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On Cross-Validated Lasso*

Denis Chetverikov' Zhipeng Liaot

Abstract

In this paper, we derive a rate of convergence of the Lasso estimator when the penalty
parameter A for the estimator is chosen using K-fold cross-validation; in particular, we show
that in the model with Gaussian noise and under fairly general assumptions on the candidate
set of values of A, the prediction norm of the estimation error of the cross-validated Lasso
estimator is with high probability bounded from above up-to a constant by (slogp/n)'/? -
(log7/ ®n) as long as plogn/n = o(1) and some other mild regularity conditions are satisfied,
where n is the sample size of available data, p is the number of covariates, and s is the
number of non-zero coefficients in the model. Thus, the cross-validated Lasso estimator

/85, In

achieves the fastest possible rate of convergence up-to the logarithmic factor log
addition, we derive a sparsity bound for the cross-validated Lasso estimator; in particular,
we show that under the same conditions as above, the number of non-zero coefficients of the
estimator is with high probability bounded from above up-to a constant by slog® n. Finally,
we show that our proof technique generates non-trivial bounds on the prediction norm of the
estimation error of the cross-validated Lasso estimator even if p is much larger than n and the
assumption of Gaussian noise fails; in particular, the prediction norm of the estimation error

1/4

is with high-probability bounded from above up-to a constant by (slog?(pn)/n)'/* under

mild regularity conditions.

1 Introduction

Machine learning techniques are gradually making their way into economics; see NBER Sum-
mer Institute Lectures Chernozhukov et al. (2013) and Athey and Imbens (2015). Using these
techniques, for example, Cesarini et al. (2009) analyzed genetic factors of social preferences,
Belloni and Chernozhukov (2011) found country characteristics associated with long-run growth
in the cross-county growth study, Saiz and Simonsohn (2013) constructed corruption measures
by country and by US state. Belloni et al. (2013) and Wager and Athey (2015) developed

machine-learning-type techniques for estimating heterogeneous treatment effects.

*This version: August 24, 2016. We are extremely thankful to Victor Chernozhukov for posing the research
question and for many helpful discussions. We also thank Moshe Buchinsky, Matias Cattaneo, and Rosa Matzkin
for useful comments.
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The most popular machine learning technique in econometrics is certainly the Lasso estima-
tor. Since its invention by Tibshirani (1996), large number of papers have studied its properties.
Many of these papers have been concerned with the choice of the penalty parameter A required
for the implementation of the Lasso estimator. As a result, several methods to choose A have
been developed and theoretically justified; see, for example, Zou et al. (2007), Bickel et al.
(2009), and Belloni and Chernozhukov (2013). However, in practice researchers often rely upon
cross-validation to choose A (see Biilmann and van de Geer (2011), Hastie, Tibshirani, and
Wainwright (2015), and Chatterjee and Jafarov (2015) for examples), and to the best of our
knowledge, there exist few results in the literature about properties of the Lasso estimator when
A is chosen using cross-validation; see a review of existing results below. The purpose of this
paper is to fill this gap and to derive a rate of convergence of the cross-validated Lasso estimator.

We consider the regression model

Y=XB+e E[|X]=0, (1)
where Y is a dependent variable, X = (X1, ..., X,)" a p-vector of covariates, ¢ unobserved scalar
noise, and 3 = (B1,. .., 3p)" a p-vector of coefficients. Assuming that a random sample of size n,

(Xi,Y;), from the distribution of the pair (X,Y) is available, we are interested in estimating
the vector of coefficients 5. We consider triangular array asymptotics, so that the distribution
of the pair (X,Y), and in particular the dimension p of the vector X, is allowed to depend on
n. For simplicity of notation, however, we keep this dependence implicit.
We assume that the vector of coefficients 3 is sparse in the sense that s = s, = ||5]l0 =
?:1 1{B; # 0} is (potentially much) smaller than p. Under this assumption, the effective way
to estimate § was introduced by Tibshirani (1996) who suggested the Lasso estimator:

n
bERP —

n

B()) € argmin <1 > (Y= X(b)* + A||b||1> ; (2)
where for b = (by,...,by) € RP, ||b]l; = ?:1 b;] denotes the L' norm of b, and A is some
penalty parameter (the estimator suggested in Tibshirani’s paper takes a slightly different form
but over the time the version (2) has become more popular, probably for computational rea-
sons). Whenever the solution of the optimization problem in (2) is not unique, we assume for
concreteness that one solution is chosen according to some pre-specified rule; in particular, we

assume that a solution with the smallest number of non-zero components is selected.
To perform the Lasso estimator 3 (A), one has to choose the penalty parameter A. If X is

