
Haase, Knut; Kimms, Alf

Working Paper — Digitized Version

Lot sizing and scheduling with sequence dependent
setup costs and times and efficient rescheduling
opportunities

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 393

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Haase, Knut; Kimms, Alf (1996) : Lot sizing and scheduling with sequence
dependent setup costs and times and efficient rescheduling opportunities, Manuskripte aus den
Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 393, Universität Kiel, Institut für
Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/149841

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/149841
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 393

Lot Sizing and Scheduling with
Sequence Dependent Setup Costs and Times and

Efficient Rescheduling Opportunities

Knut Haase and Alf Kimms1

February, 1996

Knut Haase, Alf Kimms, Lehrstuhl für Produktion und Logistik, Institut für Be
triebswirtschaftslehre, Christian-Albrechts-Universität zu Kiel, Olshausenstrase
40, 24118 Kiel, Germany
1 The work of this author was done with partial support from the DFG-project Dr

170/4-1.

1

Summary: This paper deals with lot sizing and scheduling for a single-stage
production System where setup costs and times are sequence dependent. A large
bücket mixed integer programming (MIP) model is formulated which considers
only efficient sequences. A tailor-made enumeration method of the branch-and-
bound type solves problem instances optimally and efficiently. Furthermore, it
will b ecome clear that rescheduling can neatly be done.

Keywords: Lot sizing, scheduling, production planning and control, reschedul
ing, sequence dependent setup times.

1 Introduction

For many production facilities the expenditures for the setups of a machine de-
pend on the sequence in which different items are scheduled on the machine. Es-
pecially when a machine produces items of different family types setups between
items of different families are substantially more costly and time consuming than
setups between items of the same family. In such a case a just-in-time philosophy
will cause frequent setups, i.e. large total setup costs and long total setup times.
To reduce the expenditures for the setups items may be produced in lots which
satisfy the demand of s everal periods. The amount of a production quantity in
a period which will be used to satisfy demand in later periods must then be
hold in inventory. This incurs holding costs. Therefore we have to compute a
schedule in which the sum of setup and holding costs is minimized. In the case
of sequence dependent setup costs the calculation of the setup costs requires the
computation of the sequence in which items are scheduled in a period, i.e. we
have to consider sequencing and lot sizing simultaneously.

Despite of it s relevance there has been done only little research in the area
of lo t sizing and scheduling with sequence dependent setups. Some papers have
been published which are related to the so-called discrete lot sizing and schedul
ing problem (cf. [18]), denoted as DLSP. In the DLSP the planning horizon is
divided into a large number of small periods (e.g. hours, shifts, or days). Further-
more, it is assumed that the production process always runs füll periods without
changeover and the setup State is not preserved over idle time. Such an "all-
or-nothing" policy implies that at most one item will be produced per period.
In [22] a DLSP-Iike model with sequence dependent setup costs was considered
first. For the DLSP an exact branch-and-bound approach based on Lagrangean
relaxation of the capacity constraints has been presented in [9] which is extended
to the DLSP with sequence dependent setup costs (DLSPSD) in [10]. T here the
DLSPSD is transformed into a traveling salesman problem with time Windows
which is then used to derive lower bounds as well as heuristic Solutions. An exact
Solution method for the DLSP with sequence dependent setup costs and times
(DLSPSDCT) is proposed in [21]. The optimal enumeration method proposed
by [13] i s based on the so-called batch sequencing problem (BSP). It can be
shown that the BSP is equivalent to the DSLPSDCT for a restricted class of

2

instances. The Solution methods for the DLSPSDCT and the BSP require large
working Spaces, e.g. for instances with six items and five demands per item a
working space of 20 megabytes is required. Another new type of model has been
published in [6], [7], and [12] which is called the proportional lot sizing and
scheduling problem (PLSP). The PLSP is based on the assumption that at most
one setup may occur within a period. Hence, at most two items are producible
per period. It differs from the DLSP regarding the possibility to compute con-
tinuous lot sizes and to preserve the setup State over idle time. A regret-based
sampling method is proposed to consider sequence dependent setup costs and
times. In [4] an uncapacitated lot sizing problem with sequence dependent setup
costs is considered. A heuristic for a static, i.e. constant demand per period,
lot scheduling problem with sequence dependent setup costs and times is intro-
duced in [5]. In [11] th e so-called capacitated lot sizing problem with sequence
dependent setup costs (CLSD) is presented. As in the PLSP, the setup State
can be preserved over idle time. But in contrast to the DLSP and PLSP many
items are producible per period. Hence, the DLSP and PLSP are called small
bücket problems and the CLSD is a large bücket problem (cf. [8]). A large bücket
problem with sequence dependent setup costs and times is not considered in the
literature so far. In this paper we will dose this gap.

