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Abstract: It is a well-known fact that there exists an ever increasing number of problems for which, 
despite the efforts of many inventive and persistent researchers, it seems virtually impossible to find 
efficient algorithms. In this Situation, the theory of computational complexity may provide helpful 
insight into how probable the existence of such algorithms is at all. Unluckily, some of its concepts can 
still be found to be used erroneously, if at all. For instance, it is a common misunderstanding that any 
problem that generalizes an NP-complete problem is NP-complete or NP-hard itself; indeed any such 
generalization could as well be exponential in the worst case, i.e. solvable with effort ex ponentially 
increasing in the size of the instances attempted. In this work we develop the basic concepts of 
complexity theory. While doing so, we aim at presenting the material in a way that e mphasizes the 
correspondences between the kind of problems co nsidered in Operations research and the formal 
problem classes which are studied in complexity theory. 

Keywords: COMPLEXITY THEORY; OPTIMIZATION PROBLEMS; NP-COMPLETE; NP-
HARD; NP-EASY; NP-EQUIVALENT 

1. Introduction 

It is a well-known fact that there exists an ever increasing number of problems (just think of 

the general integer programming problem, the satisfiability problem, or the travelling 

salesman problem) for which, despite the efforts of many inventive and persistent researchers, 

it seems virtually impossible to find really efficient, i.e. fast, exact algorithms. In this 

Situation, the theory of computational complexity may provide helpful insight into how 

probable the existence of such algorithms is at all. Unluckily, when dealing with 

computationally intractable problems, the terminology of complexity theory can still be found 

to be used erroneously. Jeffcoat, Bulfin 1993 State in the context of resource-constrained 

scheduling that the problem of "finding a feasible Solution is NP-hard" while Laursen 1993 

claims that "many types of NP-complete problems can [...] be solved to proven optimality" 

(cf. also Brinkmann, Neumann 1994). Other authors (e.g. Russell 1986; Fadlalla et al. 1994) 

just assume the intractability of certain problems but refrain from backing up their claim with 

complexity results. Cooper 1976 observes for scheduling problems that exact methods 

"become computationally impracticable for problems of a realistic size, either because 
the model grows too large, or because the Solution procedure is too lengthy, or both, and 
heuristics provide the only viable scheduling techniques for large projects." 

Badiru 1988 reports certain scheduling problems to be 

"cumbersome because of the combinatorial nature of activity scheduling and the resulting 
high [...] CPU time requirements" 

Formulations like these indicate some insecurity with respect to questions like: What does the 

term X stand for? What problems can be X? What are the implications of a problem being X? 

for X e {NP-complete, NP-hard, NP-easy, NP-equivalent}. The reason for this insecurity 

may lie in the fact that often fundamental concepts are presented in an informal way only; 

while this approach promotes an intuitive grasp, it is left to the reader to pin down important 

details. In addition, complexity proofs are often presented in a simplified or shortened manner 
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where crucial aspects are omitted. In this way, even missing links in the chain of reasoning 

may go undetected, rendering a seemingly correct proof erroneous (cp. the findings on this 

topic in Brüggemann 1995). Simplified proof techniques like the prevalent "proof by 

restriction" have their merit as they facilitate the tedious task of formulating a thorough and 

complete complexity proof. Nevertheless, their simplicity is sometimes misleading and has to 

be taken with a grain of salt. For instance, it is a common misunderstanding that any problem 

generalizing (cf. Definition 14) an NP-complete problem is NP-complete itself; indeed any 

such generalization could as well be exponential in the worst case, i.e. solvable with effort 

exponentially increasing in the size of the instances attempted. 

We thus believe it is not superficial to reconsider the basic concepts of complexity theory and 

to back them up with rigorous mathematical definitions, even though we try to convey the 

important ideas as well in an informal manner in order to facilitate understanding for the 

practitioner. While doing so, we also aim at presenting the matenal in a way that emphasizes 

the correspondences between the kind of problems considered in Operations research and the 

formal problem classes which are studied in complexity theory. Since most texts on 

complexity are written from a background in mathematics or Computer science, the 

relationship to practical applications is sometimes lost on the reader. Most of the following 

material is known, but some of it are usually presented in a different framework such that it is 

not always clear that it also pertains to the world of Operations research. 

The remainder of this work is organized along the following lines. Section 2 Covers the 

classical issues of complexity theory. Section 3 addresses several less populär extensions of 

the theory. The concluding Section 4 summarizes the most important ideas presented. 

2. Classical Complexity Theory 

2.1. Background and Motivation 

The inherent computational tractability of problems constitutes the central subject matter of 

complexity theory. It is long-known from the fields of mathematics, informatics, and formal 

logic that there exist problems which are impossible to solve (Church 1936, Turing 1936, Post 

1946). It is noteworthy, however, that even among those problems which are guaranteed to be 

solvable in principle there exist problems which may be regarded as practically unsolvable. 

Hermes (1978, p. 5) points out that even for a simple problem like calculating the value of nm 

for n e IN and m e IN there may exist instances whose solving may be in contrast to the laws 

of nature, e.g. because there is not enough matter in our universe to write down the result or 

because the human race may not last long enough to complete the computation. Similarly, 

Brüggemann (1995, p. 78) states that solving large instances of certain problems may take 

longer than the known universe exists. 
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In the following, the focus is on solvable problems: Rather than asking whether a problem is 

solvable at all, the question of how ejficient a problem may be solved is at the heart of com­

plexity analyses. However, before the complexity of a problem and thus the efficiency of 

problem solving can be defined in a way allowing to build a theory of computational 

complexity upon it, several abstractions need to be established. We will describe these 

abstractions in the sequel. 

Numerous criteria for measuring the efficiency of algorithms have been proposed (cf. e.g. 

Hopcroft, Ullman 1979, Chapters 12 and 13), but while "in its broadest sense the notion of 

efficiency involves all [...] resources needed for executing an algorithm [...], by the 'most effi-

cient' algorithm one normally means the fastest" (Garey, Johnson 1979, p. 5). Indeed, the time 

required to find a Solution is still the most often used criterion when rating the Performance of 

algorithms (Papadimitriou, Steiglitz 1982; Johnson 1983; Schrijver 1986; Nemhauser, Wolsey 

1988). 

Accordingly, one aims at expressing the relation between an instance of a problem and the 

time required by an algorithm to solve it. In our understanding, any algorithm will perform 

one or several arithmetic Operations; hence, first of all one has to specify how much time it 

takes to perform such Operations. Here, two different approaches can be adopted: Either each 

operation is assumed to require an amount of time proportional to the length of the involved 

operands (logarithmic time measure) or, more simple, it is assumed that each Operation can be 

executed in the same amount of time (unit time measure). In this contribution, we will stick 

with the more common unit time measure (similarly e.g. Papadimitriou, Steiglitz 1982, p. 

162). Due to its simplicity, it has the merit that the number of Operations which an algorithm 

has to perform also directly specifies the time it will take (running time) - up to a constant 

factor expressing the duration of one operation. Therefore, we will not differentiate between 

the number of Operations an algorithm performs on a given instance and its running time. 

With respect to complete algorithms, the time they take is usually a function of the particular 

instance attempted. Since, however, consideration of the individual instances would obviously 

render any relation between instance and required time a quite involved measure, one 

abstracts from the specific instance and considers only a numerical value to describe the 

instance, viz. its length. This abstraction allows to express the time complexity or complexity 

ofan algorithm in terms of Solution time as a function of the instance size. Again two possible 

paths may be followed by considering, for each instance size, either the worst-case complexity 

or the expected or average-case complexity. The worst-case time complexity of an algorithm 

states the time required in the worst case to solve an instance of that size. In contrast, the 

average-case complexity gives the expected time needed for solving an instance of that size. It 

may be argued that a time complexity tailored to the average case might be more appropriate 

for practical purposes because the worst case may occur only rarely in practice. However, 
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usually it will be all but impossible to identify a probability distribution for the different 

instances of a given problem; hence, it will be very difficult as well to isolate typical average 

instances as to weigh the results of several different instances appropriately in order to 

determine an average complexity. Therefore, we will use the worst-case Version and, as to 

define the complexity of an algorithm, we will call an algorithm polynomial-time iff its time 

complexity can be bounded by a polynomial in the length of the instance, and exponential-

time otherwise. 

Note that this definition includes certain nonpolynomial functions like n^°S n or n!, which are 

normally not regarded as exponential and hence are sometimes referred to as "subexponential" 

(Papadimitriou, Steiglitz 1982, p. 164) or "superpolynomial" (Aarts, Korst 1989, p. 4). We 

will, however, stick with the above terminology since the exponential function "2n is the 

paradigm of nonpolynomial rates of growth" (Papadimitriou, Steiglitz 1982, p. 164) which 

intends to capture not only algorithms whose time complexity can be expressed by a 

polynomial in LNGe(7) but also those algorithms whose time complexity can only be bounded 

from above by such a polynomial. This includes subexponential functions, but also functions 

like n^-5. 

By extension, the complexity of a problem is regarded as the complexity of a best possible 

algorithm solving it, where best possible refers to the lowest order time complexity. 

Accordingly, a problem is called polynomial if and only if it can be solved by a polynomial 

algorithm and exponential otherwise, i.e. if no such algorithm can possibly exist. Thus, for 

any given problem, the complexity of any algorithm known to solve it provides an upper 

bound for its complexity (Brüggemann 1995, p. 80). 

Since there exists an abundant number of problems for which consideration of their computa­

tional complexity is of interest to researchers and practitioners, the next natural step is to 

establish a taxonomy of problems classifying them with respect to their complexity. The 

starting point of this Classification is provided by deciding which algorithms are regarded as 

efficient, i.e. fast, and which are not. In this regard, the distinction between polynomial-time 

and exponential-time algorithms (to be introduced in Definition 8) is commonly accepted. By 

extension, problems which are only solvable by exponential-time algorithms are regarded as 

intractable, i.e. not efficiently solvable, while problems which can be solved by a polynomial-

time algorithm are considered as tractable. (This consideration was first proposed by Cobham 

1965 and Edmonds 1965. Cf. also Ullman 1976; Papadimitriou, Steiglitz 1982; Schrijver 

1986; Nemhauser, Wolsey 1988.) We will refer to this kind of results which establish whether 

the time complexity of a problem is polynomial or exponential as categorial results. We 

should emphasize here that in order to establish a problem as polynomial it is not required to 

exhibit a specific polynomial; it suffices to prove that the complexity could be bounded by 

some polynomial without specifying it explicitly. 
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Let us for a moment contemplate why polynomial algorithms are usually considered as 

efficient and exponential algorithms are not. The first, elementary point we want to make by 

Table 1 (taken from Papadimitriou, Steiglitz 1982, p. 164), namely that the rate of growth of 

polynomial functions is substantially higher than that of exponential ones. 