1/2 rate of convergence

chosen appropriately, the Lasso estimator is consistent with (slogp/n)
in the prediction norm under fairly general conditions; see, for example, Bickel et al. (2009)
or Belloni and Chernozhukov (2011). On the other hand, if A is not chosen appropriately, the
Lasso estimator may not be consistent or may have slower rate of convergence; see Chatterjee
(2014). Therefore, it is important to select A appropriately. In practice, it is often recommended
to choose A using cross-validation as described in the next section. In this paper, we analyze

properties of the Lasso estimator 3 (M) when A = \ is chosen using (K-fold) cross-validation and



in particular, we demonstrate that under certain mild regularity conditions, if the conditional

distribution of € given X is Gaussian and plogn/n = o(1), then

A 1/2
1B = Bl 5 (E2) - g™ @

with probability 1 — o(1) up-to some constant C, where for b = (b1,...,by) € RP, ||bll2n =
(n=1 327 (X!b)?)1/2 denotes the prediction norm of b. Thus, under our conditions, the cross-
validated Lasso estimator B (/):) achieves the fastest possible rate of convergence in the prediction
norm up-to the logarithmic factor log7/ 8n. We do not know whether this logarithmic factor can
or can not be dropped.

Under the same conditions as above, we also derive a sparsity bound for the cross-validated

Lasso estimator; in particular, we show that
1BM)lo < slog®n

with probability 1—o0(1) up-to some constant C. Moreover, we demonstrate that our proof tech-
nique generates a non-trivial rate of convergence in the prediction norm for the cross-validated
Lasso estimator even if p is (potentially much) larger than n (high-dimensional case) and the
Gaussian assumption fails. Because some steps used to derive (3) do not apply, however, the
rate turns out to be sub-optimal, and our bound is probably not sharp in this case. Nonetheless,
we are hopeful that our proof technique will help to derive the sharp bound for the non-Gaussian
high-dimensional case in the future.

Given that cross-validation is often used to choose the penalty parameter A for the Lasso
estimator and given how popular the Lasso estimator is, deriving a rate of convergence of the
cross-validated Lasso estimator is an important question in the literature; see, for example,
Chatterjee and Jafarov (2015), where further motivation for the topic is provided. Yet, to the
best of our knowledge, the only results in the literature about cross-validated Lasso estimator
are due to Homrighausen and McDonald (2013a,b, 2014). Homrighausen and McDonald (2013a)
showed that if the penalty parameter is chosen using K-fold cross-validation from a range of
values determined by their techniques, the Lasso estimator is risk consistent, which under our
conditions is equivalent to consistency in the L? norm. Homrighausen and McDonald (2014)
derived a similar result for leave-one-out cross-validation. Homrighausen and McDonald (2013b)
derived a rate of convergence of the cross-validated Lasso estimator that depends on n via
n~/4 but they substantially restricted the range of values over which cross-validation search
is performed. These are useful results but we emphasize that in practice the cross-validation
search is often conducted over a fairly large set of values of the penalty parameter, which could
potentially be much larger than required in their results. In contrast, we derive a rate of

1/2 and we impose only minor conditions on the range of

convergence that depends on n via n™
values of A\ used by cross-validation.
Other papers that have been concerned with cross-validation in the context of the Lasso

estimator include Chatterjee and Jafarov (2015) and Lecué and Mitchell (2012). Chatterjee



and Jafarov (2015) developed a novel cross-validation-type procedure to choose A and showed
that the Lasso estimator based on their choice of A has a rate of convergence depending on n
via n=1/4. Their procedure to choose A, however, is related to but different from the classical
cross-validation procedure used in practice. Lecué and Mitchell (2012) studied classical cross-
validation but focused on estimators that differ from the Lasso estimator in important ways. For
example, one of the estimators they considered is the average of subsample Lasso estimators,
K1 Zszl B_k(A), for fj\_k()\) defined in (4) in the next section. Although the authors studied
properties of cross-validated version of such estimators in great generality, it is not immediately
clear how to apply their results to obtain bounds for the cross-validated Lasso estimator itself.

