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Abstract: Complexity proofs often restrict themselves to st ating that the problem at hand is a gener-
alization of some otber intractable problem, This proof technique relies on the widely accepted 
assumptions that complexity results hold regardless of the model formulation used to represent the 
problem and the encoding used to represent its instances. However, recent results indicate that these 
assumptions are not always justified. Brüggemann (1995) showed that for at least one model formula
tion of the discrete lotsizing and scheduling problem (DLS P) and certain, pathological instances the 
corresponding decision problem cannot be a member of NP; therefore that DLSP-model is exponential. 
With respect to the field of resource-constrained pro ject scheduling, the question arises whether here 
this or a similar Situation may occur as well. We extend the findings of Brüggemann to the Single mode 
project scheduling problem (SMPSP) where we prove the well-known binary programming model of 
the SMPSP t o be exponential as well - regardless of the particular encoding used. In addition, we 
demonstrate that this result can be improved to a strongly NP-equivalence result by adding one 
moderate restriction on the problem parameters. 

Keywords: RESOURCE-CONSTRAINED PROJECT SCHEDULING; COMPUTATIONAL 
COMPLEXITY 

1. Introduction and Motivation 

Complexity proofs often restrict themselves to stating that the problem at hand is a generaliza-

tion of some other intractable problem; a complexity proof for project scheduling problems 

for example often consists of the hint that it generalizes the job shop problem (JSP) (Baker 

1974; Drexl 1990; Sprecher 1994) which is known to be strongly NP-hard (Garey, Johnson, 

and Sethi 1976). This proof technique relies on the widely accepted assumptions that com

plexity results hold regardless of the model formulation used to represent the problem and 

regardless of the encoding used to represent its instances.(We assume the reader to be familiar 

with the issues of complexity theory. For introductory texts on this subject cf. Garey and 

Johnson 1979; Papadimitriou andSteiglitz 1982; Papadimitriou 1994.) 

However, recent results indicate that these assumptions are not always justified. Brüggemann 

(1995) was able to prove for at least one model formulation of the discrete lotsizing and 

scheduling problem (DLSP) that a commonly used encoding which is widely accepted as being 

reasonable and concise may cease to remain concise when confronted with certain, pathologi

cal instances. As a consequence, different encodings may lead to categorially different input 

lengths such that complexity results can no longer be safely assumed to be encoding-

independent. Further, Brüggemann showed that under a slightly different encoding, which is 

actually concise for these pathological instances, said model of the corresponding decision 

problem cannot be a member of NP; therefore the model is exponential. Finally, he demon-

strated that for the DLSP different model formulations may entail different complexity results; 

so complexity results need not always hold regardless of the employed model formulation. 

With respect to the field of resource-constrained project scheduling, the question arises 

whether here this or a similar Situation may occur as well. We examine the Standard practice 

of representing project scheduling problems under resource constraints, i.e. in terms of binary 
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optimization models. We extend the findings of Brüggemann to the Single mode project 

scheduling problem (SMPSP). Since these findings suggest that different model formulations 

may give rise to different complexity results, it is first of all necessary to describe a specific 

model of the SMPSP. For this purpose, we formulate the SMPSP in terms of what we call a 

PWW-model, i.e. a binaiy optimization model following the approach by Pritsker, Watters, 

and Wolfe (1969) who used binary variables to represent schedules. These models are well 

established in literature as the Standard practice of representing scheduling as well as many 

other problems. We prove that the PWW-model of the SMPSP is exponential - regardless of 

the particular encoding used. In addition, we demonstrate that this result can be improved to a 

strongly NP-equivalence result by adding one moderate restriction. 

The remainder of this work is organized as follows: Section 2 briefly introduces the SMPSP for 

which Section 3 provides the mathematical formalization in terms of a PWW-model. Section 

4 is devoted to the finding that this model of the SMPSP is exponential. In Section 5, shows 

how to tum the exponential model of the SMPSP into a strongly NP-equivalent one. Finally, 

Section 6 provides a brief summary and closes with an outlook on future research. 

