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ANTI-CONCENTRATION AND HONEST, ADAPTIVE
CONFIDENCE BANDS⇤

By Victor Chernozhukov†, Denis Chetverikov‡ and Kengo
Kato§

MIT†, UCLA‡, and University of Tokyo§

Modern construction of uniform confidence bands for nonpara-
metric densities (and other functions) often relies on the classical
Smirnov-Bickel-Rosenblatt (SBR) condition; see, for example, Giné
and Nickl (2010). This condition requires the existence of a limit dis-
tribution of an extreme value type for the supremum of a studentized
empirical process (equivalently, for the supremum of a Gaussian pro-
cess with the same covariance function as that of the studentized
empirical process). The principal contribution of this paper is to re-
move the need for this classical condition. We show that a consider-
ably weaker su�cient condition is derived from an anti-concentration
property of the supremum of the approximating Gaussian process,
and we derive an inequality leading to such a property for separable
Gaussian processes. We refer to the new condition as a generalized
SBR condition. Our new result shows that the supremum does not
concentrate too fast around any value.

We then apply this result to derive a Gaussian multiplier boot-
strap procedure for constructing honest confidence bands for non-
parametric density estimators (this result can be applied in other
nonparametric problems as well). An essential advantage of our ap-
proach is that it applies generically even in those cases where the
limit distribution of the supremum of the studentized empirical pro-
cess does not exist (or is unknown). This is of particular importance
in problems where resolution levels or other tuning parameters have
been chosen in a data-driven fashion, which is needed for adaptive
constructions of the confidence bands. Finally, of independent inter-
est is our introduction of a new, practical version of Lepski’s method,
which computes the optimal, non-conservative resolution levels via a
Gaussian multiplier bootstrap method.

1. Introduction. Let X

1

, . . . , X

n

be i.i.d. random vectors with com-
mon unknown density f on Rd. We are interested in constructing confidence
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2 CHERNOZHUKOV CHETVERIKOV KATO

bands for f on a subset X ⇢ Rd that are honest to a given class F of densi-
ties on Rd. Typically, X is a compact set on which f is bounded away from
zero, and F is a class of smooth densities such as a subset of a Hölder ball.
A confidence band C

n

= C
n

(X
1

, . . . , X

n

) is a family of random intervals

C
n

:= {C
n

(x) = [c
L

(x), c
U

(x)] : x 2 X}

that contains the graph of f on X with a guaranteed probability. Following
[31], a band C

n

is said to be asymptotically honest with level ↵ 2 (0, 1) for
the class F if

lim inf
n!1

inf
f2F

P
f

(f(x) 2 C
n

(x), 8x 2 X ) � 1� ↵.

Also, we say that a band C
n

is asymptotically honest at a polynomial rate
with level ↵ 2 (0, 1) for the class F if

(1) inf
f2F

P
f

(f(x) 2 C
n

(x), 8x 2 X ) � 1� ↵� Cn

�c

for some constants c, C > 0.
Let f̂

n

(·, l) be a generic estimator of f with a smoothing parameter l, say
bandwidth or resolution level, where l is chosen from a candidate set L

n

;
see [26, 42, 44] for a textbook level introduction to the theory of density
estimation. Let l̂

n

= l̂

n

(X
1

, . . . , X

n

) be a possibly data-dependent choice
of l in L

n

. Denote by �

n,f

(x, l) the standard deviation of
p
nf̂

n

(x, l), i.e.,

�

n,f

(x, l) := (nVar
f

(f̂
n

(x, l)))1/2. Then we consider a confidence band of
the form

(2) C
n

(x) =

"

f̂

n

(x, l̂
n

)�
c(↵)�

n,f

(x, l̂
n

)p
n

, f̂

n

(x, l̂
n

) +
c(↵)�

n,f

(x, l̂
n

)p
n

#

,

where c(↵) is a (possibly data-dependent) critical value determined to make
the confidence band to have level ↵. Generally, �

n,f

(x, l) is unknown and
has to be replaced by an estimator.

A crucial point in construction of confidence bands is the computation of
the critical value c(↵). Assuming that �

n,f

(x, l) is positive on X ⇥L
n

, define
the stochastic process

(3) Z

n,f

(v) := Z

n,f

(x, l) :=

p
n(f̂

n

(x, l)� E
f

[f̂
n

(x, l)])

�

n,f

(x, l)
,

where v = (x, l) 2 X⇥L
n

=: V
n

. We refer to Z
n,f

as a “studentized process”.

If, for the sake of simplicity, the bias |f(x) � E
f

[f̂
n

(x, l)]
l=

ˆ

ln
| is su�ciently
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small compared to �

n,f

(x, l̂
n

), then

P
f

(f(x) 2 C
n

(x), 8x 2 X ) ⇡ P
f

✓

sup
x2X

�

�

�

Z

n,f

(x, l̂
n

)
�

�

�

 c(↵)

◆

� P
f

✓

sup
v2Vn

|Z
n,f

(v)|  c(↵)

◆

,

so that the band (2) will be of level ↵ 2 (0, 1) by taking

(4) c(↵) = (1� ↵)-quantile of kZ
n,f

k
Vn := sup

v2Vn

|Z
n,f

(v)|.

The critical value c(↵), however, is infeasible since the finite sample distribu-
tion of the process Z

n,f

is unknown. Instead, we estimate the (1�↵)-quantile
of kZ

n,f

k
Vn .

Suppose that one can find an appropriate centered Gaussian process G
n,f

indexed by V
n

with known or estimable covariance structure such that
kZ

n,f

k
Vn is close to kG

n,f

k
Vn . Then we may approximate the (1�↵)-quantile

of kZ
n,f

k
Vn by

c

n,f

(↵) := (1� ↵)-quantile of kG
n,f

k
Vn .

Typically, one computes or approximates c
n,f

(↵) by one of the following two
methods.

1. Analytical method: derive analytically an approximated value of c
n,f

(↵),
by using an explicit limit distribution or large deviation inequalities.

2. Simulation method: simulate the Gaussian process G

n,f

to compute
c

n,f

(↵) numerically, by using, for example, a multiplier method.

The main purpose of this paper is to introduce a general approach to es-
tablishing the validity of the so-constructed confidence band. Importantly,
our analysis does not rely on the existence of an explicit (continuous) limit
distribution of any kind, which is a major di↵erence from the previous lit-
erature. For the density estimation problem, if L

n

is a singleton, i.e., the
smoothing parameter is chosen deterministically, the existence of such a
continuous limit distribution, which is typically a Gumbel distribution, has
been established for convolution kernel density estimators and some wavelet
projection kernel density estimators [see 40, 1, 18, 20, 4, 5, 17]. We refer
to the existence of the limit distribution as the Smirnov-Bickel-Rosenblatt
(SBR) condition. However, the SBR condition has not been obtained for
other density estimators such as non-wavelet projection kernel estimators
based, for example, on Legendre polynomials or Fourier series. In addition,
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to guarantee the existence of a continuous limit distribution often requires
more stringent regularity conditions than a Gaussian approximation itself.
More importantly, if L

n

is not a singleton, which is typically the case when l̂

n

is data-dependent, and so the randomness of l̂
n

has to be taken into account,
it is often hard to determine an exact limit behavior of kG

n,f

k
Vn .

We thus take a di↵erent route and significantly generalize the SBR con-
dition. Our key ingredient is the anti-concentration property of suprema of
Gaussian processes that shows that suprema of Gaussian processes do not
concentrate too fast. To some extent, this is a reverse of numerous concen-
tration inequalities for Gaussian processes. In studying the e↵ect of approx-
imation and estimation errors on the coverage probability, it is required to
know how the random variable kG

n,f

k
Vn := sup

v2Vn
|G

n,f

(v)| concentrates
or “anti-concentrates” around, say, its (1� ↵)-quantile. It is not di�cult to
see that kG

n,f

k
Vn itself has a continuous distribution, so that with keeping n

fixed, the probability that kG
n,f

k
Vn falls into the interval with center c

n,f

(↵)
and radius ✏ goes to 0 as ✏ ! 0. However, what we need to know is the be-
havior of those probabilities when ✏ depends on n and ✏ = ✏

n

! 0. In other
words, bounding explicitly “anti-concentration” probabilities for suprema of
Gaussian processes is desirable. We will first establish bounds on the Lévy
concentration function (see Definition 2.1) for suprema of Gaussian pro-
cesses and then use these bounds to quantify the e↵ect of approximation
and estimation errors on the finite sample coverage probability. We say that
a generalized SBR condition or simply an anti-concentration condition holds
if kG

n,f

k
Vn concentrates su�ciently slowly, so that this e↵ect is su�ciently

small to yield asymptotically honest confidence bands.
As a substantive application of our results, we consider the problem

of constructing honest adaptive confidence bands based on either convo-
lution or wavelet projection kernel density estimators in Hölder classes F ⇢
[
t2[t,

¯

t]

⌃(t, L) for some 0 < t < t̄ < 1 where ⌃(t, L) is the Hölder ball of
densities with radius L and smoothness level t. Following [6], we say the
confidence band C

n

is adaptive if for every t, " > 0 there exists C > 0 such
that for all n � 1,

sup
f2F\⌃(t,L)

P
f

✓

sup
x2X

�(C
n

(x)) > Cr

n

(t)

◆

 ",

where � denotes the Lebesgue measure on R and r

n

(t) := (log n/n)t/(2t+d),
the minimax optimal rate of convergence for estimating a density f in the
function class ⌃(t, L) in the sup-metric d

1

(f̂ , f) = sup
x2X

|f̂(x) � f(x)|.
We use Lepski’s method [30, 2] to find an adaptive value of the smooth-
ing parameter. Here our contribution is to introduce a Gaussian multiplier
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bootstrap implementation of Lepski’s method. This is a practical proposal
since previous implementations relied on conservative (one-sided) maximal
inequalities and are not necessarily recommended for practice; see, for ex-
ample, [19] for a discussion.

