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Summary: This paper deals with lot sizing and scheduling for a single-stage 
production System where setup costs and times are sequence dependent. A large 
bücket mixed integer programming (MIP) model is formulated which considers 
only efficient sequences. A tailor-made enumeration method of the branch-and-
bound type solves problem instances optimally and efficiently. Furthermore, it 
will b ecome clear that rescheduling can neatly be done. 

Keywords: Lot sizing, scheduling, production planning and control, reschedul
ing, sequence dependent setup times. 

1 Introduction 

For many production facilities the expenditures for the setups of a machine de-
pend on the sequence in which different items are scheduled on the machine. Es-
pecially when a machine produces items of different family types setups between 
items of different families are substantially more costly and time consuming than 
setups between items of the same family. In such a case a just-in-time philosophy 
will cause frequent setups, i.e. large total setup costs and long total setup times. 
To reduce the expenditures for the setups items may be produced in lots which 
satisfy the demand of s everal periods. The amount of a production quantity in 
a period which will be used to satisfy demand in later periods must then be 
hold in inventory. This incurs holding costs. Therefore we have to compute a 
schedule in which the sum of setup and holding costs is minimized. In the case 
of sequence dependent setup costs the calculation of the setup costs requires the 
computation of the sequence in which items are scheduled in a period, i.e. we 
have to consider sequencing and lot sizing simultaneously. 

Despite of it s relevance there has been done only little research in the area 
of lo t sizing and scheduling with sequence dependent setups. Some papers have 
been published which are related to the so-called discrete lot sizing and schedul
ing problem (cf. [18]), denoted as DLSP. In the DLSP the planning horizon is 
divided into a large number of small periods (e.g. hours, shifts, or days). Further-
more, it is assumed that the production process always runs füll periods without 
changeover and the setup State is not preserved over idle time. Such an "all-
or-nothing" policy implies that at most one item will be produced per period. 
In [22] a DLSP-Iike model with sequence dependent setup costs was considered 
first. For the DLSP an exact branch-and-bound approach based on Lagrangean 
relaxation of the capacity constraints has been presented in [9] which is extended 
to the DLSP with sequence dependent setup costs (DLSPSD) in [10]. T here the 
DLSPSD is transformed into a traveling salesman problem with time Windows 
which is then used to derive lower bounds as well as heuristic Solutions. An exact 
Solution method for the DLSP with sequence dependent setup costs and times 
(DLSPSDCT) is proposed in [21]. The optimal enumeration method proposed 
by [13] i s based on the so-called batch sequencing problem (BSP). It can be 
shown that the BSP is equivalent to the DSLPSDCT for a restricted class of 
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instances. The Solution methods for the DLSPSDCT and the BSP require large 
working Spaces, e.g. for instances with six items and five demands per item a 
working space of 20 megabytes is required. Another new type of model has been 
published in [6], [7], and [12] which is called the proportional lot sizing and 
scheduling problem (PLSP). The PLSP is based on the assumption that at most 
one setup may occur within a period. Hence, at most two items are producible 
per period. It differs from the DLSP regarding the possibility to compute con-
tinuous lot sizes and to preserve the setup State over idle time. A regret-based 
sampling method is proposed to consider sequence dependent setup costs and 
times. In [4] an uncapacitated lot sizing problem with sequence dependent setup 
costs is considered. A heuristic for a static, i.e. constant demand per period, 
lot scheduling problem with sequence dependent setup costs and times is intro-
duced in [5]. In [11] th e so-called capacitated lot sizing problem with sequence 
dependent setup costs (CLSD) is presented. As in the PLSP, the setup State 
can be preserved over idle time. But in contrast to the DLSP and PLSP many 
items are producible per period. Hence, the DLSP and PLSP are called small 
bücket problems and the CLSD is a large bücket problem (cf. [8]). A large bücket 
problem with sequence dependent setup costs and times is not considered in the 
literature so far. In this paper we will dose this gap. 

The text is organized as follows: In the next section we give a mathematical 
formulation of the problem under concern. Afterwards, rescheduling is discussed 
in Section 3. In Section 4 an optimal enumeration method is outlined. The effi-
ciency of the algorithm is tested by a computational study in Section 5. 