2. The Single-Mode Project Scheduling Problem (SMPSP) 

The principal components of any project scheduling problem (Psp) are activities, resources, 

precedence relations, and a quality measure. A project consists of a number of activities; all 

activities have to be executed in order to complete the project. Düring their nonpreemtable 

execution the activities request resources. Within this conceptual framework, resources are 

generally classified according to their availability. The available amount of nonrenewable 

resources is limited over the whole planning horizon by a total capacity. In contrast, the avail

able amount of renewable resources is limited in every period by a period capacity. Resources 

having both a total and a period capacity are called doubly constrained; however, as they can 

be split into a renewable and a nonrenewable part (cf. Slowinski 1981) they are ususally not 

considered explicitly. Often, an activity can be performed in several different ways (modes), 

resulting in different durations and different resource demands. Accordingly, each mode of an 

activity is associated with a duration, one resource usage for each renewable resource, and 

one resource consumption for each nonrenewable resource. Further, technological, legal, or 

other reasons may induce precedence relations, meaning that some activities need to be com-

pleted before others can be started. Finally, once the execution of an activity has begun, it may 

not be interrupted (nonpreemptive scheduling). 

A schedule assigns a finishing time and - if necessary - a mode to each activity. A project 

scheduling problem (Psp) then amounts to finding a schedule that is both feasible, i.e. respec-

ting a given set of constraints, and optimal, i.e. attaining the Optimum of a specified quality 

measure. The constraints may represent e.g. precedence relations between certain activities or 
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limited resource availabilities while the quality measure may aim at minimizing the total 

duration (makespan) of the project. The quality of such a schedule is measured in terms of a 

function mapping each schedule to a numerical value (for more details cf. Kolisch 1995). 

In the following we consider the most simple PSP, viz. the classical single-mode project 

scheduling problem (SMPSP) which is characterized by the fact that each activity can be per-

formed in only one specific mode and which aims exclusively at minimizing the project 

makespan. W.r.t. the nonrenewable resources this implies that their consumption is neither 

open to decision, nor does it form part of the quality measure. As a consequence, nonrenew

able resources are not relevant in this case; only the way the renewable resources are used 

over the processing time of the project remains open to decision. 

The problem parameters of the SMPSP are summarized (in alphabetical order) in Table 1. 

Table 1 

Problem Parameters ofthe SMPSP 

Problem Definition 
Parameter 

dj Duration of activity j 

J Number of activities, indexed by j 

kjr Per-period usage of renewable resource r required to perform activity j 

Kr Per-period availability of renewable resource r 

R Number of renewable resources, indexed by r 

Z Partial order on the activities, representing precedence relations 

W.l.o.g. the parameters J, R, all dj (except of d\ and dj), and all Kr are assumed to be positive 

integers while the kjr are assumed to be nonnegative integers. This entails no loss of general-

ity since it is equivalent to allowing rational numbers, i.e. fractions, and multiplying them with 

the smallest common multiple of their denominators. 

The goal is to find an assignment of periods to activities (a schedule) that covers all activities, 

ensures for each renewable resource r that in each period the total usage of r by all activities 

performed in that period does not exceed the per-period availability of r, respects the partial 

order Z, and minimizes the total project length. 
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3. A PWW-Model Formulation of the SMPSP 

To simplify the formulation of the model, w.l.o.g. it is assumed that the (fictitious) activities 1 

and J are dummy activities, meaning that their duration and resource requirements equal zero, 

and that activity 1 is the unique first and activity J the unique last activity w.r.t. Z, i.e. that 1 Z 

j and j Z J (2 < j < J-l). Also, some parameters are derived from the above problem parame-

ters. First, in order to restrict the number of periods to be considered, an upper bound for the 

makespan of the project needs to be determined. Note that a, however poor, bound can be 

derived from 

J-l 
T=Idj (1) 

j=2 

Second, let denote Pj (1 < j < J) the set of all immediate predecessors of activity j w.r.t. Z. 

Third, for each activity j (1 < j < J) earliest finishing times EFj and latest finishing times LFj 

may be calculated. While not being a necessary prerequisite, they usually allow to reduce the 

number of binary variables needed to formulate a specific instance of the problem. 

Table 2 summarizes the derived parameters of the SMPSP (in alphabetical order). 

