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Abstract 

The Iterative Deferred Acceptance Mechanism 

by Inácio Bó and Rustamdjan Hakimov* 

We introduce a new mechanism for matching students to schools or universities, denoted 
Iterative Deferred Acceptance Mechanism (IDAM), inspired by procedures currently being 
used to match millions of students to public universities in Brazil and China. Unlike most 
options available in the literature, IDAM is not a direct mechanism. Instead of requesting 
from each student a full preference over all colleges, the student is instead repeatedly 
asked to choose one college among those which would accept her given the current set of 
students choosing that college. Although the induced sequential game has no dominant 
strategy, when students simply choose the most preferred college in each period (denoted 
the straightforward strategy), the matching that is produced is the Student Optimal Stable 
Matching. Moreover, under imperfect information, students following the straightforward 
strategy is an Ordinal Perfect Bayesian Equilibrium. Based on data from 2016, we also 
provide evidence that, due to shortcomings which are absent in the modified version that 
we propose, the currently used mechanism in Brazil fails to assist the students with 
reliable information about the universities that they are able to attend, and are subject to 
manipulation via cutoffs, a new type of strategic behavior that is introduced by this family 
of iterative mechanisms and observed in the field. 
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1 Introduction

When considering centralized procedures for matching prospective students to universities
or colleges, a common objective that policymakers have is for the matching generated to
be fair: that is, matchings in which the reason a student may not be matched to a more
preferred college is that all students who are matched to that college have higher priority than
her. Balinski and Sönmez [1999] showed that the Gale-Shapley student proposing deferred
acceptance procedure (DA) is characterized as the “best” fair mechanism, in that it is strategy-
proof and Pareto dominates any other fair mechanism (that is, it is constrained efficient). In
fact, variations of the DA mechanism are used in many real-life student matching programs
around the world. College and secondary school admissions in Hungary [Biró, 2012], high
school admissions in Chicago [Pathak and Sönmez, 2013] and New York City [Abdulkadiroğlu
et al., 2009] as well as elementary schools in Boston [Abdulkadiroglu et al., 2006] are examples
of the use of the DA mechanism. Other mechanisms, such as the college proposing DA, top
trading cycles, the so-called “Boston mechanism” and the “Shanghai mechanism” are used to
match millions of students to schools and colleges around the world [Chen and Kesten, 2015,
Abdulkadiroğlu and Sönmez, 2003, Balinski and Sönmez, 1999].

In this paper, we analyze a mechanism currently being used to match students to public
universities in Brazil, denoted SISU. The SISU mechanism differs from most of the others
analyzed in the literature in that it does not require students to submit rank-ordered lists over
colleges, but instead provides information on the tentative requirements for acceptance at
each university and asks students to choose one college among them, producing an allocation
after a fixed number of periods. We show that the SISU mechanism has some undesirable
theoretical properties: it fails to give reliable information about where students could be
accepted, and is subject to a new type of manipulation, denoted manipulation via cutoffs.
We show, based on data obtained from the selection process that took place in 2016, that
the first problem is empirically relevant, that the second is feasible, and provide anecdotal
evidence that manipulation via cutoffs takes place in real life.

We propose a new mechanism for matching students to colleges, denoted Iterative Deferred
Acceptance Mechanism (IDAM), based on a few simple modifications of the SISU mechanism.
In each step of the IDAM mechanism, the period-specific acceptance requirement, in the form
of a cut-off value for each university, is made public. Students who are not tentatively assigned
to a college are given the option to choose from a menu of universities where the acceptance
requirement in that period is such that the student would be accepted. At the end of each
period, students’ choices and tentative allocations are combined for each university and as a
result some students may be rejected, therefore having to make another choice in the next
period. An allocation is produced after a period in which no student is rejected. If students
follow the simple strategy of choosing the most preferred college among those available at each
step of the IDAM mechanism (denoted the straightforward strategy), the matching produced
as an outcome is the Student Optimal Stable Matching, that is, the matching that is the
most preferred by all students among all stable matchings.

While, unlike the standard Gale-Shapley Student-Proposing Deferred Acceptance (DA)
mechanism, the IDAM does not have a dominant strategy, we show that stable outcomes are
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equilibrium outcomes under both imperfect and perfect information under a robust equilib-
rium concept. More specifically, under imperfect information about other players’ preferences
and exam grades, following a straightforward strategy first-order stochastically dominates any
other strategy at every subgame, when other players follow the straightforward strategy. Al-
though under some extreme scenarios the number of steps that the mechanism takes until
producing the allocation may be relatively high, we also show that if the number of steps
is limited and students still follow the same strategy, the number of students involved in
blocking pairs falls very quickly at each step. Finally, we show that, unlike the SISU and the
mechanism currently used in the province of Inner Mongolia in China, the IDAM mechanism
is not manipulable via cutoffs.

Proofs absent from the main text can be found in the appendix.

1.1 Related literature

Some recent papers have evaluated non-direct iterative mechanisms for matching students
to colleges or schools. Dur et al. [2015] use the fact that the school choice mechanism used
in the Wake County Public School System allows for students to interact multiple times
with the procedure as a method for empirically identifying strategic players. Interestingly,
the dynamic nature of the procedure, and the information that is made available during the
process to the participants, makes it somewhat comparable to the IDAM mechanism.

Gong and Liang [2016] consider, both theoretically and experimentally, the mechanism
currently in use to match students to universities in the province of Inner Mongolia in China.
When running experiments, the authors find that, when compared to DA, the Inner Mon-
golia mechanism exhibits higher truth-telling rates in the environment with low preference
correlation, but that this does not translate into a higher rate of stable outcomes. In the high
preference correlation environment, on the other hand, there is a higher proportion of stable
outcomes under DA. Although the dynamic mechanism used in Gong and Liang [2016] has
some similarities to the IDAM, such as the availability of tentative cut-off grades, it is in fact
a different mechanism, with different timing and incentives.

Three other papers evaluate experimentally the effects of iterative matching mechanisms.
Echenique et al. [2015] consider a two-sided market, with DA being implemented dynamically.
The authors found that 48% of outcomes are stable and, surprisingly, that the receiving
side optimal stable matching is more likely to be reached than the proposing side. Klijn
et al. [2016] compare dynamic versions of both the school-proposing and student-proposing
versions of DA in one-sided settings of the school choice problem. The dynamic version of
the student-proposing DA that they implement is equivalent to our IDAM-NC treatment.
Finally, Bo and Hakimov [2016] evaluate experimentally how DA compares to the use of
the IDAM mechanism, as well as a modified version of it in which less information is given
about tentative allocations. They found that although the IDAM mechanism does not have a
dominant strategy, the equilibrium strategy that we present in this paper is a better predictor
of behavior than DA’s dominant strategy.
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2 Model

A college matching market is a tuple xS,C, q, PS, PCy:
1. A finite set of students S “ ts

1

, . . . , snu,
2. A finite set of colleges C “ tc

1

, . . . , cmu,
3. A capacity vector q “ pqc1 , . . . , qcmq,
4. A list of strict student preferences PS “ pPs1 , . . . , Psnq over C Y tsu1,

5. A list of strict college preferences over sets of students PC “ pPc1 , . . . , Pcmq2

An exam-based college matching market consists of a college matching market where:

1. Students have vectors of exam scores z “ pz ps
1

q , . . . , z psnqq, where for each s P S,
z psq “ pzc1 psq , . . . , zcm psqq, are the exam scores that student s obtained, respectivelly,
at college c

1

. . . , cm. We assume that for every s, s1 P S and c P C, zc psq “ zc ps1q ùñ
s “ s1,

2. Colleges have minimum necessary scores Z “ `

zc1 , . . . , zcm
˘

.

3. Colleges’ preferences over sets of students are responsive to exam scores, that is,
for all c P C and I Ñ S such that |I| † qc:

(a) For all s, s1 P SzI, I Y tsuPcI Y ts1u ñ zc psq ° zc ps1q,
(b) For all s P S, I Y tsuPcI ñ zc psq • zc.

We can also represent an exam-based college matching market by the tuple xS,C, q, PS, PC , Z, zy.
The preference relation Ps for student s is over the set of colleges and the option of remaining
unassigned, that is, C Y tsu. Given a strict preference relation Ps, we can also derive the
corresponding weak preference relation Rs, where cRsc1 ñ cPsc1 or c “ c1. We say that
student s is acceptable for college c if tsuPcH. We say that college c is acceptable for
student s if cPss.