We should also emphasize that our techniques can also be used for con-
structing honest and/or adaptive confidence bands in many other nonpara-
metric problems, but in this paper we focus on the density problem for
the sake of clarity. Our techniques (anti-concentration of separable Gaus-
sian processes (Theorem 2.1), and coupling inequalities (Theorems A.1 and
A.2)) are of particular importance in non-Donsker settings since they allow
to prove validity of the Gaussian multiplier bootstrap for approximating dis-
tributions of suprema of sequences of empirical processes of VC type func-
tion classes where the metric entropy of the process may increase with n.
Thus, these techniques may be important in many nonparametric problems.
For example, applications of our anti-concentration bounds can be found in
[10] and [11], which consider the problems of nonparametric inference on a
minimum of a function and nonparametric testing of qualitative hypotheses
about functions, respectively.

1.1. Related references. Confidence bands in nonparametric estimation
have been extensively studied in the literature. A classical approach, which
goes back to [40] and [1], is to use explicit limit distributions of normal-
ized suprema of studentized processes. A “Smirnov-Bickel-Rosenblatt type
limit theorem” combines Gaussian approximation techniques and extreme
value theory for Gaussian processes. It was argued that the convergence to
normal extremes is rather slow despite that the Gaussian approximation
is relatively fast [24]. To improve the finite sample coverage, bootstrap is
often used in construction of confidence bands [see 12, 3]. However, to es-
tablish the validity of bootstrap confidence bands, researchers relied on the
existence of continuous limit distributions of normalized suprema of original
studentized processes. In the deconvolution density estimation problem, [32]
considered confidence bands without using Gaussian approximation. In the
current density estimation problem, their idea reads as bounding the devi-
ation probability of kf̂

n

� E[f̂
n

(·)]k
1

by using Talagrand’s [41] inequality
and replacing the expected supremum by the Rademacher average. Such a
construction is indeed general and applicable to many other problems, but
is likely to be more conservative than our construction.

1.2. Organization of the paper. In the next section, we give a new anti-
concentration inequality for suprema of Gaussian processes. Section 3 con-
tains a theory of generic confidence band construction under high level con-
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ditions. These conditions are easily satisfied both for convolution and pro-
jection kernel techniques under mild primitive assumptions, which are also
presented in Section 3. Section 4 is devoted to constructing honest adaptive
confidence bands in Hölder classes. Finally, most proofs are contained in the
Appendix, and some proofs and discussions are put into the Supplemental
Material [9].

1.3. Notation. In what follows, constants c, C, c

1

, C

1

, c

2

, C

2

, . . . are un-
derstood to be positive and independent of n. The values of c and C may
change at each appearance but constants c

1

, C

1

, c

2

, C

2

, . . . are fixed. Through-
out the paper, E

n

[·] denotes the average over index 1  i  n, i.e., it
simply abbreviates the notation n

�1

P

n

i=1

[·]. For example, E
n

[g(X
i

)] =
n

�1

P

n

i=1

g(X
i

). For a set T , denote by `

1(T ) the set of all bounded func-
tions, that is, all functions z : T ! R such that

kzk
T

:= sup
t2T

|z(t)| < 1.

Moreover, for a generic function g, we also use the notation kgk
1

:= sup
x

|g(x)|
where the supremum is taken over the domain of g. For two random variables

⇠ and ⌘, we write ⇠

d

= ⌘ if they share the same distribution. The standard
Euclidean norm is denoted by | · |.

2. Anti-concentration of suprema of Gaussian processes. The
main purpose of this section is to derive an upper bound on the Lévy con-
centration function for suprema of separable Gaussian processes, where the
terminology is adapted from [39]. Let (⌦,A,P) be the underlying (complete)
probability space.

Definition 2.1 (Lévy concentration function). Let Y = (Y
t

)
t2T

be a
separable stochastic process indexed by a semimetric space T . For all x 2 R
and ✏ � 0, let

(5) p

x,✏

(Y ) := P

✓

�

�

�

�

sup
t2T

Y

t

� x

�

�

�

�

 ✏

◆

.

Then the Lévy concentration function of sup
t2T

Y

t

is defined for all ✏ � 0 as

(6) p

✏

(Y ) := sup
x2R

p

x,✏

(Y ).

Likewise, define p

x,✏

(|Y |) by (5) with sup
t2T

Y

t

replaced by sup
t2T

|Y
t

| and
define p

✏

(|Y |) by (6) with p

x,✏

(Y ) replaced by p

x,✏

(|Y |).
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LetX = (X
t

)
t2T

be a separable Gaussian process indexed by a semimetric
space T such that E[X

t

] = 0 and E[X2

t

] = 1 for all t 2 T . Assume that
sup

t2T

X

t

< 1 a.s. Our aim here is to obtain a qualitative bound on the
concentration function p

✏

(X). In a trivial example where T is a singleton,
i.e., X is a real standard normal random variable, it is immediate to see that
p

✏

(X) ⇣ ✏ as ✏ ! 0. A non-trivial case is that when T is not a singleton
and both T and X are indexed by n = 1, 2, . . . , i.e., T = T

n

and X = X

n =
(X

n,t

)
t2Tn , and the complexity of the set {X

n,t

: t 2 T

n

} (in L

2(⌦,A,P)) is
increasing in n. In such a case, it is typically not known whether sup

t2Tn
X

n,t

has a limiting distribution as n ! 1 and therefore it is not trivial at all
whether, for any sequence ✏

n

! 0, p
✏n(X

n) ! 0 as n ! 1.
The following is the first main result of this paper.

Theorem 2.1 (Anti-concentration for suprema of separable Gaus-
sian processes). Let X = (X

t

)
t2T

be a separable Gaussian process in-
dexed by a semimetric space T such that E[X

t

] = 0 and E[X2

t

] = 1 for all
t 2 T . Assume that sup

t2T

X

t

< 1 a.s. Then a(X) := E[sup
t2T

X

t

] 2 [0,1)
and

(7) p

✏

(X)  4✏ (a(X) + 1) ,

for all ✏ � 0.

The similar conclusion holds for the concentration function of sup
t2T

|X
t

|.

Corollary 2.1. Let X = (X
t

)
t2T

be a separable Gaussian process in-
dexed by a semimetric space T such that E[X

t

] = 0 and E[X2

t

] = 1 for all
t 2 T . Assume that sup

t2T

X

t

< 1 a.s. Then a(|X|) := E[sup
t2T

|X
t

|] 2
[
p

2/⇡,1) and

(8) p

✏

(|X|)  4✏(a(|X|) + 1),

for all ✏ � 0.

We refer to (7) and (8) as anti-concentration inequalities because they
show that suprema of separable Gaussian processes can not concentrate too
fast. The proof of Theorem 2.1 and Corollary 2.1 follows by extending the
results in [8] where we derived anti-concentration inequalities for maxima of
Gaussian random vectors. See the Appendix for a detailed exposition.
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3. Generic construction of honest confidence bands. We go back
to the analysis of confidence bands. Recall that we consider the following
setting. We observe i.i.d. random vectors X

1

, . . . , X

n

with common unknown
density f 2 F on Rd, where F is a nonempty subset of densities on Rd. We
denote by P

f

the probability distribution corresponding to the density f . We
first state the result on the construction of honest confidence bands under
certain high level conditions and then show that these conditions hold for
most commonly used kernel density estimators.

3.1. Main Result. Let X ⇢ Rd be a set of interest. Let f̂

n

(·, l) be a
generic estimator of f with a smoothing parameter l 2 L

n

where L
n

is the
candidate set. Denote by �

n,f

(x, l) the standard deviation of
p
nf̂

n

(x, l). We
assume that �

n,f

(x, l) is positive on V
n

:= X ⇥ L
n

for all f 2 F . Define the
studentized process Z

n,f

= {Z
n,f

(v) : v = (x, l) 2 V
n

} by (3). Let

W

n,f

:= kZ
n,f

k
Vn

denote the supremum of the studentized process. We assume that W
n,f

is a
well-defined random variable. Let c

1

, C

1

be some positive constants. We will
assume the following high level conditions.

Condition H1 (Gaussian approximation). For every f 2 F , there ex-
ists (on a possibly enriched probability space) a sequence of random variables

W

0

n,f

such that (i) W

0

n,f

d

= kG
n,f

k
Vn where G

n,f

= {G
n,f

(v) : v 2 V
n

} is a

tight Gaussian random element in `

1(V
n

) with E[G
n,f

(v)] = 0,E[G
n,f

(v)2] =
1 for all v 2 V

n

, and E[kG
n,f

k
Vn ]  C

1

p
log n; and moreover (ii)

(9) sup
f2F

P
f

(|W
n,f

�W

0

n,f

| > ✏

1n

)  �

1n

,

where ✏

1n

and �

1n

are some sequences of positive numbers bounded from
above by C

1

n

�c

1.