Table 2 

Derived Parameters ofthe SMPSP 

Derived Definition 
Parameter 

EFj Earliest finishing time of activity j 

LFj Latest finishing time of activity j 

fj Set of all immediate predecessors of activity j 

T Number of periods (planning horizon), indexed by t 

Using the above conceptualization, the assignment of activities to periods can be represented 

by binary variables xjt (1 <j<J; 1 <t<T) where 

f 1 if activity i i s completed in period t 
Xjt = ]0 otherwise (2) 
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Now the SMPSP can be expressed in terms of the following PWW-model: 

Minimize 

Z(x) = £txJt ß) 
t=EFf 

subject to 

Ixjt=l (l<j<j) (4) 

t=EFj 

LF, LFj 
Xtxit^ %(t-dj)xjt (2<j<J;iePj) (5) 

t=EFj t=EFj 

j t+dj—1 

Zkjr Exjt^Kr (1 < r SR; 1 < t < T) (6) 
j=l T=t 

xjt€ {0, 1} (l<j<J;EFj<t<LFj) (7) 

This model formulation of the SMPSP can be explained as follows: Minimization of the objec-

tive function (3) enforces the earliest possible completion of the last activity J and thus leads 

to the minimal schedule length. The activity completion constraints (4) guarantee that each 

activity is executed once and completed within the interval [1, T]. The precedence constraints 

(5) represent the precedence order. The capacity constraints (6) limit the total resource usage 

of each renewable resource in each period to the available amount. 

In the following, SMPSPPWW is understood to denote the specific PWW-model formulation 

given above, rather than the general problem setting SMPSP as outlined in Section 2. 

4. The PWW-Model of the SMPSP is Exponential 

We will now prove for the feasibility version SMPSPfeas of the SMPSP that its PWW-model 

SMPSPfeasPWW cannot be verified in polynomial time. This implies that solving it in polyno-

mial time is impossible, hence SMPSPPWW in tum is exponential. 

Theorem 1 SMPSPfeasPWW is not polynomially verifiable, i.e. SMPSPfeasPWW £ NP. 
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Proof: LetJe IN, di = dj = 0, dj G IN (2<j £J-l),Re lN,kjrG IN0(l<jSJ; l<r<R), 

Kr G IN (1 < r ^ R), and Z a partial order on constitute an arbitrary instance 

I of SMPSpfeaspww. Letting denote Kmax = max{Kr[ 1 < r < R}, the following 

bounds are straightforward (even though tighter bounds could be derived for the dj, 

these will be sufficient for our purposes): 

dj <T (l<j<J) (8) 

kjr < Kr (1 < j < J; 1 < r < R) (9) 

Kr<Kmax (l<r<R) (10) 

U!<J2 (ii) 

[EFj, LFj] c [1, T] (1 <j < J) (12) 

Hence, the magnitude of an instance is MAXSTO(7) = max {T, Kmax} and the input 

length is LNGg-p]^./) ~ 0(J2-R-log MAX§ 

We now have to show that any certificate may require time exponential in 

LNGSXD(7) for verification. A certificate C of SMPSPfeaspYAV consists of one value 

for each of the J-T decision variables. Since all variables are binary, MAXgXD(0 = 

1. Hence, LNGSXD(C) = J-T-flog(I)+l] = J-T such that reading it has a time com-

plexity of O(J-T). But J-T is not polynomial in LNGSTD(7) since there is no way of 

polynomially bounding T in J2 R-Iog MAXSTD(/)). This becomes especially apparent 

in the case MAXSTD(7) = T, implying LNGSTD(7) - 0(J2-R-log T), since T is clearly 

exponential in log T. But also in the opposite case, where MAXSTD(7) = T 

remains exponential since all parameters dj, which determine the value of T (cf. 

equation (1)), are free and may thus attain arbitrarily large values. As even reading a 

certificate will require exponential time, it is impossible to verify it in polynomial 

time such that SMPSPfeasPWw can be no member of NP. • 

Corollary 1 SMPSPfeasPww and SMPSPPWW are exponential. 