2 A Mixed-Integer Programming Formulation 

In this section we introduce the lot sizing and scheduling problem with sequence 
dependent setup costs and times, denoted as LSPSD. Before we present a math
ematical formulation of the LSPSD we have to give the underlying assumptions 
and have to introduce some definitions. 

Assumption 1. The setup State is kept up over idle time. 

Especially for manufacturing companies this assumption is very realistic. For 
example, the preparation of a drilling machine for the production of a specific 
item may require the setup of a specific drill. If nobody has unmounted the 
drill a new lot of the same item can be produced without performing a new 
setup since the machine is still suitably prepared. We point out this simple fact 
because in the DLSP (cf. [2], [9], [21]) it is assumed that the setup State is lost 
after idle time. Only a few practical applications seem to require the loss of the 
setup state. This is emphasized by the fact that the assumption 1 is also made 
in a wide variety of different lot sizing and scheduling models (cf. [1], [11], [12], 
[14], [15], [16], [17], [19], [20], [25]). 

We consider a large bücket problem. This is to say that more than one item 
can be produced per period (e.g. per week). 

Assumption2. For each item at most one lot will be produced in a period. 
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Note, assumption 2 is underlying the classical uncapacitated and capacitated lot 
sizing problems (cf. e.g. [4], [24], an d [26], respectively), too. 

Now, let saj (stij) denote the setup cost (setup time) for a setup from item 
i to item j. Since setup costs are in large parts opportunity costs for the time 
that is needed to perform a setup, we compute setup costs as follows: 

Assumption3. Setup cost has the form scjj = f(stij) where /(•) is a non-
decreasing function. 

Thus the larger (smaller) the setup time the 1 arger (smaller) is the associated 
setup cost. Moreover, if we minimize setup costs we also minimize setup times. 

In [10] Ins tances are considered where the triangle inequality for the setup 
costs is not fulfilled. For practica! purposes this seems to be not a very important 
case. Hence, we exclude such Solutions by the following assumption: 

Assumption 4. Setup times satisfy the triangle inequality, i.e. stij < st^k + 
stkj for all % j, k = 1,..., J. 

where J is the number of different items to be considered. Due to assumption 3 
the triangle inequality is also valid for the setup costs. 

Furthermore, we assume the following: 

Assumption 5. If the production of a n item Starts in a period then the inven-
tory of the item must be empty. 

Due to this assumption the lot size of an item in a period is equal to the quantity 
demanded in that period or it includes one or more future demands. Furthermore, 
if a lot size of an item in period t includes the demand of a period s > t then 
all demands of the periods r, t < r < s, are also included. Necessary to say, 
that the production of a lot can Start in a period t and be finished in a period 
s, s >t. This, of course, eases the computation of lot sizes. But, when having a 
closer look at former work we observe that the DLSP, for instance, also implies 
easy-to-compute lot sizes (all-or-nothing). The BSP, for instance, assumes lot 
sizes being the sum of future demands. 

As in [3] we Stat e now the following assumption. 

Assumption 6. Fach setup will be performed within a period. 

Thus a setup never Starts in a period t and will be finished in period s > t. 
In the following we h ave to define some notation. 

Definition7. The ordered set seq^ := (ii,..., ik,... ,iwj denotes a sequence 
n of Mn different items where ii (*&, tM n) is said to be the first (k-th, last) item 
of seq(n^. 

seq^ is a sequence in which some items can be (efficiently) scheduled where it 
needs to be defined what efficient really means. 

Definition 8. The setup cost (setup time) of the sequence seq^ is given by 
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Efficiency can now be defined as follows: 

Definition 9. Consider two feasible sequences seq^ and seq(n ^ with (ii,. 
iMn), &nd respectively. seq^ dominates seq^n'^ if SCn < SCn', 
i\ = i[, iMn = iMn„ and ) consists exactly of the same items as 
seq(n^ is called efficient if there exists no other sequence seq^71') which is more 
efficient than seq^. 