Analysis of uniform confidence bands often relies on the classical Smirnov-
Bickel-Rosenblatt (SBR) condition that states that for some sequences A

n

and B

n

,

(10) A

n

(kG
n,f

k
Vn �B

n

)
d! Z, as n ! 1,

where Z is a Gumbel random variable; see, for example, [20]. Here both
A

n

and B

n

are typically of order
p
log n. However, this condition is often

di�cult to verify. Therefore, we propose to use a weaker condition (recall
the definition of the Lévy concentration function given in Definition 2.1):
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Condition H2 (Anti-concentration or Generalized SBR condition). For
any sequence ✏

n

of positive numbers, we have

(a) sup
f2F

p

✏n(|Gn,f

|) ! 0 if ✏
n

p

log n ! 0; or

(b) sup
f2F

p

✏n(|Gn,f

|)  C

1

✏

n

p

log n.

Note that Condition H2-(a) follows trivially from H2-(b). In turn, under
H1, Condition H2-(b) is a simple consequence of Corollary 2.1. Condition H2-
(a) (along with Conditions H1 and H3-H6 below) is su�cient to show that
the confidence bands are asymptotically honest but we will use Condition
H2-(b) to show that the confidence bands are asymptotically honest at a
polynomial rate. We refer to H2 as a generalized SBR condition because H2-
(a) holds if (10) holds with A

n

of order
p
log n. An advantage of Condition

H2 in comparison with the classical condition (10) is that H2 follows easily
from Corollary 2.1.

Let ↵ 2 (0, 1) be a fixed constant (confidence level). Recall that c
n,f

(↵) is
the (1�↵)-quantile of the random variable kG

n,f

k
Vn . If Gn,f

is pivotal, i.e.,
independent of f , c

n,f

(↵) = c

n

(↵) can be directly computed, at least nu-
merically. Otherwise, we have to approximate or estimate c

n,f

(↵). Let ĉ
n

(↵)
be an estimator or approximated value of c

n,f

(↵), where we assume that
ĉ

n

(↵) is nonnegative (which is reasonable since c
n,f

(↵) is nonnegative). The
following is concerned with a generic regularity condition on the accuracy
of the estimator ĉ

n

(↵).

Condition H3 (Estimation error of ĉ
n

(↵)). For some sequences ⌧
n

, ✏
2n

,
and �

2n

of positive numbers bounded from above by C

1

n

�c

1, we have

(a) sup
f2F

P
f

(ĉ
n

(↵) < c

n,f

(↵+ ⌧

n

)� ✏

2n

)  �

2n

; and

(b) sup
f2F

P
f

(ĉ
n

(↵) > c

n,f

(↵� ⌧

n

) + ✏

2n

)  �

2n

.

In the next subsection, we shall verify this condition for the estimator
ĉ

n

(↵) based upon the Gaussian multiplier bootstrap method. Importantly,
in this condition, we introduce the sequence ⌧

n

and compare ĉ

n

(↵) with
c

n,f

(↵ + ⌧

n

) and c

n,f

(↵ � ⌧

n

) instead of directly comparing it with c

n,f

(↵),
which considerably simplifies verification of this condition. With ⌧

n

= 0 for
all n, we would need to have an upper bound on c

n,f

(↵)� c

n,f

(↵+ ⌧

n

) and
c

n,f

(↵� ⌧

n

)� c

n,f

(↵), which might be di�cult to obtain in general.
The discussion in the introduction presumes that �

n,f

(x, l) were known,
but of course it has to be replaced by a suitable estimator in practice. Let



10 CHERNOZHUKOV CHETVERIKOV KATO

�̂

n

(x, l) be a generic estimator of �
n,f

(x, l). Without loss of generality, we
may assume that �̂

n

(x, l) is nonnegative. Condition H4 below states a high-
level assumption on the estimation error of �̂

n

(x, l). Verifying Condition H4
is rather standard for specific examples.

Condition H4 (Estimation error of �̂
n

(·)). For some sequences ✏
3n

and
�

3n

of positive numbers bounded from above by C

1

n

�c

1,

sup
f2F

P
f

✓

sup
v2Vn

�

�

�

�

�̂

n

(v)

�

n,f

(v)
� 1

�

�

�

�

> ✏

3n

◆

 �

3n

.

We now consider strategies to deal with the bias term. We consider two
possibilities. The first possibility is to control the bias explicitly, so that
the confidence band contains the bias controlling term. This construction is
inspired by [4]. The advantage of this construction is that it yields the confi-
dence band the length of which shrinks at the minimax optimal rate with no
additional inflating terms; see Theorem 4.1 below. The disadvantage, how-
ever, is that this construction yields a conservative confidence band in terms
of coverage probability. We consider this strategy in Conditions H5 and H6
and Theorem 3.1. The other possibility is to undersmooth, so that the bias is
asymptotically negligible, and hence the resulting confidence band contains
no bias controlling terms. This is an often used strategy; see, for example,
[20]. The advantage of this construction is that it sometimes yields an exact
(non-conservative) confidence band, so that the confidence band covers the
true function with probability 1�↵ asymptotically exactly; see Corollary 3.1
below. The disadvantages, however, are that this method yields the confi-
dence band that shrinks at the rate slightly slower than the minimax optimal
rate, and that is centered around a non-optimal estimator. We consider the
possibility of undersmoothing in Corollary 3.1 below. Note that Conditions
H5 and H6 below are not assumed in Corollary 3.1.

We now consider the first possibility, that is we assume that the smoothing
parameter l̂

n

:= l̂

n

(X
1

, . . . , X

n

), which is allowed to depend on the data, is
chosen so that the bias can be controlled su�ciently well. Specifically, for
all l 2 L

n

, define

�
n,f

(l) := sup
x2X

p
n|f(x)� E

f

[f̂
n

(x, l)]|
�

n

(x, l)
.

We assume that there exists a sequence of random variables c

0

n

, which are
known or can be calculated via simulations, that control�

n,f

(l̂
n

). In particu-
lar, the theory in the next subsection assumes that c0

n

is chosen as a multiple
of the estimated high quantile of the supremum of certain Gaussian process.
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Condition H5 (Bound on �
n,f

(l̂
n

)). For some sequence �

4n

of positive
numbers bounded from above by C

1

n

�c

1,

sup
f2F

P
f

⇣

�
n,f

(l̂
n

) > c

0

n

⌘

 �

4n

.

In turn, we assume that c0
n

can be controlled by u

n

p
log n where u

n

is a se-
quence of nonnegative positive numbers. Typically, u

n

is either a bounded or
slowly growing sequence; see, for example, our construction under primitive
conditions in the next section.

Condition H6 (Bound on c

0

n

). For some sequences �

5n

and u

n

of pos-
itive numbers where �

5n

is bounded from above by C

1

n

�c

1,

sup
f2F

P
f

⇣

c

0

n

> u

n

p

log n
⌘

 �

5n

.

When L
n

is a singleton, conditions like H5 and H6 have to be assumed.
When L

n

contains more than one element, that is we seek for an adaptive
procedure, verification of Conditions H5 and H6 is non-trivial. In Section 4,
we provide an example of such analysis.

We consider the confidence band C
n

= {C
n

(x) : x 2 X} defined by

(11) C
n

(x) :=
h

f̂

n

(x, l̂
n

)� s

n

(x, l̂
n

), f̂
n

(x, l̂
n

) + s

n

(x, l̂
n

)
i

,

where

(12) s

n

(x, l̂
n

) := (ĉ
n

(↵) + c

0

n

)�̂
n

(x, l̂
n

)/
p
n.

Define

✏̄

n,f

:= ✏

1n

+ ✏

2n

+ ✏

3n

(c
n,f

(↵) + u

n

p

log n),

�

n

:= �

1n

+ �

2n

+ �

3n

+ �

4n

+ �

5n

.

We are now in position to state the main result of this section. Recall the
definition of Lévy concentration function (Definition 2.1).

Theorem 3.1 (Honest generic confidence bands). Suppose that
Conditions H1 and H3-H6 are satisfied. Then

(13) inf
f2F

P
f

(f 2 C
n

) � (1� ↵)� �

n

� ⌧

n

� p

✏̄n,f (|Gn,f

|).
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If, in addition, Condition H2-(a) is satisfied and ✏

3n

u

n

p
log n  C

1

n

�c

1,
then

(14) lim inf
n!1

inf
f2F

P
f

(f 2 C
n

) � 1� ↵,

and if, in addition, Condition H2-(b) is satisfied, then

(15) inf
f2F

P
f

(f 2 C
n

) � 1� ↵� Cn

�c

,

where c and C are constants depending only on ↵, c
1

and C

1

.