We emphasize that deriving a rate of convergence of the cross-validated Lasso estimator is a
non-standard problem. In particular, classical techniques to derive properties of cross-validated
estimators developed for example in Li (1987) do not apply to the Lasso estimator as those
techniques are based on the linearity of the estimators in the vector of dependent variables
(Y1,...,Y,), which does not hold in the case of the Lasso estimator. More recent techniques,
developed for example in Wegkamp (2003), help to analyze sub-sample Lasso estimators like
those studied in Lecué and Mitchell (2012) but are not sufficient for the analysis of the full-
sample Lasso estimator. See Arlot and Celisse (2010) for an extensive review of results on
cross-validation available in the literature.

The rest of the paper is organized as follows. In the next section, we describe the cross-
validation procedure. In Section 3, we state our regularity conditions. In Section 4, we present
our main results. In Section 5, we describe results of our simulation experiments. In Section
6, we provide proofs of the main results. In Section 7, we give some technical lemmas that are

useful for the proofs of the main results.

Notation. Throughout the paper, we use the following notation. For any vector b =

bi,...,b,) € RP, we use ||b]lo = Y.F_, 1{b; # 0} to denote the number of non-zero components
p =1 J
of b, [[blly = >°4_, |bj to denote its L' norm, [|b] = (324_, b?)l/2 to denote its L? norm (the Eu-

clidean norm), [|b]|ec = maxi<j<, |bj| to denote its L norm, and [|blj2,, = (n~* Y27, (X!b)?)1/2

to denote its prediction norm. In addition, we use the notation a,, < b, if a, < Cb, for some
constant C that is independent of n. Moreover, we use SP to denote the unit sphere in RP, that
is, S = {6 € RP: ||§|| = 1}. Further, for any matrix A € RP*P, we use ||A| = sup,cs» ||Az||
to denote its spectral norm. Also, with some abuse of notation, we use X; to denote the jth
component of the vector X = (X1,...,X,)" and we use X; to denote the ith realization of the
vector X in the random sample (X;,Y;) ; from the distribution of the pair (X,Y"). Finally, for
any finite set S, we use |S| to denote the number of elements in S. We introduce more notation

in the beginning of Section 6, as required for the proofs in the paper.



2 Cross-Validation

As explained in the Introduction, to choose the penalty parameter A for the Lasso estimator
B (M), it is common practice to use cross-validation. In this section, we describe the procedure in
details. Let K be some strictly positive (typically small) integer, and let (Ik)szl be a partition
of the set {1,...,n}; that is, for each k € {1,..., K}, I} is a subset of {1,..., K}, for each k, k" €
{1,...,K} with k # K/, the sets I and I}y have empty intersection, and UX_ I, = {1,...,n}.
For our asymptotic analysis, we will assume that K is a constant that does not depend on n.
Further, let A, be a set of candidate values of \. Now, for k =1,..., K and A € A, let

B_k(X\) € argmin
beRP n—mng

> (Vi = X[b)* + Allblly (4)
i¢ Iy

be the Lasso estimator corresponding to all observations excluding those in I where nj; = ||
is the size of the subsample I;. As in the case with the full-sample Lasso estimator B(/\) in
(2), whenever the optimization problem in (4) has multiple solutions, we choose one with the

smallest number of non-zero components. Then the cross-validation choice of A is
X=argminy Y (¥; — X/B_,(N)% (5)

The cross-validated Lasso estimator in turn is ,B\ (X) In the literature, the procedure described
here is also often referred to as K-fold cross-validation. For brevity, however, we simply refer to

it as cross-validation. Below we will study properties of 3 (X)

3 Regularity Conditions

Recall that we consider the model given in (1), the Lasso estimator 3(A) given in (2), and
the cross-validation choice of A given in (5). Let c¢;, C1, a, and ¢ be some strictly positive
numbers where a < 1 and ¢ > 4. Also, let (§u)n>1, (Yn)n>1, and (I'y)n>1 be sequences of
positive numbers, possibly growing to infinity. To derive our results, we will impose the following

regularity conditions.