Proof: It is obvious from the proof of Theorem 1 that the length of any certificate C of 

SMPSPfeasPWW cannot be polynomially bounded in the length of the corresponding 

instance I of SMPSPfeasPWW. Therefore even writing down a Solution for an 

SMPSPfeasPWW-instance, to say nothing of constructing one, may in the worst case 

take exponential time: SMPSPfeasPWW cannot be solved by a polynomial algorithm; 

so SMPSPfeasPWW is exponential. 
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Further, as any Solution of an SMPSPpww-instance also provides a Solution for the 

corresponding SMPSPfeasPWW-instance, SMPSPPWW cannot be easier to solve than 

SMPSPfeasPw\v; so also SMPSPPWW is exponential. • 

We should emphasize that this result does not exclude the possibility that some or even most 

instances of the SMPSPfeasP\^y or the SMPSPP^W may be solved in polynomial time. Since 

the definition of complexity aims at the worst case, it rather means that not all instances will 

be polynomially solvable. To illustrate this, consider the following pathological Situation: 

Let J = 3, d] = dj = 0, d2 free, R = 1, kjr = 1, Kr = 1, and Z empty characterize a class of 

instances of SMPSPfeasPw\y. The length of these instances is essentially 0(log T) while the 

length of a certificate is 0(T). Obviously, T is exponential in log T such that solving such 

instances requires exponential time. 

From the proof of Theorem 1 it is clear that also more realistic instances with 1 arger parameter 

values may share the property of requiring exponential effort. As long as T is free to take arbi-

trarily large values which can go beyond any polynomial bound in the length of the respective 

instance, SMPSPPw^-instances may tum up which are only solvable in exponential time. 

5. Improving the Complexity 

The results of the previous section are quite discouraging with respect to the tractability of the 

SMPSPPW\y: Since a worst-case result alone does not allow to infer how often the worst case 

occurs, one does not know whether only a few or almost all instances will require exponential 

time for solving them. In order to gain further knowledge, one might try to identify distribu-

tion functions for at least some of the problem parameters. Such Information might help to 

determine the structure of typical instances from which the frequency of worst-case results 

could be inferred. This approach clearly requires a detailed analysis of the specific planning 

Situation at hand and thus cannot be employed for the SMPSPPWW in general. 

However, by adding a relatively lenient assumption a better result can be established which 

holds for all instances. The SMPSPPWW under this additional condition can be shown to be 

strongly NP-equivalent, in other words of the same categorial complexity as the strongly NP-

complete problems. This result is better than exponential since it allows for the possibility that 

SMPSPPWW may be polynomially solvable, even if only under the precondition that P = NP. 

The mentioned additional condition requires for each instance that all dj (1 < j < J) and thus T 

be limited to values which are polynomially bounded in the respective input length. It is 

noteworthy to mention that, although being quite restrictive from the formal point of view, 

this condition is not too severe in practical terms. The only instances which it precludes 

comprise arbitrarily large planning horizons, a Situation which is extremely improbable to 
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occur in practice. In most applications, natural choices of the planning horizon will be fixed or 

at least sufficiently small to meet this condition. In fact, the proof of Theorem 1 indicates that 

when considering a sequence of essentially similar instances which only differ in their linearly 

growing values of T, the time required to solve them will in the worst case increase exponen-

tially in the input length. 

We will now show that under the above assumption SMPSPfeaspww ^ strongly NP-complete. 

The proof essentially provides a pseudo-polynomial transformation, denoted by from the 

strongly NP-complete 3-partition problem (3PP) (Garey, Johnson 1975) to the SMPSpfeaspww; 

(3PP) Given N e IN, S = {1,...,3N}, B e IN (called a bound), and pj e IN (1 < j < 3-N) 

(called a size for each element of S) such that 

B/4 < Pj < B/2 (1 < j < 3-L) (13) 

and =L B (14) 

jeS 

hold, is there a partition of S into L disjoint subsets S\ (1 < i < L) such that 

J>j=B (1 < i < L) (15) 

holds true? 

Note that the conditions on the pj (1 < j < 3-L) imply that \S[ \ = 3 (1 < i < L). Obviously, 

MAXSTD(3PP) = B and LNGSTD(3PP) = 0(L-log B) hold. 

Theorem 2 SMPSPfeasPWw " tmder the assumption that all dj (1 < j < J) are restricted to 

values which are polynomial in the input length - is strongly NP-complete. 