Comment 3.1 (Honest confidence bands). Theorem 3.1 shows that the
confidence band defined in (11) and (12) is asymptotically honest with level
↵ for the class F . Moreover, under condition H2-(b), the coverage probability
can be smaller than 1�↵ only by a polynomially small term Cn

�c uniformly
over the class F . That is, in this case the confidence band is asymptotically
honest at a polynomial rate as defined in (1). ⌅

Comment 3.2 (Advantages of Theorem 3.1). An advantage of Theorem
3.1 is that it does not require the classical SBR condition that is often di�-
cult to obtain. Instead, it only requires a weaker generalized SBR condition
(H2), which allows us to control the e↵ect of estimation and approxima-
tion errors on the coverage probabilities. In the next subsection, we will
show that as long as the bias �

n,f

(l̂
n

) can be controlled, our theorem ap-

plies when f̂

n

(·) is defined using either convolution or projection kernels
under mild conditions, and, as far as projection kernels are concerned, it
covers estimators based on compactly supported wavelets, Battle-Lemarié
wavelets of any order as well as other non-wavelet projection kernels such as
those based on Legendre polynomials and Fourier series. When L

n

is a sin-
gleton, the SBR condition for compactly supported wavelets was obtained
in [5] under certain assumptions that can be verified numerically for any
given wavelet, for Battle-Lemarié wavelets of degree up-to 4 in [20], and for
Battle-Lemarié wavelets of degree higher than 4 in [17]. To the best of our
knowledge, the SBR condition for non-wavelet projection kernel functions
(such as those based on Legendre polynomials and Fourier series) has not
been obtained in the literature. In addition, and perhaps most importantly,
there are no results in the literature on the SBR condition when L

n

is not a
singleton. Finally, the SBR condition, being based on extreme value theory,
yields only a logarithmic (in n) rate of approximation of coverage proba-
bility; that is, this approach is asymptotically honest at a logarithmic rate.
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In contrast, our approach can lead to confidence bands that are asymptot-
ically honest at a polynomial rate; see (15). Note also that one can obtain
confidence bands that would be asymptotically honest at a polynomial rate
with level ↵ by considering confidence bands that are asymptotically honest
with level ↵0

< ↵ but such confidence bands would in general be wider than
those provided by our approach. ⌅

Comment 3.3. [On dependence of constants c, C on ↵ in (15)] We note
that (15) is a non-asymptotic bound. In addition, it immediately follows
from the proof of Theorem 3.1 that the constants c and C in (15) can be
chosen to be independent of ↵ (thus, they depend only on c

1

and C

1

) as
long as

(16) | log↵|  C

1

log n.

Therefore, (15) can be applied with ↵ = ↵

n

depending on n as long as (16)
holds (and Condition H3 is satisfied for the given sequence ↵ = ↵

n

). ⌅

Comment 3.4 (On the condition ✏

3n

u

n

p
log n  C

1

n

�c

1). The second
part of Theorem 3.1 requires the condition that ✏

3n

u

n

p
log n  C

1

n

�c

1 .
This is a very mild assumption. Indeed, under Condition H4, ✏

3n

 C

1

n

�c

1 ,
so that the assumption that ✏

3n

u

n

p
log n  C

1

n

�c

1 is met (with possibly
di↵erent constants c

1

and C

1

) as long as u

n

is bounded from above by a
slowly growing sequence, for example, u

n

 C

1

log n, which is typically the
case; see, for example, our construction in Section 4. ⌅

The confidence band defined in (11) and (12) is constructed so that the
bias �

n,f

(l̂
n

) is controlled explicitly via the random variable c

0

n

. Alterna-
tively, one can choose to undersmooth so that the bias is negligible asymp-
totically. To cover this possibility, we note that it follows from the proof of
Theorem 3.1 that if u

n

log n ! 0 or u
n

log n  C

1

n

�c

1 , then conclusions (14)
or (15) of Theorem 3.1 continue to hold, respectively, with s

n

(x, l̂
n

) in (12)
replaced by ĉ

n

(↵)�̂
n

(x, l̂
n

)/
p
n. Thus, obtaining the asymptotically honest

at a polynomial rate confidence band requires polynomial undersmoothing
(u

n

log n  C

1

n

�c

1) but, on the other hand, logarithmic undersmoothing
(u

n

log n ! 0) su�ces if polynomial rate is not required. Moreover, if L
n

is a singleton, it is possible to show that the confidence band is asymptot-
ically exact, with a polynomial convergence rate (21) under the condition
u

n

log n  C

1

n

�c

1 . We collect these observations into the following corollary,
the detailed proof of which can be found in the Supplemental Material.
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Corollary 3.1 (Honest generic confidence bands with under-
smoothing). Consider the confidence band eC

n

= {eC
n

(x) : x 2 X} defined
by

eC
n

(x) :=
h

f̂

n

(x, l̂
n

)� es

n

(x, l̂
n

), f̂
n

(x, l̂
n

) + es

n

(x, l̂
n

)
i

,

where
es

n

(x, l̂
n

) := ĉ

n

(↵)�̂
n

(x, l̂
n

)/
p
n.

Suppose that Conditions H1, H3, and H4 are satisfied. In addition, assume
that for some sequences �

6n

and u

n

of positive numbers,

(17) sup
f2F

P
f

⇣

�
n,f

(l̂
n

) > u

n

p

log n
⌘

 �

6n

,

where �

6n

is bounded from above by C

1

n

�c

1. If Condition H2-(a) holds and
u

n

log n ! 0, then

(18) lim inf
n!1

inf
f2F

P
f

(f 2 eC
n

) � 1� ↵.

If Condition H2-(b) holds and u

n

log n  C

1

n

�c

1, then

(19) inf
f2F

P
f

(f 2 eC
n

) � 1� ↵� Cn

�c

.

Moreover, assume in addition that L
n

is a singleton. If Condition H2-(a)
holds and u

n

log n ! 0, then

(20) lim
n!1

sup
f2F

�

�

�

P
f

(f 2 eC
n

)� (1� ↵)
�

�

�

= 0.

If Condition H2-(b) and u

n

log n  C

1

n

�c

1, then

(21) sup
f2F

�

�

�

P
f

(f 2 eC
n

)� (1� ↵)
�

�

�

 Cn

�c

.

Here c and C are constants depending only on ↵, c
1

and C

1

.

Comment 3.5 (Other methods for controlling bias term). In practice,
there can be other methods for controlling the bias term. For example, an
alternative approach is to estimate the bias function in a pointwise manner
and construct bias corrected confidence bands; see, for example, [45] in the
nonparametric regression case. A yet alternative approach to controlling the
bias based upon bootstrap in construction of confidence bands is proposed
and studied by the recent paper of [25]. ⌅
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Comment 3.6 (On dependence of constants c, C on ↵ in (19) and (21)).
Similar to Comment 3.3, we note that (19) and (21) are non-asymptotic
bounds, and it immediately follows from the proof of Corollary 3.1 that
these bounds apply with ↵ = ↵

n

depending on n and constants c and C

depending only on c

1

and C

1

as long as | log↵|  C

1

log n (in case of (19))
and | log(↵� ⌧

n

)|  C

1

log n (in case of (21)). ⌅

3.2. Verifying Conditions H1-H4 for confidence bands constructed using
common density estimators via Gaussian multiplier bootstrap. We now ar-
gue that when ĉ

n

(↵) is constructed via Gaussian multiplier bootstrap, Con-
ditions H1-H4 hold for common density estimators – specifically, both for
convolution and for projection kernel density estimators under mild assump-
tions on the kernel function.

Let {K
l

}
l2Ln be a family of kernel functions where K

l

: Rd ⇥ Rd ! R
and l is a smoothing parameter. We consider kernel density estimators of
the form

(22) f̂

n

(x, l) := E
n

[K
l

(X
i

, x)] =
1

n

n

X

i=1

K

l

(X
i

, x),

where x 2 X and l 2 L
n

. The variance of
p
nf̂

n

(x, l) is given by

�

2

n,f

(x, l) := E
f

[K
l

(X
1

, x)2]� (E
f

[K
l

(X
1

, x)])2.

We estimate �

2

n,f

(x, l) by

(23) �̂

2

n

(x, l) :=
1

n

n

X

i=1

K

l

(X
i

, x)2 � f̂

n

(x, l)2.

This is a sample analogue estimator.

Examples. Our general theory covers a wide class of kernel functions,
such as convolution, wavelet projection, and non-wavelet projection kernels.

(i) Convolution kernel. Consider a function K : R ! R. Let L
n

⇢ (0,1).
Then for x = (x

1

, . . . , x

d

)0 2 Rd, y = (y
1

, . . . , y

d

)0 2 Rd, and l 2 L
n

, the
convolution kernel function is defined by

(24) K

l

(y, x) := 2ld
Y

1md

K

⇣

2l(y
m

� x

m

)
⌘

.

Here 2�l is the bandwidth parameter.
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(ii) Wavelet projection kernel. Consider a father wavelet �, i.e., a function
� such that (a) {�(·�k) : k 2 Z} is an orthonormal system in L

2

(R), (b) the
spaces V

j

= {
P

k

c

k

�(2jx � k) :
P

k

c

2

k

< 1}, j = 0, 1, 2, . . . , are nested in
the sense that V

j

⇢ V

j

0 whenever j  j

0, and (c) [
j�0

V

j

is dense in L

2

(R).
Let L

n

⇢ N. Then for x = (x
1

, . . . , x

d

)0 2 Rd, y = (y
1

, . . . , y

d

)0 2 Rd, and
l 2 L

n

, the wavelet projection kernel function is defined by

(25) K

l

(y, x) := 2ld
X

k

1

,...,kd2Z

Y

1md

�(2ly
m

� k

m

)
Y

1md

�(2lx
m

� k

m

).