The text is organized as follows: In the next section we give a mathematical
formulation of the problem under concern. Afterwards, rescheduling is discussed
in Section 3. In Section 4 an optimal enumeration method is outlined. The effi-
ciency of the algorithm is tested by a computational study in Section 5.

2 A Mixed-Integer Programming Formulation

In this section we introduce the lot sizing and scheduling problem with sequence
dependent setup costs and times, denoted as LSPSD. Before we present a math
ematical formulation of the LSPSD we have to give the underlying assumptions
and have to introduce some definitions.

Assumption 1. The setup State is kept up over idle time.

Especially for manufacturing companies this assumption is very realistic. For
example, the preparation of a drilling machine for the production of a specific
item may require the setup of a specific drill. If nobody has unmounted the
drill a new lot of the same item can be produced without performing a new
setup since the machine is still suitably prepared. We point out this simple fact
because in the DLSP (cf. [2], [9], [21]) it is assumed that the setup State is lost
after idle time. Only a few practical applications seem to require the loss of the
setup state. This is emphasized by the fact that the assumption 1 is also made
in a wide variety of different lot sizing and scheduling models (cf. [1], [11], [12],
[14], [15], [16], [17], [19], [20], [25]).

We consider a large bücket problem. This is to say that more than one item
can be produced per period (e.g. per week).

Assumption2. For each item at most one lot will be produced in a period.

3

Note, assumption 2 is underlying the classical uncapacitated and capacitated lot
sizing problems (cf. e.g. [4], [24], an d [26], respectively), too.

Now, let saj (stij) denote the setup cost (setup time) for a setup from item
i to item j. Since setup costs are in large parts opportunity costs for the time
that is needed to perform a setup, we compute setup costs as follows:

Assumption3. Setup cost has the form scjj = f(stij) where /(•) is a non-
decreasing function.

Thus the larger (smaller) the setup time the 1 arger (smaller) is the associated
setup cost. Moreover, if we minimize setup costs we also minimize setup times.

In [10] Ins tances are considered where the triangle inequality for the setup
costs is not fulfilled. For practica! purposes this seems to be not a very important
case. Hence, we exclude such Solutions by the following assumption:

Assumption 4. Setup times satisfy the triangle inequality, i.e. stij < st^k +
stkj for all % j, k = 1,..., J.

where J is the number of different items to be considered. Due to assumption 3
the triangle inequality is also valid for the setup costs.

Furthermore, we assume the following:

Assumption 5. If the production of a n item Starts in a period then the inven-
tory of the item must be empty.

Due to this assumption the lot size of an item in a period is equal to the quantity
demanded in that period or it includes one or more future demands. Furthermore,
if a lot size of an item in period t includes the demand of a period s > t then
all demands of the periods r, t < r < s, are also included. Necessary to say,
that the production of a lot can Start in a period t and be finished in a period
s, s >t. This, of course, eases the computation of lot sizes. But, when having a
closer look at former work we observe that the DLSP, for instance, also implies
easy-to-compute lot sizes (all-or-nothing). The BSP, for instance, assumes lot
sizes being the sum of future demands.

As in [3] we Stat e now the following assumption.

Assumption 6. Fach setup will be performed within a period.

Thus a setup never Starts in a period t and will be finished in period s > t.
In the following we h ave to define some notation.

Definition7. The ordered set seq^ := (ii,..., ik,... ,iwj denotes a sequence
n of Mn different items where ii (*&, tM n) is said to be the first (k-th, last) item
of seq(n^.

seq^ is a sequence in which some items can be (efficiently) scheduled where it
needs to be defined what efficient really means.

Definition 8. The setup cost (setup time) of the sequence seq^ is given by

4

Efficiency can now be defined as follows:

Definition 9. Consider two feasible sequences seq^ and seq(n ^ with (ii,.
iMn), &nd respectively. seq^ dominates seq^n'^ if SCn < SCn',
i\ = i[, iMn = iMn„ and) consists exactly of the same items as
seq(n^ is called efficient if there exists no other sequence seq^71') which is more
efficient than seq^.

Note, the computation of an efficient s equence is a traveling salesman Prob
lem in which the salesman Starts at 'custom' i\ and stops at 'custom' • In
the following we need to consider only efficient sequences.

Remark. The set of all sequences may be constrained by additional restrictions
to give the set of feasible sequences. This will turn out to be important for
rescheduling.

Before we give a MlP-model formulation to dehne the problem at hand
precisely, let us introduce some notation.