Assumption 1 (Covariates). The random vector X = (X1,...,X,) is such that we have ¢ <
(E[X'312))'/? < C1 and (B[|X'8|*))Y/* < Ty, for all§ € SP. In addition, max<j<,(B[|X;]4])/*4 <
Yn and nP (|| X|| > &,) = o(1).

The first part of Assumption 1 means that all eigenvalues of the matrix E[X X’] are bounded
from above and below from zero. The second part of this assumption, that is, the condition that
(E[|X"8]*)/* < T, for all § € SP, is often assumed in the literature with I', < 1; see Mammen
(1993) for an example. To develop some intuition about this and other parts of Assumption 1,

we consider three examples.



Example 1 (Gaussian independent covariates). Suppose that the vector X consists of inde-
pendent standard Gaussian random variables. Then for all § € SP, the random variable X'¢
is standard Gaussian as well, and so the condition that (E[|X’§|*])/* < T, for all § € SP is
satisfied with T, = 3/4. Similarly, the condition that max;<;<,(E[|X;|*])/* < 4, holds with
Yo = 3%, In addition, || X||? is a chi-square random variable with p degrees of freedom in this
case, and so for all ¢ > 0, we have P(|| X|? > p+2y/pt +2t) < e7; see, for example, Section 2.4
and Example 2.7 in Boucheron, Lugosi, and Massart (2013). Setting ¢ = 2logn in this inequality
shows that the condition that nP(||X|| > &,) = o(1) is satisfied with &, = (2p + 6logn)'/2. =

Example 2 (Bounded independent covariates). Suppose that the vector X consists of in-
dependent zero-mean bounded random variables. In particular, suppose for simplicity that
maxi<j<p |X;| < 1 almost surely. Then for all ¢ > 0 and § € SP, we have P(|X'd| > t) <
2exp(—t2/2) by Hoeffding’s inequality. Therefore, the condition that (E[|X’d8[*])'/* < T, for
all § € 8P is satisfied with [';, = 2 by the standard calculations. Also, the condition that
max;<j<p(E[|X;|4])/* < v, is satisfied with v, = 1, and the condition that nP(|| X| > &,) =
o(1) is satisfied with &, = p'/2. "

Example 3 (Bounded non-independent covariates). Suppose that the vector X consists of not
necessarily independent bounded random variables. In particular, suppose for simplicity that
maxj<j<p|X;| < 1 almost surely. Then the condition that (E[|X’8|*])Y/* < T, for all § € S is
satisfied with T, = C}/?p/4 since E[(X'6)%] < E[(X'6)2| X ||2||6]|?] < pE[(X'8)?] < C2p. Also,
like in Example 2, the conditions that max;<;<,(E[|X;|*])"/* < 4, and that nP(| X|| > &,) =
o(1) are satisfied with v, = 1 and &, = p'/2. n

Assumption 2 (Noise). We have ¢; < E[e? | X] < Oy almost surely.

This assumption means that the variance of the conditional distribution of € given X is
bounded from above and below from zero. The lower bound is needed to avoid potential super-

efficiency of the Lasso estimator. Such bounds are typically imposed in the literature.

Assumption 3 (Growth conditions). We have M2s(log* n)(log p)/n*=2/4 = o(1) where M, =
(E[|| X |9, In addition, vs*logp/n = o(1) and I'* (logn)(loglogn)?/n = o(1).

Assumption 3 is a mild growth condition restricting some moments of X and also the number
of non-zero coefficients in the model, s. In the remark below, we discuss conditions of this

assumption in three examples given above.