Note, the computation of an efficient s equence is a traveling salesman Prob
lem in which the salesman Starts at 'custom' i\ and stops at 'custom' • In 
the following we need to consider only efficient sequences. 

Remark. The set of all sequences may be constrained by additional restrictions 
to give the set of feasible sequences. This will turn out to be important for 
rescheduling. 

Before we give a MlP-model formulation to dehne the problem at hand 
precisely, let us introduce some notation. 

Parameters 
Aj the set of indices which are associated to efficient sequences which 

contain item j, i.e. Aj = (n € {l,...,iV}|j € seq 

B big number; e.g. B > d^t\j = 1,. -., J} 
Ct the capacity available in period t 
dj}t the demand for item j in period t 
Fj the set of in dices which are associated to efficient sequences in which 

item j is scheduled as the first item, i.e. Fj = {n G {1, ...̂ N}\seq^ = 

hj holding cost which is incurred to hold one unit of item j at the end of 
a period in inventory 

J the number of different items 
Lj the set of indices which are associated to efficient sequences in which 

item j is scheduled as the last item, i.e. Lj = {n e {1, ...,7V}|seg^) = 
(»!>•• .J)} 

N the total number of sequences 
Pj capacity needs for producing one unit of item j 
SCn setup cost which is incurred for scheduling sequence n 
STn setup time which is required to schedule sequence n 
T the number of periods 

Decision variables 
Ijjt the inventory of item j at the end of pe riod t (T^o = 0 without loss of 

generality) 
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qj]t the quantity of item j to be produced in period t 
Snj a binary variable indicating whether sequence n defines the schedule 

in period t (Sn>t = 1) or not (5n,* = 0) (an initial setup State is also 
taken into account, i.e. : 5n,o = 1 A Snf,o = 0 Vn' ^ n). 

The LSPSD can now be stated as follows: 

Problem LSPSD 
NT J T 

Minimize ^ ̂  5C„5n,f + ^ (1) 
n=l (=1 j=l t=l 

subject to 
"p 9j,t ~ fj,t = j ~ 1; •••) J\t — 1) ••••) T (2) 

N 
£s».t = i t = i,...,r (3) 
71— 1 

^ Sn)t-i - ̂  Sn,t = 0 j = 1,t = 1, ...,T (4) 
n£Fj 

qjjt - ßV Sn,t <0 j = 1,J;t= (5) 
n€-4j 

y; ^n,,)<0 ; = ,^( = 2,...^ (6) 
neAj\Fj 

J N 
+ ^ST„S„it < C* t = (7) 

j=1 n=l 
Sn.t € {0,1} j = = 1,...,T (8) 

>0 j = 1,J',t= 1, ...,T (9) 

The objective function (1) determines the total setup and Holding costs. (2) 
are the inventory balances. (3) states that for each period we have to choose ex-
actly one sequence in which items are scheduled. By (4) we satisfy that the setup 
State is preserved between two adjacent periods. (5) ensures that an item can only 
be produced in a period if the machine is setup for it. (6) guarantees that only a 
new lot is scheduled for an item if the inventory is empty (zero-switch-property). 
(7) are the capacity constraints. These constraints also include that all setups 
are done within a period completely, i.e. no setup is performed over a period 
border. The last two constraints (8) and (9) properly dehne the domains of the 
binary and continuous variables, respectively. The non-negative conditions of the 
inventory variables ensure that no shortages do occur. Noteworthy to say that 
in contrast to other optimal approaches dealing with similar problems (e.g. [13]) 
we have made here rather general assumptions. For instance, an initial setup 
State is taken into account, there are no restrictive assumptions for the cost Pa
rameters such ashj = 1 for all j = 1,..., J, and the capacity may vary over time. 
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For example, let S\ o = 1, Sn,o = 0 for n > 1, T = 4, J = 3, (hj) = (1, 1, 2), 
W = (2, 1, 1), (Ct) = (100, 100, 100, 100), and 

/10 10 0 10\ 
(d^t) = 30 50 30 40 . 

