗, then g(k) > k,

(c) if k > k∗ then g(k) < k.

In addition we can something stronger regarding observations 2 and 3. If 0 < k < k∗,

then k∗ > g(k) > k by strict monotonicity of g. Also if k > k∗, k∗ < g(k) < k.

Remember kt+1 = g(kt). We can analytically derive the following propositions.

Proposition 2.1 Assume s > 0 and 0 < k0 < k∗. Then {kt} has the following

properties:

(a) {kt} is strictly increasing,

(b) limt→∞ kt = k∗.
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Proof (1) Since g is monotonically increasing, g(kt) > kt∀t. Since k0 ∈ (0, k∗) then

we know k∗ > k1 > k0 (since k1 > k0 and 0 < k1 < k∗). Then by repeated iteration we

have k∗ > kt+1 > kt∀t.
(2) Since {kt} is strictly monotonic and bounded, then it converges. Let kl be the limit

of the sequence. It remains to be shown that kl = k∗. We know kt+1 = g(kt) and g is

continuous function, then limt→∞ kt+1 = limt→∞ g(kt) = g(kl). Therefore, kl = g(kl).

Since k∗ is a unique positive solution to the difference equation, then it must be that

kl = k∗.

Proposition 2.2 Assume s > 0, k0 > k∗. Then {kt} has the following properties:

(a) {kt} is strictly decreasing,

(b) limt→∞ kt = k∗.

Proof (1) Since k0 > k∗, then k0 > k1 > k∗ because of strict monotonicity of g. By

repeatedly iterating we have kt > kt+1 > k∗∀t.
(2) Once again since {kt} is monotonically decreasing and bounded from below by k∗,

the sequence converges to some value kl. Since kt+1 = g(kt) and g is continuous,

limt→∞ kt+1 = limt→∞ g(kt) = g(kl). Therefore, kl = g(kl) = k∗ since k∗ > 0 is a

unique solution.

Proposition 2.3 Assume s > 0, k0 = k∗. Then {kt} = k∗∀t.

Proof Since k0 = k∗, it follows that k1 = k0 since g(kt) = kt∀t. Then kt = kt+1 = k∗∀t

Proposition 2.4 Assume s > 0, k0 = 0. Then {kt} = 0∀t.

Proof Since k0 = k∗, by definition of g, g(k0) = g(0) = 0 = k1. Then clearly

kt+1 = g(kt) = 0∀t.

Assume k∗ > 0 satisfies g(k∗) = k∗, k∗ > 0.

Definition A steady state value of k is k∗ such that kt = k∗ implies kt+1 = k∗.

Remark: In our model, there are two steady states: 0 and some positive value. Also

note that if g(k∗) = k∗ = (1− δ)k∗ + sf(k∗) implies sf(k∗) = δk∗.

More generally, kt+1 = g(kt), k0 given is an example of a dynamical system. Classic

questions that arise in the context of dynamical systems are:
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(a) Does the system have a steady state? If so, is it unique?

(b) Do you get convergence to a steady state from arbitrary initial values?

(c) If you get convergence, what is the nature of convergence, i.e. is it mono-

tone/oscillatory or something else?

The equation that generally characterizes {kt} is kt+1 = (1− δ)kt + sf(kt). Assuming

k0 > 0, we can rearrange to get:

γkt =
kt+1 − kt

kt
=
sf(kt)

kt
− δ

This is the growth rate of kt, which we denote γkt . The relationship describes the

connction between the value of today’s capital and the growth rate of capital tomorrow.

Properties of sf(k)/k:

(a) limk→0 sf(k)/k = sf ′(k)/1 = +∞

(b) limk→∞ sf(k)/k = sf ′(k)/1 = 0

Therefore,
∂γ

∂k
=
sf ′(k)k − sf(k)

k2
=
s[kf ′(k)− f(k)]

k2

Recall Euler’s Theorem states that F (k, h) = F1k+F2h = 0, so kf ′(k)− f(k) < 0 and

it must be that ∂γ/∂k < 0. By the properties of sf(k)/k) established earlier, we know

growth approaches ∞ as k → 0 and 0 as → ∞. Also since growth is decreasing in k

implies that if 0 < k0 < k∗, then γkt > 0 and is decreasing as k0 → k∗. Likewise, if

k0 > k∗, then γkt < 0 as k0 → k∗.

In this case, monotonicity in k, implies that we have monotonicity in y, c, i as well.

Define:

γyt =
yt+1 − yt

yt
=
f(kt+1)− f(kt)

f(kt)

We perform Taylor expansion around f(kt+1) where f(kt+1) = f(kt) + (kt+1− kt)f ′(kt)
to get:

γyt =
(kt+1 − kt)f ′(kt)

f(kt)

Which we can expand to:

γyt =
(kt+1 − kt)

kt

f ′(kt)

f(kt)
kt = γkt

ktf
′(kt)

f(kt)
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Therefore, for γyt to be monotonically decreasing, we must have ktf
′(kt)/f(kt) be mono-

tonically increasing in k as well. This might not always be the case.

Monotonicity properties of sf(k)
k

d

dk

[
sf(k)

k

]
=
sf ′(k)k − sf(k)

k2
=
s[f ′(k)k − f(k)]

k2
< 0

Why? because f ′(k)k is payment to capital, and f ′(k)k < f(k). The latter follows

from the Euler theorem

F (k, h) = F1(k, h)k + F2(k, h)h

As kt increases, γkt decreases, the curvature of the capital stock path decreases.

γkt is also monotone. If 0 < k0 < k∗, then γkt is decreasing. If k0 > k∗, then γkt is

increasing (less negative). In other words: the further away the economy is from the

steady-state, the higher the rate of your capital accumulation.

Next, how does the monotonicity of k translates to the other variables?

y = f(k), c = (1− s)f(k), i− sf(k), there is a 1:1 mapping.

What about the growth rates? If γkt is monotone, what can we say about γyt , γct , γ
i
t? In

terms of growth rates, γyt = γct = γit (because in this setup consumption and investment

are scalars of output).

γyt =
yt+1 − yt

yt
=
f)kt+1)− f(kt)

f(kt)
=
f(kt) + (kt+1 − kt)f ′(kt)− f(kt)

f(kt)
= (kt+1−kt

f ′(kt)

f(kt)
= γkt

f ′(kt)

f(kt)

where the first line is obtained by using a first-order Taylor approximation of f(kt+1)

around kt, and the second - by multiplying and dividing by kt.

As kt goes down, γkt increases. In order for the frowth rate to be monotone, we require

that kf ′(kt)
f(kt)

be strictly decreasing in k. Note that generally the growth rate of variables

is non-constant, except for the case of Cobb-Douglas production function when the

fraction is α, the constant capital share.

We can do comparative statics exercises - by taking two different economies, or com-

parative dynamics and trace some dynamics. This is described in the next section.
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2.2.1 Comparative Dynamics

How does s∗ affect the (positive) steady state in our model? What the new steady-state

would be? Recall, for a given value of s, k∗ satisfies,

k∗ = (1− δ)k∗ + sf(k∗)

or,

δk∗ = sf(k∗)

Let k∗(s) denote the value of capital in the positive steady state as a function of savings.

k0 can be zero. Still, there are two steady states. Important note: how many steady

states an economy has is independent of the initial conditions. Initial conditions are

needed for the time path of the variables. If k0 > 0, k = 0 will never be achieved but

that is another issue. We should make a clear distinction between the two statements.

Similarly let y∗(s) and c∗(s) denote output and consumption in the positive steady

state.

What can we say about k∗(s)? Since k = φ(s), we can use the equation k∗ = (1 −
δ)k∗ + sf(k∗) and the implicit function theorem to differentiate with respect to s:

k∗′(s) =
f(k∗(s))

δ − sf ′(k∗′(s))
> 0

Note that

δ = s(f(k∗(s)))/k∗ > f ′(k∗(s))] > 0.

The inequality follows from the fact that the average product of capital less the

marginal product of capital. By concavity of f we know that the marginal prod-

uct decreases faster than the average product.

Remark: s ∈ [0, 1]. By our last result k∗(s) is the largest capital stock. Even if

s = 1, the capital stock is bounded. Why? (Inada conditions of the production func-

tion, k∗(1) <∞. At that point people do not consume anything.)

Note that

y∗(s) = f(k∗(s)).

* It follows that y inherits any monotonicity properties of k∗(s), so y∗(s) is monotoni-

cally increasing.

What about c∗(s)? Simple observation tells us c∗(0) = k∗(0) = 0, i.e. if everything will
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be consumed, nothing will be invested, thus nothing will be produced in equilibrium,

and in the steady-state. Also, c∗(1)=0 when everything is invested, a lot of output is

produced, but nothing is consumed again. c∗(s) is thus not monotonic function. Since

c∗(s) = y∗(s)− i∗(s) and i = δk, then c∗(s) = f(k∗(s))− δk∗(s). Differentiating c∗(s),

we get:

c∗′ = [f ′(k∗(s))− δ]k∗′(s).