Table 1 

The Growth of Polynomial and Exponential Functions 

Function Approximate Values 

n 10 100 1000 

nlogn 33 664 9966 

n3 1000 1,000,000 109 

106 n8 1014 1022 1030 

2n 1024 1.27 xlO30 1.05 x 10301 

nlogn 2099 1.93 x 1013 7.89 x 1029 

n! 3,628,800 10158 4 x102567 

Table 2 

Polynomial-Time Algorithms Take Better Advantage of Computation Time 

Time n = 10 n = 20 n = 30 n = 40 a II o
 

n = 60 
Complexity 

n 0.00001 0.00002 0.00003 0.0000 0.00005 0.00006 
second second second second second second 

n2 0.0001 0.0004 0.0009 0.0016 0.0025 0.0036 
second second second second second second 

n3 0.001 0.008 0.027 0.064 0.125 0.216 
second second second second second second 

n5 0.1 3.2 24.3 1.7 5.2 13.0 
second seconds seconds minutes minutes minutes 

2n 0.001 1.0 17.9 12.7 35.7 366 
second second minutes days years centuries 

3n 0.059 58 6.5 3855 2xl08 1.3 x 1013 

second minutes years centuries centuries centuries 
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Table 2 (taken from Garey, Johnson 1979, p. 7) illustrates that in most cases polynomial algo­

rithms make better use of given Computer time because they are - at least up from a certain in-

stance size - faster than exponential ones. 

Even more illuminating is the effect that a technological breakthrough improving Computer 

speed would have. Table 3 (taken from Papadimitriou, Steiglitz 1982, p. 165) demonstrates 

how the size of the largest instance solvable increases when a Computer (or an algorithm) with 

the tenfold speed becomes available: The most striking insight from such a comparison is that 

for a polynomial function this size multiplies by some factor while for an exponential function 

increases only by some additive term. 

Table 3 

Polynomial-Time Algorithms Take Better Advantage of Technology 

Function Size of Instance 
Solved in One Day 

Size of Instance 
Solved in One Day on a 

Computer 10 Times Faster 

n 1012 1013 

n log n 0.948 x 1011 0.87 x 1012 

n2 106 3.16 x 106 

n3 104 2.15 X 104 

108 n4 10 18 

2n 40 43 

10" 12 13 

nlo8n 79 95 

n! 14 15 

In practice, however, the distinction between polynomial- and exponential-time problems is of 

only limited value since for a vast number of problems neither a polynomial-time algorithm 

nor a proof of their intractability has ever been found. Therefore, in classifying problems ac-

cording to tractability, today one usually starts off by distinguishing the polynomial ones from 

the NP-complete ones. (This idea was published first in Cook 1971 and Karp 1972 while the 

terminology was first propagated in Knuth 1974a and 1974b.) The significance of the latter 

problems stems from the fact that there is convincing evidence for their intractability: First, 

one can show that either all NP-complete problems or none of them are solvable in 

polynomial time. Second, for not a Single NP-complete problem has ever a polynomial-time 

algorithm been discovered, although various extensively studied problems like those 

mentioned above belong to this class. Hence, it is widely conjectured that NP-complete 
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problems indeed cannot be solved in polynomial time. (However, as yet no proof or disproof 

for this conjecture is in sight; some results even indicate that such a proof or disproof is 

impossible before the advent of a whole new part of formal mathematics (cf. Hartmanis, 

Hopcroft 1976).) 

In the following we will develop the basic definitions and concepts needed to introduce these 

two problem classes, starting with an informal look at algorithms and problems. An important 

extension of this Classification which relates to the so-called pseudo-polynomial algorithms 

will be discussed later on. 

2.2. Problems, Encoding Schemes, and Algorithms 

If not stated otherwise, within this work all algorithms are understood to be deterministic in 

nature. For our purposes it suffices to imagine a deterministic algorithm as performing the 

steps of a computation in an exactly prescribed sequence, one Step at a time. In a strictly 

theoretical sense this concept is not well-defined until a specific abstract model of compu­

tation has been fixed (A detailed introduction to the concept of an algorithm is given in 

Hermes 1978, while formalizations of deterministic algorithms, using different models of 

computation, are discussed in Aho, Hopcroft, Ullman 1974; Hermes 1978; Ullman 1976; 

Garey, Johnson 1979; Hopcroft, Ullman 1979.). However, the tractability of a problem is 

essentially independent of the particular choice made in this respect: Changing the model of 

computation within certain reasonable ranges will lead to the same complexity results (for 

more details cf. Garey, Johnson 1979, pp. 6, 9-11,19-23; Schrijver 1986, pp. 16-17). 

All problems have in common that they possess one or more free variables or parameters; 

associated with each parameter is a set, called domain, of finite objects. A particular instance 

of a problem is derived by specifying for each parameter an object from the corresponding 

domain. A problem may thus be seen as specifying a set of instances. In the sequel, four kinds 

of problems will be treated in detail. 

Definition 1 A search problem is a pair £ = (D, S) where D = {/j,..., /n} is a set of finite 

objects called instances and S = {Si,..., Sn} is a set of sets where, for each instance I\ e D, S\ 

is a set of finite objects called solutions for I\. 

An algorithm that returns for each instance 7j e D "no" iff S\ is empty and one s e S\ other­

wise is said to solve E. • 

As an example consider the prime numbers problem (PNP) of determining the primes in a set 

of integers, which can be couched in the following way: 

(PNP) Given an instance I, i.e. a set / er IN, find the set of all primes in J. 



8 

It is easy to see that the PNP provides an example of a search problem since D = In} 

where I\ = J\ c IN (1 < i < n) and S = {Sj,..., 5n} where S\ = {jeJj | j is prime} (1 < i < n). 

Note that an algorithm solving a search problem is only required to return one Solution 

because sometimes several objects may qualify as solutions for a given instance. If e.g. two 

different tours for an instance of the travelling salesman problem (TSP) share the property of 

being the shortest, then any one of them would be adequate as Solution. 

Definition 2 An optimization problem (either a minimization or a maximization problem) 

£2 = (D, S) is a search problem where each instance I[ e D is a pair I\ = (Fj, /j), F\ is a set of 

finite objects called feasible solutions, and f[ is a mapping f{. F\ —> Z called objective 

function. Sj c F\ consists of those solutions se Fj which for all x e F\ satisfy the inequality 

fi (s) </j (x) in the case of minimization or/j (s) >f\ (x) in the case of maximization. 

An algorithm that solves Q is called optimization algorithm. • 

In what follows, optimization problems are understood to be combinatorial, i.e. all numerical 

values are integral, which is equivalent to allowing arbitrary rational numbers. In order to 

clarify the relationship between these problem classes and the world of Operations research, let 

us point out that in optimization problems the set Fx of feasible solutions is usually specified 

by formulating a number of constraints: F[ is then understood to consist of those solutions 

which satisfy all the constraints. E.g., the well-known single-mode project scheduling problem 

(SMPSP) constitutes an optimization problem since it may be formulated as: 

(SMPSP) Given an instance I, i.e. Je IN, R e IN0, dj e 1N0 (1 < j < J), kjr e 1N0 (1 < j < J; 

I < r < R), Kr e IN0 (1 < r < R), and Z partial order on {1,...,J}, find a feasible schedule for I 

that has minimal length, i.e. values for the variables xjt (1 < j < J; EFj < t < LFj) that satisfy 

the respective constraints and minimize the respective objective function. 

Even though many interesting problems belong to the optimization variety, in complexity 

theory problems are usually phrased as decision problems. (Cf. Garey, Johnson 1979. Other 

authors use the term recognition problem to emphasize the relationship between formal 

languages and decision problems; cf. e.g. Papadimitriou, Steiglitz 1982.) Informally, decision 

problems may be characterized as asking for a yes-no answer. Their significance lies in the 

fact that, historically, the first abstract model of an algorithm was the one-tape Turing 

machine, proposed by Turing 1936. This model may only accept or reject an input; hence 

problems to be solved by it must be couched as decision problems. 

Definition 3 A decision problem (or short problem where no confusion can arise) is a pair 

II = (D, Y) where D is a set of finite objects called instances and Y c D is a subset of objects 

called yes-instances. 

An algorithm that determines for each /j 6 D whether e Y; is said to solve II. 
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Often Y is specified by a yes-no-question; Y is then understood to consist of all instances I 

where the question, applied to I, evaluates to "yes". 

Closely related to optimization problems are the feasibility problems (cp. Nemhauser, Wolsey 

1988, p. 127), also referred to as constraint satisfaction problems (cp. Schmidt 1989). While 

the former ask for specific feasible solutions, viz. those which are also optimal, the latter ask 

whether there exists a feasible Solution at all. Formally, the feasibility problems are a subclass 

of the decision problems, since they require a yes-no answer on a specific question. 

Definition 4 A feasibility problem O = (D, Y) is a decision problem where each instance 

I[ e D is a set F\ of finite objects called feasible solutions and the set of yes-instances YcD 

consists of all instances I[ w here Fj is nonempty. • 

Again, the correspondence between feasibility problems as defined above and Operations 

research is straightforward, since the feasibility version of each optimization problem can 

easily be constructed by omitting the objective function and - given a particular instance -

asking whether there exists a feasible schedule for it. E.g. the feasibility problem (SMPSPfeas) 

associated with the SMPSP may be couched as: 

(SMPSPfeas) Given an instance / of the SMPSP, does there exist a feasible schedule for /? 

The mutual relationships between the four kinds of problems defined above are summarized 

inFigure 1. 

Figure 1 

Different Kinds of Problems in Complexity Theory and Operations Research 

Optimization Problems c Search Problems 

u v 

Feasibility Problems c Decision Problems 

("OR / MS" Terminology) ("Complexity Theory" Terminology) 

Before an algorithm can actually work on an instance, the instance must be translated into a 

comprehensible and workable form. If e.g. the algorithm is to be run on a Computer the 

instance has to be brought into a computer-readable form; if the algorithm is to be executed 
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with pencil and paper the instance must be written down in a prescribed manner by represent-

ing numbers in some arithmetic system such as the binary or the decimal system. This process 

is referred to as encoding. It is assumed that for any encoding function there exists a polyno­

mial algorithm able to decode the original instance from its encoded version since otherwise 

the encoding would fail to translate all relevant information contained in the instance. 

Definition 5 Let A be an arbitrary problem and T a finite aiphabet. Then an encoding scheme 

(short: encoding) is a function e: D —»T*; I —> e(7) which maps any instance / to a finite string 

e(/), called input, over the aiphabet F, and for which the inverse function e"1 can be computed 

by a polynomial algorithm. 