A matching µ is a function from C Y S to subsets of C Y S such that:

• µ psq P C Y tsu and |µ psq| “ 1 for every student s3,

• µ pcq Ñ S and |µ pcq| § qc for every college c,

• µ psq “ c if and only if s P µ pcq.
1Here s represents a student remaining unmatched to any college.
2Whenever adequate, we abuse notation in the notation of preferences over singleton sets as sPcs

1 instead
of tsuPc ts1u.

3We abuse notation and consider µ psq as an element of CYtsu, instead of a set with an element of CYtsu.
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Denote by M the set of all matchings. A random matching is a probability distribution
over M. A matching is individually rational if for every student s, µ psqPss and for every
college µ pcqPcH. A matching µ is blocked by a student s and college c if student s is
acceptable to college c, cPsµpsq and either |µ pcq| † qc or there is a student s1 P µ pcq where
pµ pcq Y tsuq z ts1uPcµ pcq. A matching µ is stable if it is individually rational and is not
blocked. In this model, as opposed to some of the literature in college admissions, colleges
are not considered strategic. Since the actual real-life examples in which this family of
mechanisms was observed were for college admissions where the rules determining admission
criteria were decided by governments, that assumption fits the applications in mind, although
it makes this problem closer to the assumptions in the school choice literature.

3 The SISU mechanism

Until 2010 college admissions in Brazil were essentially decentralized, with no central mech-
anism matching students to the programs in universities. In 2010 the ministry of education
launched a new method for matching students to university programs,4 denoted SISU. The
SISU system represented a significant change in the way in which universities admitted stu-
dents. First, it unified the acceptance criteria at the universities for the seats made available
through the system: instead of a different exam for each university, a unified national exam
was used.5 Second, students were free to apply to any program in any university in the
country (among those available in the SISU) without any extra cost, whereas before in some
cases the student would have to travel to the university premises just to be able to apply.
Third, and perhaps most importantly, the centralized system could allow a student to obtain
information about which university programs would accept him.

During the period 2010 to 2016, the precise rules which define the SISU mechanism were
changed multiple times. The version that we will consider for analysis is the one used for the
year 2010, due to its simplicity, so whenever we refer to the SISU mechanism we are referring
to this version of it. Although later versions have different modifications, as far as we know
all the problems identified in this section are also present in the later versions.

The mechanism runs for four days. During the entire day t, for t “ 1, . . . 4 students may
each submit a choice of a single college in C. If a student makes no choice, her last choice is
repeated. At the end of each day t † 4, for each college c:

• If the number of students who chose college c and have an exam grade at c higher than
zc at day t is smaller than qc, let the cut-off value at c for period t, ⇣tc, be ⇣tc “ zc.

• Otherwise, ⇣tc is set to be the qthc highest grade at c among those who chose c at t.

• The cut-off values ⇣tc1 , . . . , ⇣
t
cm are made public.

4Different from countries like the US, in Brazil a student is accepted to a specific program in a university
(for example, economics at the University of Brasilia).

5Different universities and programs could use different weights for the various parts of the exam. For
example, economics programs could give a higher weight to the math section of the exam, while biology
programs could give a higher weight to the biology section.
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At the end of day t “ 4, for each college c:

• The top qc students who have an exam grade at c higher than zc and chose c during
day c are matched to college c.

• If the number of students who have an exam grade at c higher than zc and chose c on
day 4 is lower than qc, all of them are matched to c.

• All students who chose c and were not matched to it will remain unmatched.

• All students who did not apply to a college during all days will also remain unmatched.

Although the potential ability to know which colleges a student might not be matched to
before submitting their final choice seems like an interesting property, in fact that is not the
case in general, as is noted in the following remarks.
Remark 1. Choices made during days t “ 1, . . . , 3 may have no direct effect on the final
outcome. As a result, students have no clear incentive to make choices before day 5.

Of course, if some student s makes a choice in a day t˚ † 4 and does not make a choice
on day 4, her choice on day t˚ will be the one considered when generating the outcome at the
end of day 4. However, the outcome would be the same if we kept other players’ choices and
s made her choice only on day 4. The fact that this results in no clear incentive for students
to make choices before day 4 makes the information available by the end of day 3, regarding
which colleges student s could be matched, to even less reliable.
Remark 2. The cut-off values at some colleges may go down from one day to the next.

Since students may choose any college on any day, nothing prevents the cut-off values at
some colleges from going down from one period to the next. For example, consider a scenario
in which college c has only one seat. Let student s, where zc psq “ 200, be the only student
to choose college c during day 3. The cut-off value for c made public at the end of day 3 is
therefore ⇣4c “ 200. If s chooses a different college during day 4 and no other student chooses
c, then ⇣4c “ zc. That is, some student s1 whose grade at c is greater than zc but lower than
200, cannot take the cut-off value at college c, even at the end of day 3, as an indication that
she had no chance at being accepted there by the end of day 4.

If the cut-off values go down from one day to another, then the use of those values as
information that guides students’ applications away from schools at which they will not be
accepted becomes jeopardized. Moreover, if the cut-off values go down at some program from
day 3 to 4, a student who may have preferred to go to that program and get accepted by the
end of day 4 will not do so.

Another shortcoming of the SISU mechanism is that it is subject to a new type of ma-
nipulation, denoted manipulation via cutoffs, in which groups of students may induce other
students to change their behavior in a way that may benefit some of the students in that
group. This is denoted manipulation via cutoffs, and is explored in more details in section 7.
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4 Empirical evidence

In order to evaluate the empirical relevance of the shortcomings of the SISU mechanism
identified in the previous section, we analyze data for the selection process that took place
in January 2016. In that year, more than 228,000 seats in public universities were offered,
and a total of more than 2,500,000 students participated. The average competition level,
therefore, was of more than 10 candidates per seat.

The data consists of the cut-off values for each of the 25,686 options available to the
students, for each of the four days in which students were able to make choices. In Brazilian
universities, students apply and may be accepted to specific programs in those universities,
as opposed to joining the university as a whole. For example, a student must choose to apply
to the daytime economics program at the Federal University of Rio de Janeiro, or to the
nighttime computer science program at the same university. Although all programs use a
national university entrance exam, different programs may give different weights for different
parts of the exam (essay, math, literature, etc) when ranking students.

In the present analysis, we are interested in whether the cut-off values decrease from one
day to another and, if so, by how much. As pointed out in section 3, a decrease in the cut-off
values points to a failure of the SISU mechanism in providing information on the programs to
which a student has no chance of being accepted and, moreover, lead students not to choose
programs that they prefer and to which they would actually end up being accepted.

Figure 4 shows the proportion of programs available for the students at which the cutoffs
increased, decreased or did not change from one day to the next. Some important facts to
note are:

• The proportion of programs in which the cutoffs decreased is surprisingly high, on
average 8.78% of them,

• The proportion of programs in which the cutoffs decreased increased over time,

• More than 10% of the final cutoffs were lower than those informed to the students on
the last day in which they made choices.

In all but five of the 25,686 programs available the cut-off value by the end of day 4 were
above zero. Figure 4.2 shows the histogram of the values of the cutoffs after they increased
or decreased for each day. Although we cannot say that the distributions of cutoffs which
decreased and those which increased are not distinguishable, it seems clear that the decreases
or increases are not clustered around different values of cutoffs.

The next question is whether the changes in cut-off grades, when they decrease, are large
enough to in fact affect students’ beliefs and outcomes. If a cutoff decreases by a very small
amount, for example, it may well be that no student could have been negatively affected by
that change, since the number of students who become able to choose that program due to
that decrease is small or even zero.