If we show

f ′(k∗(1))− δ < 0

and

f ′(k∗(0))− δ =∞

then

f ′(k∗(s))− δ = 0

for some s. Also,

f ′(k∗(0))− δ =∞

by the Inada conditions on f . Recall that δk∗(1) = f(k∗(1)) implies

δ = f(k∗(1))/k∗(1) > f ′(k∗(1))

by the fact that average product of capital is greater than marginal product of capital.

Therefore,

f ′(k∗(1))− δ < 0

, i.e. c∗(s)is increasing and then decreasing. At the value of s where f ′(k∗(sG)) = δ we

define sG as the Golden Rule savings rate. At this intermediate point consumption is

maximized. Note that associated with sG, we have the values of cG, kG, yG.

2.2.2 Transition

Consider an economy with a particular savings rate s, that is at the corresponding

steady state. What happens if we change s? Countries with s for a long time will be

assumed to be at the steady state (or at least very close to it).

(a) Switch from s < sG to sG. At time 0, k0 corresponds to k∗(s). k is increasing at

a decreasing rate in s, growth is decreasing. Output follows the same dynamics.

Consumption initially drops below c∗(s), then follows the dynamics of y(sG).

Question: Is it good for the economy to increase s to sG? Unclear, depends on
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discounting. In particular, depends on the utility function, which describes the

trade-off between current and future consumption. The utility function takes

into consideration all the periods until the economy arrives at c(sG).

(b) Switch from s > sG to sG. Capital and output monotone decreasing, consumption

initially jumps above c∗(sG), then decreases monotonically to that level. At the

end, we have a higher level of steady-state consumption, that is why initially

consumption has to be higher (above the c∗(sG) level, and then decrease to that

level.

The graphs for these two scenarios to follow.

In Case 1, k∗(sG) > k∗(sG) (because k is increasing in s). Likewise, y∗(sG) > y∗(s).

Because sG maximizes consumption, c∗(sG) > c∗(s). Note however, that in t = 0 (the

t at which s is changed, c0(s
G) < c0(s). Therefore, the consumer suffers a decrease in

consumption before the benefits of s are realized. Consequently, it is not clear whether

an increase in the savings rate to sG is a good idea.

In Case 2, k∗(sG) < k∗(s) for the same reason. Likewise, y∗(sG) < y∗(s). Because

sG maximizes consumption, c∗(sG) > c∗(s). Note that in this scenario c0(s
G) > c0(s),

so the benefits of s are immediate. This economy is said to be dynamically inefficient.

Therefore, it is a good idea to reduce s because consumption is always higher. This is

despite the fact that we are reducing both capital stock and output.

Pareto efficiency is not a useful concept in dynamic setting. We can only say the

economy is efficient or not.

: A good homework question - the speed of which the economy will converge to the

steady state. Assume ht = 1, hence yt = kθ, with θ = 0.3, δ = 0.1, s = 0.2. It

takes infinite amount of time to get there. So we will compute how long it takes to

get half-there. Starting from k0 = 0.5 ∗ k∗, iterate in MATLAB on the difference

equation kt+1 = (1 − δ)kt + skθt . When will the concave function cross the 45 degree

line.Application of FOR loop, or WHILE comment, do while kt < 0.75∗k∗. Plot. Show
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the number of iterations.

2.3 Solow Growth Model with Exogenous Labor-Augmenting

Technical Change

Independently of s, both {kt} and {yt} are bounded. Asymptotically growth rate goes

to 0. Yet a simple fact from the real world: even over long periods, 100-200 years, we

do not see any tendency of growth of output/capital to tend to zero. On the contrary,

it is fairly constant (2 percent). Also, Solow model predicts no matter where you start,

in 50 years the economy is pretty close to its steady state. Such a fast convergence is

not what we see in reality.

This is a problem. What is missing? The answer is technological progress. Recall

that in the above production function, the relationship between inputs does not change

over time, i.e. the share in production remains the same. Incorporating technological

progress into the model is a easy way to allow continued growth.

How do we model technological progress? In other words, (1) how can we express

being able to product more output given fixed input, (2) organize inputs in a more effi-

cient way (Henry Ford’s assembly line), (3) distinguish between methods of production

(a machine doing something quicker than people in sectors like textile, agriculture), or

(4) distinguish between quality versus quantity in production (computers).

Let At represent an index of technology at time t (state of the technology). If tech-

nology is improving over time, then At is increasing. From the production function

yt = F (kt, ht) we incorporate technology in three ways

(a) (Neutral Technology) yt = AtF (kt, ht). Distributed equally between inputs.

(b) (Labor-Augmenting Technological Change) yt = F (kt, Atht). Like having more

workers.

(c) (Capital-Augmenting Technological Change) yt = F (Atkt, ht)

Note since F (·) exhibits CRS, it can be expressed as: yt = F (Atkt, Atht). Only (2)

will deliver constant growth rates over long periods of time (more on this later). [Of

course, not all technological progress in reality is labor-augmenting.] We are now ready
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to present the model.

How about technological regress? Where is the frontier? Are they producing effi-

ciently? Are there distortions? Thus we measure regress not in terms of frontier but

in terms of efficiency, the anture of the economic environment. Poor economies are a

lot less efficient, not that the technology frontier is lower for them.

Exogenous - take as given. Usually a bunch of people push the frontiers in research

labs.

Preferences. Single agent with preferences,

∞∑
t=0

βtu(ct, 1− ht)

Technology.

yt = F (kt, Atht)

ct + it = yt

kt+1 = (1− δ)kt + it

At+1 = (1− γA)At

where γA > 0. Usually technological progress arrives over time, and there are fluctua-

tions, but here the rate is constant.

Endowments The agent is endowed with one unit of time each period, k0 units of cap-

ital at time 0, and A0 = 1 (just an index, a normalization).

Note that this setup is very similar to the plain Solow growth model. We proceed

exactly as before. Consider the decision rules:

it = syt,∀t
ht = 1∀t

Now define,

ktt+ 1 = (1− δ)kt + sF (kt, At)

where At = (1 + γA)t. Does this system possesses a steady state with positive capital?

If k∗ is a steady state, then k∗ satisfies:

k∗ = (1− δ)k∗ + sF (k∗, (1 + γA)t),∀t
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and δk∗ = sF (k∗, (1 + γA)t) for all t. Note the right hand side is increasing over time

if k∗ > 0, since (1 + γA)t is increasing. The left hand side is constant for all t.

It remains to be shown that the system has a solution in which {kt} grows at a constant

rate.

To do this, define the following transformation: k̃ = kt/(1 + γA)t. Now divide kt+1 =

(1− δ)kt + sF (kt, At) by (1 + γA)t,

kt+1

(1 + γA)t
=

(1− δ)kt
(1 + γA)t

+
sF (kt, At)

(1 + γA)t

to get:

k̃t+1(1 + γA) = (1− δ)k̃t + sF (k̃t, 1)

Now divide by (1 +γA) and define (1− δ̃) = (1− δ)/(1 +γA) and s̃ = s/(1 +γA). Note

that δ̃, s̃ ∈ [0, 1]. Thus we arrive at:

k̃t+1 = (1− δ̃)k̃t + s̃f(k̃t)

This equation has the same properties as the untransformed variant. If s̃ > 0, the

system has a unique steady state k̃∗ and we get monotone convergence to k̃∗ from any

k̃0 > 0. Note also that if k̃0 = k̃∗, then k̃t = k̃∗∀t.

By our transformation, we know:

kt = (1 + γA)tk̃t

If k̃t = k̃∗∀t, then kt grows at a constant rate (1 + γA).

Remark: Any path {kt} which exhibits constant growth at rate (1 + γA) necessarily

corresponds to a steady state k̃∗. Note that if k̃0 > k̃∗, then k̃t is decreasing, but

(1 + γA) is increasing, so {kt} does not have to be monotone.

Definition A solution {kBGt } to kt+1 = (1− δ)kt + sF (kt, (1− γa)t), kt ≥ 0∀t is called

a balanced growth path solution if kBGt+1 = (1 + γk)kBGt for some γk.

In other words a balanced growth path solution is a solution with a constant growth

rate (note there is no mention of initial conditions).

How many balanced growth path solutions to we have?

(a) kt = 0∀t
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(b) k0 = (1 + γk)k̃∗, γk = γA

Can we have other balanced growth path solutions in which kt > 0∀t and γk 6= γA?

One way to check is to divide kt+1 = (1 − δ)kt + sF (kt, At) by kt. On the balanced

growth path kt+1/kt is constant.

kt+1

kt
= (1− δ) + sF (1,

(1 + γA)t

kt
)

Since the left-hand side is constant, we know kt = (1+γA)t/c, where c is some constant.