Proof: 

(SMPSPfeasp"ww e NP) By virtue of the above restriction, T is polynomial in 

LNGSJDW such that the magnitude of an instance I of the SMPSPfeasPWW is 

MAXSTD(7) = Kmax and the input length is LNGSTD(7) ~ O(j2-R-Iog Kmax). We now 

have to show that any certificate can be read and verified in polynomial time. A certifi

cate C of the SMPSPfeaspww consists of one value for each of the J-T decision variables; 

due to their binarity MAXg-pß(C) = 1 and thus LNGgpß(C) = I T (log (1)4-1) = J-T. 

Therefore, reading a certificate has a time complexity of O(J-T) which is polynomial in 

the input length because T is so. 

Evaluating the constraints will require at most T-l additions for the J activity comple-

tion constraints (4), at most 3-T-2 additions and at most 2-T multiplications for the at 
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most J(J-l)/2 precedence constraints (5), and J-l times at most T-l additions and J times 

at most T multiplications for the R-T resource constraints (6). In total, this amounts to 

0(J2-R-T2) Operations; assuming that each addition and multiplication takes constant 

time, the time complexity of the total evaluation is 0(J2R-T2). So, it can be verified in 

polynomial time that the schedule satisfies the constraints (4) - (6). 

(3PP ocp SMPSPfeasPWW) Let L e EST, S = {1,...,3-L}, B e IN, p.j e IN (1 < j < 3-L) con-

stitute an arbitrary instance of 3PP. Then construct an instance of SMPSPfeasPWW as 

follows: J = 3-L, dj = 1 (1 < j 5 J), R = 1, kj = |ij (1 < j < J), K = B, and Z empty, where 

due to R = 1 kj Stands for kji and K for K] (cf. Figure 1). Also, let T = L. Even though 

applying (1) would yield T = 3-L, we will see below that here T = L is sufficient for 

building a feasible schedule. 

Figure 1 

3PP Transforms to SMPSPfeasPWw 

K = B 

kl =P1 : : 
: 

: 

k2 = M^2 : 
; kJ-l =^3L-l 

; : : : 

£
 

n J? 

K/4 < kj < K/2 
B/4 < jij < B/2 

In order to show that this transformation is indeed pseudo-polynomial, let us first argue 

that there exists a feasible schedule for the constructed instance of SMPSP^p^/w # and 

only if there is a partition of S as described above. Assuming that there exists a partition 

of S as described above, we can design a feasible schedule by scheduling all activities in 

S[ (1 < i < L) to period i. Since the S[ form a partition of S, this procedure Covers all 

activities, hence the activity completion constraints (4) are met. Due to Z empty there 

are no precedence constraints (5). Finally, (15) translates to 

IkJ = K (1 < i < T) (16) 

je^i 

such that the schedule also satisfies the resource constraint (6). Conversely, if such a 

feasible schedule exists, a partition of S as described above can be obtained by putting 

together in S\ (1 < i < L) all elements j (1 < j < 3-L) scheduled to period i. Due to con-
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straints (4) this yields a partition, and due to constraints (6) also the desired property 

(15) holds. 

Second, the above transformation can be performed in pseudo-polynomial, even in 

polynomial time since each of the 0(L) assignments can be done in 0(log B) time. As 

all values of the 3PP-instance form part of the derived instance, the third condition, viz. 

that the transformed instance will not be of categorially smaller length, will be met even 

with the identical polynomial. Finally, the maximum number occurring in the con-

structed instance, B, is also the maximum number in the 3pp-instance, such that it can be 

bounded in length and magnitude of the 3pp-instance by the polynomial p(x,y) = 0x + y. 

So, the above transformation from 3PP to SMPSPfeaspww is indeed pseudo-polynomial 

which implies the strong NP-completeness of SMPSPfeaspw^r. • 

Consequentially, SMPSPfeasPWw can solved by a polynomial or by a pseudo-polynomial 

algorithm if and only if P = NP such that it is essentially of the same complexity as the 

strongly NP-complete problems. Building upon this result, it is easy to show that the 

SMPSPpww is strongly NP-hard by exhibiting a pseudo-polynomial reduction, denoted by 

oCpp, from the SMPSpfeasp"yy^y tO the SMPSPp^\y. 