The measure that we use to evaluate the degree to which a cut-off value decreases is
the change in the value of the empirical cumulative distribution function (CDF), for each
program, from one day to the next. For example, say that the cut-off value at program p
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Figure 4.1: Proportion of programs at which the cut-off values increased, decreased or did
not change from one day to the next

Decreased: Day 1 to 2 Decreased: Day 2 to 3 Decreased: Day 3 to 4

Increased: Day 1 to 2 Increased: Day 2 to 3 Increased: Day 3 to 4

Figure 4.2: Cut-off values after they were decreased/increased from the previous day
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Day 1 to 2 Day 2 to 3 Day 3 to 4

Figure 4.3: Change in the value of the empirical CDF for cut-off values that decreased

decreased from day 1 to day 2 from 550 to 500. If the value of the empirical CDF of all
cut-offs on day 1, for program p. is of 0.3 and 0.2 on day 2, then that means that 30% of the
cut-off values were below the one for program p on day 1, but only 20% of them were below
the cut-off value of program p on day 2.

Figure 4.3 shows the frequency of the changes in the value of the empirical CDF for each
pair of consecutive days.6 For the programs that had their cut-off value reduced between
these days, the graphs show that although the largest changes take place from day 1 to day
2, in all cases the proportion of large changes in the ranking is quite significant. In fact, the
percentage of programs where the change in the value of the CDF was lower than -0.2 was
46.87%, 14.61%, and 19.39% for Day1/Day2, Day2/Day3 and Day3/Day4 respectively.

We can therefore conclude that the daily cut-off values which result from candidates
interacting with the SISU mechanism fail to provide reliable information about the programs
for which a student would not be accepted, since many of them are significantly reduced from
one day to the next.

5 The Iterative Deferred Acceptance Mechanism

In this section we introduce the Iterative Deferred Acceptance Mechanism (IDAM). It essen-
tially consists of the SISU mechanism with some important modifications, listed below. We
will denote a student s as tentatively accepted at college c by period t if she chose college c at
some period t˚, where 0 † t˚ § t and for all t1 such that t˚ § t1 § t, ⇣t1

c § zc psq.
• Commitment of choices: Only students who are not tentatively accepted at some

college in period t ´ 1 are allowed to make a choice during period t. Moreover, when
able to make a choice in period t, a student may only choose from colleges where the
cut-off grade in period t is lower than her exam grade in that college.

• Activity rule: If a student s is allowed to make a choice in period t but does not, we
consider that as choosing s (remaining unmatched) in that period.

6All changes in the value of the CDFs were negative except for one, which had a change below 0.001 and
was removed from the graphs for convenience.
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• Closing rule: The mechanism ends after a period T in which every student is either
tentatively accepted at some college or chose to remain unmatched at some previous
period or when the number of periods reaches a predetermined number T ˚.

Consider an exam-based college matching market xS,C, q, PS, PC , Z, zy and a maximum num-
ber of steps T ˚ P N. The mechanism proceeds as follows:

• Step t “ 0: Let L0 “ S, S0 “ H, and for every c P C, ⇣0c “ zc and µ0 pcq “ H. Make
public the values of ⇣0c1 , . . . , ⇣

0

cm .

• Step 0 † t § T ˚:

– (a) Let St ” ts P Lt´1|Ec P C : s P µt´1 pcqu and, for every s P S,  t psq ” tc P C : zc psq ° ⇣t´1

c uY
tsu if s P St and  t psq “ H otherwise.

– (b) Request each student s P St choose an element of  t psq. Let Lt be all students
in Lt´1 minus those who chose s (that is, to remain unmatched) and define, for
each c P C, Lt pcq be the set of students who chose c at this step.

– (c) For each college c, let µt˚ pcq ” µt´1 pcq Y Lt pcq .

⇤ If |µt˚ pcq| † qc, let ⇣tc “ ⇣t´1

c and µt pcq “ µt˚ pcq.
⇤ If |µt˚ pcq| “ qc, let ⇣tc “ minsPµt˚pcq tzc psqu and µt pcq “ µt˚ pcq.
⇤ If |µt˚ pcq| ° qc, let µt pcq contain the top qc students with respect to zc in
µt˚ pcq, and ⇣tc “ minsPµtpcq tzc psqu.

– (d) Make the values of ⇣tc1 , . . . , ⇣
t
cm public.

– (e) If for every c P C it is the case that µt˚ pcq “ µt pcq, stop the procedure.

• The function µt, for the highest value reached of t, is the outcome of the mechanism.
Denote by T the last step executed in the procedure.

The following lemma shows that regardless of the choices made by the students when inter-
acting with the IDAM mechanism, the cut-off values at each college never go down.

Lemma 1. (Cut-off grades never go down) For every 0 § t § T and c P C, ⇣tc • ⇣t´1

c .
Moreover, if for every c P C it is the case that ⇣t˚`1

c “ ⇣t
˚
c , then T “ t˚ ` 1.

One of the consequences of Lemma 1 is that the IDAM mechanism always ends in finite
time. We define, formally “straightforward behavior” [Roth and Sotomayor, 1992] when
interacting with the IDAM mechanism:

Definition 1. A student s P S presents straightforward behavior with respect to P ˚
when interacting with the IDAM if, whenever there is a period in which she is requested to
make a choice over a set I Ñ C Y tsu, she chooses c˚ P I, such that @c1 P I : c˚R˚ c1, where
R˚ is the weak preference derived from P ˚.
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Proposition 1. If all students present straightforward behavior with respect to the preference
profile P , there is a finite number of steps T for which the outcome of the IDAM mechanism
is the student-optimal stable matching with respect to P .

Proof. When all students present straightforward behavior, the steps of the IDAM mechanism
are the same as the steps of the algorithm presented in Dubins and Freedman [1981] if
students, each time they make a proposal, follow their preference ranking until being accepted
by some college. Therefore, the outcome will be the student-optimal stable matching.

If the maximum number of steps, T ˚, is not high enough, the outcome of the IDAM
mechanism may not be stable when students present straightforward behavior. As shown
in the lemma below, however, in that case all blocking pairs will involve a college and an
unmatched student.

Lemma 2. Let all students present straightforward behavior with respect to the preference
profile P and µ be the matching produced by the IDAM mechanism. If a student s blocks µ
with some college c, then µ psq “ s.

Proof. If the IDAM mechanism is run for enough periods, Proposition 1 implies that µ is
stable and therefore no student blocks µ with any college. Consider now the case in which
the number of periods T ˚ is smaller than that, and suppose that there is a student s and a
college c where cPsµ psq, µ psq “ c1 and student s and college c block µ. Since µ psq “ c1, then
at some period t˚ § T ˚, s chose college c1. Since s and c block µ, it must be that ⇣T˚

c † zc psq.
By Lemma 1, ⇣t˚

c § ⇣T
˚

c . Therefore, in period t˚ both colleges c and c1 were available to s
but she chose c1. A contradiction with straightforward behavior with respect to P .

6 Incentives and equilibria under the IDAM mechanism

Although the outcome of the IDAM mechanism is the student-optimal stable matching when
students present straightforward behavior, and differently from the GS-DA mechanism, [Du-
bins and Freedman, 1981, Roth, 1985], it is not the case here that students have a weakly
dominant strategy in the game induced by the IDAM mechanism. In order to see this, we
first need to formally define that game.

Fix a set of colleges C, with their capacities q and minimum scores Z. The extensive
game form G induced by the IDAM mechanism is a tuple pS,H,�, P, fq which consists of:

• A finite set of players S “ ts
1

, . . .u.
• A finite set of actions A “ ta

1

, . . .u.
• A set of finite histories H, which are sequence of actions, with the property that if

paiqki“1

P H, then for all ` † k, paiq`i“1

P H. The null history, hH is also in H.

• At history h
0

, nature draws the values of z and P from a joint distribution f , and each
student s observes the realization of z psq and of Ps. The distribution f is common
knowledge.
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• Let Z be the set of terminal histories, that is, if h P Z where h “ paiqki“1

, then there is no
h1 P H, with h1 “ pa1

iq`i“1

where ` ° k and for all i § k, ai “ a1
i. Then paiqki“1

P Z ùñ k
mod n “ 0 .