\20 0 50 20/ 

Furthermore, let 
( 0 5 10\ 

(sUj) = 5 015 
\ 10 15 0 / 

and scij — 10stij for i,j = 1, ...,3. We derive the (efficient) se quences and the 
associated setup times and costs as given in Table 1. The item specific sets Aj, 
Fj, and Lj are provided in Table 2. Note, to keep the example small and clear 
we have chosen J = 3 and thus the Table 1 contains all possible sequences. 
Suppose we would have J = 4, then for example either the sequence (1,2,3,4) 
or (1,3,2,4), but not both, would have to be considered as an efficient sequence. 
Note, if both sequences are efficient, we can choose one of them by arbitration. 

Table 1. Sequences and associated setup costs and times 

n seq STn scn 

1 (1) 0 0 
2 (1, 2) 5 50 
3 (1, 3) 10 100 
4 (1, 2,3 ) 20 200 
5 (1,3,2) 25 250 
6 (2) 0 0 
7 (2, 1) 5 50 
8 (2, 3) 15 150 
9 (2, 1, 3) 15 150 

10 (2, 3, 1) 25 250 
11 (3) 0 0 
12 (3, 1) 10 100 
13 (3, 2) 15 150 
14 (3, 1, 2) 15 150 
15 (3, 2,1) 20 200 

The optimal Solution, computed with the Standard solver LINDO [23], is 
Z* — 585 costly. The associated production quantities and non-zero binary de-
cision variables are 

/ 10 10 0 10\ 
(qj;t) = 35 75 0 40 

\ 20 0 50 20 / 
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Table 2. Item specific sets of sequence indices 
j_ Aj Fj Lj 
1 {1, ..., 5, 7, 9, 10, 12, 14, 15} {1, ..., 5} {1, 7, 10, 12, 15} 
2 {2,4, ..., 10, 13, 14, 15} (6, ...,10} {2,5,6,13,14} 
3 {3, 4,5,8, ..., 15} {11, ...,15} {3,4,8,9,11} 

and S5ii = S7)2 = Sz,s = Si4,4 = 1, respectively. In the Solution item j = 2 
is scheduled as the last item in period t = 1 and as first item in period t = 2 
which allows five units of the demand cfe,2 to be produced in period t = 1. This 
is necessary, since the capacity in period t = 2 is completely used up for setups 
and production (5T7 + = 5 + 2-10+1-75 = 100 = C2). 

3 Rescheduling 

If we ha ve a look at a shop floor we see that machines are working, materials are 
moved from one place to the other, products are packed for shipment, and so 
on. Apparently, production schedules do affect all these Operations. The impact 
on the other proceedings when changing the schedule usually is substantial and 
thus expensive due to transaction costs. It is not an easy task to handle all 
the interaction effects which would have to be considered. However, lost and/or 
additional Orders may enforce modifications of the existing schedules, and trigger 
the process of rescheduling. To keep the production wheels humming and to avoid 
costs, these modifications should be kept in certain limits. 

Now, we will show how rescheduling can easily be integrated into the LSPSD. 
Let us assume that new informations - due to customer requests - result in 
changes of the demand matrix only. That is, some entrances in the demand 
matrix are increased and others are decreased. Furthermore, we will all ow an 
extension of t he planning horizon. 

Requirements for a new schedule can be expressed by restricting the set of 
valid sequences in a period and reducing the available capacity in a period. The 
capacity reduction is due to lot sizes which are already scheduled in a period 
and that should not decrease. 

Therefore we define 

SEQt the set of sequences which are allowed to be scheduled in period t, and 

qjt the minimum production quantity of item j which has to be scheduled 
in period t. 

Now, if we replace (3) by 

Sn,t~ 1 t — l, ...,T 
n<=SEQt 

(10) 
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and update the capacities using C't = Ct — for t = 1, ...,T the 
LSPSD is extended for rescheduling. 

To give more insight we c ome back to the above example and assume now 
that qjt = qjt for j — 1,..., 3 and t ~ 1,..., 3, i.e. we will not allow reduction 
of th e previously optimal production quantities in the periods t = 1,... ,3. Let, 
qfj4 = 0 for j = 1,..., J. 