The size (or length) of an instance / under an encoding scheme e is a function 

LNG: D -» IN; / —» L NGe(7) which maps any instance I to an integer reflecting the length of 

the encoded instance, i.e. the number of symbols necessary to represent I under encoding e. 

The magnitude of an instance I under an encoding scheme e is a function 

MAXe: D —» IN; I —> MAXe(/) which maps any instance / to an integer reflecting the 

magnitude of the largest numerical value occurring in I under encoding e, and to 0 if no such 

value occurs in I. • 

For the sake of simplicity we assume that all numerical values are encoded into the same 

number of digits. This approach can be motivated by Computers' internal representation of 

numbers where each number is stored in one register and all registers have the same size or 

length. Consequently, for each arithmetic system with base B the number of digits required to 

represent a parameter is at most flogB MAXe(7) + ll because if the largest number is ßk then 

k + 1 digits are necessary to encode it (Brüggemann 1995, p. 72. Note that the term "+ 1" is 

not superficial even though some authors omit it (cf. Papadimitriou, Steiglitz 1982, p. 160) 

since in a B-nary arithmetic system k digits can at most encode ßk -1). 

We will refer to any encoding as Standard encoding as long as it obeys the following 

restrictions: Values of numerical parameters are encoded into their B-nary representation 

where B > 1. (Döing so, all integers as well as certain rationals can be represented exactly 

while all other numbers can be approximated with arbitrary exactness.) Vectors and matrices 

are encoded by sequentially listing their encoded Clements. Objects (such as cities in the TSP 

or activities in the SMPSP) are numbered and their identifying numbers encoded as described 

above. Sets are encoded by sequentially listing their encoded elements. Binary relations on a 

set of objects (such as precedence Orders) are encoded into lists of adjacent pairs of objects 

where the objects are encoded as above. (Moderately different encodings can be found in 

Garey, Johnson 1979, pp. 19-23; Papadimitriou, Steiglitz 1982, pp. 159-161.) Even though 

this prescription is not specific enough to describe one particular encoding, it is 

comprehensive enough to convey an idea of what a suitable choice of an encoding scheme 
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might look like. In addition, it is simple enough to be easily modified or extended to cover 

other needs. The reader should note that w.l.o.g. all separating symbols (so-called delimiters) 

such as {,},[, or ] can be omitted once the exact sequence of the parameter values as well as 

the number of digits into which numerical values are encoded are fixed. 

From this sketch of encoding schemes it becomes apparent that in the above definition of 

magnitude the largest numerical value does not refer to those parameters which simply State 

the number of certain objects since these numbers are only introduced by the encoding of 

these objects. 

We will also specify Standard size and magnitude functions. For each encoding scheme e, we 

take LNGe(7) to equal the number of symbols necessary to represent I under encoding e and 

MAXe(7) to equal the largest number occurring in I under encoding e and 0 if no number 

occurs in 7. In the sequel we will assume that an encoding scheme as well as a length and a 

magnitude function are associated with each problem. 

We are now able to capture in a formal way what we mean when saying that a problem is 

solvable in polynomial time. 

Definition 6 The time complexity (short: complexity) of an algorithm is a function that 

specifies, for each possible input size, the number of arithmetic Operations the algorithm needs 

in the worst case to solve an instance of that size. • 

Since each operation is assumed to take the same time, the number of Operations needs only to 

be multiplied by the Operations' duration to determine the actual running time of the 

algorithm. 

Definition 7 A function g(n) is called 0(h(n)) iff there exists a nonnegative constant c such 

that the following inequality holds: 

I g(n) | < c | h(n) | (V n > 0) • 

This so-called "big-oh" notation focusses on the highest degree term of a function; for 

example the function g(n) = 10 x^ + 2 x^ -17 x - 9 is O(x^). 

Definition 8 An algorithm is called polynomial-time (short: polynomial) iff its time 

complexity is 0(p(LNGe(/))) for some polynomial p in the length LNGe(/) of the instance, 

and exponential-time (short: exponential) otherwise. A problem is said to be solvable in 

polynomial time (short: polynomially solvable or polynomial) iff it can be solved by a 

polynomial-time algorithm, and solvable in exponential time (short: exponentially solvable or 

exponential) otherwise. • 
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Based upon this concept, the complexity of a problem is regarded as the complexity of the 

best possible algorithm solving it. 

Definition 9 A decision problem is polynomial iff it can be solved by a polynomial algorithm, 

and exponential otherwise. 

Let P denote the class of all polynomial problems and EXP the class of all exponential 

problems. • 

Now that we have defined two of the problem classes mentioned in the beginning of this 

section, we will conclude this section by laying the grounds for defining the last one. To do 

so, we need to introduce another problem class, viz. NP, and another concept, viz. the 

polynomial transformation, but before providing the formal definitions, we think it 

worthwhile to outline the idea behind NP. 

Being unable to prove polynomial solvability for a problem being studied, one may decide to 

settle for a slightly less stringent property, viz. polynomial verifiability. This means that for 

each yes-instance of the problem there exists at least one structure, called certificate, which 

allows to prove it being a yes-instance. As an example consider the following variant of the 

TSP: Given a finite set of cities, a positive distance between each pair of cities, and a positive 

bound, is there a tour of all cities having total length equal to or less than the bound? No poly­

nomial algorithm for this problem is known. However, assume that we claim a specific 

instance of the TSP to be a yes-instance: If we were provided somehow with a tour for that 

instance, we could easily check in polynomial time whether that tour possesses the desired 

properties; if so, the instance indeed has the Solution "yes". Here any such tour is a certificate; 

obviously, for each yes-instance of the TSP there exists at least one certificate which could be 

verified in polynomial time. Note, however, that a tour not having the desired properties is no 

certificate since checking it will not help us in deciding whether or not the Solution is "yes". 

In order to capture this idea, NP is usually defined in terms of a nondeterministic algorithm 

which may be viewed as being composed of two stages, the first one a guessing stage and the 

second one a checking stage. Given an instance I of a decision problem, the first stage 

"guesses" a structure C, the certificate. Both I and C are then passed on to the second stage 

which checks deterministically in polynomial time whether C is a certificate for I. If so, the 

algorithm terminates, retuming as Solution the answer "yes". (For more details and a formal 

definition cf. Garey, Johnson 1979, pp. 28-32.) For feasibility problems modelled as above, 

any feasible Solution provides a certificate; thus, the proof that any certificate can be verified 

in polynomial time amounts to showing that reading the certificate (in order to instantiate the 

variables with these values) as well as evaluating the constraints (in order to check feasibility) 

can be done in polynomial time. Note that the length of C must be polynomially bounded in 

the length of the instance since otherwise even reading C would take exponential time, to say 
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nothing of verifying it. Thus, the class NP can be seen as the set of polynomially verifiable 

problems. It should be evident that this concept is merely "a definitional device [...] rather 

than a realistic method for solving problems" (Garey, Johnson 1979, p. 29). 

Definition 10 Let NP denote the class of all decision problems solvable by a nondetermini-

stic polynomial algorithm. • 

It is interesting to note that many apparently intractable problems, i.e. problems for which no 

deterministic polynomial algorithm is known, belong to NP; hence, NP provides a good 

starting point for our attempt to capture apparent intractability in a formal way. 

In order to show that a problem belongs to NP one has to show that verifying any certificate 

has a time complexity which is polynomial in the input length. This involves two 

prerequisites: first, that the certificate can be read in polynomial time (in order to instantiate 

the decision variables with the values of the certificate), and second, that all constraints can be 

evaluated in polynomial time (in order to verify the certificate as indeed describing a Solution 

of the considered problem). Let us examine both prerequisites. First, any instantiation of the 

variables establishes a potential certificate. If we assume that the number of decision variables 

is polynomially bounded in the length of the instance, i.e. is 0(pj(LNGe(/)), then the effort for 

certificate reading and instantiating is also polynomial, viz. 0(pi(LNGe(/) log MAXg(7)). If 

all variables are binary, this figure even reduces to 0(p1(LNGe(7)flog 1 + ll) = 

0(pi(LNGe(7)). Second, under the assumption that as well the number of constraints as the 

number of arithmetic Operations, viz. additions and multiplications, within these constraints 

are polynomially bounded in the input length, i.e. are 0(p2(LNGe(/)), also the evaluation of 

the constraints can be accomplished in polynomial time, viz. 0(p2(LNGe(7)), because 

performing any of these Operations is assumed to require a constant amount of time. Neither 

of these prerequisites is a trivial one (cf. Schirmer 1996a and b). 

2.3. NP-Complete and NP-Hard Problems 

Having defined NP, we need just one more concept, namely that of a polynomial transforma-

tion, to formalize NP-completeness. 

Definition 11 Let II = (D, Y) and IT = (£>', Y) be decision problems. Then II polynomially 

transforms to II' (II °= IT ) iff there exists a function f: D —» D'; I —» 7* such that 

(i) / e F iff f 6 Y (short: I and T are equivalent), and 

(ii) f can be computed by a deterministic polynomial algorithm (short: fis polynomial). 

f is called a polynomial-time (short: polynomial transformation) from D to D'. • 

The usefulness of polynomial transformations is demonstrated by the following lemma: 
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Lemma 1 If II <*= I I', then IT e P implies II e P (and, equivalently, II g P implies 

ir g P). 

Proof: Let denote 7 an instance of II, A' an (hypothetical) algorithm solving IT, and 

f: D —> D'; I —» / a polynomial transformation from D to D\ Then one can construct 

an algorithm A solving II by transforming 7 into an instance f(7) = T of II', using A' to 

solve r, and returning the Solution for 7" (cf . Figure 2). A solves II since f preserves 

the equivalence of instances and thus the Solution for T is also correct for 7. Finally, 

due to the polynomiality of f, A is polynomial iff A' is. • 

Figure 2 

How Polynomial Transformations Work 

instance 
/ 

(input) 

Altematively, the concept of polynomial transformation can be defined in the following more 

intuitive way. While Definition 11 emphasises that f constructs equivalent instances, the 

emphasis in the following definition is on how to exploit this equivalence solving II. It is easy 

to see from Figure 2 that indeed both definitions are equivalent. 

Definition 12 Let II and II' be decision problems. Then II polynomially transforms to II' 

(II oc IT) iff II could be solved by a deterministic polynomial algorithm A that, for any 

instance 7 of II, once 

(i) constructs from 7 an equivalent instance T of IT and 

(ii) uses a (hypothetical) algorithm A' for II' to solve T, 

and then returns the Solution produced by A' for T as Solution for 7. 