• � is a player function. � : HzZ Ñ S. There exists an ordering of the players ps
1

, . . . , snq
such that, for all h P H such that |h| § n, � phq “ s|h|.7

– Let paiqki“1

P H, where k • 1. If paiqk`n
i“1

P H, then �

´

paiqki“1

¯

“ �

´

paiqk`n
i“1

¯

.8

• For each student s, Is is a partition of h : � phq “ s . Define ⇣
´

paiqki“1

¯

as the collection
of lists of cutoff grades pp⇣0c qcPC , p⇣1c qcPC , . . .q that result from the sequence of actions
in paiqk´pk mod nq

i“1

. Define H t
` ”

!

paiqki“1

P H : k mod n “ ` and k ˜ n “ t ´ 1

)

9, and

let h, h1 P H t
` . The histories h “ paiqki“1

and h1 “ pa1
iqki“1

belong to the same member of
the partition Is` if and only if:10

– |h| mod n “ |h1| mod n,
– ⇣ phq “ ⇣ ph1q,
– z ps`|hq “ z ps`|h1q, that is, the realization of student s`’s grades at the colleges

are the same.
– ai “ a1

i for all i such that i mod n “ ` 11.

• A phq are the actions available at h P H. For every hi P H t
` , the set of actions depend

on whether, given the history of actions until step t of the IDAM mechanism, student
s “ � phiq is offered a set of colleges to choose from, in which case A phiq “  t psq,
or not, in which case we denote A phiq “ t}u, where } is simply a placeholder for an
action when no action is requested from the student. We abuse notation and denote,
for any Ii P Is, A pIiq to be A phiq for any hi P Ii (remember that by definition all
histories in Ii have the same set of actions associated with them).

• A (pure) strategy for player s is a function �s p¨q that assigns an action in A pIiq to each
information set Ii P Is.

• The outcome function O assigns, to each strategy profile � “ p�s1 , . . . , �snq, a ran-
dom matching that results from following the histories that result from following those
strategies in the IDAM mechanism, given each realization of z and P .

7That is, the first n actions consist of player s1 playing first, s2 second, and etc.
8This, combined with the previous item and the condition on terminal histories, implies that every player

plays every n actions once.
9That is, Ht

` are all histories that student s` could reach after t steps of the mechanism.
10Notice that this game form has perfect recall.
11That is, two histories belong to the same member of the partition if the student’s grades at the colleges

are the same, the history of cutoffs was the same, and the actions taken by that player were the same. That
is, if player s` has the same grades and the same experience in both histories.
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Since our solution concept will demand students’ strategies to be rational at all possible
information sets, we will need to consider how students’ strategies act at each subgame. We
first define a subgame:

Definition 2. A subgame of the game G “ pS,H,�, P q at non-terminal history h “ paiqki“1

,
for h P HzZ is a game G|h “ pS|h , H|h , �|h , P |hq where:

• H|h “
!

h1 “ pa1
iqli“k where l • k and pa

1

, . . . , ak´1

, a1
k, . . . , a

1
lq P H

)

• S|h “ ts P S : � ph1q “ s for some h1 P H|h zZu
• �|h : H|h Ñ S|h such that for all h1 P H|h, where h1 “ pa1

iqli“k, �|h ph1q “ � pa
1

, . . . , ak´1

, a1
k, . . . , a

1
lq

• For each s P S|h, Ps|h satisfies, for all h1, h2 P H|h , h1 Ps|h h2 ñ pa
1

, . . . , ak´1

, a1
k, . . . , a

1
lqPs pa

1

, . . . , ak´1

, a2
k, . . . , a

2
l q.

The weak preference Rs|h is defined accordingly.

Finally, let �|h “ p�s1 |h , . . . , �sn |hq be the strategy profile � restricted to the subgame
G|h. We can define analogously a subgame in terms of an information set instead of a single
history. We will consider situations in which students present straightforward behavior.
Therefore, we can define a straightforward strategy accordingly:

Definition 3. A strategy �s of student s P S is straightforward with respect to P ˚ if
for every t and ht

s P H t
s:

#

�s pht
s|z psq , P ˚q “ maxP˚ pA pht

sqq if A pht
sq ‰ t}u

�s pht
s|z psq , P ˚q “ } otherwise

The first question that we make is whether a student has a dominant strategy at the
game induced by the IDAM mechanism. This is a natural question, since the mechanism
itself resembles the deferred acceptance procedure and truth-telling is a weakly dominant
strategy under that direct mechanism. As we show below, that is not the case under the
IDAM mechanism.

Proposition 2. A student may not have a weakly dominant strategy under the IDAM mech-
anism

The reason why not following a straightforward strategy may be profitable is that, in
contrast to the case with the deferred acceptance direct mechanism, an agent may influence
others’ actions by modifying the signals received by the other agents, in the form of different
cut-off grades or rejections. So if, for example, a student has a strategy that depends in some
way on the cut-off grades then that fact could be exploited.

One interesting property of the IDAM mechanism, which is the driver of many of the
theoretical results that will follow, is that although the combination of strategies that students
may use is much richer than that of straightforward strategies, the sequence of interactions
that the students have with the mechanism cannot be distinguished from interactions that
result from all students following straightforward strategies.
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Lemma 3. Fix a realization of P and z and let � be a strategy profile and h a history that
results from that strategy profile. There is at least one strategy profile �˚, where every student
follows a straightforward strategy with respect to some preference profile P ˚, which also results
in history h.

The result in Lemma 3 does not hold for the SISU mechanism, however.
Remark 3. There are sequences of actions that students may take under the SISU mechanism
that cannot be produced by any profile of straightforward strategies.

To see why Remark 3 is true, consider a student who is the most preferred student by
colleges c

1

and c
2

, and in period 1 chooses college c
1

, in period 2 chooses c
2

, and in period 3
chooses c

1

again. This sequence of actions is not possible under the IDAM mechanism, cannot
be the result of a straightforward strategy (since in all periods both colleges are available to
her) and can take place under the SISU mechanism.

Although not having a dominant strategy can be seen as an undesirable characteristic of
the IDAM mechanism, when compared to the property of strategy-proofness, we will now
show that students following straightforward strategies is a robust equilibrium. First, we
define our equilibrium concept.

Let A and B be two random matchings. We denote by Ís the first-order stochastic
dominance relation under Ps. That is, A Ís B if for all v P C Y tsu, Pr tA psq “ v1|v1Rsvu •
Pr tB psq “ v1|v1Rsvu.
Definition 4. A strategy profile � is an ordinal perfect bayesian equilibrium (OPBE)
of a game G “ pS,H,�, P, fq if for all Ii P Is , every s P S|Ii , every assessment µ over Is

and strategy �1
s|Ii for player s in the subgame G|Ii :

Oµ p�s|h , �´s|hq Ís Oµ p�1
s|h , �´s|hq

The theorem below shows that students following straightforward strategies is an equi-
librium.

Theorem 1. Let �˚ be the strategy profile in which all strategies are straightforward. Then
�˚ is an OPBE of the game induced by the IDAM mechanism.

It is not the case, however, that every OPBE consists of every student following a straight-
forward strategy, as shown in the example below.

Example 1. Consider the following exam-based college matching market:12

S “ ts
1

, s
2

, s
3

, s
4

u C “ tc
1

, c
2

, c
3

, c
4

u , qi “ 1

Ps1 : c1 c
4

Pc1 : s4 s
1

s
2

s
3

Ps2 : c1 c
2

Pc2 : s2 s
3

s
4

Ps3 : c2 c
3

Pc3 : s3 s
4

s
2

Ps4 : c3 c
1

Pc4 : s1 s
2

s
3

s
4

12The example is based on a market due to Kesten [2010].
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Notice first that if all students follow the straightforward strategy, the outcome will be
the matching µ as follows:

µ “
ˆ

c
1

c
2

c
3

c
4

s
4

s
2

s
3

s
1

˙

Let students have perfect beliefs (that is, beliefs are degenerate in the true values). In this
case, SPNE and OPBE are equivalent concepts. Let students s

2

, s
3

, s
4

follow the straightfor-
ward strategy and s

1

follows the strategy below:

1. In the first period, choose c
4

.

2. In the following periods, follow the straightforward strategy.

The outcome of that strategy profile is µ1, as follows:

µ1 “
ˆ

c
1

c
2

c
3

c
4

s
2

s
3

s
4

s
1

˙

By Theorem 1, the strategy profile of all players following the straightforward strategy is
an OPBE of the subgames that follow the first period. Now consider the first period. Since
student s

1

is not acceptable at colleges c
2

and c
3

, it is easy to see that any such deviation
would lead to the outcome µ, which yields the same outcome for s

1

as following the proposed
strategy. Moreover, any deviating strategy that consists of choosing c

1

in the first step will,
at best, also lead to student s

1

being matched to c
4

. This strategy profile is, therefore, an
OPBE.