Here l is the resolution level. We refer to [13] and [26] as basic references on
wavelet theory.

(iii) Non-wavelet projection kernel. Let {'
j

: j = 1, . . . ,1} be an or-
thonormal basis of L

2

(X ), the space of square integrable (with respect
to Lebesgue measure) functions on X . Let L

n

⇢ (0,1). Then for x =
(x

1

, . . . , x

d

)0 2 Rd, y = (y
1

, . . . , y

d

)0 2 Rd, and l 2 L
n

, the non-wavelet
projection kernel function is defined by

(26) K

l

(y, x) :=

b2

ld
c

X

j=1

'

j

(y)'
j

(x),

where bac is the largest integer that is smaller than or equal to a. Here b2ldc
is the number of series (basis) terms used in the estimation. When d = 1
and X = [�1, 1], examples of orthonormal bases are Fourier basis

(27) {1, cos(⇡x), cos(2⇡x), . . . }

and Legendre polynomial basis

(28) {1, (3/2)1/2x, (5/8)1/2(3x2 � 1), . . . }.

When d > 1 and X = [�1, 1]d, one can take tensor products of bases for
d = 1. ⌅

We assume that the critical value ĉ

n

(↵) is obtained via the multiplier
bootstrap method:

Algorithm 1 (Gaussian multiplier bootstrap). Let ⇠
1

, . . . , ⇠

n

be in-
dependent N(0, 1) random variables that are independent of the data X

n

1

:=
{X

1

, . . . , X

n

}. Let ⇠

n

1

:= {⇠
1

, . . . , ⇠

n

}. For all x 2 X and l 2 L
n

, define a
Gaussian multiplier process:

(29) Ĝ
n

(x, l) := Ĝ
n

(Xn

1

, ⇠

n

1

)(x, l) :=
1p
n

n

X

i=1

⇠

i

K

l

(X
i

, x)� f̂

n

(x, l)

�̂

n

(x, l)
.
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Then the estimated critical value ĉ

n

(↵) is defined as

ĉ

n

(↵) = conditional (1� ↵)-quantile of kĜ
n

k
Vn given X

n

1

.

Gaussian multiplier bootstrap is a special case of a more general exchange-
able bootstrap; see, for example, [37]. We refer the reader to [22] for the first
systematic use of the Gaussian multipliers and to [29] and [23] for conditional
multiplier central limit theorems in the Donsker setting.

Let

K
n,f

:=

⇢

K

l

(·, x)
�

n,f

(x, l)
: (x, l) 2 X ⇥ L

n

�

denote the class of studentized kernel functions and define

�

n

= sup
f2F

sup
g2Kn,f

�

E
f

[g(X
1

)2]
�

1/2

.

Note that �
n

� 1.
For a given class G of measurable functions on a probability space (S,S, Q)

and ✏ > 0, the ✏-covering number of G with respect to the L
2

(Q)-semimetric
is denoted by N(G, L

2

(Q), ✏) (see Chapter 2 of [43] on details of covering
numbers). We will use the following definition of VC type classes:

Definition 3.1 (VC type class). Let G be a class of measurable func-
tions on a measurable space (S,S), and let b > 0, a � e, and v � 1 be some
constants. Then the class G is called VC(b, a, v) type class if it is uniformly
bounded in absolute value by b (i.e., sup

g2G

kgk
1

 b) and the covering
numbers of G satisfy

sup
Q

N(G, L
2

(Q), b⌧)  (a/⌧)v, 0 < ⌧ < 1,

where the supremum is taken over all finitely discrete probability measures
Q on (S,S).

Then we will assume the following condition.

Condition VC. There exist sequences b
n

> 0, a
n

� e, and v

n

� 1 such
that for every f 2 F , the class K

n,f

is VC(b
n

, a

n

, v

n

) type and pointwise
measurable.

We refer to Chapter 2.3 of [43] for the definition of pointwise measurable
classes of functions. We note that Condition VC is a mild assumption, which
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we verify for common constructions in Appendix F (as a part of proving
results for the next section; see Comment 3.5 below); see also Appendix I.

For some su�ciently large absolute constant A, take

K

n

:= Av

n

(log n _ log(a
n

b

n

/�

n

)) .

We will assume without loss of generality thatK
n

� 1 for all n. The following
theorem verifies Conditions H1-H4 with so defined �̂

2

n

(x, l) and ĉ

n

(↵) under
Condition VC, using the critical values constructed via Algorithm 1.

Theorem 3.2 (Conditions H1-H4 Hold for Our Construction).
Suppose that Condition VC is satisfied and there exist constants c

2

, C

2

> 0
such that b2

n

�

4

n

K

4

n

/n  C

2

n

�c

2. Then Conditions H1-H4, including both H2-
(a) and H2-(b), hold with some constants c

1

, C

1

> 0 that depend only on
c

2

, C

2

.

Comment 3.7 (Convolution and wavelet projection kernels). The as-
sumption of Theorem 3.2 holds for convolution and wavelet projection ker-
nels under mild conditions on the resolution level l. It follows from Lemma
F.2 in Appendix F that, under mild regularity conditions, for convolution
and wavelet projection kernel functions, �

n

 C and Condition VC holds
with b

n

 C2lmax,nd/2, a

n

 C, and v

n

 C for some C > 0 where
l

max,n

= sup{L
n

}. Hence, for these kernel functions, the assumption that
b

2

n

�

4

n

K

4

n

/n  C

2

n

�c

2 reduces to

2lmax,nd(log4 n)/n  C

2

n

�c

2

(with possibly di↵erent constants c
2

, C

2

), which is a mild requirement on the
bandwidth value or resolution level. This is a very mild assumption on the
possible resolution levels. Similar comments apply to non-wavelet projection
kernels with Fourier and Legendre polynomial bases. See Appendix I in the
Supplemental Material. ⌅

Comment 3.8 (On Condition H3). We note that under conditions of
Theorem 3.2, Condition H3 remains true with the same constants c

1

and
C

1

even if ↵ = ↵

n

depends on n (if we define c

n,f

(�) = 0 for � � 1 and
c

n,f

(�) = 1 for �  0). To see this, note that according to Theorem 3.2,
constants c

1

and C

1

in Condition H3 depend only on constants c

2

and C

2

,
and do not depend on ↵. ⌅
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4. Honest and Adaptive Confidence Bands in Hölder Classes.
In this section, we study the problem of constructing honest adaptive con-
fidence bands in Hölder smoothness classes. Recall that for t, L > 0, the
Hölder ball of densities with radius L and smoothness level t is defined by

⌃(t, L) :=
n

f : Rd ! R : f is a btc-times continuously di↵erentiable density,

kD↵

fk
1

 L, 8|↵|  btc, sup
x 6=y

|D↵

f(x)�D

↵

f(y)|
|x� y|t�btc

 L, 8|↵| = btc
o

,

where btc denotes the largest integer smaller than t, and for a multi-index
↵ = (↵

1

, . . . ,↵

d

) with |↵| = ↵

1

+ · · ·+↵

d

, D↵

f(x) := @

|↵|

f(x)/@x↵1

1

· · · @x↵d
d

[see, for example 42]. We assume that for some 0 < t  t̄ < 1 and L � 1,

(30) F ⇢ [
t2[t,

¯

t]

⌃(t, L),

and consider the confidence band C
n

= {C
n

(x) : x 2 X} of the form (11)
and (12), where X is a (suitable) compact set in Rd.

We begin by stating our assumptions. First, we restrict attention to ker-
nel density estimators f̂

n

based on either convolution or wavelet projection
kernel functions. Let r be an integer such that r � 2 and r > t̄.

Condition L1 (Density estimator). The density estimator f̂

n

is either
a convolution or wavelet projection kernel density estimator defined in (22),
(24), and (25). For convolution kernels, the function K : R ! R has compact
support and is of bounded variation, and moreover is such that

R

K(s)ds = 1
and

R

s

j

K(s)dx = 0 for j = 1, . . . , r � 1. For wavelet projection kernels,
the function � : R ! R is either a compactly supported father wavelet of
regularity r� 1 (that is, � is (r� 1)-times continuously di↵erentiable), or a
Battle-Lemarié wavelet of regularity r � 1.

The assumptions stated in Condition L1 are commonly used in the liter-
ature. See [16] for a more general class of convolution kernel functions that
would su�ce for our results. Details on compactly supported and Battle-
Lemarié wavelets can be found in Chapters 6 and 5.4 of [13], respectively.

It is known that if the function class F is su�ciently large (for example,
if F = ⌃(t, L) [ ⌃(t0, L) for t

0

> t), the construction of honest adaptive
confidence bands is not possible; see [33]. Therefore, following [20], we will
restrict the function class F ⇢ [

t2[t,

¯

t]

⌃(t, L) in a suitable way, as follows:

Condition L2 (Bias bounds). There exist constants l

0

, c

3

, C

3

> 0 such
that for every f 2 F ⇢ [

t2[t,

¯

t]

⌃(t, L), there exists t 2 [t, t̄] with

(31) c

3

2�lt  sup
x2X

|E
f

[f̂
n

(x, l)]� f(x)|  C

3

2�lt

,



20 CHERNOZHUKOV CHETVERIKOV KATO

for all l � l

0

.