Therefore kt grows at γA. We conclude there is exactly one balanced growth path

solution with positive kt. Note again that convergence is monotone from below, but

not from above.

If {kBGt } is a balanced growth path solution with γk = γA, then what properties do

{yt}, {ct}, {it} possess?

yt = F (kBGt , (1 + γA)t)

Since kt+1 = (1 + γA)kBGt , we can write:

yt = F ((1 + γA)tkBG0 , (1 + γA)t) = (1 + γA)tF (kBG0 , 1) = (1 + γA)tf(kBG0 )

{yt} grows at a constant rate, γA. It follows that ct and it also grow at constant rate

γA. All variables grow at the same rate. Technological progress is critical to keeping

growth bounded from zero.

Let’s go back to the beginning. We mentioned there are three times of technological

change. If technological change is not labor-augmenting, then there does not exist a

balanced growth path with k > 0 (Proof in Barro and Sala-i-Martin).

Now suppose that F is Cobb-Douglas: yt = Atk
θ
t h

1−θ
t . Then,

yt = kt(A
1

1−θ
t ht)

1−θ = (A
1/θ
t kt)h

1−θ
t

With Cobb-Douglas production there is no distinction between various types of tech-

nological change.

There is no point to look for a growth path where γk 6= γA.

Different BGPs correspond to different initial conditions. Thus, we have a map of

parallel lines with the same slope (growth rate).

How to describe a sequence: by (1) initial conditions and (2) growth rate.
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3 Optimal Growth with Endogenous Savings

Different countries feature different fractions of time devoted to market work. Also,

there are important differences in decision rules - saving rate, population growth, etc.

Thus, the main limitation of the Solow model are the ad hoc decision rules. Such a

model does not explain why saving rates are lower in some countries.

Preferences. Single consumer with preferences defined:

∞∑
t=0

βtu(ct)

Technology.

yt = F (kt, ht)

ct + it = yt

kt+1 = (1− δ)kt + it

Endowments. The consumer receives k0 units of capital at t = 0 and 1 unit of time per

period.

Characterizing the Pareto efficient allocation when given a single agent, is equivalent

to maximizing the utility of the single agent subject to feasibility. We can write the

consumer’s problem using the following compact notation:

max
{ct},{kt}

∞∑
t=0

βtu(ct)

s.t. ct = F (kt, 1) + (1− δ)kt − kt+1

ct ≥ 0, kt ≥ 0, k0 given

We are guaranteed a solution by the (generalized) Weierestrass Theorem: A continuous

function on a compact set attains a solution. Does this problem have a unique solution?

If our objective function is strictly concave on a convex set, then we can have at most

one solution.

Given that u, f are strictly concave, these conditions are satisfied.

Note it is sufficient to rule of consumption being equal to zero. Given that limct→0 u
′(c) =

+∞, it follows that u(0) is not optimal if ct > 0 is feasible. If k0 > 0, then trivially

ct > 0. Therefore, given k0 > 0 we can focus on an interior solution.
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The first order condition for this problem can be written as:

−βt−1u′(f(kt−1) + (1− δ)kt−1− kt) +βtu′(f(kt) + (1− δ)kt− kt+1)(f
′(kt) + (1− δ)) = 0

or

u′(f(kt−1) + (1− δ)kt−1 − kt) = βu′(f(kt) + (1− δ)kt − kt+1)(f
′(kt) + (1− δ))

In addition, we also have a transversality condition for this problem:

lim
t→∞

βtu′(f(kt) + (1− δ)kt − kt+1)(f
′(kt) + (1− δ))kt+1 = 0

and k0 given.

Given that our problem is a concave programming problem, these conditions are suf-

ficient. We can rearrange and move forward one period the FOC:

u′(f(kt) + (1− δ)kt − kt+1)

βu′(f(kt+1) + (1− δ)kt+1 − kt+2)
= f ′(kt+1) + (1− δ)

or
u′(ct)

βu′(ct+1)
= f ′(kt+1 + (1− δ)

Suppose we decrease ct by one unit at the margin. How much additional consumption

could we get in period t + 1 subject to keeping everything constant beyond period

t+ 1. In period t, if we decrease ct by one unit, then we increase investment and have

kt+1 increase by one unit. If kt+1 increase by one unit, how much does y increase?

It increases by f ′(kt+1). Because we want to leave everything unchanged beyond pe-

riod t + 1, the individual can also increase consumption in period t + 1 by (1 − δ)

units or equivalently decrease investment by that amount. Therefore ct+1 increases by

f ′(kt+1)+(1−δ). This problem is equivalent to the following state allocation problem:

There are 2 goods, one individual, and 2 firms.

Preferences. Single consumer with preferences defined:

u(c1, c2)

Technology.

c1 = f1(h1)

c2 = f2(h2)
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Endowments. 1 unit of time.

We want to find a Pareto Efficient allocation to the following problem:

max
c1,c2,h1,h2

u(c1, c2)

s.t. c1 = f1(h1), c2 = f2(h2)

0 ≥ h1 + h2 = 1

h1 ≥ 0, h2 ≥ 0

c1 ≥ 0, c2 ≥ 0

We can state the problem in a more compact form:

max
h1,h2

u(f1(h1), f2(1− h1))

s.t. h1 ≥ 0, 1− h1 ≥ 0

The firs order condition is:

u1(f1(h1), f2(1− h1))
u2(f1(h1), f2(1− h1))

=
f ′2h1

f ′1(1− ht)

This first-order condition represents the trade-off between two goods. This is equivalent

to the dynamic first-order equation above, i.e. in a dynamic program we differentiate

one good over two periods of time and here we differentiate goods over one period of

time.

Given the first-order conditions to the optimal growth model, can we find a steady

state solution, i.e. a value of k∗ s.t. kt = k∗∀t, that satisfied all of the necessary

conditions? Given,
u′(ct)

βu′(ct+1)
= f ′(kt+1 + (1− δ)

and the transversality condition, we set kt = k∗∀t:

f ′(k∗) =
1

β
− (1− δ)

We have only one solution that relates to a positive steady state.

4 Digression: Generalization of Kuhn-Tucker

We can rewrite the social planner’s problem above in more general notation:
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W (k0) = max
{kt}

∞∑
t=0

βtv(kt, kt+1)

s.t. k0given

{kt} ∈ Ω∞(k0)

Ω∞(k0) ⊆ <∞+

Proposition 4.1 Each solution {kt} to the SP problem satisfies the Euler equations

and transversality conditions:

v2 − βv1 = 0

lim
t→∞

βtv1(kt, kt+1)kt ≤ 0

Proof The first condition is simply the FOC for an interior solution. Since W (k0) is

strictly concave (since each u() is concave), we can use Taylor expansion to write:

W (kt/2) ≤ W (kt) +W ′(kt)(kt/2− kt)
W (kt/2)−W (kt) ≤ −W ′(kt)kt/2

βt[W (kt/2)−W (kt)] ≤ −βtW ′(kt)kt/2

Taking limits of both sides, notice that since W() is bounded, the LHS goes to zero,

therefore:

0 ≤ − lim
t→∞

βtW ′(kt)kt/2

Simplying and using the envelope theorem yields the TVC.

Going in the other direction, we get:

Proposition 4.2 If {kt} satisfies the Euler equations and TVC, then it is a solution

to the maximization SP.

Proof By definition of maximum,

∞∑
t=0

betat[v(k∗t , k
∗
t+1)− v(kt, kt+1)] ≥ 0

Use Taylor expansion:

v(kt, kt+1) ≤ v(k∗t , k
∗
t+1) + v1(k

∗
t , k
∗
t+1)(kt − k∗t ) + v2(k

∗
t , k
∗
t+1)(kt+1 − k∗t+1)
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Substitution yields,

∞∑
t=0

βt[v1(k
∗
t , k
∗
t+1)(k

∗
t − kt) + v2(k

∗
t , k
∗
t+1)(k

∗
t+1 − kt+1)]

Since v2(k
∗
t , k
∗
t+1) = βv1(k

∗
t+1, k

∗
t+2), then,

∞∑
t=0

βt[v1(k
∗
t , k
∗
t+1)(k

∗
t − kt)− βv1(k∗t+1, k

∗
t+2)(k

∗
t+1 − kt+1)]

≥ v1(k
∗
0, k
∗
1)(k∗0 − k0)− lim

T→∞
βT+1v1(k

∗
T+1, k

∗
T+2)(k

∗
T+1 − kT+1)

≥ − lim
T→∞

βTv1(k
∗
T , k

∗
T+1)k

∗
T ≥ 0

5 Social Planner’s Problem

max
{kt}

∞∑
t=0

βtu(f(kt) + (1− δ)kt − kt+1)

s.t. kt ≥ 0

f(kt) + (1− δ)kt − kt+1 ≥ 0

k0 given

The first-order conditions are:

−βt−1u′(f(kt−1) + (1− δ)kt−1− kt) +βtu′(f(kt) + (1− δ)kt− kt+1)(f
′(kt) + (1− δ)) = 0

and,
u′(ct)

βu′(ct+1)
= f ′(kt+1 + (1− δ)

and k0 given.