Theorem 3 SMPSPPWW - under the assumption that all dj (1 < j < J) are restricted to values 

which are polynomial in the input length - is strongly NP-hard. 

Proof: 

(i) (SMPSPfeasPWW is strongly NP-complete) See above. 

(ii) (SMPSpfeasPWW ocpR SMPSPpww) 

Assuming some hypothetical algorithm A' solving SMPSPPWW, each instance / of 

SMPSPfeasPWW can be solved by an algorithm A that proceeds in the following way: 

Construct from I an instance T of SMPSPPWW and solve it by A'. If A' returns an optimal 

Solution for T, then that Solution is also feasible; accordingly the Solution for I is "yes". 

If A' returns "no", then no optimal and thus no feasible Solution for T exists; hence the 

Solution for I is "no" as well. This construction can be done in linear, thus in polynomial 

time such that A provides a polynomial reduction from SMPSPfeasPWW to SMPSPPww_ A 

is also pseudo-polynomial since all numbers occurring in any constructed instance T of 

SMPSPpww also occur in the original instance I of SMPSPfeasPWW such that the magni

tude of T can easily be bounded by the identical polynomial in the magnitude of I. • 

This result allows to characterize the SMPSPPWW as at least as hard to solve as the strongly 

NP-complete problems. As a consequence, the SMPSPP^W can neither be solved by a poly-
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nomial nor by a pseudo-polynomial algorithm unless P = NP (for a more detailed argumenta-

tion cf. Schirmer 1995). 

However, this implication provides only partial Information with respect to the tractability of 

the SMPSPPWW. TO see this, let us consider the two possible answers to the P = NP ?" ques-

tion. On one hand, if P ^ NP were true, all problems in NP and thus also the feasibility Ver

sion of the SMPSPPWW could be solved only by exponential algorithms; since the SMPSPPWW 

is at least as hard as its feasibility Version, also the SMPSPPWW üself would then be exponen

tial. On the other hand, if P = NP would hold, then all problems in NP and thus also the fea

sibility version of the SMPSPPWW would be polynomial. In this case, however, the tractability 

of the SMPSPpww would still be open: Being possibJy harder to solve than a polynomial 

problem, it then could still be as well polynomial as exponential. The following result closes 

this Information gap by ruling out the possibility that the SMPSPP^? might actually be harder 

to solve than the strongly NP-complete problems. (The proof uses two variants of the 

SMPSPPWW which are explained in the Appendix.) 

Theorem 4 SMPSPPWW ~ un der the assumption that all dj (1 < j < J) are restricted to values 

which are polynomial in the input length - is strongly NP-easy. 

Proof: 

(i) (SMPSPthrPWW is strongly NP-complete) 

(SMPSPthrPWW 6 NP) Magnitude and length of an instance 7 as well length of a certifi

cate of the SMPSPthr are as for the SMPSPfeasPw\y. Again, reading a certificate has a time 

complexity of O(J-T) which is polynomial in the input length because T is so. 

Evaluating the constraints will accordingly require the same time as for the 

SMPSPfeasPWW, plus at most T-l additions and at most T multiplications to evaluate the 

objective function (3). Again, the time complexity of the total evaluation is 0(J2-R-T2). 

So, it can be verified in polynomial time that the schedule satisfies the constraints (4) -

(6) as well as the condition on the objective function value. 

(SMPSPfeasPW\y ocpR SMPSPPWW) Assuming some hypothetical algorithm A' solving 

SMPSPthr, each instance 7 of SMPSPfeasP^w can be solved by an algorithm A that pro-

ceeds in the following way: Construct from 7 an instance 7 of SMPSPthr where the bound 

B is taken to be T and solve it by A'. If A* re turns a Solution for 7, then that Solution is 

also feasible; accordingly the Solution for 7is "yes". If A' returns "no", then no feasible 

Solution for F exists; hence the Solution for 7 is "no" as well. This construction can be 

done in linear, thus in polynomial time such that A provides a polynomial reduction 

from SMPSP^easP^rw 1° SMPSpthrp^r\y. A is also pseudo-polynomial since all numbers -

except of T - occurring in any constructed instance 7 of SMPSP^P^^ also occur in the 
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original instance I of SMPSPfeasPWW and T is assumed to be polynomially bounded; 

hence, the magnitude of T can easily be bounded by the identical polynomial in the 

magnitude of /. 