This condition is inspired by the path-breaking work of [20] (see also [36]).
It can be interpreted as the requirement that the functions f in the class F
are “self-similar” in the sense that their regularity remains the same at large
and small scales; see also [4]. To put it di↵erently, “self-similarity” could be
understood as the requirement that the bias of the kernel approximation to
f with bandwidth 2�l remains approximately proportional to (2�l)t – i.e.
not much smaller or not much bigger – for all small values of the bandwidth
2�l.

It is useful to note that the upper bound in (31) holds for all f 2 ⌃(t, L)
(for su�ciently large C

3

) under Condition L1; see, for example, Theorem
9.3 in [26]. In addition, [20] showed that under Condition L1, the restriction
due to the lower bound in (31) is weak in the sense that the set of elements
of ⌃(t, L) for which the lower bound in (31) does not hold is “topologically
small”. Moreover, they showed that the minimax optimal rate of convergence
in the sup-norm over ⌃(t, L) coincide with that over the set of elements of
⌃(t, L) for which Condition L2 holds. We refer to [20] for a detailed and
deep discussion of these conditions and results.

We also note that, depending on the problem, construction of honest
adaptive confidence bands is often possible under somewhat weaker con-
ditions than that in L2. For example, if we are interested in the function
class ⌃(t, L) [ ⌃(t0, L) for some t

0

> t, [27] showed that it is necessary and
su�cient to exclude functions ⌃(t, L)\⌃(t, L, ⇢

n

) where ⌃(t, L, ⇢
n

) = {f 2
⌃(t, L) : inf

g2⌃(t

0
,L)

kg � fk
1

� ⇢

n

} and where ⇢

n

> 0 is allowed to con-
verge to zero as n increases but su�ciently slowly. If we are interested in
the function class [

t2[t,

¯

t]

⌃(t, L), [4] showed that (essentially) necessary and
su�cient condition can be written in the form of the bound from below
on the rate with which wavelet coe�cients of the density f are allowed to
decrease. Here we prefer to work with Condition L2 directly because it is
directly related to the properties of the estimator f̂

n

and does not require
any further specifications of the function class F .

In order to introduce the next condition, we need to observe that under
Condition L2, for every f 2 F , there exists a unique t 2 [t, t̄] satisfying
(31); indeed, if t

1

< t

2

, then for any c, C > 0, there exists l̄ such that
C2�lt

2

< c2�lt

1 for all l � l̄, so that for each f 2 F condition (31) can hold
for all l � l

0

for at most one value of t. This defines the map

(32) t : F ! [t, t̄], f 7! t(f).

The next condition states our assumptions on the candidate set L
n

of the
values of the smoothing parameter:
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Condition L3 (Candidate set). There exist constants c

4

, C

4

> 0 such
that for every f 2 F , there exists l 2 L

n

with

(33)

✓

c

4

log n

n

◆

1/(2t(f)+d)

 2�l 
✓

C

4

log n

n

◆

1/(2t(f)+d)

,

for the map t : f 7! t(f) defined in (32). In addition, the candidate set is
L
n

= [l
min,n

, l

max,n

] \ N.

This condition thus ensures via (33) that the candidate set L
n

contains
an appropriate value of the smoothing parameter that leads to the optimal
rate of convergence for every density f 2 F .

Finally, we will make the following mild condition:

Condition L4 (Density bounds). There exist constants �, f , f̄ > 0 such
that for all f 2 F ,

(34) f(x) � f for all x 2 X � and f(x)  f̄ for all x 2 Rd

,

where X � is the �-enlargement of X , i.e., X � = {x 2 Rd : inf
y2X

|x�y|  �}.

We now discuss how we choose various parameters in the confidence band
C
n

. In the previous section, we have shown how to obtain honest confidence
bands as long as we can control the bias �

n,f

(l̂
n

) appropriately. So to con-
struct honest adaptive confidence bands, we seek a method to choose the
smoothing parameter l̂

n

2 L
n

so that the bias �
n,f

(l̂
n

) can be controlled
and, at the same time, the confidence band C

n

is adaptive.
Let V̄

n

:= {(x, l, l0) : x 2 X , l, l

0 2 L
n

, l < l

0}, and for (x, l, l0) 2 V̄
n

, denote

e�

n

(x, l, l0) :=

 

1

n

n

X

i=1

(K
l

(X
i

, x)�K

l

0(X
i

, x))2 � (f̂
n

(x, l)� f̂

n

(x, l0))2
!

1/2

.

Also, for some small c
�

> 0, let

�̂

n

(x, l, l0) := (c
�

�̂

n

(x, l0)) _ e�
n

(x, l, l0)

denote the truncated version of e�
n

(x, l, l0). In practice, we suggest setting
c

�

= 0.5(1 � 2�d/2) (the constant c
�

is chosen so that with probability ap-
proaching one, �̂

n

(x, l, l0) = e�

n

(x, l, l0) for all (x, l, l0) 2 V̄
n

for convolution
kernel estimators, and for all (x, l, l0) 2 V̄

n

with l  l

0 � s for wavelet pro-
jection kernel estimators where s is some constant; see Lemmas F.2 and F.4
in the Supplemental Material).
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There exist several techniques in the literature to construct l̂

n

so that
�

n,f

(l̂
n

) can be controlled and the confidence band C
n

is adaptive; see, for
example, [35] for a thorough introduction. One of the most important such
techniques is the Lepski method (see [30] for a detailed explanation of the
method). In this paper, we introduce a new implementation of the Lepski
method, which we refer to as a multiplier bootstrap implementation of the
Lepski method.

Algorithm 2 (Multiplier bootstrap implementation of the Lepski
method). Let �

n

be a sequence of positive numbers converging to zero. Let
⇠

1

, . . . , ⇠

n

be independent N(0, 1) random variables that are independent of
the data X

n

1

:= {X
1

, . . . , X

n

}. Let ⇠n
1

:= (⇠
1

, . . . , ⇠

n

). For all (x, l, l0) 2 V̄
n

,
define a Gaussian multiplier process:

eG
n

(x, l, l0) := eG
n

(Xn

1

, ⇠

n

1

)(x, l, l0)

:=
1p
n

n

X

i=1

⇠

i

(K
l

(X
i

, x)�K

l

0(X
i

, x))� (f̂
n

(x, l)� f̂

n

(x, l0))

�̂

n

(x, l, l0)
.

Also, define

ec

n

(�
n

) = conditional (1� �

n

)-quantile of keG
n

k
¯

Vn
given X

n

1

.

Morever, for all l 2 L
n

, let

L
n,l

:= {l0 2 L
n

: l0 > l}.

Finally, for some constant q > 1, which is independent of n, define a Lepski-
type estimator

(35) l̂

n

:= inf

(

l 2 L
n

: sup
l

0
2Ln,l

sup
x2X

p
n|f̂

n

(x, l)� f̂

n

(x, l0)|
�̂

n

(x, l, l0)
 qec

n

(�
n

)

)

.

Comment 4.1 (On our implementation of Lepski’s method). We refer
to (35) as a (Gaussian) multiplier bootstrap implementation of the Lep-
ski method because ec

n

(�
n

) is obtained as the conditional (1 � �

n

)-quantile
of keGk

¯

Vn
given X

n

1

. Previous literature on the Lepski method used Tala-
grand’s inequality combined with some bounds on expected suprema of cer-
tain empirical processes (obtained via symmetrization and entropy methods)
to choose the threshold level for the estimator (the right hand side of the
inequality in (35)); see [19] and [21]. Because of the one-sided nature of
the aforementioned inequalities, however, it was argued that the resulting
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threshold turned out to be too high leading to limited applicability of the
estimator in small and moderate samples. In contrast, an advantage of our
construction is that we use qec

n

(�
n

) as a threshold level, which is essentially
the minimal possible value of the threshold that su�ces for good properties
of the estimator. ⌅

Once we have l̂

n

, to define the confidence band C
n

, we need to specify
�̂

n

(x, l), ĉ
n

(↵), and c

0

n

. We assume that �̂

n

(x, l) is obtained via (23) and
ĉ

n

(↵) via Algorithm 1. To specify c

0

n

, let u0
n

be a sequence of positive numbers
such that u

0

n

is su�ciently large for large n. Specifically, for large n, u0
n

is assumed to be larger than some constant C(F) depending only on the
function class F . Set

c

0

n

:= u

0

n

ec

n

(�
n

).