Our steady state solution is as follows. If kt = k∗ satisfies FOC ∀t, then we derived:

f ′(k∗) =
1

β
− (1− δ)

This equation has a unique solution and the solution is strictly positive.

Recall the Golden Rule of capital accumulation. kG was characterized by f ′(k∗) = δ.

Contrast this with f ′(k∗) = 1
β
− (1− δ). Therefore kG > k∗ implies cG > c∗. Why? In

order to get to kG you must forgo consumption earlier. So maybe this is not the best
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place to go. Note also that if you started at kG, then you still would go down to k∗.

From,
u′(ct)

βu′(ct+1)
= f ′(kt+1 + (1− δ)

if we set ct = cG∀t, kt = kG, then the above equality would reduce to:

1

β
> 1

This tells us that at ct = cG∀t, the agent prefers to increase c0 and decrease c1.

Lets consider the following situation. Suppose we imposed a steady state before taking

FOCs. Would this make a difference? Imposing the steady state, the problem becomes:

max
k

∞∑
t=0

βtu(f(k) + (1− δ)k − k)

s.t. k ≥ 0

f(k) + (1− δ)k − k ≥ 0

The FOC reduce to:

f ′(k) = δ

i.e. the golden rule allocation. Here we do not allow the consumer the opportunity to

differentiate allocations over time. The dyanamic aspect of the problem is effectively

ignored. This is incorrect. Never ever do this!

5.0.1 Phase Diagrams

Shooting Algoritm and Fsolve.

5.1 Equilibrium in the Dynamic General Equilibrium Model

So far we have examined efficient resource allocation via the social planner’s problem.

This section deals with decentralized equilibrium for our economy. Specifically we

define the Arrow-Debreu Competitive Equilibrium.

One issue to consider is ownership of capital. We have two choices:

(a) Consumers own capital and undertake the decision of capital accumulation and

rent capital to firms, or
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(b) firm own capital, and undertake decisions about accumulating capital. Since

consumers own the firms, consumers indirectly get the proceeds generated by

this accumulation.

We assume a single firm.

Definition An Arrow-Debreu Competitive Equilibrium for our economy is a list of

sequences {cc∗t }, {ic∗t }, {hc∗t }, {kc∗t }, {y
f∗
t }, {k

f∗
t }, {h

f∗
t }, and {p∗t}, {w∗t }, {r∗t }, subject

to:

(a) (Consumer Maximization)

Taking {p∗t}, {w∗t }, {r∗t } as given, {cc∗t }, {ic∗t }, {hc∗t }, {kc∗t } solves:

max
{cct},{ict},{kct},{hct}

∞∑
t=0

βtu(ct)

s.t.
∞∑
t=0

p∗t (ct + it) =
∞∑
t=0

w∗tht + r∗t kt

kt+1 = (1− δ)kt + it

ct ≥ 0, 0 ≤ ht ≤ 1, k0 given

(b) (Firm Maximization)

Taking {p∗t}, {w∗t }, {r∗t } as given, {yf∗t }, {k
f∗
t }, {h

f∗
t } solves:

max
{yft },{k

f
t },{h

f
t }

∞∑
t=0

(p∗tyt − r∗t kt − w∗tht)

s.t. yt = F (kt, ht)∀t
kt, ht ≥ 0∀t

(c) (Markets Clear)

cc∗t + ic∗t = yf∗t ∀t
hc∗t = hf∗t ∀t
kc∗t = kf∗t ∀t
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6 Characterizing the Arrow-Debreu Competitive Equi-

librium

Preferences. Single consumer with preferences defined:

∞∑
t=0

βtu(ct)

Technology.

yt = F (kt, ht)

ct + it = yt

kt+1 = (1− δ)kt + it

Endowments. The consumer receives k0 units of capital at t = 0 and 1 unit of time per

period.

We can redefine the Arrow-Debreu Competitive Equilibrium in a more compact way.

Here the firm’s problem reduces to a series of static problems.

Definition An Arrow-Debreu Competitive Equilibrium for this economy is a list of

sequences, {c∗t}, {h∗t}, {k∗t }, {w∗t }, {r∗t }, {p∗t} such that:

(a) (Consumers Maximize) Taking {w∗t }, {r∗t }, {p∗t} as given, {c∗t}, {h∗t}, {k∗t } solves:

max
{ct},{kt},{ht}

∞∑
t=0

βtu(ct)

s.t.
∞∑
t=0

p∗t (ct + kt+1 − (1− δ)kt) =
∑∞

t=0(r
∗
t kt + w∗tht)

ct ≥ 0, 0 ≤ ht ≤ 1 ∀t, k0 given

(b) (Firms Maximize) Taking {w∗t }, {r∗t }, {p∗t} as given, {h∗t}, {k∗t } solves:

max
{kt},{ht}

p∗tF (kt, ht)− w∗tht − r∗t kt

s.t.kt ≥ 0, ht ≥ 0

(c) (Markets Clear)

c∗t + k∗t+1 − (1− δ)k∗t = F (k∗t , h
∗
t )∀t.
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6.1 Consumer’s Problem

For the consumer’s problem, note that leisure is not valued, so in equilibrium h∗t = 1∀t.
The first-order conditions are as follows.

βtu′(ct) = λp∗t∀t
λp∗t−1 − (1− δ)p∗t = λr∗t

∞∑
t=0

p∗t (ct + kt+1 − (1− δ)kt) =
∞∑
t=0

(r∗t kt + w∗tht)

k0 given

lim
t→∞

βt−1u′(ct−1)kt = 0

6.2 Firm’s Problem

p∗tF1(kt, ht) = r∗t

p∗tF2(kt, ht) = w∗t

6.3 Conditions that Characterize ADCE

u′(c∗t )

βu′(ct+1)
=

p∗t
p∗t+1

(1)

ht = 1 (2)

p∗t = (1− δ)p∗t+1 + r∗t+1 (3)
∞∑
t=0

p∗t (ct + kt+1 − (1− δ)kt) =
∞∑
t=0

(r∗t kt + w∗tht) (4)

lim
t→∞

βt−1u′(ct−1)kt = 0 (5)

k0 given (6)

p∗tF1(k
∗
t , h

∗
t ) = r∗t (7)

p∗tF2(k
∗
t , h

∗
t ) = w∗t (8)

c∗t + k∗t+1 − (1− δ)k∗t = F (k∗t , h
∗
t ) (9)

From (3) we have:
p∗t
p∗t+1

= (1− δ) +
r∗t+1

p∗t+1

(10)
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Combining (10) and (1):
u′(c∗t )

βu′(ct+1)
= (1− δ) +

r∗t+1

p∗t+1

(11)

Combining this with (7):

u′(c∗t )

βu′(ct+1)
= (1− δ) + F1(k

∗
t+1, h

∗
t+1) (12)

Using (2):
u′(c∗t )

βu′(ct+1)
= (1− δ) + f ′(k∗t+1) (13)

Note that (13), (5), (6), (9) are the same conditions that we derived for the solution to

the social planner’s problem. In particular, these conditions completely characterize

the solution to the SP problem, i.e. there is a unique solution to the SP and the solution

is the only solution to these equations. Therefore {k∗t }, {h∗t}, {c∗t} are identical to their

counterparts in the SP problem.

From this we can solve for prices. Normalize p∗0 = 1. Given that we know p∗0, then (7)

and (8) allows us to determine r∗0, w
∗
0 as functions of k∗0, and h∗0. Now look at equation

(1). Given p∗0, c
∗
0, c

∗
1, the equation tells us p∗1. Then by iterating we obtain the entire

sequence.

Some notes on equation (3): p∗t = (1 − δ)p∗t+1 + r∗t+1. Here the only benefit to the

consumer from k is to rent it out and generate income. This is a no arbitrage condition.

Otherwise, suppose that consumer buys 1 unit of k in period t and sells in t+ 1. The

cost is p∗t and the income generated is r∗t+1 + (1 − δ)p∗t+1. If cost exceeds income or

income exceeds cost the consumer can buy capital and sell tomorrow to make profit.