Furthermore, let T=5 now. This leads to the updated capacities (Ct) = 
(25 5 50 100 100). Let new customer requests be given by the demand matrix 

/ 0 0 0 5 15 \ 
(d!jt) = 0 0 20 40 50 

\0 0 0 20 10/ 

in which the already scheduled demands are excluded. Fhrthermore, suppose 
the planner wants that - concerning the optimal sequences derived in the above 
example - in period t = 1 the sequence is fixed, the sequences in period t = 2 
and period t = 3 must include the same items as before whereas for period t = 4 
and period t = 5 no restrictions are given. These requirements are taken into 
account by defining: 

SEQX = {se?(5)} 
SEQ2 = {segWjn = 7,9,10} 
SEQZ = € A$} 
SEQ4 = (segfn^\n = 1,..., 15} 
SEQ5 = SEQ4 

Note, the sequences 2, 4, 5, 14, and 15 are not contained in SEQ2, because the 
first item in these sequences does not equal the last item in sequence 5 which is 
the only one that can be scheduled in period 1. 

Based on the new data we compute the following optimal production schedule 

/ 0 0 0 5 15 \ 
(gjt)= 0 0 20 40 50 

\0 0 0 30 0 / 

and S'5tl = 5},2 — ^4, 3 — SJ 44 = S'75 = 1. We see that in period t — 3 the 
sequence is extended by item j — 2 wher eas the sequences in period t = 1 and 
t = 2 are not changed. Thus, the schedule is only slightly modified as it would 
be a desired property in practice. This can also be seen by the following final 
production schedule 

/10 10 0 5 15\ 
(A,,) = = 35 75 20 40 50 . 

\20 0 5030 0 / 

Thus, we have shown how easily the rescheduling aspect can be integrated in our 
MlP-formulation. In summary we find o ut that rescheduling equals the schedul-
ing process but reduces the Solution Space when compared with the original 



9 

instance. Rescheduling therefore needs less computational effort than finding a 
first schedule (unless we extend the planning horizon). 

4 A Fast Enumeration Scheme 

To find an optimal Solution for a particular LSPSD instance we must first note 
that once we have fixed all the binary variables 5n,t in the MlP-formulation 
above, the remaining subproblem is an LP-problem. In other words, enumerating 
all the T-tuples (seqi,,seqr) where seqt denotes the sequence chosen in pe-
riod t, and solving the corresponding LP-problem then, will reveal the optimal So
lution. Unfortunately, the number of T-tuples is quite large, 4- I)T 

to be precise. 
Hence, we need a more sophisticated approach to tackle this problem. In its 

essence, the procedura that we propose is a branch-and-bound (B&B) method. 
Roughly speaking, we Start in period T, perform a branching step by choosing 
seqr, and then move on to period one Step by Step doing backtracking in-between 
if nec essary. 

To provide more details, we use the following notation: If seqt is a sequence of 
the form («i,... ,üt) where kt > 1. Then, first(seqt) — i\ and last(seqt) = ikt 

are the first and the last item, respectively, in seqt. ST(seqt) equals STn if s eqt 

is sequence n and thus kt = Mn. Analogously, we define SC(seqt). Let CDjjt = 
T 
H (djtT - qj)T) be the cumulative demand for item j in period t. Fiirthermore, 

T—t 
let SEQt be the set of al l efficient se quences to be considered in period t. 

Now we are ready to describe the Solution scheme (see Table 3) in more 
detail. 

Table 3. Outline of the enumeration in period t 

Step 0: Compute SEQt. 
while (SEQ t ± 0) 
{ 

Step 1: Choose seq t = (ii,... ,ikt) G SEQt. 
Step 2: SEQ t := SEQ t - {seqt}-
Step 3: Set cos tt = SC(seqt) + Y ĵ=\(pDj,t — dj,t)hj + costt+1-
Step 4: Compute qj,t ( j — 1,..., J). 
Step 5: If "not bound" go to period t — 1... 

} 
backtracking to period t + 1. 