(ii) (SMPSpe*tp\yw °=pR SMPSP^pww) Holds trivially since SMPSPthrPWW can be restricted 

to SMPSpe^v^y. 

(iii) (SMPSPPWW °CpR SMPSPextPWw) Suppose the algorithm A solves SMPSPextPWW when 

provided with an instance [J, dj, R, kjr, Kr, Z, B, E]. (To specify the particular instance 

which A has to solve, we will refer to the application of Aas calling A[J, dj, R, kjr, Kr, 

Z, B, E].) Let denote I an instance I of SMPSPPWW. We now have to show that I could 

be solved by calling A on several different instances of SMPSPext while doing so no 

more than a number of times polynomially bounded in LNGSTD(7). We will do this in 

two steps: First, determine the optimal objective function value of /, i.e. the minimum 

project length; second, construct an optimal Solution, i.e. a füll schedule having mini

mum length. 

It is clear from the activity completion constraints (4) that any optimal schedule will 

have to comprise activity 1. In order to avoid unnecessary delays, it will be regarded as 

"completed" at the beginning of period 1, in other words at the end of "period" 0. Con-

sequentially, any optimal schedule will include {(1,0)} as a partial schedule. Now, from 

the objective function (3), equation (1), and dj e IN0 it follows that the length B* of any 

optimal schedule has to satisfy 0 < B* < T. Accordingly, by performing a binary search 

within this interval, one can determine B* with a sequence of at most flog Tl calls of 

A[J, dj, R, kjr, Kr, Z, B, {(1, 0)}] with different values of B. The binary search proce-

dure can be described in pseudo code as follows: 

BMIN 

while not (BMAX - BMIN = 1) 
{ 

B <- f(BMIN + BMAX) / 2~|; 

call A[J, dj, R, kjr, Kr, Z, B, {(1, 0)}]; 
if (Solution = "yes") 

BMIN 
eise 

BMAX 
} 

B* <-ßMAX; 
return (B *); 

In order to build an optimal length schedule, let a candidate partial Solution (cps) be a 

partial schedule that can be extended to an optimal one, i.e. to a füll schedule of mini-
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mum length. Clearly, {(1, 0)} is a cps; hence, there is at least one activity j e / \ {1} 

such that {(1, 0), (j, t)} is a cps. j is always taken to be the next activity in J. t can be 

identified from checking all periods t' within the interval [EFj, LFj] by calling A[J, dj, 

R, kjr, Kr, Z, B*, {(1, 0), (j, t')}]; this will involve at most flog T~] calls. In general, for 

each cps {(1, 0), (2, tß) (I, t%)) with I < J, another cps {(1, 0), (2, t2),...,(I, t;), 

(I+l,tj+i)} can be determined by a sequence of at most ["log Tl calls of A such that -

given the optimal schedule length B* - an optimal schedule can be identified by at most 

jflogTl calls of A. 

Having specified the above algorithm, it remains to be verified that A is indeed a 

pseudo-polynomial reduction. Summing up the above numbers yields at most (J + 1)-

1~log Tl as the total number of calls, which is essentially 0(J log T); this function can 

easily be polynomiaüy bounded in the length LNGSTD(7) of a SMPSPPWW-instance, 

which is essentially 0(1 Rlog MAXsTO(/)), since T < MAXSTD(7). As all the numbers 

that occur in a SMPSPPWW-instance / also appear in the corresponding SMPSPextpWw-in-

stance T and as MAXSTD(7) = MAXs^D(r), the remaining conditions on a pseudo-poly

nomial reduction are met, as well. • 

Showing a problem to be NP-easy allows to characterize it as no harder to solve than the 

strongly NP-complete problems; therefore, the SMPSPp^rw can solved by a polynomial or a 

pseudo-polynomial algorithm if P = NP Finally, the combination of Theorems 3 and 4 

together implies that the SMPSPPWW is strongly NP-equivalent, indicating that not only the 

SMPSPfeasPWW but also the SMPSPPww is of essentially the same computational complexity as 

the strongly NP-complete problems. This implies that if the fundamental question "Is P = 

NP?" will eventually be answered by "yes" ("no"), this also would immediately establish the 

complexity of the SMPSPP^\V as polynomial (exponential). 