In this case the complete algorithm A is called a polynomial-time (short: polynomial) 

transformation of II to IT. • 

The underlying idea of this definition is to transform each 7 of II into an instance T of another 

problem II' which can (hypothetically) be solved by A'. Then trivially any Solution of 7" w ould 

also be the Solution of 7 since by construction both instances are equivalent. Notice that it is 
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not required that such an algorithm be known or even existent because we do not intend to 

construct an actually working algorithm; rather than that we are interested in how difficult to 

solve a given problem is. Therefore it suffices to know that a problem is at least as difficult 

(and in many cases just as difficult) to solve as another problem. Polynomial transformations 

allow to establish exactly this kind of results: Except of the time spent by A', A is polynomial; 

hence, if A' were polynomial, then also the algorithm A as a whole would be polynomial. 

Thus, using polynomial transformations one can define classes of problems which are of 

equivalent computational complexity. The most prominent example of such classes is the 

class of NP-complete problems. 

Definition 13 A decision problem II is NP-complete iff both II e NP and all other problems 

in NP polynomially transform to II. 

Let NPC denote the class of all NP-complete problems. • 

It is far from obvious how to prove NP-completeness by showing that all other problems in 

NP polynomially transform to a problem at hand; in fact it is questionable whether complexity 

theory would have developed in the way it did if the above defmition would indicate the only 

way of proving NP-completeness. Luckily, the following lemma provides a simpler approach 

(for a proof cf. Garey, Johnson 1979, p. 38). It states that for proving that a problem II e NP 

is NP-complete, it suffices to show that some known NP-complete problem polynomially 

transforms to II. Hence, it is enough to identify one NP-complete problem for which a 

polynomial transformation to II can be found, rather than constructing one for every NP-

complete problems. 

Lemma 2 If II' °c II and II e NP, then IT NP-complete implies II NP-complete (and, 

equivalently, II not NP-complete implies II' not NP-complete). 

Often the easiest way to do this it to show that II e NP generalizes an NP-complete problem 

nNpo i.e. contains it as a subproblem; a subproblem simply comprises a subset of the 

original instances and its yes-instances are exactly those of the original yes-instances which 

are also contained in this subset. 

Definition 14 A subproblem (or special case) II' of a decision problem II = (D, F) is defined 

as IT = (D\ Y) where £>' c D and Y = Y n D\ 

II is then said to generalize II'. • 

This can be done by restricting the problem II at hand to a special case IT, i.e. by placing 

additional restraints on D. The difficulty lies in finding a restriction such that the restricted 

problem II' is either identical to an NP-complete problem ü^pc (that would be the best case 

we could hope for) or (more probably) that there is an apparent one-to-one correspondence 
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between the instances of IT and H^pc which preserves the equivalence of solutions. In the 

first case, the desired transformation is the identity mapping; in the latter case, the 

transformation from n^pc to IT is provided by the above correspondence between IT and II 

NPC- Clearly, Computing such a one-to-one transformation takes time essentially linear in the 

size of the respective instance; thus, any such restriction provides a polynomial 

transformation. We should emphasize that, even though the restriction is from the general to 

the special case (problem), the corresponding polynomial transformation proceeds in the 

opposite direction, viz. from the special to the general case. Thus, in order to prove n NP-

complete one may (in the best case) identify a polynomial transformation from ITjsjpc to II 

simply by restricting IT to nNPc. 

Returning to the distinction between NP-complete and polynomially solvable problems from 

the beginning of this section, clearly the problems in P can be considered the "easiest 

problems in NP" since all of them are solvable in polynomial time. In contrast, Lemmata 1 

and 2 justify to regard the NP-complete problems as the "hardest problems in NP": If any NP-

complete problem can be solved in polynomial time, then - by virtue of the polynomial 

transformations - so can all problems in NP. Conversely, if any problem in NP is intractable, 

then so are all NP-complete problems. In other words, for each NP-complete problem II the 

property "II e P iff P = NP" and thus the following corollary hold (cp. Garey, Johnson 1979, 

p. 37): 

Corollary 1 If a problem II is NP-complete, then II can be solved by a polynomial algorithm 

iff P = NP. • 

It is also interesting to note that, even though the exact outlook of NP is unknown, there are 

only two possible topographies of NP with respect to P and NPC (cf. Figure 3). Either (a) P 

and NPC are disjoint subsets of NP, but there exist problems in NP that belong neither to P 

nor to NPC. Or (b) NP equals P and thus also NPC, in which case all three classes collapse 

into one (for a proof cf. e.g. Garey, Johnson 1979, pp. 154-155; Papadimitriou 1994, pp. 330-

332). 
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What May NP Look Like? 
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Although by definition NP-completeness applies only to problems in NP, and thus only to 

decision problems, this restriction does not limit the applicability of NP-completeness results 

to search problems. Focussing for a moment on the Operations research world, clearly the 

following relationship holds true: On one hand, if an optimization problem is polynomially 

solvable, then trivially the corresponding feasibility problem is also polynomially solvable 

since any optimal Solution is also a feasible one. On the other hand, if the feasibility problem 

(finding a feasible Solution) is already NP-complete, then clearly the optimization problem 

(finding a not only feasible but even optimal Solution) will be at least as difficult to deal with. 

In this way, the conjecture of intractability generally associated with NP-completeness can be 

extended straightforwardly from NP-complete feasibility problems to optimization problems 

which then are called NP-hard. In general, many search problems (especially optimization 

ones) are related in this way with their decision counterparts (especially feasibility ones). (In 

Section 3.6 we will address an even closer correspondence between decision and search 

problems in the context of NP-equivalence.) 

To formalize this insight, the above concept of a polynomial transformation, which pertains to 

decision problems only, is replaced by that of a polynomial reduction which allows to cover 

the more general class of search problems. Recall Section 3.3 where we argued that a 

polynomial transformation A is - except of the time spent by A' - a polynomial algorithm and 

that hence, if A' were polynomial, then also the algorithm A as a whole would be polynomial. 

Obviously, this relationship continues to hold true even if A calls the subroutine for IT several 

(though no more than a polynomially bounded number of) times and even if the hypothetical 

subroutine solves a search rather than a decision problem. This insight provides the basis for 

the following generalization. 
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Definition 15 Let A and A' be arbitrary problems. Then A polynomially reduces to A' 

(A«=RA') iff A could be solved by a deterministic polynomial algorithm A that, for any 

instance / of A and for some polynomial p in LNGe(7), performs no more than 0(p(LNGe(/))) 

iterations i, in each of which it 

(i) constructs from I an instance 7j of A' and 

(ii) uses a (hypothetical) algorithm A' for A' to solve I[, 

and then returns a Solution for I. 

A is called a polynomial-time (short: polynomial) reduction of A to A'. • 

Polynomial transformations and reductions differ from each other in that the latter are allowed 

to iterate more than once, although - to maintain polynomiaiity - no more than a polynomially 

bounded number of times. Accordingly, it is common practice to call the algorithm A' a sub-

routine for algorithm A and to refer to Step (ii) as calling the subroutine A'. Note that each 

polynomial transformation can also be regarded as a polynomial reduction since it calls its 

subroutine just once. (The mutual relationships between the above defined polynomial 

transformations and reductions as well as other forms of reductions are investigated in detail 

in Ladner, Lynch et al. 1975). Moreover, being defined on arbitrary problems, polynomial 

reductions can be applied to decision as well as search problems; this includes also the cases 

of reducing a search problem to a decision one or vice versa. 

The idea of a polynomial reduction is to construct in each Iteration i from I a different (and not 

necessarily equivalent) instance I\ of a second problem A1 which could (hypothetically) be 

solved by A' (cf. Figure 4). Notice that each such construction step may (and often will) de-

pend on Information generated in the previous iteration (cp. the exemplary proof of Theorem 

1 below); in other words, it may be defined in terms of - besides the original instance I - the 

instance /j_i considered in the previous iteration and the corresponding Solution. Then, having 

compiled enough Information in terms of intermediate instances and solutions, the final Solu­

tion can be constructed from them. Loosely speaking, the instances provide the Information 

about the input to the individual iterations while the solutions provide the respective results, 

which are thus depicted in Figure 4 as being "passed through" by A'. Since this last construc­

tion step "translates" the Information produced in the iterations into a Solution for I, the equi-

valence of instances, which is part of Definition 12 for polynomial transformations, is no 

requirement for polynomial reductions and can be waived here. 
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How Polynomial Reductions Work 
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instance 
/ 

(input) 

Solution 
for/ 

(output) 

We can now extend our definition of NP-completeness by replacing polynomial transformabi-

lity with polynomial reducibility, an extension allowing to embrace also problems which are 

more general than decision problems and thus do not belong to NP. Such problems which are 

at least as hard to solve as NP-complete ones but do not belong to NP are called NP-hard; 

they have been characterized as "at least as hard" (Garey, Johnson 1979, p. 109) as the NP-

complete ones because, if any NP-hard problem is polynomially solvable, then so are all NP-

complete problems and thus all problems in NP. In other words, for each NP-hard problem II 

the property "P = NP if II e P" and thus the following corollary hold: 

Corollary 2 If a problem II is NP-hard, then II cannot be solved by a polynomial algorithm 

unless P = NP • 

Definition 16 A search problem E is NP-hard iff some NP-complete problem polynomially 

reduces to X. 

Let NPH denote the class of all NP-hard problems. • 

With respect to the Operations research world this definition implies that any optimization 

problem can be characterized as NP-hard if the corresponding feasibility problem is NP-

complete. This is due to the fact that for any optimization problem trivially exists a 

polynomial reduction from its feasibility Version. 

Lemma 3 If O is an optimization problem and <E> th e corresponding feasibility Version, 

then 0 O. 
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Proof: Assuming some hypothetical algorithm A' solving Q, each instance 7 of O can be 

solved by an algorithm A that proceeds in the following way: Construct from 7 an 

instance 7" of Q and solve it by A'. If A' returns some optimal Solution for 7% the n by 

Definition 2 this Solution is also feasible; accordingly the Solution for 7 is "yes". If A' 

returns "no", then no optimal - and thus no feasible Solution for 71 e xists; hence the 

Solution for 7 is "no" as well. This construction can be done in linear, thus in poly 

nomial time. Then by Definition 15 the algorithm A is a polynomial reduction from 

«DtoO. • 

While this application of NP-hardness to the Operations research world does not use polyno­

mial reductions to its füll extent since it requires only one iteration, Section 3.6 will provide 

an example illustrating the greater power of polynomial reductions (cf. the proof of Theorem 

1). (For another example cf. Garey, Johnson 1979, pp. 114-117: Even though the K^1 largest 

subset problem can be shown to be NP-hard using a polynomial reduction, no such proof has 

been discovered yet which relies only on a polynomial transformation.) 