We proceed below with some further results, in which we consider the Nash equilibria of
the game induced by the IDAM mechanism.

Proposition 3. Every stable matching is a Nash equilibrium outcome of the game induced
by the IDAM mechanism.

Proof. Let µ be a stable matching. Make every student’s strategy apply in the first period
to their match under µ, and not apply anywhere else if they are rejected afterwards. That is
an equilibrium.

Proposition 4. Some Nash equilibrium outcomes are not stable.

Proof. The example is based on a non-credible threat outside of the equilibrium path:

S “ ts
0

, s
1

, s
2

, s
3

u C “ tc
1

, c
2

, c
3

, c
4

u , qi “ 1

Ps0 : c
1

c
2

c
3

c
4

Pc1 : s0 s
1

s
2

s
3

Ps1 : c1 c
4

c
2

c
3

Pc2 : s0 s
1

s
3

s
2

Ps2 : c3 c
2

c
1

c
4

Pc3 : s0 s
1

s
2

s
3

Ps3 : c2 c
3

c
1

c
4

Pc4 : s0 s
1

s
2

s
3

Consider the following matching:
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µ “
ˆ

c
1

c
2

c
3

c
4

s
0

s
2

s
3

s
1

˙

The matching µ is not stable, since ps
2

, c
3

q and ps
3

, c
2

q are blocking pairs. This outcome,
however, is supported by the following strategy profile:

• �s0 : Apply to c
1

in step 1. If rejected, quit.

• �s1 : Apply to c
1

in step 1. If rejected:

– and z pc
3

q “ z ps
2

q or z pc
2

q “ 0, apply to c
3

. If then rejected, quit.
– and z pc

2

q “ z ps
3

q or z pc
3

q “ 0, apply to c
2

. If then rejected, quit.
– otherwise, apply to c

4

. If then rejected, quit.

• �s2 : Apply to c
2

in step 1. If then rejected, quit.

• �s3 : Apply to c
3

in step 1. If then rejected, quit.

Student s
0

gets her top choice, so she would not deviate. Given student s
0

’s strategy and
the fact that she has top priority in c

1

, student s
1

would not be able to be matched to c
1

and therefore has no profitable deviation. Consider now student s
2

. Any profitable deviation
strategy must apply to some school at step 1, otherwise she will remain unmatched. Moreover,
any strategy that starts applying to c

2

will not change her outcome. We must then check all
other possibilities:

• Apply to c
1

in the first step. Then s
2

is rejected from c
1

at step 1. Since z pc
2

q “ 0,
student s

1

will then apply to c
3

and will remain matched there. Therefore, the only
remaining options for s

2

would be to quit or to apply to c
2

or c
4

. In both cases there
is no improvement over µ.

• Apply to c
3

in the first step. Then s
2

is tentatively accepted at c
3

. Since z pc
3

q “ z ps
2

q,
however, in step 2 student s

1

will apply to c
3

, leading to the rejection of s
2

. Again, the
only remaining options for s

2

would be to quit or to apply to c
2

or c
4

. In both cases
there is no improvement over µ.

• Apply to c
4

in the first step. Since z pc
2

q “ 0, student s
1

will then apply to c
3

and
will remain matched there. Student s

2

will not be rejected from c
4

and will therefore
remain matched there. Since c

2

Ps2c4, that is not a profitable deviation.
The same analysis for s

3

would show that she also has no profitable deviation, and therefore
µ is an equilibrium outcome for the game induced by the iterative mechanism.

One important fact to notice is that the schools’ priorities in the example used above have
an Ergin-acyclic priority structure. Haeringer and Klijn [2009] show that when the priority
structure is Ergin-acyclic, the set of outcomes of the game induced by the SPDA mechanism
equals the set of stable matchings. We can therefore conclude the corollary below.
Corollary 1. The set of Nash equilibrium outcomes for the IDAM mechanism is not equal
to the set of equilibrium outcomes for the SPDA.
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7 Manipulations via cutoffs

Other than the fact that under the SISU mechanism the cut-off values do not represent
reliable information regarding the chances a student has of being accepted into a college, that
mechanism is also subject to what we denote by manipulation via cutoffs. A manipulation via
cutoffs occurs when a group of students artificially increase the cut-off values of some college,
as a way of preventing applications from other students, and then in the last period vacate
those seats so that students with a lower exam grade then take their place. The example
below shows how manipulations via cutoffs can happen.

Example 2 (Manipulation via cutoffs). Consider the set of students S “ ts
0

, s
1

, s
2

, s
3

u and
of colleges C “ tc

1

, c
2

, c
3

u, each with capacity qi “ 1 and minimum score zero. Students’
preferences are as follows:

Ps0 : c1 c
2

c
3

Ps1 : c1 c
2

c
3

Ps2 : c1 c
2

c
3

Ps3 : c2 c
1

c
3

Students’ exam grades at the colleges are as follows:
c
1

c
2

c
3

s
0

100 100 100

s
1

200 200 200

s
2

300 300 300

s
3

400 400 400

Suppose that the SISU mechanism is going to be used, and students present straight-
forward behavior. The cut-off values, at the end of each period would then be as follows
(remember that the cutoffs at t “ 4 represent the final allocation cutoffs):

c
1

c
2

c
3

t “ 1 300 400 0

t “ 2, 3, 4 300 400 200

The matching produced, therefore, will be µ:

µ “
ˆ

c
1

c
2

c
3

H
s
2

s
3

s
1

s
0

˙

Suppose, however, that students s
0

and s
3

modify their behavior, and act instead as
follows:

• During t “ 1, 2, 3, student s
0

chooses college c
3

and student s
3

chooses college c
1

.

• In period t “ 4, student s
0

chooses college c
1

and student s
3

chooses college c
2

.

Assuming that the other students present straightforward behavior, the cut-off values at the
end of each period would be as follows:
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c
1

c
2

c
3

t “ 1 400 ´ ´ ´ 100

t “ 2 400 300 100

t “ 3 400 300 200

t “ 4 100 400 200

The matching produced will be µ1:

µ1 “
ˆ

c
1

c
2

c
3

H
s
0

s
3

s
1

s
2

˙

Student s
0

is significantly better off under µ1 than under µ, while s
3

is matched to the
same college in both cases.

Manipulations via cutoffs consists, in other words, of a set of students SH “holding” seats
in colleges and “releasing” them so that a set of students ST can take them in the last period.
In order for these types of manipulations to be successful, some conditions need to be satisfied.

First of all, the set of students SH needs to be large enough when compared to the
capacity of the college, and their exam grades in that college must be high enough. If the
number of students in SH is low when compared to the capacity of the college, the effect of
them choosing that college in the value of the cutoff will be much less noticeable. To see
that, consider the case in which, at a certain period, there are 100 students choosing college
c, which has a capacity of 10 students, and for simplicity assume that those students’ scores
fill the range t1, 2, . . . , 100u (that is, one student has a score 1, one has a score 2, etc). Then,
given those choices, the students who will be tentatively accepted will be those with scores
91 to 100, and therefore the cutoff value will be 91. Suppose that SH has five students,
with exam grades t300, 301, 302, 303, 304u. These are, of course, significantly higher than
the other students’. If all of them choose college c in addition to the 100 students, all of
them will be tentatively accepted in that period, but the change in the cut-off value will
not be as significant: it will change from 91 to 96. If the capacity of the college was five,
the change in the cutoff would be, instead, from 96 to 300. It is not necessarily the case
that the number of students in SH has to be equal to the college’s capacity for the change
in cutoff to be significant. Consider the case in which the exam scores of the 100 students
choosing c are, instead, t252, 251, 250, 100, 99, 98, . . . 4u, and the capacity is still five. The
cut-off value for college c would be 99 in that period. If SH has only two students, with exam
grades t300, 301u, them choosing c would lead the cut-off grade at c to change from 99 to
250, instead.

Second, the other students have to respond in a straightforward way to the cut-off values
in the last period. This can be considered a reasonably mild requirement. It does not require
that the other students follow a straightforward strategy in all periods, but only that they
do not choose, in the last period, a college where the cut-off value is above their grade in
that college.