A few other remarks. Given all equations that we derived which hold in an ADCE, it

is easy to show that the budget equation is implied by all the other equations. From

the firm’s maximization problem we have:

p∗tF1(k
∗
t , h

∗
t ) = r∗t

p∗tF2(k
∗
t , h

∗
t ) = w∗t

Along with market clearing,

c∗t + k∗t+1 − (1− δ)k∗t = F (k∗t , h
∗
t )

we note that since F exhibits CRS, and since Euler’s Theorem implies F (k∗t , h
∗
t ) =

k∗tF1(·) + htF2(·), we get:

c∗t + k∗t+1 − (1− δ)k∗t = k∗tF1 + h∗tF2
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or

p∗t [c
∗
t + k∗t+1 − (1− δ)k∗t ] = ktr

∗
t + htw

∗
t

Summing across all t, it follows that the budget constraint is necessarily satisfied. This

is true because we only have one consumer. There doesnt exist a market for borrowing

or lending. You might think, that if this is the case, then why did we not make

this simplification when we wrote down the consumer’s problem? If we do not use a

summation, and instead write that there exists a budget set for every t, then our first

order condition would look like this:

u′(ct)

βu′(ct+1)
=

λt
λt+1

p∗t
p∗t+1

Which is certainly not the same first-order condition we derived earlier.

In general, what is the implied rate of interest on borrowing and lending between period

t and t+ 1? We make the distinction between nominal interest (prices today vs. prices

tomorrow) and real interest (consumption today vs. consumption tomorrow). If an

individual gives up one unit of consumption in time t, how much extra consumption

can he get in period t+ 1? He gets p∗t income saved by buying one less unit of ct, and

spends p∗t+1 on ct+1 tomorrow. Therefore the real rate of borrowing/lending is p∗t/p
∗
t+1.

What is the implied rate of return to capital accumulation? Suppose you give up one

unit of consumption today and use the proceeds to buy capital, then sell capital in the

next period, and use all revenue to purchase consumption in t+ 1. Giving up one unit

of ct is identical to buying one unit of kt. This kt generates r
(
t+11 − δ)pt+1 additional

income. We then use this income to purchase consumption in t+ 1 at price p∗t+1. How

much can we purchase? We can purchase exactly (rt+1 + (1 − δ)pt+1)/pt+1 units of

consumption. Note that in equilibrium, rt+1 + (1− δ)pt+1 = pt. Therefore 1+(real rate

of return on capital) is p∗t/p
∗
t+1.

7 Steady State Arrow-Debreu Competitive Equi-

librium

Definition A Steady State ADCE for our economy is a value of k0 = k∗0, and an

ADCE for the economy with k0 = k∗0 in which k∗t = k∗0∀t.

Note that we did not say an ADCE in which {k∗t }, {h∗t}, {c∗t}, {p∗t}, {w∗t }, {r∗t } are all

constant.
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For any given k0 > 0, if {k∗t } is part of an ADCE then {k∗t } must satisfy:

u′(f(k∗t ) + (1− δ)k∗t − k∗t+1) = βu′(f(k∗t+1) + (1− δ)k∗t+1 − k∗t+2)(f
′(k∗t+1 + (1− δ))∀t

and,

lim
t→∞

βt−1u′(f(k∗t−1) + (1− δ)k∗t−1 − k∗t )k∗t = 0

Therefore, finding an SS-ADCE requires that k0 be such that we can find a solution

k∗0 = k0∀t that satisfy these equations.

This problem is equivalent to finding a steady state to the social planner’s problem.

In particular, if k∗t = k∗∀t is a solution, then k∗ must solve:

f ′(k∗) =
1

β
− (1− δ)

Now let k∗ be the solution to this equation. We can now construct the rest of ADCE:

c∗t = f(k∗t ) + (1− δ)k∗t − k∗t+1∀t

Since k∗t = k∗∀t,
c∗t = f(k∗) + (1− δ)k∗ − k∗ = f(k∗)− δk∗

i.e. c∗t is constant. Also ht = 1∀t, since this holds for any equilibrium with k0.

What about {p∗t}, {w∗t }, {r∗t }? Let’s normalize p∗0 = 1. The relevant equations are:

p∗t
p∗t+1

= (1− δ) +
r∗t+1

p∗t+1

F1(k
∗
t , h

∗
t ) =

r∗t
p∗t

F2(k
∗
t , h

∗
t ) =

w∗t
p∗t

Since c∗t = c∀t
p∗t
p∗t+1

=
1

β

Also:

F1(k
∗, 1) =

r∗t
p∗t

F2(k
∗, 1) =

w∗t
p∗t
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Since p∗0 = 1,

r∗0 = F1(k
∗, 1)

w∗0 = F2(k
∗, 1)

p∗1 = β

r∗1 = βF1(k
∗, 1)

w∗1 = βF2(k
∗, 1)

and so forth. In general:

p∗t = βt

r∗t = βtF1(k
∗, 1)

w∗t = βtF2(k
∗, 1)

Here is an alternative method of normalization.

Let w∗t denote the price of a unit of labor in period t relative to price of output in period

t (i.e. p∗t ). Let r∗t denote the price of renting a unit of capital in period t relative to

the price of period t output. Our new budget equation becomes:

∞∑
t=0

p∗t (ct + kt+1 − (1− δ)kt) =
∞∑
t=0

(p∗t r
∗
t kt + p∗tw

∗
tht)

In other words, we defined w̃∗t = w∗t /p
∗
t and r̃∗t = r∗t /p

∗
t . The firm objective function

becomes:

p∗t (F (kt, ht)− r∗t kt − w∗tht)

If one now characterizes the ADCE the conditions that characterize allocations are

unaffected, but conditions that relate allocations to prices take a different form:

u′(c∗t )

βu′(c∗t+1)
=

p∗t
p∗t+1

F1(k
∗
t , h

∗
t ) = r∗t

F2(k
∗
t , h

∗
t ) = w∗t

If we repeat the steady-state ADCE calculations, we get,

1

β
=

p∗t
p∗t+1

F1(k
∗
t , 1) = r∗t

F2(k
∗
t , 1) = w∗t
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which implies r∗t = r∗∀t and w∗t = w∗∀t.

We can use the model to answer policy questions. What are the effects of policy x

on allocations and welfare? We can assess policy that effects the consumption/savings

decision.

8 Policy: Tax Income from Capital

Objective: Use the model to access the consequences of different capital income taxa-

tion policies on equilibrium allocations and welfare.

When assessing the consequences of policies in GE models, we must make sure that

policies are well-specified. We begin by considering a very simple policy. Suppose there

is a constant proportional tax levied on income from capital, denoted τk. We consider

two different cases to reflect different use of revenue.

Case 1: Government uses revenue to purchase consumption, but then throws it away.

Case 2: Government uses the revenue to finance lump-sum transfer to all individuals,

and does this with a period-by-period balanced budget.

For Case 1, an ADCE is a list of sequences {c∗t}, {h∗t}, {k∗t }, {g∗t }, {w∗t }, {r∗t }, {p∗t}
such that:

(a) (Consumers Maximize) Taking {w∗t }, {r∗t }, {p∗t} as given, {c∗t}, {h∗t}, {k∗t } solves:

max
{ct},{kt},{ht}

∞∑
t=0

βtu(ct)

s.t.
∞∑
t=0

p∗t (ct + kt+1 − (1− δ)kt) =
∞∑
t=0

p∗t ((1− τk)r∗t kt + w∗tht)

τk ≥ 0, ct ≥ 0, 0 ≤ ht ≤ 1 ∀t, k0 given

(b) (Firms Maximize) Taking {w∗t }, {r∗t }, {p∗t} as given, h∗t , k
∗
t for all t, solves:

max
{kt},{ht}

p∗t (F (kt, ht)− w∗tht − r∗t kt)

s.t.kt ≥ 0, ht ≥ 0
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(c) (Government)

g∗t = τkr
∗
t k
∗
t ∀t

(d) (Market Clearing)

c∗t + g∗t + k∗t+1 − (1− δ)k∗t = F (k∗t , h
∗
t )∀t.

Note that the first welfare theorem fails with taxes, i.e. we cannot solve the social

planner’s problem. Writing the ADCE and taking first-order conditions, we get:

u′(c∗t )

β′u(ct+1)
= (1− δ) + (1− τk)f ′(k∗t+1)

c∗t + k∗t+1 − (1− δ)k∗t + τf ′(k∗t )k
∗
t = f(k∗t )

k0 given

lim
t→∞

βt−1u′(c∗t−1)kt = 0

These conditions characterize the ADCE. The value of k∗ in the SS-ADCE is:

1

β
= (1− δ) + (1− τk)f ′(k∗)

For Case 2, consider taxing constant proprtion of income from capital, τk. Govern-

ment uses income on lump-sum transwer to the household, subject to period-by-period

budget, Tt. In the ADCE we add {T ∗t } instead of {gt}. In the consumer’s problem,

we add T ∗t which show up in the budget constraint. The government constraint is now

T ∗t = τkr
∗
t k
∗
t ∀t. The market clearing condition is the same. The SS-ADCE is:

1

β
= (1− δ) + (1− τk)f ′(k∗)

Remarks: SS-ADCE values of k∗ are the same for Case 1 and Case 2. Consumption is

different, as seen in market clearning. For k0, ADCE sequences for {kt} are different

(but k∗ is the same). Note this means that the steady state is not the complete solution

to the problem. In other words, k∗ is not a sufficient statistic for welfare in the economy.