Parameters
Aj the set of indices which are associated to efficient sequences which

contain item j, i.e. Aj = (n € {l,...,iV}|j € seq

B big number; e.g. B > d^t\j = 1,. -., J}
Ct the capacity available in period t
dj}t the demand for item j in period t
Fj the set of in dices which are associated to efficient sequences in which

item j is scheduled as the first item, i.e. Fj = {n G {1, ...̂ N}\seq^ =

hj holding cost which is incurred to hold one unit of item j at the end of
a period in inventory

J the number of different items
Lj the set of indices which are associated to efficient sequences in which

item j is scheduled as the last item, i.e. Lj = {n e {1, ...,7V}|seg^) =
(»!>•• .J)}

N the total number of sequences
Pj capacity needs for producing one unit of item j
SCn setup cost which is incurred for scheduling sequence n
STn setup time which is required to schedule sequence n
T the number of periods

Decision variables
Ijjt the inventory of item j at the end of pe riod t (T^o = 0 without loss of

generality)

5

qj]t the quantity of item j to be produced in period t
Snj a binary variable indicating whether sequence n defines the schedule

in period t (Sn>t = 1) or not (5n,* = 0) (an initial setup State is also
taken into account, i.e. : 5n,o = 1 A Snf,o = 0 Vn' ^ n).

The LSPSD can now be stated as follows:

Problem LSPSD
NT J T

Minimize ^ ̂ 5C„5n,f + ^ (1)
n=l (=1 j=l t=l

subject to
"p 9j,t ~ fj,t = j ~ 1; •••) J\t — 1) ••••) T (2)

N
£s».t = i t = i,...,r (3)
71— 1

^ Sn)t-i - ̂ Sn,t = 0 j = 1,t = 1, ...,T (4)
n£Fj

qjjt - ßV Sn,t <0 j = 1,J;t= (5)
n€-4j

y; ^n,,)<0 ; = ,^(= 2,...^ (6)
neAj\Fj

J N
+ ^ST„S„it < C* t = (7)

j=1 n=l
Sn.t € {0,1} j = = 1,...,T (8)

>0 j = 1,J',t= 1, ...,T (9)

The objective function (1) determines the total setup and Holding costs. (2)
are the inventory balances. (3) states that for each period we have to choose ex-
actly one sequence in which items are scheduled. By (4) we satisfy that the setup
State is preserved between two adjacent periods. (5) ensures that an item can only
be produced in a period if the machine is setup for it. (6) guarantees that only a
new lot is scheduled for an item if the inventory is empty (zero-switch-property).
(7) are the capacity constraints. These constraints also include that all setups
are done within a period completely, i.e. no setup is performed over a period
border. The last two constraints (8) and (9) properly dehne the domains of the
binary and continuous variables, respectively. The non-negative conditions of the
inventory variables ensure that no shortages do occur. Noteworthy to say that
in contrast to other optimal approaches dealing with similar problems (e.g. [13])
we have made here rather general assumptions. For instance, an initial setup
State is taken into account, there are no restrictive assumptions for the cost Pa
rameters such ashj = 1 for all j = 1,..., J, and the capacity may vary over time.

6

For example, let S\ o = 1, Sn,o = 0 for n > 1, T = 4, J = 3, (hj) = (1, 1, 2),
W = (2, 1, 1), (Ct) = (100, 100, 100, 100), and

/10 10 0 10\
(d^t) = 30 50 30 40 .

\20 0 50 20/

Furthermore, let
(0 5 10\

(sUj) = 5 015
\ 10 15 0 /

and scij — 10stij for i,j = 1, ...,3. We derive the (efficient) se quences and the
associated setup times and costs as given in Table 1. The item specific sets Aj,
Fj, and Lj are provided in Table 2. Note, to keep the example small and clear
we have chosen J = 3 and thus the Table 1 contains all possible sequences.
Suppose we would have J = 4, then for example either the sequence (1,2,3,4)
or (1,3,2,4), but not both, would have to be considered as an efficient sequence.
Note, if both sequences are efficient, we can choose one of them by arbitration.