One may wonder how realistic the first condition is. After all, colleges typically accept
hundreds or thousands of students every year, and a coalition of hundreds of high-achieving
students performing these potentially risky manipulations does not seem realistic. In many
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countries (including Brazil and China), however, students apply directly to specific programs
in the universities, so even though the universities as a whole accept hundreds or thousands of
students, the number of seats at each program is often below 100, and many times lower than
30 or 20. Moreover, even those seats are often subdivided. In China, the seats in each program
are partitioned between seats reserved for candidates from specific provinces. In Brazil,
federal universities partition the seats in the programs into five sets of seats, reserved for
different combinations of ethnic and income characteristics. Finally, universities sometimes
offer only a subset of the total number of seats in a program through the centralized matching
process. In fact, the median number of seats offered in each option available during the
January 2016 selection process in Brazil, where more than 228,000 seats in public universities
were offered, was five.

There is evidence that this type of manipulation takes place in real life. In the Chinese
province of Inner Mongolia, a mechanism which has some similarities to the SISU mecha-
nism is used to match students to programs in universities. While the mechanism itself has
significant differences, it is also vulnerable to manipulation via cutoffs. This fact seems to be
exploited by students, as documented by China News:13

(...) in fact, since 2008, the clearinghouse found that some high scored students
applied to a college with lower cutoff score. For example, their score allows them
to go to PKU or Tshinghua, but they chose Beijing Polytech first. On the other
hand, some other students, from the same high school often, applied to college
that their score would not allow them to go initially (...) [the] system shows that
their rank is below the capacity — so they can’t be admitted under usual terms
— however they do not revise their choices.

Even more remarkably, there seems to be evidence that high schools are coordinating stu-
dents’ actions:

(...) the clearing house noticed that, 2 or 3 min before the deadline, the ranking
of students in the system is changing – this is the evidence that high schools are
organizing their own high scored students to occupy seats for low scored students

Contrary to the SISU mechanism, the IDAM does not have this characteristic:
Remark 4. The IDAM mechanism is not manipulable via cutoffs.

It is easy to see why that is the case. In order for manipulations via cutoff to work, it
is necessary for cut-off values to increase before the final allocation is determined, and for
the final cut-off values (that is, the allocation cutoffs) to be lower. By Lemma 1, this cannot
happen under the IDAM mechanism.

8 Convergence speed and stability

In this section we consider two related questions. As we saw in the description of the IDAM
mechanism, the number of steps until it reaches the Student Optimal Stable Matching when

13Source (in Chinese): http://edu.people.com.cn/n/2014/0904/c1053-25604075.html
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students follow the straightforward strategy depends on preferences and exam grades. One
question then is how many steps does it take for that result to be produced?

A second question is how “far” from a stable matching will the outcome be if the IDAM
mechanism is run for a number of periods smaller than that necessary to produce the Student
Optimal Stable Matching but students still follow the straightforward strategy? The measure
of distance from a stable matching that we use is the number of individuals involved in
blocking pairs.

For the results below, we consider exam-based college matching markets where the set of
students and colleges can be partitioned as S “  

S1 Y S2 Y ¨ ¨ ¨ Y Sk
(

and C “  

C1 Y C2 Y ¨ ¨ ¨ Y Ck
(

,
where

∞

cPCi qc § |Si| and colleges at C i prefer students at Si to those not in Si. This is con-
sistent with situations in which college exams have math and literature sections and students
are good at either math or literature. Notice, however, that when k “ 1 this definition ac-
commodates any market in which the number of seats in colleges does not exceed the number
of students. We also assume in this section that students follow the straightforward strategy.

Proposition 5. If for every i P t1, . . . , ku, c, c1 P C i and s, s1 P Si it is the case that
sPcs1 ñ sPc1s1 and moreover for all s P Si, c P C i and c1 R C i it is the case that cPsc1,
then:

1. The maximum number of steps until stability is maxi t|C i|u.
2. If the IDAM mechanism runs for T † maxi t|C i|u steps, the maximum number of

individuals involved in blocking pairs is n ´ ∞k
j“1

∞T
i“1

qji , where for each j, qj
1

§ qj
2

§
¨ ¨ ¨ § qj|Cj | is the ordering of the capacities of the schools in Cj.

The configuration of preferences used in Proposition 5 is consistent with scenarios in which
the top preferences are mutually partitioned between students and colleges, and colleges share
the selection criteria among their top students. One example would be a college admissions
program that is based on national exams consisting of questions on different subjects and
college programs that rank the students based on their grades in those different subjects. The
stronger assumption in this case is that the partition is such that students are among the best
at only one of the subjects. For example, if the partitioning of college programs is between
medical sciences, STEM and humanities, a student who is among the top at humanities is
not at STEM or medical subjects.

For the case of common preferences between all colleges, the result does not have to rely
on some assumption on students’ strategies.

Corollary 2. When priorities are common across colleges and the IDAM mechanism runs
for T † m steps, the maximum number of individuals involved in blocking pairs is n´∞T

i“1

qi
, where the capacities of the colleges in C are reordered such that q

1

§ q
2

§ ¨ ¨ ¨ § qm.
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A Appendix

A.1 Proofs

Lemma 1

Proof. We prove by induction. Let t “ 1. From step t “ 0, for every c P C, ⇣0c “ zc. For
each college c P C, we have three cases:

• |µ1˚ pcq| † qc, in which case ⇣1c “ ⇣0c

• |µ1˚ pcq| “ qc. Since µ0 pcq “ H, L1 pcq consists of the set of students who chose college
c at step t “ 1. Given the definition of  1 psq, for every student s P L1 pcq, zc psq ° ⇣0c .
Therefore, ⇣1c “ minsPµ1˚pcq tzc psqu ° ⇣0c .

• |µ1˚ pcq| ° qc. Since every student in µ1 pcq is also in L1 pcq, ⇣1c “ minsPµ1pcq tzc psqu ° ⇣0c .

Now assume that for every t “ 0, . . . , k, where k † T and for every c P C, it is the case that
⇣tc • ⇣t´1

c and consider the step k ` 1. For each college c P C, we have three cases:

•
ˇ

ˇµk`1˚ pcqˇ

ˇ † qc, in which case ⇣k`1

c “ ⇣kc “ ¨ ¨ ¨ “ ⇣0c
14.

•
ˇ

ˇµk`1˚ pcqˇ

ˇ “ qc. We have two cases. If
ˇ

ˇµk pcqˇ

ˇ † qc, then ⇣kc “ ⇣0c . Note that since
ˇ

ˇµk`1˚ pcqˇ

ˇ “ qc,
ˇ

ˇLk`1 pcqˇ

ˇ ° 0. By definition, for every student s P Lk`1 pcq, zc psq °
⇣kc “ ⇣0c . Since µk`1 pcq “ µk pcq YLk`1 pcq, minsPµk`1pcq tzc psqu • minsPLk`1pcq tzc psqu °
⇣0c . Therefore ⇣k`1

c ° ⇣0c “ ⇣kc . If, on the other hand,
ˇ

ˇµk pcqˇ

ˇ “ qc, since
ˇ

ˇµk`1˚ pcqˇ

ˇ “ qc
it must be the case that

ˇ

ˇLk`1 pcqˇ

ˇ “ 0, and therefore minsPµk`1pcq tzc psqu “ minsPµkpcq tzc psqu “
⇣kc , and therefore ⇣k`1

c “ ⇣kc .
14Notice that

ˇ

ˇµk`1˚ pcq
ˇ

ˇ † qc together with the fact that students who are tentatively matched cannot
change their submission implies that the cut-off grade will only be increased from ⇣0c once the number of
tentatively accepted students reaches qc.
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•
ˇ

ˇµk`1˚ pcqˇ

ˇ ° qc. Since
ˇ

ˇµk`1˚ pcqˇ

ˇ ° qc and µk`1˚ pcq ” µk pcq Y Lk`1 pcq, ˇ

ˇLk`1 pcqˇ

ˇ ° 0.
If

ˇ

ˇµk pcqˇ

ˇ † qc, ⇣kc “ ⇣0c and since for every student s P Lk`1 pcq, zc psq ° ⇣kc “ ⇣0c ,
⇣k`1

c “ minsPµk`1pcq tzc psqu ° ⇣0c . Otherwise if
ˇ

ˇµk pcqˇ

ˇ • qc, ⇣kc “ minsPµkpcq tzc psqu.
That is, there are qc students in µk pcq with exam grade at c greater than or equal to
⇣kc . Moreover, by definition, for every s P Lk`1 pcq, zc psq ° ⇣kc . That is, there is at
least one student in Lk`1 pcq and all those students have an exam grade at c higher
than the student in µk pcq who has the lowest exam grade at that college. Therefore,
in µk pcq Y Lk`1 pcq there are at least qc students with exam grade at c strictly greater
than ⇣kc , and as a consequence the qthc highest exam grade in µk`1˚ pcq is strictly greater
than ⇣kc . Therefore, ⇣k`1

c “ minsPµk`1pcq tzc psqu ° ⇣kc .