Remark 1 (Growth conditions in Examples 1, 2, and 3). In Example 1 above, this assumption
reduces to the following conditions: (i) s(logn)*(logp)?/n'=¢ = o(1) for some constant ¢ > 0

and (ii) s?logp/n = o(1) since in this case, M,, < C,(logp)*/?

for all ¢ > 4 and some constant
Cy that depends only on ¢. In Example 2, Assumption 3 reduces to the following conditions:
(i) s(logn)*(logp)/n'=¢ = o(1) for some constant € > 0 and (ii) s?logp/n = o(1) since in this

case, M, <1 for all ¢ > 4. In Example 3, Assumption 3 reduces to the following conditions: (i)



s2logp/n = o(1) and (ii) p(logn)(loglogn)/n = o(1). Indeed, under assumptions of Example 3,
we have M, < 1 for all ¢ > 4, and so the condition that M?2s(log*n)(logp)/n'~2/4 = o(1) follows
from the condition that s(log®n)(logp)/n'=2/7 = o(1) but for ¢ large enough, this condition
follows from s?logp/n = o(1) and p(logn)(loglogn)/n = o(1). Note that our conditions in
Examples 1 and 2 allow for the high-dimensional case, where p is (potentially much) larger
than n but conditions in Example 3 hold only in the moderate-dimensional case, where p is

asymptotically smaller than n. [

Assumption 4 (Candidate set). The candidate set A, takes the following form: A, = {Cia': | =
0,1,2,...; a' > ¢1/n}.

It is known from Bickel et al. (2009) that the optimal rate of convergence of the Lasso estima-

tor in the prediction norm is achieved when X is of order (logp/n)'/?

. Since under Assumption
3, we have log p = o(n), it follows that our choice of the candidate set A, in Assumption 4 makes
sure that there are some \’s in the candidate set A that would yield the Lasso estimator with
the optimal rate of convergence in the prediction norm. Note also that Assumption 4 gives a
rather flexible choice of the candidate set A,, of values of A; in particular, the largest value, C,
can be set arbitrarily large and the smallest value, ¢1/n, converges to zero rather fast. In fact,
the only two conditions that we need from Assumption 4 is that A, contains a “good” value of
A, say Ag, such that the subsample Lasso estimators 3_(Xg) satisfy the bound (9) in Lemma 1
with probability 1 — o(1), and than |A,| < logn up-to a constant that depend only on ¢; and

Cy. Thus, we could for example set A, = {a': 1 =...,-2,-1,0,1,2,...; a~! <n%, ol <n®}.
Assumption 5 (Dataset partition). For all k =1,..., K, we have ng/n > c;.

Assumption 5 is mild and is typically imposed in the literature on K-fold cross-validation.
This assumption ensures that all subsamples I are balanced and their sizes are of the same

order.

4 Main Results

Recall that for b € R?, we use ||b]l2n, = (R 31, (X[0)?)!/2 to denote the prediction norm

of b. Our first main result in this paper derives a rate of convergence of the cross-validated

Lasso estimator 3 (X) in the prediction norm for the Gaussian case where ¢2logn/n = o(1). As
explained in Remark 4 below, the last condition implies that this is a moderate-dimensional

case, where p is asymptotically smaller than n.

Theorem 1 (Gaussian moderate-dimensional case). Suppose that Assumptions 1 — 5 hold. In
addition, suppose that £2logn/n = o(1). Finally, suppose that the conditional distribution of &

given X is Gaussian. Then

R | 1/2
1B = Bl 5 (2E2) - g™

with probability 1 — o(1) up-to a constant depending only on c1, C1, K, a, and q.



Remark 2 (Near-optimality of cross-validated Lasso estimator). Let o be a constant such that
E[e? | X] < 02 almost surely. The results in Bickel et al. (2009) imply that under assumptions
of Theorem 1, setting A = A* = Co(log p/n)'/? for sufficiently large constant C' gives the Lasso
estimator B(A\*) satisfying [|B(A\*) — Bllam = Op((slogp/n)/?), and it follows from Rigollet
and Tsybakov (2011) that this is the optimal rate of convergence (in the minimax sense) for
the estimators of § in the model (1). Therefore, Theorem 1 shows that the cross-validated
Lasso estimator B(X) has the fastest possible rate of convergence in the prediction norm up-
to the logarithmic factor log7/ 8n. Note, however, that implementing the cross-validated Lasso
estimator does not require knowledge of o, which makes this estimator attractive in practice. The
rate of convergence established in Theorem 1 is also very close to the oracle rate of convergence,
(s/n)'/2, that could be achieved by the OLS estimator if we knew the set of covariates X; having

non-zero coefficient 3;; see, for example, Belloni et al. (2015a). m

Remark 3 (On the proof of Theorem 1). One of the ideas in Bickel et al. (2009) is to show
that outside of the event
1 n
- Z Xijei
i=1

where ¢ > 2 is some constant, the Lasso estimator B()) satisfies the bound ||3(\) —Bll2;n S Ms.
Thus, to obtain the Lasso estimator with fast rate of convergence, it suffices to choose A such
that A\ is small enough but the event (6) holds at most with probability o(1). The choice