Also c∗ is higher in Case 2.

Consider an economy which is considering between 2 tax policies, both corresponding

to Case 2, but with different tax rates: τ̂k, τ
∗
k , and τ ∗k > τ̂k. Let {c∗t}, {h∗t}, {k∗t }
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correspond to τ ∗k and {ĉt}, {ĥt}, {k̂t} correspond to τ̂k. How do we evaluate welfare

consequences of choosing τ ∗k over τ̂k? Define,

U∗ =
∞∑
t=0

βtu(c∗t ) > Û =
∞∑
t=0

β(ĉt)

How does we say something about the magnitude of the welfare gain/loss?

We consider a measure of welfare based on compensating variation. Define λ, such

that:
∞∑
t=0

βtu(c∗t ) =
∞∑
t=0

βtu((1 + λ)ĉt)

This value of λ is independent of montone transformations. Also, it has a simple

interpretation. There are two different types of welfare comparisons: 1. steady-state

to steady-state, and 2. including the transition path.

consider two economies that correspond to the model we have been studying with same

primitives, but different tax policies.

Assume that initial conditions, capital stock in each economy corresponds to the steady-

state value associated with each tax rate, i.e. ki0 solves:

1

β
= (1− δ) + (1τ ik)f

′(k∗i)

How much better off is the individual in economy (1) than the individual in economy

(2), assuming both economies are in their steady states. To consider this we must

compute,
∞∑
t=0

u(c∗1) =
∞∑
t=0

u((1 + λ)c∗2)

which implies 1 + λ = c∗1/c∗2. If individuals could trade places, how much is that

worth to them? What is the welfare gain/loss from having country 2 adopt country

1’s policy from period 0 on, as opposed to continuing their policy?

Let {(̂c)t}, {ĥt}, {k̂t} be the ADCE allocation that corresponds to the outcome with

the change in policy:
∞∑
t=0

u(c∗2) =
∞∑
t=0

u((1 + λ)ĉt)

This λ is not the same as before.
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9 Simple Procedure to Calibrate the Growth Model

Our model is designed to capture certain economic forces/processes and not others.

Our strategy is to use the data that we think our model could be capturing to inform

us about reasonable model parameters. If convergence to the steady state is relatively

fast, the observations for an economy like the US in the post-WW2 period should

basically correspond to near steady-state outcomes.

Basic observations from the data, known as the Kaldor facts:

(a) Y , L, I, should all grow at the same rate and this rate is constant over time: i.e.

K/Y , I/Y , L/Y are roughly constant.

(b) labor share of output is constant over time.

(c) real rate of return to capital is roughly constant over time.

The basic calibration strategy is as follows. Use data on the average values of K/Y ,

I/Y and real rate of return to capital to determine the “reasonable” parameters for

our model, based on looking at the mapping from model parameters to the steady state

CE. The first step is to decide the functional forms subject to minimizing the number of

parameters and to having an economics interpretation. The following are parsimonious

or good starting points: u(ct) = (c1−σt −1)/(1−σ) and F (kt, ht) = Akθt h
1−θ
t . Therefore

we have parameters: σ, A, θ, β, δ. We cant to take the values of these parameters and

solve for SS-ADCE as a function of these parameters, and then find values of these

parameters for K/Y , I/Y , and the real rate of return on capital from the data.

Notes: A is useless. In essence, it is equivalent to a chance of units. σ does not appear

in steady-state: 1/β = f ′(k∗) + (1 − δ). Is equilibrium independent of σ. No! In

particular σ does not influence the steady state values , and hence, data relating the to

the steady-state values cannot help us determine σ. This leaves us with 3 parameters

and 3 targets. Benchmark: σ = 1, i.e. u(ct) = log(ct).

Lets calibrate these targets for US data. Need to divide the length of a period. We

set one period to one year. Set K/Y = 2.5, I/Y = .2, real rate of return to capital

4% per year. In SS-ADCE 1+(real rate of return to capital)=1/β. Therefore 1.04 =

1/β ⇒ β = 1/1.04 = 0.96. I/K = δ = 10/.2 = (I/Y )/(K/Y ) − .2/2.5 − 0.8 = δ. To

determine the value of θ we start with the following equation which must hold in SS:

1/β − (1− δ) = f ′(k∗), where f(k∗) = θ − Y/K, and rearranging yields θ = 0.3.
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10 Sequence of Markets Competitive Equilibrium

In the ADCE the decision to exchange labor services, capital services, and output took

place for the entire sequence t = 0, ...,∞ before any action took place. That is con-

sumers could make claims to consumption and firms to rent capital in any distant time

period. All allocations for all t were decided before t = 0. This might strike you as

absurd. In the sequence of markets competitive equilibrium (SOMCE) we take a differ-

ent approach. That is, we decide allocations for each market in each period separately.

We start with the following example. Consider the economy that lasts for 2 periods,

with no production, a single agent, and a single good. Define utility as u(c1, c2) and

endowment (ω1, ω2).

The ADCE for this economy is a list (c∗1, c
∗
2),(p

∗
1, p
∗
2) such that,

(a) (Consumers Maximize) Taking (p∗1, p
∗
2) as given, (c∗1, c

∗
2) solves:

max
c1,c2

u(c1, c2)

s.t.p∗1c1 + p∗2c2 = p∗1ω1 + p∗2ω2

c1, c2 ≥ 0

(b) (Market Clearing)

c∗1 = w∗1

c∗2 = w∗2

Now we have a market for borrowing and lending in period 1. We will demonstrate this

in terms of bonds, b, with the interpretation that a bond gives the individual claims

to 1 unit of good in period 2. We will denominate price of a bond by q and measure it

relative to period 1 consumption.

We define an SOMCE as a list (c∗1, c
∗
2), b

∗, (p∗1, p
∗
2, q
∗) such that,

(a) (Consumers Maximize) Taking (p∗1, p
∗
2, q) as given, (c∗1, c

∗
2, q
∗) solves:

max
c1,c2,b

u(c1, c2)

s.t.p∗1c1 + p∗1bq
∗ = p∗1ω1

p∗2c2 = p∗2(w2 + b)c1, c2 ≥ 0
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(b) (Market Clearing)

c∗1 = w∗1

c∗2 = w∗2

b∗ = 0

We can set p1 = 1 and define p∗2 = p∗. Rewriting the SOMCE above, we define SOMCE

as a list (c∗1, c
∗
2), b

∗, (p∗, q∗) such that,

(a) (Consumers Maximize) Taking (p∗, q) as given, (c∗1, c
∗
2, q
∗) solves:

max
c1,c2,b

u(c1, c2)

s.t.c1 + bq∗ = ω1

c2 = w2 + bc1, c2 ≥ 0

(b) (Market Clearing)

c∗1 = w∗1

c∗2 = w∗2

b∗ = 0

Define BAD(p) = {(c1, c2) ∈ <2
+ : c1 + pc2 = ω1 + pω2}. From the SOMCE, the

consumers problem implies c1 + qc2 = w1 + qw2. Then, BSOM(q) = {(c1, c2) ∈ <2
+ :

c1 + qc2 = ω1 + qω2}. If p = q, then BAD(p) = BSOM(q).

Proposition 10.1 The allocation (c∗1, c
∗
2, p
∗) is an ADCE iff (c∗1, c

∗
2, b
∗, q∗) is an SOMCE

where q∗ = p∗ and b = (ω1 − c∗1)/q∗.

Note that ADCE and SOMCE are not the same, they are different objects, but there

is a 1-1 mapping between them.

A SOMCE for the growth model is a list of sequences {c∗t}, {k∗t }, {h∗t}, {b∗t}, {r∗t },{w∗t },
{q∗t } subject to:
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(a) (Consumer Maximization) Taking {r∗t }, {w∗t }, {q∗t } as given, {c∗t}, {k∗t }, {h∗t},
{b∗t} solves:

max
{bt},{ct},{ht},{kt}

∞∑
t=0

βtu(ct)

s.t. ct + kt+1 − (1− δ)kt + q∗t bt = w∗tht + r∗t kt + bt−1∀t
ct ≥ 0, 0 ≤ ht ≤ 1∀t

k0 given

b−1 = 0

(PONZIHERE)

(b) (Firm Maximization) Taking {r∗t }, {w∗t }, {q∗t } as given, ∀t, h∗t , k∗t solves:

max
kt,ht

F (kt, ht)− r∗t kt − w∗tht

s.t. kt, ht ≥ 0

(c) (Market Clearing)

c∗t + k∗t+1 − (1− δ)k∗t = F (k∗t , h
∗
t )∀t

k∗t = 0∀t

Note that if we let bt = 0, we cannot solve for qt, so we must have qt in the problem.