Now, for the second statement in the lemma, fix a t • 0 and suppose that for every c P C
it is the case that ⇣t`1

c “ ⇣tc. We can use the two parts of the proof by induction above to
conclude that there are two scenarios which are compatible with that assumption:

• t “ 0 and for all c P C, |µ1˚ pcq| † qc. In this case, the definition of step 1(c) establishes
that, for each c, µ1 pcq “ µ1˚ pcq. But then step 1(d) implies that the procedure will
stop at step t ` 1.

• t ° 0 and for every c P C, either |µt`1˚ pcq| † qc or |µt`1˚ pcq| “ qc and Lt`1 pcq “ H.
In both cases, step t ` 1(c) implies that µt`1 pcq “ µt`1˚ pcq. Step t ` 1(d) then implies
that the procedure will stop at step t ` 1.

Lemma 2

Proof. Consider some history h P H. Given other players’ strategies �´s, the history that
results from the strategy profile p�s, �´sq consists, as described in the definition of the IDAM
mechanism, of a series of periods in which each student has either only the action } or some
menu of options  t psq to choose from. Therefore, given our strategy profile and student s,
we can write down a list of pairs of menus given to student s and her choice.

For example, suppose that the set of colleges is C “ tc
1

, c
2

, c
3

, c
4

u. A possible list could
be the following:

pptc
1

, c
2

, c
3

, c
4

, su , c
2

qt“1

, pH,}qt“2

, ptc
1

, c
3

, su , c
3

qt“3

, pH,}qt“4“T q
That is, in the first step the student was offered the entire list of colleges and chose c

2

. In
the second step, she was not offered a menu and therefore performed the continuation action
}. In the third step, the student was offered colleges c

1

and c
3

. Finally, during the fourth
and final step, no menu was offered. Notice that, even if we do not know the strategy that
was followed by the student, it would be precisely the sequence of actions taken by a student
following a straightforward strategy for the preferences c

2

Psc4Psc3Psc1Pss. In fact, there is
a class of preferences that are consistent with that list of pairs.
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In general, say that the sequence of menus offered and actions chosen for a student s up
to history h are as follows:

``

 1, a1
˘

,
`

 2, a2
˘

, . . . ,
`

 t, at
˘˘

For simplicity, and without any loss of generality, assume that the sequence above has
removed from the list the pairs pH,}q. Because of Lemma 1 and the definition of  t psq
in the description of the IDAM mechanism, if at “ c, for all t1 ° t, c R  t1 , and therefore
ai “ aj ùñ i “ j, that is, there is no repetition of choices in ai, i “ 1, . . . , t. Denote  i´ ”
 izît

j“i a
j. We will show that this sequence could have been generated by a straightforward

strategy of a student with a preference relation in the following class of preferences:15

Sz 1 R˚
s a1 P ˚

s  1

´z 2

´ R˚
s a2 P ˚

s  2

´z 3

´ R˚
s ¨ ¨ ¨R˚

s at P ˚
s  t

´
The notation above includes a class of strict preferences because some of its elements

consists of sets of colleges. Any strict preference derived from some ordering over the elements
of each of those sets belongs to the class of preferences that we are referring to. We will refer
by Ps̊ to some arbitrary element of those preferences. It is easy to see that each preference
in that class is complete over the set of colleges and that no college appears more than once,
since  t´ à  t´1´ à ¨ ¨ ¨ à  1´ à S and ai R  j

´ for all i, j.
Now, take some of the menus that were offered,  i. We will now show that for all a P  i

where a ‰ ai, aiPs̊ a. For that, it suffices to show that:

a P
t
§

j“i`1

aj Y
t´1

§

j“i

 j
´z j`1

´ Y  t
´

That is, we will show that a must be at some element to the right of ai in the definition
of Ps̊ . Since a ‰ ai, this is equivalent to:

a P
t
§

j“i

aj Y
t´1

§

j“i

 j
´z j`1

´ Y  t
´

Since we defined  i´ ”  izît
j“i a

j, we can rewrite the condition as:

a P  iz i
´

loomoon

piq

Y
t´1

§

j“i

 j
´z j`1

´
looooomooooon

piiq

Y  t
´

loomoon

piiiq

Suppose not. Then a cannot be in piq, piiq and piiiq. By piq, it must be that a R  iz i´.
Since a P  i, that implies a P  i´. By piiq, since a R  i´z i`1´ , it must then be that a P  i`1´ .
This reasoning can be repeated until finding that it must be that a P  t´. But that is piiiq,
which leads to a contradiction.

15Note that this class of preferences does not necessarily include all the preferences that are compatible
with the choices made.
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We therefore have that given �´s, the sequence pp 1, a1q , p 2, a2q , . . . , p t, atqq is con-
sistent with student s having a preference over colleges Ps̊ and following a straightforward
strategy up to step t, since for all a P  i where a ‰ ai, aiPs̊ a. If we follow the same exer-
cise for every student, we may construct a preference profile P ˚ “ `

Ps̊1
, . . . , Ps̊n

˘

where the
students following straightforward strategies with respect to P ˚ will lead to history h.

Theorem 1

Proof. By Proposition 1, for any realization of z and P , the outcome of the strategy profile �˚
is µS, the student-optimal stable matching with respect to the preference profile P and college
priorities z. By Lemma 3, if any student s uses some deviation strategy �1

s, each realization
of z and P will lead to the student-optimal stable matching for a profile pPs̊ pP, zq , P´s, zq,
where Ps̊ pP, zq is any preference profile that could generate the history that results from the
strategy profile

`

�1
s p¨|zs, Psq , �˚́

s p¨|z´s, P´sq
˘

. But Roth [1984] shows that the outcome of
the student-optimal stable matching for the profile pP, zq is weakly preferred by s to that for
pPs̊ pP, zq , P´s, zq. Therefore, for any realizations of z and P , student s obtains an outcome
that is weakly better by following the straightforward strategy, given that others are following
it. As a consequence, the lottery induced by the strategy profile �˚ stochastically dominates
the one induced by

`

�1
s p¨|zs, Psq , �˚́

s p¨|z´s, P´sq
˘

for player s.
Given the definition of OPBE, we still need to show that following the straightforward

strategy stochastically dominates any deviation strategy at subgames that follows a player’s
deviation from the straightforward strategy. In other words, supposing that a player did
not follow the straighforward strategy up to period t, we need to show that following the
straightforward strategy stochastically dominates any other continuation strategy, assuming
that the other students follow that strategy. To see that this is true, it suffices to make two
observations:

• Starting from period t, a student s’s strategy is only relevant at that subgame from the
moment that she is requested to make some choice at some period t1 • t.

• At period t1, from the perspective of that student, the induced subgame is indistin-
guishable from the IDAM mechanism that starts with students being unacceptable to
schools that are not reachable anymore for them at period t1.

Since the stochastic dominance result above does not depend on whether a student is accept-
able or not to different schools, it follows that the result also holds at subgames resulting
from deviation strategies.