A = A* described in Remark 2 satisfies these two conditions. The difficulty with cross-validation,

A < ¢ max
1<j<p

: (6)

however, is that, as we demonstrate in Section 5 via simulations, it typically yields a rather
small value of A, so that the event (6) with A = X holds with non-trivial probability even in
large samples, and little is known about properties of the Lasso estimator E (A) when the event
(6) does not hold, which is perhaps one of the main reasons why there are only few results on
the cross-validated Lasso estimator in the literature. We therefore take a different approach.
First, we use the fact that \ is the cross-validation choice of A to derive bounds on ||B_k(/):) =Bl
and [|B_r(N) — Bll2.n for the subsample Lasso estimators B_r(\) defined in (4). Second, we
use the “degrees of freedom estimate” of Zou et al. (2007) to derive a sparsity bound for these
estimators, and so to bound ||§_k(X) — B||1- Third, we use the two point inequality

~ 1< , 1 & PN ~
1BOY = bll50 < — Zl(Y = X{0)” + Allbll — Zl(Y — XIBN)? = AMBWi, for all b € R,
which can be found in van de Geer (2016), with b = (K —1)"' S35 (n— nk)B_r(N)/n, a convex
combination of the subsample Lasso estimators B,k(//\\), and derive a bound for its right-hand
side using the definition of estimators B_k(X) and bounds on HB_k(X) — || and |\3_k(X) —Blh-
Finally, we use the triangle inequality to obtain a bound on || B (A) — Bll2,n from the bounds on
I1B(A) — bll2,» and 1B_(X) — Bll2.n- The details of the proof, including a short proof of the two

point inequality, can be found in Section 6. [



Remark 4 (On the condition ¢2 logn/n = o(1)). Note that in Examples 1, 2, and 3 above, the
condition that &2logn/n = o(1) reduces to plogn/n = o(1), which we used in the abstract and
in the Introduction. In fact, Lemma 17 in Section 7 shows that under Assumptions 1 and 3,
we have \/p < &, so that p is necessarily asymptotically smaller than n under the condition
2logn/n = o(1). This is why we refer to the case where £2logn/n = o(1) as the moderate-

dimensional case. u

In addition to the bound on the prediction norm of the estimation error of the cross-validated
Lasso estimator given in Theorem 1, we derive in the next theorem a bound on the sparsity of

the estimator.

Theorem 2 (Sparsity bound for Gaussian moderate-dimensional case). Suppose that all condi-

tions of Theorem 1 are satisfied. Then
1B(N)]lo < slog”n (7)
with probability 1 — o(1) up-to a constant depending only on ¢1, C1, K, a, and q.

Remark 5 (On the sparsity bound). Belloni and Chernozhukov (2013) showed that if A is
chosen so that the event (6) holds at most with probability o(1), then the Lasso estimator B(N)
satisfies the bound |[B(\)[lo < s with probability 1 — o(1), so that the number of covariates
that have been mistakenly selected by the Lasso estimator is at most of the same order as the
number of non-zero coefficients in the original model (1). As explained in Remark 3, however,
cross-validation typically yields a rather small value of A, so that the event (6) with A = \ holds
with non-trivial probability even in large samples, and it is typically the case that smaller values
of X\ lead to the Lasso estimators E (A\) with a larger number of non-zero coefficients. However,
using the result in Theorem 1 and the “degrees of freedom estimate” of Zou et al. (2007), we
are still able to show that the cross-validated Lasso estimator is typically rather sparse, and in

particular satisfies the bound (7) with probability 1 — o(1). "

With the help of Theorems 1 and 2, we immediately arrive at the following corollary for the

bounds on L2 and L! norms of the estimation error of the cross-validated Lasso estimator:

Corollary 1 (Other bounds for Gaussian moderate-dimensional case). Suppose that all condi-

tions of Theorem 1 are satisfied. Then

B\ slogp v 7/8 30 s?logp 2 27/8
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with probability 1 — o(1) up-to a constant depending only on c¢1, C1, K, a, and q.