Table 1. Sequences and associated setup costs and times

n seq STn scn

1 (1) 0 0
2 (1, 2) 5 50
3 (1, 3) 10 100
4 (1, 2,3) 20 200
5 (1,3,2) 25 250
6 (2) 0 0
7 (2, 1) 5 50
8 (2, 3) 15 150
9 (2, 1, 3) 15 150

10 (2, 3, 1) 25 250
11 (3) 0 0
12 (3, 1) 10 100
13 (3, 2) 15 150
14 (3, 1, 2) 15 150
15 (3, 2,1) 20 200

The optimal Solution, computed with the Standard solver LINDO [23], is
Z* — 585 costly. The associated production quantities and non-zero binary de-
cision variables are

/ 10 10 0 10\
(qj;t) = 35 75 0 40

\ 20 0 50 20 /

7

Table 2. Item specific sets of sequence indices
j_ Aj Fj Lj
1 {1, ..., 5, 7, 9, 10, 12, 14, 15} {1, ..., 5} {1, 7, 10, 12, 15}
2 {2,4, ..., 10, 13, 14, 15} (6, ...,10} {2,5,6,13,14}
3 {3, 4,5,8, ..., 15} {11, ...,15} {3,4,8,9,11}

and S5ii = S7)2 = Sz,s = Si4,4 = 1, respectively. In the Solution item j = 2
is scheduled as the last item in period t = 1 and as first item in period t = 2
which allows five units of the demand cfe,2 to be produced in period t = 1. This
is necessary, since the capacity in period t = 2 is completely used up for setups
and production (5T7 + = 5 + 2-10+1-75 = 100 = C2).

3 Rescheduling

If we ha ve a look at a shop floor we see that machines are working, materials are
moved from one place to the other, products are packed for shipment, and so
on. Apparently, production schedules do affect all these Operations. The impact
on the other proceedings when changing the schedule usually is substantial and
thus expensive due to transaction costs. It is not an easy task to handle all
the interaction effects which would have to be considered. However, lost and/or
additional Orders may enforce modifications of the existing schedules, and trigger
the process of rescheduling. To keep the production wheels humming and to avoid
costs, these modifications should be kept in certain limits.

Now, we will show how rescheduling can easily be integrated into the LSPSD.
Let us assume that new informations - due to customer requests - result in
changes of the demand matrix only. That is, some entrances in the demand
matrix are increased and others are decreased. Furthermore, we will all ow an
extension of t he planning horizon.

Requirements for a new schedule can be expressed by restricting the set of
valid sequences in a period and reducing the available capacity in a period. The
capacity reduction is due to lot sizes which are already scheduled in a period
and that should not decrease.

Therefore we define

SEQt the set of sequences which are allowed to be scheduled in period t, and

qjt the minimum production quantity of item j which has to be scheduled
in period t.

Now, if we replace (3) by

Sn,t~ 1 t — l, ...,T
n<=SEQt

(10)

8

and update the capacities using C't = Ct — for t = 1, ...,T the
LSPSD is extended for rescheduling.

To give more insight we c ome back to the above example and assume now
that qjt = qjt for j — 1,..., 3 and t ~ 1,..., 3, i.e. we will not allow reduction
of th e previously optimal production quantities in the periods t = 1,... ,3. Let,
qfj4 = 0 for j = 1,..., J.

Furthermore, let T=5 now. This leads to the updated capacities (Ct) =
(25 5 50 100 100). Let new customer requests be given by the demand matrix

/ 0 0 0 5 15 \
(d!jt) = 0 0 20 40 50

\0 0 0 20 10/

in which the already scheduled demands are excluded. Fhrthermore, suppose
the planner wants that - concerning the optimal sequences derived in the above
example - in period t = 1 the sequence is fixed, the sequences in period t = 2
and period t = 3 must include the same items as before whereas for period t = 4
and period t = 5 no restrictions are given. These requirements are taken into
account by defining:

SEQX = {se?(5)}
SEQ2 = {segWjn = 7,9,10}
SEQZ = € A$}
SEQ4 = (segfn^\n = 1,..., 15}
SEQ5 = SEQ4

Note, the sequences 2, 4, 5, 14, and 15 are not contained in SEQ2, because the
first item in these sequences does not equal the last item in sequence 5 which is
the only one that can be scheduled in period 1.

Based on the new data we compute the following optimal production schedule

/ 0 0 0 5 15 \
(gjt)= 0 0 20 40 50

\0 0 0 30 0 /

and S'5tl = 5},2 — ^4, 3 — SJ 44 = S'75 = 1. We see that in period t — 3 the
sequence is extended by item j — 2 wher eas the sequences in period t = 1 and
t = 2 are not changed. Thus, the schedule is only slightly modified as it would
be a desired property in practice. This can also be seen by the following final
production schedule

/10 10 0 5 15\
(A,,) = = 35 75 20 40 50 .

\20 0 5030 0 /

Thus, we have shown how easily the rescheduling aspect can be integrated in our
MlP-formulation. In summary we find o ut that rescheduling equals the schedul-
ing process but reduces the Solution Space when compared with the original

9

instance. Rescheduling therefore needs less computational effort than finding a
first schedule (unless we extend the planning horizon).