Some things need to be discussed. First, in Step 0, SEQt can of course be 
chosen as the set of all sequences. But, we can eliminate all those sequences 
which contain items with a zero cumulative demand. In other words, items for 
which no demand occurs, need not be produced. The only exception from that is 
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that the last item in a sequence must equal the first item in seqt+i sequence, i.e. 
last(seqt) = first{seqt+1) for t = 1}... ,T - 1. In addition, SEQt must contain 
only those sequences which do not violate capacity constraints. That is to say, 
that all sequences seqt contained in SEQt must fulfill 

fct 
Q - ST(,e%) - > 0. 

J=2 

Remember, that lots (except the one for the first item in a sequence) must not 
ränge over period borders. For rescheduling, the choice of SEQt must be a subset 
of the valid sequences in period t. 

In Step 1 seqt can be chosen arbitrarily. In our implementation we choose 
long sequences before we c hoose short ones. Ties are broken in lexicographical 
order. 

Step 4 directly corresponds to solving a linear program. Due to our assump-
tion that lots (i.e. CD^t) must not be splitted, this turns out to be very easy: 
For all items j € ikt} we set q^t = OD^t- For all items j & {ri,...,} 
we set qjjt =0. Finally, for j — i\ we set 

Ct - ST(seqt) -
qil>t =min{CDil>t, }. 

Pii 

If period 1 is under concern, we face a feasible Solution if and only if CDj,i 
evaluates to zero now for all items j = And, cost\ is the objective 
function value for the feasible Solution at band. 

Finally in Step 5 we test if the current State is bound to prune the search 
tree. Two tests are done here. First, we check if the remaining capacity sufiices 
the production, i.e. 

t-l J t-2 

r=1 j=1 r=l 

must hold. Note, we disregard setup times for this capacity check. Second, we 
test if the current Situation is bounded by costs. Assume, that we have an upper 
bound of the Overall problem, say upperbound. Furthermore assume, that we 
have a lower bound of costs, say lowerbwndij-i, that will additionally occur if 
we schedule sequences in the periods t — 1,..., 1. Then, we simply check costt 4-
lowerboundij-i > upperbound to prune the tree. 

The efficiency of our procedure highly depends on these lower bounds. 
Let us discuss the lower bounds only, since the upper bounds eure computed 

using Standard techniques (i.e. starting with infinity we update the upper bound 
whenever a feasible Solution is found that improves the current best bound). 
Before we Start trying to solve an instance with J items and T periods, we 
cut the horizon at the end and solve the resulting instance with J items and the 
T-l periods t = 1,... ,T — 1. Following the same lines, before we solve the T— 1 
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periods instance we solve the T — 2 periods instance and so on. Note, that if a 
smaller instance is not feasible, the larger cannot be either. In summary we start 
with an instance of 1 period only which provides the lower bound lowerbound\y\. 
Then we solve an instance with 2 periods which gives lowerboundi^ and so on 
irntil we are done. The trick here is that we can use the lower bounds computed 
by solving small instances when we solve the large instances. As computational 
studies have shown, the speed-up is dramatic. E.g. running instances with three 
items and 10 periods of time took more than an hour without these bounds and 
now terminates elfter a few seconds. 

This bounding scheme is very efficient in terms of both, run-time and memory 
Space. While the former one will be verified in the next section, the latter one 
should be evident. 

5 Computational Study 

To test the proposed method we run a C-implementation on a Power PC Com
puter with 80 MHz measuring run-time Performances. A total of 540 instances 
were systematically generated as follows: F or all items we choose pj — 1. The 
machine is assumed to be set up for item 1 initially. The number of items J 
ranges from 2 to 10 items and the number of pe riods T ranges from 3 to 10, 15, 
and 20 periods. We then randomly generated an externa! demand matrix with 
10 items (rows) and 20 periods (columns) where each entry djyt is chosen out 
of t he interval [40,60] with uniform distribution. Hence, this matrix contains no 
zero values which possibly would reduce the number of sequ ences to be consid-
ered per period. Analogously, a setup time matrix with 10 items is generated 
where each entry stij (i / j) is randomly chosen out of the interval [1,5] (and 
stjj = 0). The choice of setup times is done so that all tri angle inequalities are 
fulfilled. Holding costs for 10 items are randomly chosen, too, where each value 
hj is drawn out of t he interval [1,5] with uniform distribution. For an instance 
with J items and T periods we then use the data given in the first J rows and 
the first T columns of the external demand matrix, the first J rows and columns 
of t he setup time matrix, and the first J entries of t he hol ding cost vector. This 
implements the concept of common random numbers in our tests. The setup cost 
sciyj for changing the setup State from item i to item j are computed by 