To conclude this section, we consider the non-Gaussian case. One of the main complications
in our derivations for this case is that without the assumption of Gaussian noise, we can not
apply the “degrees of freedom estimate” derived in Zou et al. (2007) that provides a bound

on the number of non-zero coefficients of the Lasso estimator, || B()\)H(), as a function of the



prediction norm of the estimation error of the estimator, ||[3(A) — B||2.n; see Lemmas 6 and 9 in
the next section. Nonetheless, we can still derive an interesting bound on ||3(X) — Bll2,n in this

case even if p is much larger than n (high-dimensional case):

Theorem 3 (Sub-Gaussian high-dimensional case). Suppose that Assumptions 1 — 5 hold. In
addition, suppose that for all t € R, we have logE[exp(te) | X] < C1t?. Finally, suppose that
M2s(log® n)(log? p)/n'=*2 < 1. Then

(8)

n
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with probability 1 — o(1) up-to a constant depending only on ¢1, C1, K, a, and q.

Remark 6 (On conditions of Theorem 3). This theorem does not require the noise € to be
Gaussian conditional on X. Instead, it imposes a weaker condition that for all t € R, we
have log E[exp(te) | X] < C1t?, which means that the conditional distribution of ¢ given X
is sub-Gaussian; see, for example, Vershynin (2012). Also, we want to emphasize that the
condition that M2s(log® n)(log? p)/n'~*7 < 1 is not necessary to derive a non-trivial bound on
HB (X) — Bll2,» but it does simplify the bound (8). Inspecting the proof of Theorem 3 reveals that
without this condition, the bound (8) would take the form:

TE slog2(pn)\ " slog(pn)\ /2
1B = Bllan < (gn(p)) (VM log? nlog2 ) <i(p)>

with probability 1 — o(1) up-to a constant depending only on ¢1, Cy, K, a, and q. [

5 Simulations

In this section, we present results of our simulation experiments. The purpose of the experiments
is to investigate finite-sample properties of the cross-validated Lasso estimator. In particular, we
are interested in (i) comparing estimation error of the cross-validated Lasso estimator in different
norms to the Lasso estimator based on other choices of A; (ii) studying sparsity properties of
the cross-validated Lasso estimator; and (iii) estimating probability of the event (6) for A = X,
the cross-validation choice of .

We consider two data generating processes (DGPs). In both DGPs, we simulate the vector
of covariates X from the Gaussian distribution with mean zero and variance-covariance matrix
given by E[X;X;] = 0.5kl for all j,k=1,...,p. Also, we set 3 = (1,—1,2, -2, 01 (p—a))’- We
simulate € from the standard Gaussian distribution in DGP1 and from the uniform distribution
on [—3,3] in DGP2. In both DGPs, we take £ to be independent of X. Further, for each DGP,
we consider samples of size n = 100 and 400. For each DGP and each sample size, we consider
p = 40, 100, and 400. To construct the candidate set A,, of values of the penalty parameter \,
we use Assumption 4 with a = 0.9, ¢; = 0.005 and C; = 500. Thus, the set A,, contains values
of A ranging from 0.0309 to 500 when n = 100 and from 0.0071 to 500 when n = 400, that is, the
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set A, is rather large in both cases. In all experiments, we use 5-fold cross-validation (K = 5).
We repeat each experiment 5000 times.
As a comparison to the cross-validated Lasso estimator, we consider the Lasso estimator

with A chosen according to the Bickel-Ritov-Tsybakov rule:
A =2con” 20711 — a/(2p)),

where ¢ > 1 and a € (0, 1) are some constants, o is the standard deviation of £, and ®~!(-) is the
inverse of the cumulative distribution function of the standard Gaussian distribution; see Bickel
et al. (2009). Following Belloni and Chernozhukov (2011), we choose ¢ = 1.1 and aw = 0.1. The
noise level o is typically have to be estimated from the data but for simplicity we assume that o
is known, so we set ¢ = 1 in DGP1 and o = v/3 in DGP2. In what follows, this Lasso estimator
is denoted as P-Lasso and the cross-validated Lasso estimator is denoted as CV-Lasso.