4 A Fast Enumeration Scheme

To find an optimal Solution for a particular LSPSD instance we must first note
that once we have fixed all the binary variables 5n,t in the MlP-formulation
above, the remaining subproblem is an LP-problem. In other words, enumerating
all the T-tuples (seqi,,seqr) where seqt denotes the sequence chosen in pe-
riod t, and solving the corresponding LP-problem then, will reveal the optimal So
lution. Unfortunately, the number of T-tuples is quite large, 4- I)T

to be precise.
Hence, we need a more sophisticated approach to tackle this problem. In its

essence, the procedura that we propose is a branch-and-bound (B&B) method.
Roughly speaking, we Start in period T, perform a branching step by choosing
seqr, and then move on to period one Step by Step doing backtracking in-between
if nec essary.

To provide more details, we use the following notation: If seqt is a sequence of
the form («i,... ,üt) where kt > 1. Then, first(seqt) — i\ and last(seqt) = ikt

are the first and the last item, respectively, in seqt. ST(seqt) equals STn if s eqt

is sequence n and thus kt = Mn. Analogously, we define SC(seqt). Let CDjjt =
T
H (djtT - qj)T) be the cumulative demand for item j in period t. Fiirthermore,

T—t
let SEQt be the set of al l efficient se quences to be considered in period t.

Now we are ready to describe the Solution scheme (see Table 3) in more
detail.

Table 3. Outline of the enumeration in period t

Step 0: Compute SEQt.
while (SEQ t ± 0)
{

Step 1: Choose seq t = (ii,... ,ikt) G SEQt.
Step 2: SEQ t := SEQ t - {seqt}-
Step 3: Set cos tt = SC(seqt) + Y ĵ=\(pDj,t — dj,t)hj + costt+1-
Step 4: Compute qj,t (j — 1,..., J).
Step 5: If "not bound" go to period t — 1...

}
backtracking to period t + 1.

Some things need to be discussed. First, in Step 0, SEQt can of course be
chosen as the set of all sequences. But, we can eliminate all those sequences
which contain items with a zero cumulative demand. In other words, items for
which no demand occurs, need not be produced. The only exception from that is

10

that the last item in a sequence must equal the first item in seqt+i sequence, i.e.
last(seqt) = first{seqt+1) for t = 1}... ,T - 1. In addition, SEQt must contain
only those sequences which do not violate capacity constraints. That is to say,
that all sequences seqt contained in SEQt must fulfill

fct
Q - ST(,e%) - > 0.

J=2

Remember, that lots (except the one for the first item in a sequence) must not
ränge over period borders. For rescheduling, the choice of SEQt must be a subset
of the valid sequences in period t.

In Step 1 seqt can be chosen arbitrarily. In our implementation we choose
long sequences before we c hoose short ones. Ties are broken in lexicographical
order.

Step 4 directly corresponds to solving a linear program. Due to our assump-
tion that lots (i.e. CD^t) must not be splitted, this turns out to be very easy:
For all items j € ikt} we set q^t = OD^t- For all items j & {ri,...,}
we set qjjt =0. Finally, for j — i\ we set

Ct - ST(seqt) -
qil>t =min{CDil>t, }.

Pii

If period 1 is under concern, we face a feasible Solution if and only if CDj,i
evaluates to zero now for all items j = And, cost\ is the objective
function value for the feasible Solution at band.

Finally in Step 5 we test if the current State is bound to prune the search
tree. Two tests are done here. First, we check if the remaining capacity sufiices
the production, i.e.

t-l J t-2

r=1 j=1 r=l

must hold. Note, we disregard setup times for this capacity check. Second, we
test if the current Situation is bounded by costs. Assume, that we have an upper
bound of the Overall problem, say upperbound. Furthermore assume, that we
have a lower bound of costs, say lowerbwndij-i, that will additionally occur if
we schedule sequences in the periods t — 1,..., 1. Then, we simply check costt 4-
lowerboundij-i > upperbound to prune the tree.