Note finally that a problem which generalizes another, NP-complete problem is not 

necessarily NP-complete itself. A generalization of an NP-complete problem need not be 

member of NP, and may thus be exponential (cf. Schirmer 1996a). 

3. Extension« of the Classical Theory 

3.1. Strongly NP-Complete and Strongly NP-Hard Problems 

In Section 3.1 we argued that there is good reason to conjecture that NP-complete problems 

cannot be solved in polynomial time, and so we reported that they are generally considered 

intractable. There are, however, certain problems which - despite their NP-completeness - can 

be solved rather efficiently. Consider e.g. the PARTTITON p roblem which may be couched in 

the following way: 

Given Je IN, J= {1,...,J}, and (Jj e IN (1 < j < J), is there a set 7'cJ such that 

j eJ' j eJ-J' 

holds? 

The PARTITION p roblem was one of the first problems for which membership in the class of 

NP-complete problems has been shown (Karp 1972). Still, it can be solved by a simple 

dynamic programming procedure where - letting B denote half the sum of all |Xj ( 1 < j < J) -

J B entries have to be made in a table for any given instance (Garey, Johnson 1979, pp. 90-

(1) 
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91). Since any such entry can be made in at most constant time, the time complexity of the 

algorithm can be bounded by a polynomial in the number of entries and thus is O(J-B). 

At first glance, this result is rather surprising since it seems to provide a polynomial algorithm 

for an NP-complete problem. That being the case would imply P = NP = NPC, a result which 

would completely obviate the need for complexity theory since all apparently intractable 

problems in NP could all be solved in polynomial time by constructing polynomial algorithms 

from the cited algorithm and the respective polynomial transformation from PARTTIION to the 

respective problem (cf. Figure 2). But in fact, O(J-B) is not polynomial, i.e. polynomial in the 

input length, but exponential, since LNGSTD(/PARTTTTON) is 0(Jlog2B). However, since 

MAXgTD^ARTmON) = O(B), a bound for 0(JB) could be formulated in terms of some 

bivariate polynomial in the variables length and magnitude of the instance. In other words, the 

cited algorithm would be polynomial-time with respect to such a bivariate polynomial. This 

kind of algorithms is called pseudo-polynomial (Garey, Johnson 1978). 

Definition 17 An exponential algorithm is called pseudo-polynomial-time (short: pseudo-

polynomial) iff its time complexity is 0(p(MAXe(7), LNGe(7))) for some bivariate polynomial 

p in the variables length LNGe(7) and magnitude MAXe(7) of the instance. A problem is said 

to be solvable in pseudo-polynomial time (short: pseudo-polynomially solvable) iff it can be 

solved by a pseudo-polynomial algorithm. • 

Consider a NP-complete problem II. If II, like the PARTTIION problem, can be solved by a 

pseudo-polynomial algorithm A, then those instances of II where the magnitude of all 

numbers is polynomially bounded in the length of the instance can be solved polynomially 

(more exactly, the pseudo-polynomial time complexity of A becomes polynomial for all such 

instances). This in tum implies that only those instances of pseudo-polynomially solvable 

problems will be intractable whose magnitude grows exponentially with their length. 

Consequently, NP-complete problems being pseudo-polynomially solvable are often regarded 

as tractable, since in many cases typical, practically relevant instances will not contain such 

large numbers and thus will be polynomially solvable. Conversely, problems where even those 

instances satisfying the above condition cannot be solved polynomially unless P = NP, i.e. are 

NP-complete, are considered as being NP-complete in an even stronger than the usual sense. 

Definition 18 Given a decision problem n = (D, Y) and a polynomial p (over the integers), 

let denote IIp the subproblem obtained from II by restricting D to those instances which 

satisfy 

MAXgCO < p(LNGe(/)) (2) 

Then II is NP-complete in the strong sense (short: strongly NP-complete) iff both II e NP 

and there exists a polynomial p (over the integers) such that IIp is NP-complete. 
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Let sNPC denote the class of all strongly NP-complete problems. • 

Now, the following observations about pseudo-polynomial algorithms are straightforward (for 

proofs cf. Garey, Johnson 1979, p. 95): 

Corollary 3 If a decision problem II can be solved by a pseudo-polynomial algorithm, then 

IIp can be solved by polynomial algorithm. • 

Corollary 4 If a problem II is strongly NP-complete, then II can be solved by a pseudo-

polynomial algorithm iff P = NP. • 

In order to prove a decision problem II to be strongly NP-complete one may identify a 

specific polynomial p and show that the restricted problem IIp is NP-complete. However, 

similar to Lemma 2 which - using the concept of polynomial transformations - provided an 

easier way of proving NP-completeness, there exists a lemma which - using the concept of 

pseudo-polynomial transformations - facilitates the task of proving strong NP-completeness. 

Definition 19 Let II = (£>, Y ) and IT = (£>', F) be decision problems. Then II pseudo-poly-

nomially transforms to H' (II «p IT) iff there exists a function f: D -» D'; I —> / such that 

(i) 7eyiff/er, 

(ii) f can be computed by a deterministic pseudo-polynomial algorithm, 

(iii) there is a polynomial q^ such that q1(LNG'e-(f(/))) > LNGe(f(/)) holds for all 
instances/e D, 

(iv) there is a bivariate polynomial q2 such that MAX'e-(f(/)) < q2(LNGe(/), MAXe(/)) 
holds for all instances / e D. 

f is called a pseudo-polynomial-time (short: pseudo-polynomial) transformation from D to D'M 

The first two conditions merely translate the definition of polynomial transformations (cp. 

Definition 11) to the context of pseudo-polynomiality; the two additional conditions serve to 

keep length and magnitude of the constructed instance within a reasonable, viz. polynomial, 

corridor around length and magnitude of the given instance such that pseudo-polynomiality 

results for one instance will continue to hold true for the other one constructed from it. 

Conditions (i) and (ii) require that the given instance I and the constructed instance / be 

equivalent, and that the construction function f be pseudo-polynomial. Condition (iii) ensures 

that the construction does not cause a substantial, i.e. logarithmic, decrease in the instance 

length. Note that the opposite case, namely an exponential increase in the instance length, is 

impossible because f is pseudo-polynomial, implying that Computing, let alone writing down, 

/ can at most require pseudo-polynomial time such that trivially the instance length of / is 

pseudo-polynomially bounded from above. Finally, condition (iv) guarantees that the magni­

tude of the largest number occurring in the constructed instance / will not be exponentially 
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1 arger than the magnitude and length of the given instance I. The opposite case where the 

magnitude of the constructed instance T is logarithmically smaller than the magnitude and 

length of the given instance I is uncritical since we are only interested in the magnitude of the 

largest - and not the smallest - occurring number. It is interesting to notice that not every poly­

nomial transformation will be pseudo-polynomial, because condition (iv) will not be met by 

all of them; otherwise all NP-complete problems would also be NP-complete in the strong 

sense. Conversely, due to condition (ii) not every pseudo-polynomial transformation will be 

polynomial, because its time complexity may also be polynomially bounded in the magnitude 

of the instance (cf. Brüggemann 1995, p. 102). 

We can now formulate the following lemma (for a proof cf. Garey, Johnson 1979, p. 101-

102): 

Lemma 4 If IT °=p II and II e NP, then II' strongly NP-complete implies II strongly NP-

complete (and, equivalently, II not strongly NP-complete implies II' not 

strongly NP-complete). 

Hence, for proving that a problem II e NP is strongly NP-complete, it suffices to show that 

some known strongly NP-complete problem pseudo-polynomially transforms to II. As for the 

NP-complete problems, often the easiest way to do this is to show that II contains a strongly 

NP-complete problem nsNPC as a subproblem by restricting II to a special case IT. Again, 

one has to find a restriction such that II' is either identical to a strongly NP-complete problem 

nsNpc or that there is an apparent one-to-one correspondence between the instances of II' and 

nsNPC- In the first case, the desired transformation is the identity mapping; in the latter case, 

the transformation from H^pc to II' is provided by the above correspondence between II' and 

nsNPC- Note that this transformation is not only polynomial but also pseudo-polynomial since 

all numbers occurring in any constructed instance r also occur in the original instance I such 

that the magnitude of T can even be bounded by the identical polynomial in the magnitude of 

/. 

We will now bring together in a class of their own all decision problems which do not satisfy 

(2), i.e. which possess at least one numerical parameter whose domain cannot be bounded 

from above by a polynomial in the length of any possible instance. We will see in the 

following that only for these the distinction between being "merely" NP-complete and being 

strongly NP-complete is meaningful because for any other problems both concepts 

immediately collapse into one. 
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Definition 20 A problem is called a number problem if there exists no polynomial p such that 

for all instances 

MAXe(7)<p(LNGe(7)) (3) 

holds, a non-number problem otherwise. • 

Corollary 5 If n is a non-number problem, then an algorithm for II is pseudo-polynomial iff 

it is polynomial. • 

Corollary 6 If II is a non-number problem, then II is strongly NP-complete iff it is NP-

complete. • 

Accordingly, with respect to strong NP-completeness, NPC naturally decomposes into three 

distinct subclasses. 

First, all non-number problems, i.e. those problems where the magnitude MAXe(7) of any 

instance / is naturally limited because no instance may have arbitrarily large numbers. 

Examples are problems dealing with graphs where the only numbers occurring are indices 

denoting the different vertices of a graph. Since the number of vertices is part of the input of 

the instance, there can be no index which cannot be bounded polynomially in the length of the 

input. For these problems, NP-completeness immediately implies strong NP-completeness. 

Second, number problems, i.e. problems without any natural limitations on the magnitude of 

their instances, where the unlimited numbers have no influence on the complexity of the 

problems. Even placing the additional restriction (2) on their instances does not make them 

polynomially solvable. For instance, the TSP allows for arbitrarily large distances between the 

different cities; however, even after restricting it to distances of only 1 or 2 the problem 

remains NP-complete (Garey, Johnson 1979, pp. 35-36). These number problems are strongly 

NP-complete, and thus they can be solved neither by a polynomial nor by a pseudo-

polynomial algorithm. 

Third, number problems where the magnitude of the instances indeed plays a vital role with 

respect to their complexity. Such problems like PARTTTION can only be shown to be NP-

complete by polynomial transformations which produce exponentially large numbers (cf. 

Garey, Johnson 1979, p. 61). These problems are NP-complete but not strongly NP-complete; 

in other words, even though they are not solvable by a polynomial algorithm, they still can be 

solved by an algorithm taking pseudo-polynomial time. 

Unfortunately, it is not clear a priori whether a certain number problem belongs to the second 

or the third class. The fundamental implication of this fact is that a mere NP-completeness 

result allows to regard a problem as intractable if and only if the problem is a non-number 
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one. In other words, for a number problem only a proof of its strong NP-completeness will 

provide sufficient grounds for advocating to use heuristics for solving them. 