Comment 4.2 (On the choice of �
n

, q and u

0

n

). As follows from Lemmas
F.7 and F.8, the parameter �

n

appearing in (35) determines the probability
that the estimator l̂

n

fails to select an appropriate value of the smoothing pa-
rameter. Thus, in practice �

n

should be chosen small relative to the nominal
coverage level ↵. Also, for fixed n and �

n

, the choice of the parameters q and
u

0

n

depends on the trade-o↵ between the error in the coverage probability
and length of the confidence bands: smaller values of q yield higher values of
l̂

n

leading to undersmoothing and good control of the coverage probability;
larger values of q yield lower values of l̂

n

leading to oversmoothing and nar-
row confidence bands; similarly, larger values of u0

n

yield wider confidence
bands but better control of the coverage probability. Finding the optimal
value of q is a di�cult theoretical problem and is beyond the scope of the
paper. Also, in principle, it is possible to trace out the value C(F) from the
proof of the theorem below and set u0

n

= C(F). However, since the function
class F is typically unknown in practice, u0

n

can be set as a slowly growing
sequence of positive numbers. In our small-scale simulation study presented
in Section J of the Supplemental Material, we find that the values q = 1.1
and u

0

n

= 0.5 strike a good balance between coverage probability control and
the length of the confidence bands in one-dimensional examples. We should
note however that the empirical researchers should always test out di↵erent
values of q and u

0

n

in Monte Carlo examples that mimic the data at hand.⌅

The following theorem shows that the confidence band C
n

defined in this
way is honest and adaptive for F :

Theorem 4.1 (Honest and Adaptive Confidence Bands via Our
Method). Suppose that Conditions L1-L4 are satisfied. In addition, sup-
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pose that there exist constants c

5

, C

5

> 0 such that (i) 2lmax,nd(log4 n)/n 
C

5

n

�c

5, (ii) l
min,n

� c

5

log n, (iii) �
n

 C

5

n

�c

5, (iv) | log �
n

|  C

5

log n, (v)
u

0

n

� C(F), and (vi) u

0

n

 C

5

log n. Then Conditions H1-H6 in Section 3
and (15) in Theorem 3.1 hold and

(36) sup
f2F

P
f

✓

sup
x2X

�(C
n

(x)) > C(1 + u

0

n

)r
n

(t(f))

◆

 Cn

�c

,

where �(·) denotes the Lebesgue measure on R and r

n

(t) := (log n/n)t/(2t+d).
Here the constants c, C > 0 depend only on c

5

, C

5

, the constants that appear
in Conditions L1-L4, c

�

, ↵, and the function K (when convolution kernels
are used) or the father wavelet � (when wavelet projection kernels are used).
Moreover,

(37) sup
f2F\⌃(t,L)

P
f

✓

sup
x2X

�(C
n

(x)) > C(1 + u

0

n

)r
n

(t)

◆

 Cn

�c

,

with the same constants c, C as those in (36).

Comment 4.3 (Honest and adaptive confidence bands). Equation (15)
implies that the confidence band C

n

constructed above is asymptotically
honest at a polynomial rate for the class F . In addition, recall that r

n

(t)
is the minimax optimal rate of convergence in the sup-metric for the class
F \ ⌃(t, L); see [20]. Therefore, (37) implies that the confidence band C

n

is
adaptive whenever u0

n

is bounded or almost adaptive if u0
n

is slowly growing;
see discussion in front of Theorem 4.1 on selecting u

0

n

. ⌅

Comment 4.4 (On inflating terms). When u

0

n

is bounded, the rate of
convergence of the length of the confidence band to zero (1 + u

0

n

)r
n

(t) co-
incides with the minimax optimal rate of estimation of over ⌃(t, L) with
no additional inflating terms. This shows an advantage of the method of
constructing confidence bands based on the explicit control of the bias term
in comparison with the method based on undersmoothing where inflating
terms seem to be necessary. This type of construction is inspired by the
interesting ideas in [4]. ⌅

Comment 4.5 (Extensions). Finally, we note that the proof of (15) and
(36) in Theorem 4.1 did not use (30) directly. The proof only relies on Con-
ditions L1-L4 whereas (30) served to motivate these conditions. Therefore,
results (15) and (36) of Theorem 4.1 apply more generally as long as Con-
ditions L1-L4 hold, not just for Hölder smoothness classes. ⌅
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APPENDIX A: COUPLING INEQUALITIES FOR SUPREMA OF
EMPIRICAL AND RELATED PROCESSES

The purpose of this section is to provide two coupling inequalities based
on Slepian-Stein methods that are useful for the analysis of uniform con-
fidence bands. The first inequality is concerned with suprema of empirical
processes and is proven in Corollary 2.2 in [7]. The second inequality is
new, is concerned with suprema of Gaussian multiplier processes, and will
be obtained from a Gaussian comparison theorem derived in [8].

Let X

1

, . . . , X

n

be i.i.d. random variables taking values in a measurable
space (S,S). Let G be a pointwise-measurable VC(b, a, v) type function class
for some b > 0, a � e, and v � 1 (the definition of VC type classes is given in
Section 3). Let �2

> 0 be any constant such that sup
g2G

E[g(X
1

)2]  �

2 
b

2. Define the empirical process

G
n

(g) :=
1p
n

n

X

i=1

(g(X
i

)� E[g(X
1

)]) , g 2 G,

and let
W

n

:= kG
n

k
G

:= sup
g2G

|G
n

(g)|

denote the supremum of the empirical process. Note that W

n

is a well-
defined random variable since G is assumed to be pointwise-measurable. Let
B = {B(g) : g 2 G} be a tight Gaussian random element in `

1(F) with
mean zero and covariance function

E[B(g
1

)B(g
2

)] = E[g
1

(X
1

)g
2

(X
1

)]� E[g
1

(X
1

)]E[g
2

(X
1

)],

for all g
1

, g

2

2 G. It is well known that such a process exists under the
VC type assumption [see 43, p.100-101]. Finally, for some su�ciently large
absolute constant A, let

K

n

:= Av(log n _ log(ab/�)).

In particular, we will assume that K

n

� 1. The following theorem shows
that W

n

can be well approximated by the supremum of the corresponding
Gaussian process B under mild conditions on b, �, and K

n

. The proof of
this theorem can be found in Corollary 2.2 in [7]

Theorem A.1 (Slepian-Stein type coupling for suprema of empirical pro-
cesses). Consider the setting specified above. Then for every � 2 (0, 1) one
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can construct on an enriched probability space a random variable W

0 such

that (i) W

0

d

= kBk
G

and (ii)

P

 

|W
n

�W

0| > bK

n

(�n)1/2
+

(b�)1/2K3/4

n

�

1/2

n

1/4

+
b

1/3

�

2/3

K

2/3

n

�

1/3

n

1/6

!

 A

0

✓

� +
log n

n

◆

,

where A

0 is an absolute constant.

Comment A.1 (Comparison with the Hungarian couplings). The main
advantage of the coupling provided in this theorem in comparison with,
say, Hungarian coupling [28], which can be used to derive a similar result,
is that our coupling does not depend on total variation norm of functions
g 2 G leading to sharper inequalities than those obtained via Hungarian
coupling when the function class G consists, for example, of Fourier series
or Legendre polynomials; see [7]. In addition, our coupling does not impose
any side restrictions. In particular, it does not require bounded support of
X and allows for point masses on the support. In addition, if the density of
X exists, our coupling does not assume that this density is bounded away
from zero on the support. See, for example, [38] for the construction of the
Hungarian coupling and the use of aforementioned conditions. ⌅

Let ⇠
1

, . . . , ⇠

n

be independent N(0, 1) random variables independent of
X

n

1

:= {X
1

, . . . , X

n

}, and let ⇠n
1

:= {⇠
1

, . . . , ⇠

n

}. We assume that random
variables X

1

, . . . , X

n

, ⇠

1

, . . . , ⇠

n

are defined as coordinate projections from
the product probability space. Define the Gaussian multiplier process

G̃
n

(g) := G̃
n

(Xn

1

, ⇠

n

1

)(g) :=
1p
n

n

X

i=1

⇠

i

(g(X
i

)� E
n

[g(X
i

)]), g 2 G,

and for xn
1

2 S

n, let W̃
n

(xn
1

) := kG̃
n

(xn
1

, ⇠

n

1

)k
G

denote the supremum of this
process calculated for fixed X

n

1

= x

n

1

. Note that W̃

n

(xn
1

) is a well-defined
random variable. In addition, let

 

n

:=

r

�

2

K

n

n

+

✓

b

2

�

2

K

3

n

n

◆

1/4

and �
n

(�) :=
1

�

✓

b

2

�

2

K

3

n

n

◆

1/4

+
1

n

.

The following theorem shows that W̃
n

(Xn

1

) can be well approximated with
high probability by the supremum of the Gaussian process B under mild
conditions on b, �, and K

n

. The proof of this theorem can be found in the
Supplemental Material.
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Theorem A.2 (Slepian-Stein type coupling for suprema of conditional
multiplier processes). Consider the setting specified above. Suppose that
b

2

K

n

 n�

2. Then for every � > 0, there exists a set S
n,0

2 Sn such that
P(Xn

1

2 S

n,0

) � 1 � 3/n and for every x

n

1

2 S

n,0

one can construct on an

enriched probability space a random variable W

0 such that (i) W

0

d

= kBk
G

and (ii)
P(|W̃

n

(xn
1

)�W

0| > ( 
n

+ �))  A

00

�

n

(�),

where A

00 is an absolute constant.

Comment A.2 (On the use of Slepian-Stein couplings). Theorems A.1
and A.2 combined with anti-concentration inequalities (Theorem 2.1 and
Corollary 2.1) can be used to prove validity of Gaussian multiplier bootstrap
for approximating distributions of suprema of empirical processes of VC
type function classes without weak convergence arguments. This allows us
to cover cases where complexity of the function class G is increasing with
n, which is typically the case in nonparametric problems in general and in
confidence band construction in particular. Moreover, approximation error
can be shown to be polynomially (in n) small under mild conditions. ⌅

APPENDIX B: SOME TECHNICAL TOOLS

Theorem B.1. Let ⇠
1

, . . . , ⇠

n

be i.i.d. random variables taking values in
a measurable space (S,S). Suppose that G is a nonempty, pointwise mea-
surable class of functions on S uniformly bounded by a constant b such that
there exist constants a � e and v > 1 with sup

Q

N(G, L
2

(Q), b✏)  (a/✏)v

for all 0 < ✏  1. Let �2 be a constant such that sup
g2G

Var(g)  �

2  b

2.
If b2v log(ab/�)  n�

2, then for all t  n�

2

/b

2,

P

"

sup
g2G

�

�

�

�

�

n

X

i=1

{g(⇠
i

)� E[g(⇠
1

)]}

�

�

�

�

�

> A

s

n�

2

⇢

t _
✓

v log
ab

�

◆�

#

 e

�t

,

where A > 0 is an absolute constant.