The efficiency of our procedure highly depends on these lower bounds.
Let us discuss the lower bounds only, since the upper bounds eure computed

using Standard techniques (i.e. starting with infinity we update the upper bound
whenever a feasible Solution is found that improves the current best bound).
Before we Start trying to solve an instance with J items and T periods, we
cut the horizon at the end and solve the resulting instance with J items and the
T-l periods t = 1,... ,T — 1. Following the same lines, before we solve the T— 1

11

periods instance we solve the T — 2 periods instance and so on. Note, that if a
smaller instance is not feasible, the larger cannot be either. In summary we start
with an instance of 1 period only which provides the lower bound lowerbound\y\.
Then we solve an instance with 2 periods which gives lowerboundi^ and so on
irntil we are done. The trick here is that we can use the lower bounds computed
by solving small instances when we solve the large instances. As computational
studies have shown, the speed-up is dramatic. E.g. running instances with three
items and 10 periods of time took more than an hour without these bounds and
now terminates elfter a few seconds.

This bounding scheme is very efficient in terms of both, run-time and memory
Space. While the former one will be verified in the next section, the latter one
should be evident.

5 Computational Study

To test the proposed method we run a C-implementation on a Power PC Com
puter with 80 MHz measuring run-time Performances. A total of 540 instances
were systematically generated as follows: F or all items we choose pj — 1. The
machine is assumed to be set up for item 1 initially. The number of items J
ranges from 2 to 10 items and the number of pe riods T ranges from 3 to 10, 15,
and 20 periods. We then randomly generated an externa! demand matrix with
10 items (rows) and 20 periods (columns) where each entry djyt is chosen out
of t he interval [40,60] with uniform distribution. Hence, this matrix contains no
zero values which possibly would reduce the number of sequ ences to be consid-
ered per period. Analogously, a setup time matrix with 10 items is generated
where each entry stij (i / j) is randomly chosen out of the interval [1,5] (and
stjj = 0). The choice of setup times is done so that all tri angle inequalities are
fulfilled. Holding costs for 10 items are randomly chosen, too, where each value
hj is drawn out of t he interval [1,5] with uniform distribution. For an instance
with J items and T periods we then use the data given in the first J rows and
the first T columns of the external demand matrix, the first J rows and columns
of t he setup time matrix, and the first J entries of t he hol ding cost vector. This
implements the concept of common random numbers in our tests. The setup cost
sciyj for changing the setup State from item i to item j are computed by

sci,j = fscStij i,j — ..,J

where the parameter fsc is systematically varied using fsc — 50 and fsc = 500.
The capacity per period Ct is determined according to

where the capacity utilization U is systematically varied using U = 0.4, U = 0.6,
and U = 0.8. Note, the utilization of capacity is an estimate only, because setup
times do affect the computation of Ct. Hence, a value U = 0.8 actually means

12

that the utilization of c apacity by production and setup actions is greater than
80% on average. In summary, we have

| {2,...,10} | x | {3,..., 10,15,20} | x | {50,500} | x | (0.4,0.6,0.8} | = 540

instances.
Tables 4 to 9 provide the run-time results of our study. All results are given

in CPU-seconds. A time limit of 3600 CPU-seconds is used. Missing entries
thus indicate that the corresponding instance cannot be solved optimally within
one hour on our platform. Zeroes indicate that the method needs less than 0.5
CPU-seconds to compute the Optimum Solution. The run-times given here do not
include the time needed to compute the efficient sequences. This is because in
a real-world Situation the number of items J does not change in the short-term
and thus solving the set of traveling salesman problems needs to be done once
and for all. The effort for doing so can thus be neglected.

Table 4. Run-Time Performance for fsc = 50 and U = 0.4
T=3 4 5 6 7 8 9 10 15 20

J=2 0 0 0 0 0 0 0 0 0 1
J=3 0 0 0 0 0 0 0 0 5 162
J—4 0 0 0 1 2 5 10 39 1966
J=5 0 1 3 12 20 96 173 2052
J=6 2 9 39 83 209 1375 2658
J=7 13 61 181 511 1295
J=8 144 1729
J=9 537

J=10 2428

Table 5. Run-Time Performance for fsc — 50 and U — 0 .6
T=3 4 5 6 7 8 9 10 15 20

J=2 0 0 0 0 0 0 0 0 0 1
J=3 0 0 0 0 0 0 0 0 5 136
J=4 0 0 0 1 2 5 9 37
J=5 0 1 2 11 19 93 167 2001
J=6 2 9 38 82 204 1352 2633
J=7 13 60 179 505 1282
J=8 194 2570
J=9 613

13

Table 6. Run-Time Performance for }Sc — 50 and U = 0.8
T=3 4 5 6 7 8 9 10 15 20

J=2 0 0 0 0 0 0 0 0 0 1
J=3 0 0 0 0 0 0 0 1 15 530
J=4 0 0 1 2 3 9 17 46
J=5 0 2 9 33 73 214 325 2965
J=6 2 13 56 20 8 768 2856
J=7 7 24 228 552 1203
J=8 100 1303
J=9 471