sci,j = fscStij i,j — ..,J 

where the parameter fsc is systematically varied using fsc — 50 and fsc = 500. 
The capacity per period Ct is determined according to 

where the capacity utilization U is systematically varied using U = 0.4, U = 0.6, 
and U = 0.8. Note, the utilization of capacity is an estimate only, because setup 
times do affect the computation of Ct. Hence, a value U = 0.8 actually means 
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that the utilization of c apacity by production and setup actions is greater than 
80% on average. In summary, we have 

| {2,...,10} | x | {3,..., 10,15,20} | x | {50,500} | x | (0.4,0.6,0.8} | = 540 

instances. 
Tables 4 to 9 provide the run-time results of our study. All results are given 

in CPU-seconds. A time limit of 3600 CPU-seconds is used. Missing entries 
thus indicate that the corresponding instance cannot be solved optimally within 
one hour on our platform. Zeroes indicate that the method needs less than 0.5 
CPU-seconds to compute the Optimum Solution. The run-times given here do not 
include the time needed to compute the efficient sequences. This is because in 
a real-world Situation the number of items J does not change in the short-term 
and thus solving the set of traveling salesman problems needs to be done once 
and for all. The effort for doing so can thus be neglected. 

Table 4. Run-Time Performance for fsc = 50 and U = 0.4 
T=3 4 5 6 7 8 9 10 15 20 

J=2 0 0 0 0 0 0 0 0 0 1 
J=3 0 0 0 0 0 0 0 0 5 162 
J—4 0 0 0 1 2 5 10 39 1966 
J=5 0 1 3 12 20 96 173 2052 
J=6 2 9 39 83 209 1375 2658 
J=7 13 61 181 511 1295 
J=8 144 1729 
J=9 537 

J=10 2428 

Table 5. Run-Time Performance for fsc — 50 and U — 0 .6 
T=3 4 5 6 7 8 9 10 15 20 

J=2 0 0 0 0 0 0 0 0 0 1 
J=3 0 0 0 0 0 0 0 0 5 136 
J=4 0 0 0 1 2 5 9 37 
J=5 0 1 2 11 19 93 167 2001 
J=6 2 9 38 82 204 1352 2633 
J=7 13 60 179 505 1282 
J=8 194 2570 
J=9 613 
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Table 6. Run-Time Performance for }Sc — 50 and U = 0.8 
T=3 4 5 6 7 8 9 10 15 20 

J=2 0 0 0 0 0 0 0 0 0 1 
J=3 0 0 0 0 0 0 0 1 15 530 
J=4 0 0 1 2 3 9 17 46 
J=5 0 2 9 33 73 214 325 2965 
J=6 2 13 56 20 8 768 2856 
J=7 7 24 228 552 1203 
J=8 100 1303 
J=9 471 

Table 7. Run-Time Performance fo r f$c = 500 and U = 0.4 
T=3 4 5 6 7 8 9 10 15 20 

J=2 0 0 0 0 0 0 0 0 1 8 
J=3 0 0 0 0 1 2 4 7 164 
J=4 0 0 1 6 20 78 331 732 
J=5 0 3 20 125 1560 

II >—> 1 11 176 1350 
3=7 4 153 1581 
3=8 39 3501 
J=9 201 

J=10 2489 

As expected, it turns out that the parameters J and T do have a significant 
impact on the run-time Performance. The run-time grows faster with J than with 
T. For instance, see Table 4 where the instance with J — 7 and T — 4 terminated 
after 61 CPU-seconds. For J = 8 and T = 4 we measure 1729 CPU-seconds, and 
for J = 7 and T = 5 we need 181 CPU-seconds. 