Lets characterize the equilibrium. From the consumer’s problem,

βtu′(ct) = λt

λt−1 = λt(1− δ) + r∗tλt

λtq
∗
t = λt+1

and the transversality condition. From the firm’s problem,

F1(k
∗
t , 1) = r∗t

F2(k
∗
t , 1) = w∗t

since h∗t = 1. Rearranging and combining yields,

1

q∗t−1
= r∗t + (1− δ)
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and upon combining some more,

u′(c∗t )

βu′(c∗t+1)
= r∗t+1 + (1− δ)

or,
u′(c∗t )

βu′(c∗t+1)
= f ′(k∗t+1) + (1− δ)

If you want one unit of consumption at t + 1 and want to use it to get consumption

at t via borrowing/lending, how much consumption do you get today? In equilibrium,

this is equal to q∗t .

The No Ponzi Scheme says that debt in period t is less than the present value of future

income:

−bt + [w∗tht + r∗t kt +
∞∑
s=1

(
s−1∏
j=0

qt+j)[w
∗
t+sht+s + r∗t+skt+s] ≥ 0

If we get rid of the bond market, the FOCs change: we no longer have a no arbitrage

condition for borrowing and lending. We can do this if we have only one individual (?,

check this). In general, we can write the firm’s problem dynamically in SOMCE:

∞∑
t=0

(
t−1∏
s=0

q∗s)(F (kt, ht)− ktr∗t − htw∗t )

Where q∗s = 1/(r∗s+1 + (1− δ). So instead of using prices, we use qt for discounting.

11 Optimal Growth Model with Endogenous Labor

Choice

We start with a static allocation problem to illustrate the framework. We have a single

consumer with the following environment.

(a) Preferences: u(c, 1− h), c ≥ 0, 0 ≥ h ≥ 1

(b) Technology: c− Ah, h ≥ 0

(c) Endowment: individual has one unit of time, A > 0.

The social planner’s problem is:

max
c,h

u(c, 1− h)

s.t. c = Ah

c ≥ 0, 0 ≤ h ≤ 1
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To use the standard method to solve this problem we assume u is weakly concave

in (c, 1 − h) jointly, strictly concave in c, 1 − h individually, u is twice continuously

differentiable, and increasing in both arguments. Also limc→0 u1(c, 1 − h) = ∞,

limh→0 u2(c, 1− h) = 0,limh→1 u2(c, 1− h) =∞. The first order condition is,

u2(Ah, 1− h)

u1(Ah, 1− h)
= A

i.e. marginal rate of substitution equals the marginal rate of transformation. What

happens to the optimal choice of h if A increases? As A increases, the return to working

increases at the margin, this suggests h increases. Therefore c and h increase. On the

other hand, as A increases, you have higher c for a given level of h, which implies you

have a positive income effect, which suggests that you want more leisure and more

consumption if both are normal. Here, c increases and h decreases. Therefore change

in h is ambigous.

Consider the following utility function,

u(c, 1− h) = log(c) + r(1− h)

where r is any strictly concave, strictly increasing, C2 function satisfying the Inada

condition. The social planner’s problem becomes:

max
h

log(Ah) + r(1− h)

s.t. 0 ≤ h ≤ 1

The FOC for this problem is 1/h = r′(1 − h), i.e. h is independent of A. Then the

income effect and substitution effect directly offset each other. You can generalize

this to a class of utility functions where income and substitutions effects are perfectly

offsetting:

u(c, 1− h) =
[cr(1− h)]1−σ − 1

1− σ
Consider the following problem:

max
c,h

u(c, 1− h)

s.t. c = wh+ y

c ≥ 0, 0 ≤ h ≤ 1

let h(w, y) and c(w, y) be the solutions as functions of w, y. c, 1− h are normal if the

functions c, h satisfy: c is increasing in y and h is decreasing in y.

Let’s now turn to the growth model. As before, we define the economy with a single

individual,

43



(a) Preference:
∑∞

t=0 β
tu(ct, 1− ht)

(b) Technology :

yt = F (kt, ht)

ct + it = yt

kt+1 = (1− δ)kt + it

(c) Endowment : k0 given, one unit of time ∀t

plus consumption and leisure are normal goods.

The social planner’s problem for this economy is:

max
{kt},{ht}

∞∑
t=0

βtu(F (kt, ht) + (1− δ)kt − kt+1, 1− ht)

s.t. F (kt, ht) + (1− δ)kt − kt+1 ≥ 0∀t
kt ≥ 0, 0 ≤ ht ≤ 1∀t, k0 given

The first-order conditions for an interior solution are as follows. Recall that by the

Weierestrauss Theorem a optimal solution exists and it is unique because of concavity.

The interior solution is guaranteed since k0 > 0.

kt : βt−1u1(F (kt−1, ht−1) + (1− δ)kt−1 − kt, 1− ht−1) =

βt(F (kt, ht) + (1− δ)kt − kt+1, 1− ht)(F1(kt, ht) + (1− δ))∀t
ht : βt(ct, 1− ht)(F2(kt, ht)) = βtu2(ct, 1− ht)∀t

Rearranging, we get:

u1(ct, 1− ht)
βu1(ct+1, ht+1)

= F1(kt+1, ht+1) + (1− δ)∀t

u2(ct, 1− ht)
u1(ct, 1− ht)

= F2(kt, ht)∀t

Note that the first condition is dynamic and the second is static. Both conditions have

to hold for optimality. The transversality condition for this problem is: βtu1(ct−1, 1−
ht−1)kt = 0. Along with k0 given and ct = F (kt, ht) + (1 − δ)kt − kt+1 we completely

characterize the solution to the SP problem. What about the steady state solution?

Lets ignore k0 given constraint. Can we find a solution to the remaining conditions,

such that kt, ht are constant? Let k∗, h∗ be a positive steady state. Then k∗, h∗ must
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satisfy:

1

β
= F1(k

∗, h∗) + (1− δ)

u2(c
∗, 1− h∗)

u1(c∗, 1− h∗)
= F2(k

∗, h∗)

where c∗ = F (k∗, h∗) = (1− δ)k∗ − k∗. Recall that in the case with leisure not valued,

1/β = f ′(k∗) + (1− δ), we agreed that this equation had a unique positive solution for

k∗. Let’s show that there exists a unique solution for the model with leisure valued.

Recall that by CRS, marginal product only depends on the ratio k∗/h∗. Moreover,

given our assumptions, F1 → ∞ as k∗/h∗ → ∞ and F1 → 0 as k∗, h∗ → ∞ and F1

is strictly decreasing in k∗, h∗. From F (k∗, h∗) = 1/beta − (1 − δ) we can determine

the value of k∗/h∗. Therefore, we can calculate F1(k
∗, h∗) and F2(k

∗, h∗). From the

equation governing c∗ in the steady state we get:

c∗ = h[F (k∗/h∗, 1)− δk∗/h∗

Given k∗, h∗, we can write that c∗ = Ah∗, where A = F (k∗/h∗, 1) − δk∗/h∗. Let

B = F2(k
∗, h∗) and then,

u2(Ah
∗, 1− h∗)

βu1(Ah∗, 1− h∗)
= B

for some positive constant A, B. This is the equation for the single variable h∗. If

this equation has a unique solution for h∗, then we know the SP problem has a single

positive steady-state solution. It turns out that of c, h are normal, then k0 given has a

unique solution.