Figure 2 illustrates the mutual relationships between the complexity classes used in the above 

proofs and summarizes the implications of membership in one of them for a problem. NPC 

(NPH, NPE, NPQ) is taken to denote the class of NP-complete (NP-hard, NP-easy, NP-

equivalent) problems (Schirmer 1995). 
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Figure 2 

Overview ofDifferent Complexity Classes 

NPH : at least as hard as NPC since 
NPH c P => P = NP 

NPE : no Härder than NPC since 
NPE c P <= P = NP 

NPQ : as hard as NPC since 
NPQ c P <=> P = NP 

6. Summary and Outlook 

Motivated by recent findings of Brüggemann (1995) that certain commonly used combina-

tions of an encoding and a model may be exponential, we have examined the most simple 

paradigm of project scheduling problems in the presence of resource constraints, namely the 

SMPSP. In doing so, we focussed on so-called PWW-models because these are well established 

as the Standard practice of representing these problems. It turned out that the PWW-model of 

the SMPSP is exponential - regardless of the particular encoding used. However, this 

discouraging result can be improved to a strongly NP-equivalence result by adding one mod

erate restriction on the problem parameters. 

Future work in this regard should be directed along the following lines: 

Investigate whether these or similar properties appear for the SMPSP only or for other PSP 

as well. 

If the latter case hoids, derive criteria which allow to identify this property in general. 

Check whether other model formulations for the SMPSP exist which are in NP even for 

arbitrarily large values of T. 
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Appendix 

We here describe two variants of the SMPSP, namely its threshold and its extension variant, 

which are used in the proof of Theorem 4 (A detailled coverage of such variants and the proof 

technique involved is provided in Schirmer 1995). In order to emphasize the correspondence 

between the original SMPSP and its variants, we start off with recalling an - informal -

description of the SMPSP. It is easy to see how to derive a PWW-model (such as given in 

Section 3) from these problem descriptions (such as given below). We thus feel free to omit, 

for the sake of brevity, the respective PWW-model formulations of both variants. 

(PI) Single-Mode Project Scheduling Problem (SMPSP) 

Given J G IN (number of activities), J - {1,...,J} (activities), d] = dj = 0, dj G IN (2<j<J-l) 

(duration of j), R G IN (number of renewable resources), kjr G INQ (1 < j < J; 1 < r < R) (per-

period usage ofrbyj), Kr G IN (I < r < R) (per-period-availability ofr), and Z a partial order 

(aprecedence order) on J, find an assignment of periods to activities, i.e. a set {(jn, tn) I l<n< 

J A l<jn<J A l<tn<T}, covering all activities that ensures for each renewable resource r that in 

each period the total usage of r by all activities performed in that period does not exceed the 

per-period availability of r, and respects the partial order Z (a füll schedule) such that the 

expression (project length) 

max{tn| l<n<J) (17) 

is minimal. 

(P2) Single-Mode Project Scheduling Problem, Threshold Variant (SMPSPt^ir) 

Given an instance of the SMPSP and B G IN (a bound), is there a füll schedule such that the 

project length is equal to or less than B? 

(P3) Single-Mode Project Scheduling Problem, Extension Variant (SMPSPext) 

Given an instance of the SMPSP, B G IN (a bound), I G IN with I < J, and an assignment of 

periods to activities, i.e. a set E = {(jn, tn) | l<n<I A l<jn<J A l<tn<T}, covering part of the 

activities that ensures for each renewable resource r that in each period the total usage of r by 

all activities performed in that period does not exceed the per-period availability of r, and 

respects the partial order Z (apartial schedule), can E be extended to a set {(jn, tn) | l<n<J A 

l<jn<J A 1 <tn<T} (a füll schedule, as defined above) such that the project length is equal to or 

less than B? 
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Note that for I = J the above notion of a partial schedule includes the füll schedule as a special 

case. 
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