Figure 5.1 contains simulation results for DGP1 with n = 100 and p = 40. The first three
(that is, the top-left, top-right, and bottom-left) panels of Figure 5.1 present the mean of the
estimation error of the Lasso estimators in the prediction, L?, and L' norms, respectively.
In addition to the solid and dotted horizontal lines representing the mean of the estimation
error of CV-Lasso and P-Lasso, respectively, these panels also contain the curved dashed line
representing the mean of the estimation error of the Lasso estimator as a function of A in the
corresponding norm (we perform the Lasso estimator for each value of X in the candidate set
A,; we sort the values in A, from the smallest to the largest, and put the order of A on the
horizontal axis; we only show the results for values of A up to order 32 as these give the most
meaningful comparisons). This estimator is denoted as A-Lasso.

From these three panels of Figure 5.1, we see that the estimation error of CV-Lasso is only
slightly above the minimum of the estimation error over all possible values of A not only in the
prediction and L? norms but also in the L' norm. In comparison, P-Lasso tends to have much
larger estimation error in all three norms.

The bottom-right panel of Figure 5.1 depicts the histogram for the the number of non-zero
coeflicients of the cross-validated Lasso estimator. Overall, this panel suggests that the cross-
validated Lasso estimator tends to select too many covariates: the number of selected covariates
with large probability varies between 5 and 30 even though there are only 4 non-zero coefficients
in the true model. Thus, we conjecture that even if it might be possible to decrease the power
of the logarithm in the inequality HB (/)\\)||0 < slog® n obtained in Theorem 2, it is probably not
possible to avoid the logarithm itself.

For all other experiments, the simulation results on the mean of the estimation error of
the Lasso estimators can be found in Table 5.1. For simplicity, we only report the minimum
over A € A, of mean of the estimation error of A-Lasso in Table 5.1. The results in Table 5.1
confirm findings in Figure 5.1: the mean of the estimation error of CV-Lasso is very close to
the minimum mean of the estimation errors of the A-Lasso estimators under both DGPs for all
combinations of n and p considered in all three norms. Their difference becomes smaller when

the sample size n increases. The mean of the estimation error of P-Lasso is much larger than that

11



of CV-Lasso in most cases and is smaller than that of CV-Lasso only in L'-norm when n = 100
and p = 400. Thus, given that the estimation error, for example, in the prediction norm of the
Lasso estimator B()\) satisfies the bound ||B(A) — Bll2.n < (slogp/n)/? with probability 1 —o(1)
when X is chosen using the Bickel-Ritov-Tsybakov rule, we conjecture that it might be possible
to avoid the additional log”/®n factor in the inequality ||B(X) — Bllam < (slogp/n)'/2- (log™® n)
obtained in Theorem 1.

Table 5.2 reports model selection results for the cross-validated Lasso estimator. More
precisely, the table shows probabilities for the number of non-zero coefficients of the cross-
validated Lasso estimator hitting different brackets. Overall, the results in Table 5.2 confirm
findings in Figure 5.1: the cross-validated Lasso estimator tends to select too many covariates.
The probability of selecting larger models tends to increase with p but decreases with n.

Table 5.3 provides information on the finite-sample distribution of the ratio of the maximum
score maxi<j<p|n ' Y1, X;jei| over X, the cross-validation choice of X. Specifically, the table
shows probabilities for this ratio hitting different brackets. From Table 5.3, we see that this
ratio is above 0.5 with large probability in all cases and in particular this probability exceeds
99% in most cases. Hence, (6) with A = A holds not only with non-trivial but actually with large
probability, meaning that existing arguments used to derive the rate of convergence of the Lasso
estimator based, for example, on the Bickel-Ritov-Tsybakov choice of A do not apply to the
cross-validated Lasso estimator (see Remark 3 above) and j