Proposition 2

Proof. Consider the set of students S “ ts
1

, s
2

, s
3

u and of colleges C “ tc
1

, c
2

, c
3

u, each with
capacity qi “ 1. Student s

1

, who will be the player to whom we will show no dominant
strategy exists, has preferences c

1

Ps1c2Ps1c3, and students’ exam grades at those colleges are
as follows:
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c
1

c
2

c
3

s
1

100 100 100

s
2

200 200 200

s
3

300 300 300

Suppose now that, conditional on the realized preferences and grades of student s
1

, student
s
3

follows a straightforward strategy with respect to the preference c
3

P 3c
2

P 3c
1

. Notice that
we are not stating those are student s

3

’s preferences. We are simply assuming that she will
follow the straightforward strategy with respect to P 3. Next, we consider two strategies for
student s

2

and show that no strategy is a common best response for these two possibilities.
Scenario 1
Suppose that student s

2

’s strategy is the following: in t “ 1, choose c
3

. If at some later
point s

2

is asked again to make a choice, she will choose the college with the highest cut-off
value at that period among the options available. In case of ties, she will choose the college
with the lowest index number (for example, the index number of c

2

is 2). We will show that,
given s

2

and s
3

’s strategies, the unique best response involves first choosing c
2

. The sequence
of steps will be as follows:

Step 1: Student s
1

applies to c
2

. Students s
2

and s
3

apply to c
3

. Student s
2

is rejected.
Cutoffs

`

⇣1c1 , ⇣
1

c2
, ⇣1c3

˘

are p0, 100, 300q.
Step 2: Since ⇣1c2 is the highest cutoff among the colleges offered to s

2

, student s
2

applies
to c

2

. Student s
1

is rejected. Cutoffs
`

⇣2c1 , ⇣
2

c2
, ⇣2c3

˘

are p0, 200, 300q.
Step 3: Student s

1

is left with two options: choose c
1

or s. If she chooses s she will
remain unmatched. If she applies to c

1

, she will be accepted. Final cutoffs
`

⇣3c1 , ⇣
3

c2
, ⇣3c3

˘

would
then be p100, 200, 300q and the outcome would be the matching µ1 as follows:

µ “
ˆ

c
1

c
2

c
3

s
1

s
2

s
3

˙

Student s
1

can therefore be matched to her most preferred college by first choosing c
2

.
We now show that by choosing first c

1

or c
3

, s
1

will always be matched to a strictly inferior
college. First, let her choose c

1

first:
Step 1: Student s

1

applies to c
1

. Students s
2

and s
3

apply to c
3

. Student s
2

is rejected.
Cutoffs

`

⇣1c1 , ⇣
1

c2
, ⇣1c3

˘

are p100, 0, 300q.
Step 2: Since ⇣1c1 is the highest cutoff among the colleges offered to s

2

, student s
2

applies
to c

1

. Student s
1

is rejected. Cutoffs
`

⇣2c1 , ⇣
2

c2
, ⇣2c3

˘

are p200, 0, 300q.
Step 3: Student s

1

is left with two options: choose c
2

or s. If she chooses s she will
remain unmatched. If she applies to c

1

, she will be accepted. Final cutoffs
`

⇣3c1 , ⇣
3

c2
, ⇣3c3

˘

would
then be p200, 100, 300q and the outcome would be the matching µ1 as follows:

µ1 “
ˆ

c
1

c
2

c
3

s
2

s
1

s
3

˙

If s
1

chooses c
3

first instead, the following will happen:
Step 1: Students s

1

, s
2

and s
3

apply to c
3

. Students s
1

and s
2

are rejected. Cutoffs
`

⇣1c1 , ⇣
1

c2
, ⇣1c3

˘

are p0, 0, 300q.
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Step 2: Following her strategy and the fact that college c
1

’s index is lower than c
2

, student
s
2

applies to c
1

. Student s
1

has three options: choose also c
1

and therefore be rejected and
left to choose between c

2

and s in period t “ 2, choose c
2

or choose s. In all cases she will
either end up remaining unmatched or matched to c

2

.
Scenario 2
Now suppose that student s

2

follows a similar strategy to scenario 1, but where instead
of applying to c

3

and then to the college with the highest cut-off value, she will apply to
the college with the lowest cut-off value, once again breaking ties based on the index of the
college.16 Following an exercise similar to the one above, it is easy to see that student s

1

’s
strategies that involve choosing first c

2

or c
3

will lead her to either be unmatched or be
matched to c

2

, while choosing c
1

will match her to c
1

, her most preferred college.
Since every best response strategy under scenario 1 is dominated by different strategies

in scenario 2, we have shown that a student may not have a weakly dominant strategy at the
game induced by the IDAM mechanism.

Proposition 5

Proof. Since students follow straightforward strategies, a student s P Si will only apply to
colleges that are not in C i if the cutoffs at all colleges in C i are above her exam grade.
Moreover, since for every i the number of students who prefer any college in C i to any college
not in C i is at least as big as the overall number of seats in these colleges, by the end of the
execution of the IDAM mechanism all seats in those colleges will be occupied by students in
Si, and students in Si who are not matched to colleges in C i will be left unmatched (even
though some of them may be tentatively accepted at some period during the execution of
the mechanism). From the perspective of a student in Si, therefore, a seat in a college in C i

which is being occupied by a student not in Si is equivalent to an empty seat.
Consider any i P t1, . . . , ku and let qi

1

§ qi
2

§ ¨ ¨ ¨ § qi|Ci| be the ordered capacities of the

colleges in C i. We will denote by
!

Si
1

, Si
2

, . . . , Si
|Ci|, S

i´
)

the partitioning of the students in Si

where Si
1

are the top qi
1

students in Si in colleges C i’s preferences, Si
2

are the top qi
2

students
after those in Si

1

in colleges C i’s preferences, etc. and Si´ are the students in Si below the top
∞|Ci|

j“1

qij students. By Proposition 1, when students follow straightforward strategies the final
outcome of the IDAM mechanism is the student-optimal stable matching, and by Lemma 2,
at any period in which there are blockings, those involve students who are not tentatively
matched to any college. The number of students who are involved in a block is therefore
maximized when the number of students tentatively accepted to a college in any period is
minimal.

16Although the strategies used in this proof for student s2 may seem very arbitrary, they can be rationalized
by two simple stories. Student s2’s strategy in scenario 1 is consistent with a student who knows that her
top choice is c3 but that has some uncertainty about which one among c1 and c2 is her second choice, and
sees the cut-off grade as an indication of how competitive acceptance is at those colleges and therefore the
perceived quality of those. The strategy in scenario 2 could be rationalized by a student who once again
knows that her top choice is c3 but that would otherwise prefer to go with a college with low-achieving peers,
and uses the low cutoff as an indication of that fact.
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Consider now period t “ 1. Since every college in C i has at least qi
1

seats, every student
in Si

1

will be accepted at any college in that period. There is one case in which all other
students will be rejected, though: if all students in Si choose the same college with capacity
qi
1

in period t “ 1. In that case, |Si| ´ qi
1

students in Si will be tentatively unmatched by
the end of period 1, and therefore if the IDAM mechanism runs for just one period, that is,
the maximum number of students in Si who will be involved in blocking pairs. The same
argument will follow at t “ 2: given that the students in Si

1

are all matched to a school
with capacity qi

1

, the number of students who are tentatively unmatched by period t “ 2 is
maximal when all the remaining students in Si choose a college with capacity qi

2

.
If we consider all the colleges and students, this process will take place in parallel at each

element of S “  

S1 Y S2 Y ¨ ¨ ¨ Y Sk
(

and C “  

C1 Y C2 Y ¨ ¨ ¨ Y Ck
(

. That is, by the end
of period 1, the maximum number of students involved in blocks in S1 is |S1| ´ q1

1

, in S2

is |S2| ´ q2
1

, etc. The result therefore extends to a maximum of n ´ ∞k
j“1

∞T
i“1

qji students
involved in blocks.

Finally, if we consider the maximum number of steps that it takes until the student-
optimal stable matching is produced, we can ask about which preferences from the students
minimize the number of students who are matched to their final allocation at each step.
That is, by minimizing the number of students matched to their final allocation we allow
for the maximum number of students who can still make choices. Here it is easy to see
that the preferences considered above, in which all students apply to the colleges in order
of increasing capacity, is also the one that at each step matches the minimal number of
students to their final allocation. The overall process will in that case end when the last
set in

!

S1

|C1|, S
2

|C2|, . . . , S
k
|Ck|

)

is matched to their final allocation. That will be therefore
be the one with the largest number of colleges. Thus, the maximum number of steps is
maxi t|C i|u.
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