Varying the setup costs (measured by the parameter f$c) and the capacity 
utilization U does not drastically affect the order of magnitude of problem sizes 
that can be solved within reasonable time. It cannot be stated that higher ca
pacity usage gives shorter computation times. Comparing Table 4 with Table 6 
indicates that larger instances can be solved when capacity usage is low. But, 
this result cannot be validated when comparing Table 7 with Table 9. Also, 
it is not true that higher setup costs make instances easier to solve. Cornpare 
for instance Table 6 with Table 9 where this seems to be the case, whereas a 
comparison of Tab le 4 with Table 7 does not give such a proof. 
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Table 8. Run-Time Performance for fsc — 500 and U = 0.6 
T=3 4 5 6 7 8 9 10 15 20 

J=2 0 0 0 0 0 0 0 0 0 5 
3=3 0 0 0 0 0 1 2 3 175 
3=4 0 0 2 6 18 50 118 314 

I
 

o
 

2 15 81 554 2138 
J=6 1 18 216 862 
3=7 5 134 1580 
3=8 49 
3=9 247 

3=10 2300 

Table 9. Run-Time Performance for fsc = 500 and U = 0.8 
T=3 4 5 6 7 8 9 10 15 20 

J=2 0 0 0 0 0 0 0 0 0 2 
3=3 0 0 0 0 0 0 0 1 14 378 
3=4 0 0 0 1 2 10 24 64 
3=5 0 1 3 9 27 127 316 255 1 
3=6 0 4 13 56 143 1155 3069 
3=7 2 8 50 189 721 
3=8 47 489 2071 
3=9 57 765 

3=10 826 

Since we used instances with fully-filled demand matrices the results can 
be seen as worst case estimates on the run-time Performance. Pacing instances 
with sparse demand matrices would give shorter run-times, because the number 
of sequences to be considered within a period decreases. This is due to the fact 
that items with no cumulative demand need not be scheduled and thus sequences 
containing such items need not be enumerated. A s imilar argument applies to 
the effort for rescheduling. Since rescheduling means to impose some restrictions 
on the sequences that are allowed to be scheduled, its run-time will be less than 
what can be read in the tables. 

A benchmark test with the Standard solver LINDO [23] gives convincing 
results. Within 3600 CPU-seconds, LINDO is able to solve the instances with 
four items and six periods. In contrast to that, our procedura needs less than six 
seconds to give the Optimum result. 
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6 Conclusion and Future Work 

In this paper we p roposed a model for lot sizing and scheduling with sequence 
dependent Setups. It is a large time bücket model and thus fxts t o real-world 
situations where we find periods such as shifts, days or weeks naturally be given. 
Within these periods scheduling can be done on the basis of a continuous time 
axis. In addition, an optimal Solution procedure is presented which follows the 
idea of branch-and-bound. 

The key element for the efficiency of the method is based on an idea derived 
from problem specific insights. Roughly speaking, this idea is that if we know 
what items to produce in a period but we do not know the lot sizes yet, we can 
nevertheless determine the sequence in which these items are to be scheduled. 

In contrast to other approaches which suffer from large memory requests, the 
presented procedure requires modest capacities. This is mainly due to a novel 
idea for Computing lower bounds to prune the search tree. Memorizing partial 
schedules seems to be avoidable now. Beside the low memory space usage, the 
lower bounding technique amazes with high speed-ups. 

In summary, this method competes with approaches for similar but more 
restrictive cases [13] where instances with up to J = 10 are solved. In our 
terminology, these instances have up to 38 entries in the external demand matrix. 
By the way, the procedure in [13] outperforms the code given in [21]. 

Future work should deal with solving model extensions. Multiple scarce ca
pacities would for instance be an important subject for which the method should 
be modified. Taking multi-level product structures into account would also be 
an extension worth to be considered. 

Beside this, the method should be refined. Additional branching and bound
ing rules should improve the results. 
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