What is the competitive equilibrium for this economy? We define an ADCE for this

economy as a list of sequences {c∗t}, {h∗t}, {k∗t }, {w∗t }, {r∗t }, {p∗t} such that:

(a) (Consumers Maximize) Taking {w∗t }, {r∗t }, {p∗t} as given, {c∗t}, {h∗t}, {k∗t } solves:

max
{kt},{ht},{c}

∞∑
t=0

βtu(ct, 1− ht)

s.t.
∞∑
t=

p∗t (ct + kt+1 − (1− δ)kt) =
∞∑
t=0

p∗t (r
∗
t k
∗
t + w∗th

∗
t )

0 ≤ ht ≤ 1∀t
k0 given

(b) (Firms Maximize) Taking {w∗t }, {r∗t }, {p∗t} as given, ∀t ht, kt solves:

max
kt,ht

p∗t (F (kt, ht)− r∗kt − w∗tht)∀t

kt, ht ≥ 0
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(c) (Market Clearing)

c∗t + k∗t+1 − (1− δ)k∗t = F (k∗t , h
∗
t )∀t

We now characterize the ADCE. For the consumer’s problem:

ct : βtu1(c
∗
t , 1− h∗t ) = λp∗t

ht : βtu2(c
∗
t , 1− h∗t ) = λp∗tw

∗
t

kt : λp∗t−1 = λ[p∗t r
∗
t + p∗t (1− δ)]

For the firm’s problem:

F1(k
∗
t , h

∗
t ) = r∗t

F2(k
∗
t , h

∗
t ) = w∗t

Combining some terms as usual, we get:

u1(c
∗
t , 1− h∗t )

βu1(c∗t , 1− h∗t )
= F1(k

∗
t+1, h

∗
t+1) + (1− δ)

u2(c
∗
t , 1− h∗t )

u1(c∗t , 1− h∗t )
= F2(k

∗
t , h

∗
t )

The choice of ht is not a static decision. Divide the first equation at t by the second

at t+ 1:
u2(c

∗
t+1, 1− h∗t+1)

u1(c∗t , 1− h∗t )
u1(c

∗
t+1, 1− h∗t+1)

u1(c∗t+1, 1− h∗t+1)
=
F2(k

∗
t+1, h

∗
t+1)

F2(k∗t , h
∗
t )

or,
βu2(c

∗
t+1, 1− h∗t+1)

u2(c∗t , 1− h∗t )
=
F2(k

∗
t+1, h

∗
t+1)

F2(k∗t , h
∗
t )

1

[F1(k∗t+1, h
∗
t+1) + (1− δ)]

From the consumers problem in ADCE we would similarly get:

βu2(c
∗
t+1, 1− h∗t+1)

u2(c∗t , 1− h∗t )
=
w∗t+1

w∗t

p∗t+1

p∗t

11.1 Leisure-Labor Choice with Labor Augmenting Techno-

logical Progress

Recall that we can only attain a balanced growth path using yt = F (kt, Aht). If

a solution can be found with technological progress, we can find a solution without
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technological progress. Consider At = (1 + γA)t as before. The Social Planner’s

problem can be expressed as:

max
kt

∞∑
t=0

βt(F (kt, (1 + γA)t) + (1− δ)kt − kt+1)

s.t. kt, ct ≥ 0

k0 given

The first order conditions can be written as:

u1(ct−1)

βu1(ct)
= F1(kt, (1 + γA)t) + (1− δ)

Can we find a steady state? No! Since in the equation,

1

β
= F (k∗, (1 + γA)t) + (1− δ)

the LHS is constant, but RHS changes over time. This implies the steady-state is

changing as well. Instead, we find a balanced growth path solution, i.e. look for a

solution where kt is growing at a constant rate.

We can show that the only possibility is that k grows at the same rate as A (SHOW

THIS!).

Consider ct = F (kt, (1+γA)t)+(1−δ)kt−kt+1. If k∗t = (1+γA)tk̂0, substitution yields,

ct = F ((1 + γA)tk̂0, (1 + γA)t) + (1− δ)(1 + γA)tk̂0 − (1− γA)t+1k̂0

= (1 + γA)t[F (k̂0, 1) + (1− δ)− (1 + γA)k̂0 = (1 + γA)ct−1

therefore c grows at a constant rate. Using k̂0 and ĉ0,

u′((1 + γA)t−1ĉ0)

βu′((1 + γA)tĉ0)
= F1((1 + γA)tk̂0, (1 + γA)t) + (1− δ) = F1(k̂0, 1) + (1− δ)

The RHS is constant since growth is constant over time. This does not imply that

MRS are constant, so we must find a u such that MRS is constant over time. This

does not happen in the Solow model, since consumption is exogenously determined. If

we want to find a BGP solution, it must be that u′(ct−1)/βu
′(ct) is constant along a

path with ct = (1 + γA)ct−1.

What would u have to look like for us to achieve this?

u(c) =
c1−σ − 1

1− σ
∀σ > 0
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Check that this utility function has the desired property,

u′(ct−1)

βu′(ct)
=

1

β
(
ct
ct−1

)σ

which is only dependent on ct/ct−1. Along a balanced growth path ct+1 = (1+γA)ct and

therefore u′(c)/βu′((1 +γA)c) is constant. If this holds for every c, we can differentiate

both sides and using algebra this yields:

u′′(c)c

u′(c)
=
u′′(c)c

u′(c)
(1 + γA)

i.e. CRRA(c) = CRRA((1 + γA)c). If this holds for all c, then this implies c must be

CRRA.

Consider the Social Planner’s problem with a change of variables.

max
ct,ht

∞∑
t=0

βt(
c1−σt − 1

1− σ
)

s.t. ct = F (kt, (1 + γA)t) + (1− δ)kt − kt+1

Define c̃tt = ct/(1 + γA)t and k̃t = kt/(1 + γA)t. Our social planner’s problem becomes:

max
c̃t,k̃t

∞∑
t=0

βt((c̃t(1 + γA)t)1−σ + constant)

s.t.

c̃t(1 + γa)
t = F ((̃k)t(1 + γA)t, (1 + γA)t) + (1− δ)(1 + γA)tk̃t

−(1 + γA)t+1k̃t+1

This implies [β(1 + γA)1−σ]tc̃1−σt . Define β̃ = β(1 + γA)1−σ. With this change of

variables, the only change we see is a (1 + γA) floating around. Note that if β̃ > 1 the

model will fall apart.

11.2 Model with Labor-Leisure Choice and Taxes

In this case we allow for two changes. Namely, we allow for different responses to tax

policies and expand the realm of possible tax policies. Consider a government that

levies a constant proportional tax on income from labor, τh, and uses proceeds to fund

a lump-sum transfer with a period-by period balanced budget.

An ADCE is a list of sequences, {c∗t}, {h∗t}, {k∗t }, {w∗t }, {r∗t }, {p∗t}, {T ∗t } such that:
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(a) (Consumers Maximize) Taking {w∗t }, {r∗t }, {p∗t} as given, {c∗t}, {h∗t}, {k∗t } solves:

max
{kt},{ht},{c}

∞∑
t=0

βtu(ct, 1− ht)

s.t.
∞∑
t=

p∗t (ct + kt+1 − (1− δ)kt) =
∞∑
t=0

p∗t (r
∗
t k
∗
t + (1− τh)w∗th∗t + T ∗t )

0 ≤ ht ≤ 1∀t
k0 given

(b) (Firms Maximize) Taking {w∗t }, {r∗t }, {p∗t} as given, ∀t ht, kt solves:

max
kt,ht

p∗t (F (kt, ht)− r∗kt − w∗tht)∀t

kt, ht ≥ 0

(c) (Government) T ∗t = τhw
∗
th
∗
t

(d) (Market Clearing)

c∗t + k∗t+1 − (1− δ)k∗t = F (k∗t , h
∗
t )∀t

The equilibrium conditions for this economy are:

u1(c
∗
t , 1− h∗t )

βu1(c∗t+1, 1− h∗t+1)
= F1(k

∗
t+1, h

∗
t+1) + (1− δ)

and,
u2(c

∗
t , 1− h∗t )

u1(c∗t , 1− h∗t )
= (1− τh)F2(k

∗
t , h

∗
t )

We can also extend our calibration procedure to the economy with labor-leisure choice.

Let F (k, h) = kθh1−θ and,

c =
c1−σ − 1

1− σ
+
α(1− h)1−γ − 1

1− γ

We need to find the following parameters: β, δ, σ, γ, θ, α. In addition to the usual

targets, we add that the fraction of time dedicated to market work is 1/3. Using this

new information, θ, and α are straightforward to find.

49



11.3 Balanced Growth in the Model with Labor-Leisure Choice

max
{ht},{kt}

∞∑
t=0

βtu(ct, 1− ht)

F (kt, Atht) + (1− δ)kt − kt+1 ≥ 0

kt ≥ 0, 0 ≤ ht ≤ 1

k0 given

whereAt = (1+γA)t. Deriving the FOCs we attain the following equilibrium conditions:

u1(ct, 1− ht)
βu1(ct+1, 1− ht+1)

= F1(kt+1, At+1ht+1) + (1− δ)

u2(ct, 1− ht)
u1(ct, 1− ht)

= AtF2(kt, Atht)

We look for a solution in which kt, ct grow at the same rate as At and ht is constant.

Recall static problem,

max
h,c

u(c, 1− h)

s.t. c = Ah

Solving this problem we get u1/u2 = A. If A gets bigger, solution for h stays the same,

then c is growing at rate A. Note when A increases, h is more expensive. This is the

income and substitution effect. Therefore A, h have to offset each other. We have this

with preferences that perfectly offset income and substitution effects. Namely,

u(c, 1− h) = log(c) + av(1− h)

u(c, 1− h) =
[cv(1− h)]1−σ − 1

(1− σ)

the latter when σ 6= 1 and is strictly positive. These are the only preferences consistent

with balanced growth. This is because MRS grows at a constant rate.
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