We may now update our possible topographies of NP with the knowledge that sNPC is a 

proper subset of NPC (cf. Figure 5). Either (a) P and NPC are disjoint subsets of NP, but 

there exist problems in NP that belong neither to P nor to NPC; sNPC in tum is proper subset 

of NPC. Or (b) NP equals P, thus also NPC, thus also sNPC such that all four classes 

collapse into one. 

Finally, similar to the above extension of the concept of NP-completeness (pertaining to 

decision problems) to NP-hardness (pertaining to search problems), the conjecture associated 

with strongly NP-complete (decision) problems, namely that even those of their subproblems 

which satisfy (2) are intractable, can be extended straightforwardly to search problems which 

then are called strongly NP-hard. In order to do so, the above definition of a polynomial 

reduction, which earlier allowed the same extension from the NP-complete to the NP-hard 

problems, needs to be generalized to a pseudo-polynomial reduction. 

Definition 21 Let A and A' be arbitrary problems. Then A pseudo-polynomially reduces to A' 

(A ocpR A') iff A could be solved by a deterministic pseudo-polynomial algorithm A that, for 

any instance / of A and for some bivariate polynomial p in LNGe(7) and MAXe(7), performs 

no more than 0(p(LNGe(/))) iterations i, in each of which it 

(i) constructs from I an instance 7j of A' which satisfies conditions (ii) and (iii) of 
Definition 19 and 

(ii) uses a (hypothetical) algorithm A' for A' to solve /}, 

Figure 5 

What May NP Look Like ? (Extended) 

(a) (b) 
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and then returns a Solution for I. 

A is called a pseudo-polynomial-time (short: pseudo-polynomial) reduction of A to A\ • 

Definition 22 A search problem £ is NP-hard in the strong sense (short: strongly NP-hard) 

iff some strongly NP-complete problem pseudo-polynomially reduces to 2. 

Let sNPH denote the class of all strongly NP-hard problems. • 

Now, any optimization problem may be characterized as strongly NP-hard if its feasibility 

variant can be shown to be strongly NP-complete. This is due to the fact that for any optimi­

zation problem the obvious polynomial reduction from its feasibility version is also pseudo-

polynomial. 

Lemma 5 If Q is an optimization problem and 0 the corresponding feasibility version, 

then <I> °cpR Q. 

Proof: By Lemma 3, there exists a polynomial reduction A from 0 to Q; hence it remains to 

show that A is also pseudo-polynomial. This is the case since all numbers occurring 

in any constructed instance T of Q also occur in the original instance I of 0 such that 

the magnitude of T can even be bounded by the identical polynomial in the 

magnitude of /. • 

Finally, we may formulate the following insights: 

Corollary 7 If a problem II is strongly NP-hard, then II cannot be solved by a pseudo-

polynomial algorithm unless P = NP. • 

Corollary 8 If £ is a non-number search problem, then £ is strongly NP-hard iff it is 

NP-hard. • 

To summarize the above insights, Table 4 illustrates which complexity results one might 

possibly expect for a given kind of problem. E.g., since optimization problem belongs to the 

search problems (recall Figure 1), it may be polynomially solvable or NP-hard (possibly in the 

strong sense). In contrast, any feasibility problem constitutes a decision problem, which may 

be polynomially solvable or NP-complete (possibly in the strong sense). 
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Table 4 

Possible Complexity Results 

A ••• may be... 

decision problem... - polynomially solvable 

- NP-complete 

- strongly NP-complete 

search problem... - polynomially solvable 

- NP-hard 

- strongly NP-hard 

Note that Table 4 refers explicitly only to those complexity classes introduced above. While 

the entries indicate that this list is not exhaustive - in fact, there exist many other 

complexity classes (For examples such as PBAND and co-NP cp. Garey, Johnson 1979, pp. 

153-186; Papadimitriou 1994, pp. 409-499; Aho, Hopcroft, and Ullman, Chapters 13, 14; cf. 

also Figure 4) - the above classes have been found to be the most influential ones with respect 

to the design of algorithms for practical applications. 

3.2. Encoding Schemes, Length and Magnitude Functions Revisited 

The definition given above for encoding schemes (cf. Definition 5) is general enough to allow 

a wide ränge of encoding schemes for a given problem. For instance, a graph being part of a 

problem could be encoded in terms of an adjacency matrix as well as an adjacency list or a list 

of its nodes followed by a list of its arcs, represented as pairs of incident nodes. Therefore, 

having defined several complexity classes such as P or NPC, the question arises: Could our 

choice of a specific encoding be influential on the complexity results we obtain for a problem? 

This question is not a trivial one since our notion of polynomial and pseudo-polynomial algo­

rithms is directly linked to the length of the input which depends on the respective encoding: 

for instance, the greater the cardinality of the aiphabet used to encode an instance, the smaller 

the resulting input. 

To be able to answer this question, one has to recall the kind of complexity results we are 

interested in: Actually, we do not look for the exact running times of algorithms but rather for 

categorial results establishing whether their time complexities are polynomial, probably not 

polynomial (or pseudo-polynomial), or exponential. Since the combination of two polyno-
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mials is again a polynomial, different time complexities will be categorially the same as long 

as they differ at most by a polynomial factor. It turns out that under encodings which are 

concise, i.e. do not expand the input artificially, and use non-unary alphabets, i.e. alphabets T 

with |r| >2, the resulting input lengths are of categorially the same size, i.e. they are in a 

fixed ratio (Note that for any base B > 2 of an arithmetic system logB n = log n / log B holds 

and log B is constant once B is fixed. Hence logB n is 0(log n) for any B such that no matter 

what arithmetic system, i.e. aiphabet is used, the length of the representation of an integer n is 

0(log n)) and thus differ at most by a polynomial factor (for more details cf. Garey, Johnson 

1979, pp. 19-23; Brüggemann 1995, pp. 118-119). Under this assumption, the running times 

of an algorithm working on two differently encoded versions of the same instance will differ 

at most by a polynomial factor, consequentially, the algorithm will be polynomial either in 

none or in both cases. In other words, the existence of a polynomial (or pseudo-polynomial) 

algorithm does not depend on the particular choices made in this respect as long as they meet 

the above restrictions. 

This insight led to the widely accepted assumption that all complexity results hold 

independent of the respective encoding scheme used. However, recently it was shown that the 

above restrictions are not as trivial as they might seem. Brüggemann (1995) demonstrated that 

a commonly used encoding which is widely accepted as being concise may cease to remain 

concise in some circumstances. Some encodings may - if only for certain, pathological 

instances - produce inputs which contain redundant, superfluous Information such that the 

encodings are no longer concise. Hence, different encodings will not always lead to 

categorially the same input sizes such that complexity results can no longer be safely assumed 

to be encoding-independent (cf. Schirmer 1996a and b). 

Let us now tum to the LNG(.) and MAX(.) functions. Since they are required only to 

correspond to the length of the input, it is clear that also different length and magnitude 

functions could be defined even for the same problem and encoding. For example, for the TSP 

under Standard encoding, length functions such as 

LNGSTD(/TSP) = C + max{Flog djj]| (i, j) e CxC)} 

LNGSTD(/TSP) = C + Tlog max{djj| (i, j) e CxC)}l 

LNGSTD(/TSP) = C Flog max{djj| (i, j) e CxC)}] 

LNGSTD(/TSP) = C + %(i,j)ECxC Flog djjl 

and, analogously, magnitude functions like 

MAXSXD(/XSP) = max{djj| (i, j) e CxC) 

MAXSTD(^TSP) = s(i,j)e CxC ̂ ij 
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might be useful and appropriate. Again, the question arises whether different choices might 

possibly bring about categorially different complexity results. Here it turns out (cf. Garey, 

Johnson 1979, pp. 92-93) that complexity results hold for all length and magnitude functions 

as long as they are polynomially related in the following sense: 

Definition 23 Let A be an arbitrary problem and e an encoding scheme for A. Then two 

length functions LNGe(7) and LNG'e(7) are polynomially related iff there exist two 
polynomials p and p' such that, for all I e D\, 

(i) LNGe(/) < p'(LNG'e(/)) and 

(ii) LNG'e(/)<p(LNGe(/)). 

Two pairs of length and magnitude functions (LNGe(7), MAXe(i)) and (LNG'e(7), MAX'e(/)) 

are polynomially related iff LNGe(7) and LNG'e(/) are polynomially related and there exist 
two bivariate polynomials q and q' such that, for all I e D\, 

(iii) MAXe(7) < q'(MAX'e(7), LNG'e(7)) and 

(iv) MAX'e(7) < q(MAXe(7), LNGe(7)). • 

To illustrate this concept, consider the following example. Let a e IN and b e IN; then 

LNGe(7) = a + b and LNG'e(7) = a • b are polynomially related. In order to prove this, let p(x) 

= x + 1 and p'(x) = x%. Then a + b < p'(a • b ) = a • b + 1 and a • b < p(a + b) = (a + b)2 = 

a^ + 2ab + hold by induction. 

In other words, two length or magnitude functions are called polynomially related if they 

mutually differ at most by a polynomial factor. Suitable choices of these functions will only in 

the most unusual cases fail to meet these conditions (cf. Garey, Johnson 1979, pp. 92-93). 

Therefore, the categorial results we are trying to establish are essentially independent of the 

particular choices of length and magnitude functions because exchanging one length or 

magnitude function for another will neither change a polynomial algorithm into an 

exponential one nor vice versa, as long as both functions are polynomially related. 

3.3. NP-Easy and NP-Equivalent Problems 

In Section 2.3 we argued that a search problem qualifies as NP-hard if some NP-complete 

decision problem reduces to it. We provided a general class of examples by observing that any 

optimization problem is NP-hard if its feasibility variant is NP-complete (recall Lemma 3). 

However, for many optimization problems also the opposite relation holds: the optimization 

problem reduces to its feasibility variant. The implication of this fact being that the optimiza­

tion problem can be no harder to solve than the corresponding feasibility problem. More 

generally speaking, there are search problems which can be polynomially reduced to some 
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decision problem. In accordance with the above terminology, calling problems NP-hard if 

they are at least as hard as the NP-complete ones but do not belong to NP, one may call 

problems NP-easy if they are no harder than the NP-complete ones but do not belong to NP. 

Consequentially, for each NP-easy problem II the property "II e P if P = NP" and thus the 

following corollary hold: 

Corollary 9 If a problem £ is NP-easy, then P = NP cannot hold unless £ can be solved by a 

polynomial algorithm. • 

Definition 24 A search problem £ is NP-easy iff £ polynomially reduces to some NP-

complete problem. 