Table 7. Run-Time Performance fo r f$c = 500 and U = 0.4
T=3 4 5 6 7 8 9 10 15 20

J=2 0 0 0 0 0 0 0 0 1 8
J=3 0 0 0 0 1 2 4 7 164
J=4 0 0 1 6 20 78 331 732
J=5 0 3 20 125 1560

II >—> 1 11 176 1350
3=7 4 153 1581
3=8 39 3501
J=9 201

J=10 2489

As expected, it turns out that the parameters J and T do have a significant
impact on the run-time Performance. The run-time grows faster with J than with
T. For instance, see Table 4 where the instance with J — 7 and T — 4 terminated
after 61 CPU-seconds. For J = 8 and T = 4 we measure 1729 CPU-seconds, and
for J = 7 and T = 5 we need 181 CPU-seconds.

Varying the setup costs (measured by the parameter f$c) and the capacity
utilization U does not drastically affect the order of magnitude of problem sizes
that can be solved within reasonable time. It cannot be stated that higher ca
pacity usage gives shorter computation times. Comparing Table 4 with Table 6
indicates that larger instances can be solved when capacity usage is low. But,
this result cannot be validated when comparing Table 7 with Table 9. Also,
it is not true that higher setup costs make instances easier to solve. Cornpare
for instance Table 6 with Table 9 where this seems to be the case, whereas a
comparison of Tab le 4 with Table 7 does not give such a proof.

14

Table 8. Run-Time Performance for fsc — 500 and U = 0.6
T=3 4 5 6 7 8 9 10 15 20

J=2 0 0 0 0 0 0 0 0 0 5
3=3 0 0 0 0 0 1 2 3 175
3=4 0 0 2 6 18 50 118 314

I

o

2 15 81 554 2138
J=6 1 18 216 862
3=7 5 134 1580
3=8 49
3=9 247

3=10 2300

Table 9. Run-Time Performance for fsc = 500 and U = 0.8
T=3 4 5 6 7 8 9 10 15 20

J=2 0 0 0 0 0 0 0 0 0 2
3=3 0 0 0 0 0 0 0 1 14 378
3=4 0 0 0 1 2 10 24 64
3=5 0 1 3 9 27 127 316 255 1
3=6 0 4 13 56 143 1155 3069
3=7 2 8 50 189 721
3=8 47 489 2071
3=9 57 765

3=10 826

Since we used instances with fully-filled demand matrices the results can
be seen as worst case estimates on the run-time Performance. Pacing instances
with sparse demand matrices would give shorter run-times, because the number
of sequences to be considered within a period decreases. This is due to the fact
that items with no cumulative demand need not be scheduled and thus sequences
containing such items need not be enumerated. A s imilar argument applies to
the effort for rescheduling. Since rescheduling means to impose some restrictions
on the sequences that are allowed to be scheduled, its run-time will be less than
what can be read in the tables.

A benchmark test with the Standard solver LINDO [23] gives convincing
results. Within 3600 CPU-seconds, LINDO is able to solve the instances with
four items and six periods. In contrast to that, our procedura needs less than six
seconds to give the Optimum result.

15

6 Conclusion and Future Work

In this paper we p roposed a model for lot sizing and scheduling with sequence
dependent Setups. It is a large time bücket model and thus fxts t o real-world
situations where we find periods such as shifts, days or weeks naturally be given.
Within these periods scheduling can be done on the basis of a continuous time
axis. In addition, an optimal Solution procedure is presented which follows the
idea of branch-and-bound.

The key element for the efficiency of the method is based on an idea derived
from problem specific insights. Roughly speaking, this idea is that if we know
what items to produce in a period but we do not know the lot sizes yet, we can
nevertheless determine the sequence in which these items are to be scheduled.

In contrast to other approaches which suffer from large memory requests, the
presented procedure requires modest capacities. This is mainly due to a novel
idea for Computing lower bounds to prune the search tree. Memorizing partial
schedules seems to be avoidable now. Beside the low memory space usage, the
lower bounding technique amazes with high speed-ups.

In summary, this method competes with approaches for similar but more
restrictive cases [13] where instances with up to J = 10 are solved. In our
terminology, these instances have up to 38 entries in the external demand matrix.
By the way, the procedure in [13] outperforms the code given in [21].

Future work should deal with solving model extensions. Multiple scarce ca
pacities would for instance be an important subject for which the method should
be modified. Taking multi-level product structures into account would also be
an extension worth to be considered.

Beside this, the method should be refined. Additional branching and bound
ing rules should improve the results.

Acknowledgement

We are grateful to Andreas Drexl for his steady Support. Also, we thank Steffen
Wernert.