Let NPE denote the class of all NP-easy problems. • 

Further, a search problem being as well NP-hard as NP-easy is referred to as NP-equivalent, 

meaning that itself and the NP-complete problems are of equivalent computational 

complexity. 

Definition 25 A search problem £ is NP-equivalent iff £ is NP-hard and NP-easy. 

Let NPQ denote the class of all NP-equivalent problems. • 

As is true for the NP-complete problems, as well for each NP-equivalent problem £ the 

property "£ e P iff P = NP" holds. 

Corollary 10 If a problem £ is NP-equivalent, then £ can be solved by a polynomial 

algorithm iff P = NP. • 

Therefore, if someone would eventually be able to answer the fundamental question "Is P = 

NP?" ("yes" or "no"), this answer would also immediately and finally establish the complexity 

of all NP-equivalent problems (as polynomial or exponential). Note that this relation does not 

hold for mere NP-hardness results. If indeed P = NP holds then an NP-hard problem £ could 

still be as well polynomial as exponential for all we know is that it is not easier than the - then 

polynomially solvable - NP-complete problems; still, it could be much harder to solve. In 

other words, a generalization of an NP-complete or NP-equivalent problem £ will at least be 

as hard to solve as £; still, they may in the same time harder, i.e. neither NP-easy nor NP-

equivalent. Figure 6 provides a sketch of the relationship between these problem classes. 
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no harder than NPC since 
NPE c P <= P = NP 

as hard as NPC since 
NPQ c P <=> P = NP 

at least as hard as NPC since 
NPH cP=>P = NP 

Applying these definitions, an NP-equivalence proof for a search problem £ has to proceed in 

the following four steps: First, provide some NP-complete decision problem II; second, 

construct a polynomial reduction from II to X; third, provide some NP-complete decision 

problem IT; and fourth, construct a polynomial reduction from X to II'. The first two steps 

serve to prove E is NP-hard while the last two on es show it is NP-easy. A schematic overview 

of the sequence of polynomial transformations and reductions involved in proving NP-equiva­

lence of optimization problems is given in Figure 7 where "•=>" is to be read as 

Generally, II and II' may be two different problems (case (a)); still, in many cases II 

and IT will actually denote the same problem (case (b)). 

Figure 7 

Sequence of Polynomial Reductions 

Involved in Proving NP-Equivalence in General 

n 

rr 

O E 

<p E 

(a) 

n £ 
«=> 

(b) 
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This procedura can be greatly simplified when dealing with an optimization problem Q. In 

order to do so, one has to define two new but straightforward problems, namely the threshold 

and the extension variant of an optimization problem. 

Definition 26 The threshold variant Qthr = (£)', Y) of an optimization problem ß = (D, S) is a 

decision problem where each instance € D' is a triple = (F[,f\, B), B e IN, and the set of 

yes-instances 7cD' consists of those instances T\ where at least one feasible Solution s e Fj 

satisfies the inequality/j (s) < B in the case of minimization or/j (s) > B in the case of maxi­

mization. • 

Loosely speaking, the threshold variant replaces the optimality criterion by a threshold value 

that the objective function value has to stay below in the case of minimization (to exceed in 

the case of maximization). Instead of searching for a feasible Solution with minimum 

objective function value, one asks "Is there a feasible Solution having an objective function 

value of B or less (more)?". As an example consider the threshold variant TSPthr of the TSP 

(which, even though only informally, was already introduced in Section 3.2): 

Given Ce IN, C = {1,...,C) (its elements called cities), djj e IN (V (i, j) e CxQ (called a 

distance between each pair of cities), and B e IN (called a bound), is there an ordering 

<7t(l),...,7t(K),...,7c(C)> (called a füll tour) of C such that the expression (4) (called the length 

of the tour) 

" d%(m),%(l) (4) 
( m-1 

Xd7t(i),7ü(i+1) 
i=l 

is equal to or less than B? 

Definition 27 The extension variant £2ext =(£>', T) of an optimization problem fi = (D, S) is a 

decision problem where each instance /{ e D' is a quadruple /j = (F{,f[, B, s'), B e IN, s' a 

partial Solution for Q and the set of yes-instances YcD' consists of those instances where 

the partial Solution s' can be extended to a füll Solution s having an objective function value of 

B or less in the case of minimization or of B or more in the case of maximization. • 

The extension variant of a minimization (maximization) problem can be characterized as 

augmenting the problem by a positive bound and a partial Solution and asking "Can the partial 

Solution be extended to a füll Solution with an objective function value of B or less (more)?" 

In most occasions it is quite straightforward to see what a partial Solution for a given 

optimization problem will be like. Still, we refrain from rigging up a general, formal 

definition because a partial Solution clearly will need to be defined in terms of the problem at 

hand. As an example consider the extension variant TSP^1 of the TSP: 
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Given C e IN, C = (its elements called cities), djj e IN (V (i, j) e C x C) (called a 

distance between each pair of cities), B e IN (called a bound), K e C, and an ordering 

S = <7t(l),...,7t(K)> (called a partial tour) of {1,...,K}, can S be extended to an ordering 

<K{ 1),...,7t(K),...,TE(C)> (called a füll tour) of C such that the expression (4) (called the length 

of the tour) is equal to or less than B? Note that for K = C the above notion of a partial tour 

also includes a füll tour as a special case. 

Now, given an optimization problem Q, the proof idea is to show that the threshold variant 

Qtiir js NP-complete and reduces to Q, and that conversely Q reduces to Qext which in tum 

reduces to ß011"; due to the transitivity of reductions this implies that £2 reduces to Qthr. Again, 

the first two steps serve to prove the considered problem is NP-hard while the last two ones 

show it is NP-easy. A schematic overview of the sequence of polynomial transformations and 

reductions involved in proving NP-equivalence of optimization problems is given in Figure 8 

where and "=>" are to be read as "«=" a nd MC,CR", r espectively. Although this work plan 

appears to be even more complicated, it is actually simpler: The required polynomial 

reduction from Qthr to Q trivially exists since the optimization problem can be restricted to its 

threshold variant, inducing a polynomial reduction. In the same way, the polynomial reduction 

from the extension to the threshold variant can be established by restricting the latter to the 

former. Accordingly, only two steps of the proof must be exhibited explicitly: First, prove the 

NP-completeness of the threshold variant; second, provide a polynomial reduction from the 

optimization problem to its extension variant. In order to clarify matters, we will now give an 

exemplary proof of the NP-equivalence of the TSP. 

Figure 8 

Sequence of Polynomial Transformations and Reductions 

Involved in Proving NP-Equivalence of Optimization Problems 

Qthr -> Q 

K t? 

Qext 
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Theorem 1 Ts? is NP-equivalent. 

Proof: 

(i) (TSP is NP-hard) 

(Tspihr is NP-complete) Follows from Garey, Johnson 1979, pp. 35-36 and Theorem 

3.4, pp. 56-60. 

(TsPthr oc TSP) Holds trivially since TSP can be restricted to TsPthr (cp. Lemma 3). 

Now, since some NP-complete problem polynomially transforms to TSP, TSP is NP-

hard. 

(ii) (TSP is NP-easy) 

(Tspthr is NP-complete) See above. 

(TspG# oc TsPthr) Holds trivially since Tspthr can be restricted to Tsp®xt. 

(TSP o=R TspG^t) Suppose an algorithm A that solves Tspc*t when provided with an 

instance [C, d, B, 3] of Tsp®xt. (To specify the particular instance which A has to solve, 

we will refer to the application of A as calling A[C, d, B, 3].) We now have to show 

that any instance I of TSP could be solved by calling A on several different instances of 

Tspcxt while calling A no more than a number of times polynomially bounded in 

LNGSTDC^TSP)- We will do this in two steps: First, determine the optimal objective 

function value of /JSP' i-e- the minimum tour length; second, construct an optimal 

Solution, i.e. a füll tour having minimum length. 

As any optimal tour incides with all cities and any optimal tour may be cyclically per-

muted without changing its length, there are at least C optimal tours, each starting off at 

one of the C cities in C and having length B*. From djj e IN (V (i, j) e CxC) it is also 
clear that C < B*, and - letting stand BMAX for C • ma x {djj I (i, j) e CxC}- that B* < 

®MAX- Accordingly, performing a binary search within this interval, one can determine 

B* by a sequence of at most Flog BMAX] calls of A[C, d, B, <1>] with different values 

of B. The binary search procedure can be described in pseudo code as follows: 
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BMIN C; 
BMAXc ' max (dij I ( i,j)e CxC}; 
while not(BMAX-BMIN= 1) 
{ 

B r (BMIN+BMAX) / 2]; 
call A[C, d, B, <1>]; 
if (Solution = "yes") 

BMIN 
eise 

BMAX ß; 
} 
B* <- BMAX; 
return (B*); 

In order to build an optimal length tour, let a candidate partial Solution (cps) be a partial 

tour that can be extended to an optimal tour, i.e. a füll tour of minimum length. Clearly, 

<1> is a cps; hence, there must be at least one city c e C \ {1} such that <1, c> is a cps. 

c can be identified from checking all c' e C \ {1} by calling A[C, d, B*, <1, c'>]; this 

will involve at most C-l calls. In general, for each cps <%(!),..., %(K)> with K < C, 

another cps <%(!),..., 7t(K), 7i(K+l)> can be determined by a sequence of at most C-K-l 

calls of A such that - given the optimal tour length B* - an optimal tour can be identified 

by 1/2 (C-l)(C-2) calls of A. 

Having specified the above algorithm, it remains to verify that it is indeed a polynomial 

reduction. Adding the above numbers yields l/2-(C-l)(C-2) + log BMAX as the total 

number of calls which is 0(C2 + log BMAX). Under the Standard encoding scheme the 

length LNGSTD(7) of a TSP instance is G(C2 log BMAX)- NOW we have to show that 

there is some polynomial p in LNGSTD(/) such that the total number of calls of A is 

0(p(LNGSTD(/))), or in other words that there exist such a polynomial p and a constant 

e such that for all instances | l/2 (C-l)(C-2) + log BMAX| < e-1 p(C^ log BMAX) |. 

Choosing p(x) = x + 1 and e = 1, | l/2 (C-l)(C-2) + log BMAXI < IC2 + log BMAX | < 

IC2 log BMAX + 1) I holds by induction. As all the numbers that occur in a TSP-

instance I also appear in the corresponding TSPext-instance / and as MAXSTD(7) = 

MAXSTDCT), the remaining conditions on a pseudo-polynomial reduction are met, as 

well. 

Now, since TSP polynomially reduces to some NP-complete problem, TSP is NP-hard. 

In total, this shows TSP to be NP-equivalent. 