References

1. G. R. Bitran and H. Matsuo. The multi-item capacitated lot size problem:
Error bounds on Manne's formulation. Management Science, 32:350-359, 1986.

2. D. Cattrysse, M. Salomen, R Kuik and L. N. Van Wassen hove. A dual as-
cent and column generation heuristic for the discrete lotsizing and scheduling
problem with setup-times. Management Science) 39:477-486, 1993.

3. C. Dillenberger, L. F. Escudero, A. Wollen sak, and W. Zhang. On practica!
resource allocation for p roduetion planning and scheduling with period over-
lapping setups. European Journal of Operational Rese arch, 75:275-286, 1994.

4. D. M. Dilts a nd K. D. Ramsing. Joint lot sizing and scheduling of multiple
items with sequence dependent setup costs. Decision Sciences, 20:120-133,
1989.

16

5. G. Dobson. The cyclic lot scheduling problem with sequence-dependent setups.
Operations Research, 40:736-749, 1992.

6. A. Drexl and K. Haase. Sequential-analysis-based randomized-regret-methods
for lotsizing and scheduling. 1993. Forthcoming in Journal of the Operational
Research Society.

7. A. Drexl and K. Haase. Proportional lotsizing and scheduling. International
Journal of Production Econom ics, 40:73-87, 199 5.

8. G. D. BppenandR. K. Martin. Solving multi-item capacitated lot-sizing Prob
lems using variable redefinition. Operations Research, 35:832-848, 1987.

9. B. Fleischmann. The discrete lot-sizing and scheduling problem. European
Journal of Operational Research, 44:337-348, 1990.

10. B. Fleischmann. The discrete lot-sizing and scheduling problem with sequence-
dependent setup-costs. European Journal of Oper ational Resea rch, 75:395-404,
1994.

11. K. Haase. Capacitated lot-sizing with sequence dependent setup costs. OR
Spektrum, 18:51-59, 1996.

12. K. Haase. Lotsizing and scheduling for production planning, Lecture Notes in
Economics and Mathema tical Systems, Vo l. 408. Springer-Verlag, Berlin, 1994.

13. C. Jordan and A. Drexl. Lotsizing and scheduling by batch sequencing. 1995.
Under review for Management Science.

14. U. S. Karmarkar, S. Kekre, and S. Kekre. The dynamic lot-sizing problem with
startup and reservation costs. Operations Research, 35:389-398, 1987.

15. U. S. Karmarkar and L. Schräge. The deterministic dynamic product cycling
problem. Operations Research, 33:326-345, 198 5.

16. A. Kimms. Multi-level, single-m achine lot sizing an d scheduling (with ini tial
inventory). 1993. Forthcoming in European Journ al of Operatio nal Resear ch.

17. A. Kimms. Competitive methods for multi-level lot sizing and scheduling: tabu
search and randomized regrets. 1994. Forthcoming in International Journal of
Production Rese arch.

18. L. S. Lasdon an d R. C. Terjung. An efficient algorithm fo r multi-item schedul
ing. Operations Resea rch, 19:946- 969, 197 1.

19. T. L. Magnanti a nd R. Vachani. A strong cutting plane algorithm for produc
tion scheduling with changeov er costs. Operations Resea rch, 38:456-473, 1990.

20. Y. Pochet and L. A. Wolsey. Solving multi-item lot-sizing problems using
strong cutting planes. Management Science, 37: 53-67, 1991.

21. M. Salonion, M. M. Solomon, L. N. Van Wassenhove, Y. D. Dumas, and S.
Dauzere-Peres. Discrete lotsizing and scheduling with sequence dependent
setup times and costs. 1995. Forthcoming in European Journal of Operational
Research.

22. L. Schräge. The multiproduct lot scheduling problem. In M. A. H. Demp-
ster and et al., editors, Deterministic and stocastic scheduling, 233-244. Dor-
drecht/Holland, 1982.

23. L. Schräge. Linear, integer and quadratic programming with LINDO, 3rd edi-
tion Redwood City, 198 6.

24. J.-M. Thizy and L. N. Van Wassenh ove. Lagrangean relaxation for the multi-
item capacitated lot-sizing problem: A heuristic Implementation. IIE Transac-
tions, 17:308-313, 1985.

25. T. J . Van Roy and L. A. W olsey. Solvin g mixed integer programming problems
using automatic reformulation. Operations Research, 35:45-57, 1987.

17

26. H. M. Wagner and T. H. Whitin. Dynamic version of the economic lot size
model. Management Science, 5:89-96 , 1958.