36 

This binary search proof technique allows to show that many (but not all) NP-hard optimiza­

tion problems are actually NP-equivalent (cf. Garey, Johnson 1979, p. 117), lending justifi-

cation to the fact that the main focus of complexity analyses even today is still directed 

towards the decision problems: 

"In fact, we now observe that the restriction of the basic theory to decision problems has 

caused no substantial loss of generality, since most often the search problems whose 

decision problem counterparts have been proved to be NP-complete are themselves NP 

easy and hence of equivalent complexity." (Garey, Johnson 1979, p. 117). 

To clarify the binary search technique, consider the following example: 

Example Let an instance of the TSP be given by m = 4 and d = dy = 

3 2 2 

2 2 

4 

Then obviously BMJN = 4 and BMAX = m • max{djj | (i, j) e C x C) = 16. So, the 

proceeding of the algorithm used in the above proof can be illustrated by the trace 

shown in Table 5. 

Table 5 

Exemplary Trace of Binary Search Technique 

i 7j = [m, d, B, E] % Remarks 

1 4, d, <1>, l"(4+16)/2l = 10 yes ®MAX decreases 

2 4, d, <l>,r(4+10)/2~| = 7 no BMIN increases 

3 4, d, <1>, l"(7+10)/2l = 9 yes BMAX decreases 

4 4, d, <1>, T(7+9)/2~| = S ! yes tö
 

i
 

i
 II tö
 * II 00
 

5 4, d, <1,2>, 8 no 

6 4, d, <1,3>, 8 yes 

7 4, d, <1,3,2>, 8 yes 

8 4, d, <1,3,2,4>, 8 yes füll tour established 

Note that actually the last call of algorithm A is redundant since only one city remains to 

be added to the tour in iteration i = 7. • 
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Finally, since problems which are no harder to solve than the NP-complete ones but do not 

belong to NP are termed NP-easy, one may call problems not belonging to NP which are no 

harder to solve than the strongly NP-complete ones strongly NP-easy. In the same way, the 

notion of NP-equivalence can be generalized. 

Definition 28 A search problem £ is NP-easy in the strong sense (short: strongly NP-easy) 

iff Z pseudo-polynomially reduces to some strongly NP-complete problem. 

Let sNPE denote the class of all strongly NP-equivalent problems. • 

Definition 29 A search problem Z is NP-equivalent in the strong sense (short: strongly NP-

hard) iff E is strongly NP-hard and strongly NP-easy. 

Let sNPQ denote the class of all strongly NP-equivalent problems. • 

To summarize the above insights, Table 6 extends the overview of which complexity results 

one might possibly expect for a given kind of problem. Note that the table remains unchanged 

with respect to decision problems since the concepts introduced in this section only pertain to 

search problems. 

Table 6 

Possible Complexity Results (Extended) 

A... may be... 

decision problem... - polynomially solvable 

- (strongly) NP-complete 

search problem... - polynomially solvable 

- (strongly) NP-hard 

- (strongly) NP-easy 

- (strongly) NP-equivalent 
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3.4. Approximation Algorithms 

Above (cf. Section 3.1) we argued that strong NP-completeness or -hardness results preclude -

modulo the P ̂  NP conjecture - the existence not only of polynomial but even of pseudo-poly-

nomial algorithms. For optimization problems this means that no algorithm will be able to 

solve every instance to optimality in reasonable time. In this Situation, one might decide to 

settle with a less ambitious goal, contenting oneself with algorithms which produce feasible 

but not necessarily optimal solutions, in the hope that they will work in reasonable time for 

every instance. Hence, in constructing algorithms for strongly NP-hard optimization problems 

one may either go for optimality, at the risk of long computation times, or for short 

computation times, at the risk of sub-optimality. The former option constitutes the 

optimization algorithms; well-known examples are enumeration methods using cutting plane, 

branch-and-bound, or dynamic programming techniques. The latter option defines the 

approximation algorithms; examples are heuristic construction methods and simulated an-

nealing (cf. Garey, Johnson 1978, pp. 505-506; Papadimitriou, Steiglitz 1982, Chapter 17; 

Papadimitriou 1994, Chapter 13.1). 

Definition 30 Let Q be an optimization problem. An algorithm that returns for each instance 

€ D "no" iff Fi is empty and one feasible Solution x e F\ otherwise is called an approxima­

tion algorithm. A is said to solve Q. • 

For approximation algorithms, it is usually difficult or even impossible to prove anything 

about their worst-case Performance in the sense of how far away the solutions retumed are 

from optimality. Still, in some cases it is actually possible to derive a bound on the worst-case 

relative error. Let us first formalize this concept. 

Definition 31 Let 7 be an instance of an optimization problem ß where the objective function 

/j is a mapping/j: F\ -4 Z\{0}, x a feasible Solution for 7, and s an optimal Solution for 7. 

Then the relative error of x is defined as 

i/(x)=^lzZM (5) 

/(s) 
• 

Note that the relative error is well-defined only as long as/(s) is nonzero; this assumption will 

be met by all but the most unusual objective functions, though. 

Now, consider an approximation scheme that produces for all instances a Solution whose 

relative error can be bounded by some fixed nonnegative number e; such an algorithm is 

called an e-approximation algorithm. 
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Definition 32 Let denote £2 = (D, S) an optimization problem and A an approximation 

algorithm for £2. Then A is an e-approximation algorithm iff, given an instance / e D and a 
fixed number £ e 1R> Q, it returns a feasible Solution x for I which satisfies 

A/(x) < e (V / e D) (6) 

e is also referred to as error ratio. 

An e-approximation algorithm A is called polynomial-time (short: polynomial) iff for every 

fixed error ratio e the time complexity of A is 0(p(LNGe(7))) for some polynomial p in the 

length LNGe(7) of the instance and fully polynomial-time (short: fully polynomial) iff its time 

complexity is 0(p(LNGe(7), 1/e)) for some bivariate polynomial p in the variables length 

LNGe(7) and 1/E of the instance. • 

Under certain circumstances it is possible to tum pseudo-polynomial algorithms into fully 

polynomial e-approximation algorithms. (The first such results are due to Ibarra, Kim 1975; 

Horowitz, Sahni 1976; Sahni 1976; Lawler 1977; cf. also the references in Papadimitriou 

1994, pp. 323-326) The main idea is to round the numerical values of the given instance 

appropriately, allowing to speed up the computation, but without letting the cumulative error 

exceed the error ratio e. Without demonstrating how to do this, we will now show that a 

strong NP-hardness result has similar implications for the possibility of fully polynomial e-

approximation algorithms as of pseudo-polynomial optimization algorithms (cf. Garey, 

Johnson 1978, pp. 505-506). 

Theorem 2 Let £2 be an optimization problem where for each instance I\ the following 

properties hold: 

(i) The objective function f\ is a mapping/j: F\ —> IN . 

(ii) The optimal Solution value f\{s) is strictly bounded from above by some bivariate 
polynomial q(MAXe(7), LNGe(/)). 

If there exists a fully polynomial e-approximation algorithm solving £2, then there is also a 

pseudo-polynomial algorithm solving £2. 

Proof: Let A be a fully polynomial e-approximation algorithm solving £2, then we can 

construct a pseudo-polynomial algorithm A' which solves £2 as well. For any instance 

I, A' calls A with e = l/(q(LNGe(/), 1/e)). By (ii), |/j(x) - /j(s) | < /i(s) • e = 

/i(s) / q(LNGe(7), 1/e) < q(LNGe(7), 1/e) / q(LNGe(/), 1/e) = 1 holds. By (i),/i(x) and 

/i(s) are integers such that |/j(x) -/i(s) | = 0 such that A' solves £2 exactly. To see that 

A' is also pseudo-polynomial, recall that by Definition 32 the time complexity of A is 

0(p(LNGe(7), 1/e)), hence 0(p(LNGe(/), q(MAXe(7), LNGe(/)))) which is clearly a 

polynomial in MAXe(/) and LNGe(7)). • 
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Even if the above properties may seem quite restrictive, they are not too much so. The first 

condition entails no loss of generality as it can always be met by adding some large positive 

number, thereby changing only the final Solution value but not the ratios between different 

Solution values. Most instances of practical relevance will also naturally meet the second 

condition; even failing to do so they can often be made compliant by appropriate scaling of 

the numerical values which can be done in polynomial time (Garey, Johnson 1978, p. 506). 

Since a strong NP-hardness results excludes the possibility for any pseudo-polynomial optimi­

zation algorithm, unless P = NP, Theorem 2 implies that in addition no NP-hard optimization 

can be solved by a fully polynomial e-approximation algorithm if not P = NP. 

Corollary 11 If an optimization problem Q. is strongly NP-hard, then £2 cannot be solved by 

a fully polynomial e-approximation algorithm unless P = NP. • 

One final word on the implication of strong NP-hardness for approximation algorithms seems 

in place. Recall the implication of strong NP-hardness for optimization algorithms: Such a 

result - even under the assumption that P & NP - does not entail the existence of some fixed 

bound in terms of input length and magnitude that will be exceeded by the time complexity of 

any algorithm. It does say, though, that the larger length and magnitude of the attempted 

instances become, the longer any algorithm will need to solve them. In much the same way, 

such a result does not imply some fixed error ratio £ which cannot be respected by any poly­

nomial approximation algorithm. Rather than that, it indicates that the smaller e becomes, the 

slower any such algorithm must become (Garey, Johnson 1978, p. 506). 

4. Summary and Conclusions 

In this paper, we developed the central concepts from complexity theory. Do these concepts 

correspond to anything of interest in the world of Operations research? Does complexity 

theory have interesting, nontrivial, and convincing applications? We believe so. By relating 

concepts such as (strong) NP-completeness and (strong) NP-hardness to optimization and 

feasibility problems, we attempted to demonstrate some useful applications of the former to 

the latter and thus to reinforce the bridge between computational complexity theory and 

Operations research. 

In addition, we pointed out that for number problems, a class to which most problems of 

interest in Operations research belong, a proof of NP-completeness or -hardness alone does not 

allow to regard them as intractable: Under a moderate additional assumption pseudo-

polynomial algorithms, whose existence is not ruled out by such a result, become polynomial 

and will thus be regarded as perfectly practical. Only if a number problem is NP-complete or 
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NP-hard in the strong sense, this possibility is excluded. We also indicated that such results 

preclude the existence of fully polynomial e-approximation algorithms. 

Finally, we advocated establishing (strong) NP-equivalence results for optimization problems 

because only such a result allows to immediately and finally establish the complexity of an 

optimization problem as soon as someone is able to answer the notorious question of whether 

P = NP. To facilitate the formulation of such results, we addressed a simplified proof 

technique allowing to show (strong) NP-equivalence of optimization problems once their 

feasibility version is known to be (strongly) NP-complete. 
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