Proof. This version of Talagrand’s inequality follows from Theorem 3
in [34] combined with a bound on expected values of suprema of empirical
processes derived in [15]. See also [41] for the original version of Talagrand’s
inequality. ⌅

Proofs of the following two lemmas can be found in the Supplemental
Material.
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Lemma B.1. Let Y := {Y (t) : t 2 T} be a separable, centered Gaussian
process such that E[Y (t)2]  1 for all t 2 T . Let c(↵) denote the (1 � ↵)-
quantile of kY k

T

. Assume that E[kY k
T

] < 1. Then c(↵)  E[kY k
T

] +
p

2| log↵| and c(↵)  M(kY k
T

)+
p

2| log↵| for all ↵ 2 (0, 1) where M(kY k
T

)
is the median of kY k

T

.

Lemma B.2. Let G
1

and G
2

be VC(b
1

, a

1

, v

1

) and VC(b
2

, a

2

, v

2

) type
classes, respectively, on a measurable space (S,S). Let a = (av1

1

a

v

2

2

)1/(v1+v

2

).
Then (i) G

1

· G
2

= {g
1

· g
2

: g
1

2 G
1

, g

2

2 G
2

} is VC(b
1

b

2

, 2a, v
1

+ v

2

) type
class, (ii) G

1

� G
2

= {g
1

� g

2

: g
1

2 G
1

, g

2

2 G
2

} is VC(b
1

+ b

2

, a, v

1

+ v

2

)
type class, and (iii) G2

1

= {g2
1

: g
1

2 G
1

} is VC(b2
1

, 2a
1

, v

1

) type class.

APPENDIX C: PROOFS FOR SECTION 2

Proof of Theorem 2.1. The fact that a(X) < 1 follows from Landau-
Shepp-Fernique theorem (see, for example, Lemma 2.2.5 in [14]). In addition,
since sup

t2T

X

t

� X

t

0

for any fixed t

0

2 T , a(X) � E[X
t

0

] = 0. We now
prove (7).

Since the Gaussian process X = (X
t

)
t2T

is separable, there exists a se-
quence of finite subsets T

n

⇢ T such that Z
n

:= max
t2Tn Xt

! sup
t2T

X

t

=:
Z a.s. as n ! 1. Fix any x 2 R. Since |Z

n

� x| ! |Z � x| a.s. and a.s.
convergence implies weak convergence, there exists an at most countable
subset N

x

of R such that for all ✏ 2 R\N
x

,

lim
n!1

P(|Z
n

� x|  ✏) = P(|Z � x|  ✏).

But by Theorem 3 in [8],

P(|Z
n

� x|  ✏)  4✏(E[max
t2Tn

X

t

] + 1)  4✏(a(X) + 1),

for all ✏ � 0. Therefore,

(38) P(|Z � x|  ✏)  4✏(a(X) + 1),

for all ✏ 2 R\N
x

. By right continuity of P(|Z � x|  ·), it follows that (38)
holds for all ✏ � 0. Since x 2 R is arbitrary, we obtain (7). ⌅

Proof of Corollary 2.1. Let e

T be a set such that there exists a bi-
jective mapping from e

T to T . Denote this mapping h : e

T ! T . Define the
process e

X = ( eX
t

)
t2T[

e
T

by letting e

X

t

= X

t

for t 2 T and e

X

t

= �X

h(t)

for

t 2 e

T . Then p

✏

(|X|) = p

✏

( eX) and a( eX) = a(|X|). Hence, by Theorem 2.1,

p

✏

(|X|) = p

✏

( eX)  4✏(a( eX) + 1) = 4✏(a(|X|) + 1).

The asserted claim follows. ⌅
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APPENDIX D: PROOFS FOR SECTION 3

Proof of Theorem 3.1. Pick any f 2 F . By the triangle inequality,
we have for any x 2 X ,

p
n|f̂

n

(x, l̂
n

)� f(x)|
�̂

n

(x, l̂
n

)


⇣

|Z
n,f
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)|+�
n,f
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n

)
⌘

�

n,f
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n

)

�̂

n

(x, l̂
n

)
,

by which we have

P
f
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f

(|Z
n,f
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(↵) + c

0

n

)�̂
n

(x, l̂
n

)/�
n,f

(x, l̂
n
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x2X
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n
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0
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)(1� ✏

3n

))� �
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f

(sup
x2X
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(↵)(1� ✏

3n

)� c
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n

✏
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� P
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n,f

k
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n
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3n

)� c

0

n
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(kZ
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k
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(↵)(1� ✏

3n

)� u

n

✏

3n

p

log n)� �

3n

� �

4n

� �

5n

,

where the third line follows from Condition H4, the fourth line from Con-
dition H5, the fifth line from the inequality sup

x2X

|Z
n,f

(x, l̂
n

)|  kZ
n,f

k
Vn ,

and the sixth line from Condition H6. Further, the probability in the last
line above equals (recall that W

n,f

= kZ
n,f

k
Vn)

P
f

(W
n,f

 ĉ

n

(↵)(1� ✏

3n

)� u

n

✏

3n

p

log n)

� P
f

(W
n,f

 c

n,f

(↵+ ⌧

n

)(1� ✏

3n

)� ✏

2n

� u

n

✏

3n

p

log n)� �

2n

,(39)

where (39) follows from Condition H3. Now, the probability in (39) is bounded
from below by Condition H1 by

P
f

(W 0

n,f

 c

n,f

(↵+ ⌧

n

)(1� ✏

3n

)� ✏

1n

� ✏

2n

� u

n

✏

3n

p

log n)� �

1n

� P
f

(W 0

n,f
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n,f

(↵+ ⌧

n

))� p

✏̄n(|Gn,f

|)� �

1n

(40)

� 1� ↵� ⌧

n

� p

✏̄n(|Gn,f

|)� �

1n

,(41)

where (40) follows from the definition of the Lévy concentration function
p

✏̄n(|Gn,f

|) given that ✏̄
n

= ✏

1n

+✏

2n

+✏

3n

(c
n,f

(↵)+u

n

p
log n) and (41) follows

since c

n,f

(·) is the quantile function of W 0

n,f

. Combining these inequalities
leads to (13).

To prove (14) and (15), note that �

n

 Cn

�c and ⌧

n

 Cn

�c by Con-
ditions H1 and H3-H6. Further, it follows from Lemma B.1 that c

n,f

(↵) 
E[kG

n,f

k
Vn ]+(2| log↵|)1/2  C

p
log n, and so ✏

3n

u

n

p
log n  C

1

n

�c

1 implies
that ✏̄

n,f

 Cn

�c. Therefore, (14) and (15) follow from (13) and Condition
H2. ⌅
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Proof of Corollary 3.1. The proof is similar to that of Theorem 3.1.
The details are provided in the Supplemental Material. ⌅

Proof of Theorem 3.2. In this proof, c, C > 0 are constants that de-
pend only on c

2

, C

2

but their values can change at each appearance.
Fix any f 2 F . Let G

n,f

= {G
n,f

(v) : v 2 V
n

} be a tight Gaussian random
element in `

1(V
n

) with mean zero and the same covariance function as that
of Z

n,f

. Since b2
n

�

4

n

K

4

n

/n  C

2

n

�c

2 , it follows from Theorem A.1 that we can

construct a random variable W

0

n,f

such that W 0

n,f

d

= kG
n,f

k
Vn and (9) holds

with some ✏
1n

and �

1n

bounded from above by Cn

�c. In addition, inequality
E[kG

n,f

k
Vn ]  C

p
log n follows from Corollary 2.2.8 in [43]. Condition H1

follows. Given Condition H1, Condition H2-(b) follows from Corollary 2.1,
and Condition H2-(a) follows from H2-(b).

Consider Condition H4. There exists n
0

such that C
2

n

�c

2

0

 1. It su�ces
to verify the condition only for n � n

0

. Note that

(42)
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�

�̂
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.

Define K2

n,f

:= {g2 : g 2 K
n,f

}. Given the definition of �̂
n

(x, l), the right
hand side of (42) is bounded by

(43) sup
g2K

2

n,f

|E
n

[g(X
i

)]� E[g(X
1
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�E
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It follows from Lemma B.2 that K2
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n
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n
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n
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,
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n
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n
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2
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.

Therefore, Talagrand’s inequality (Theorem B.1) with t = log n, which
can be applied because b
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so that another application of Talagrand’s inequality yields
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and hence is VC(b
n
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) type class by Lemma B.2. In addition,
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where in the last line we used b
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Combining this bound with the Borell-Sudakov-Tsirel’son inequality, and
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of values X
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1
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APPENDIX E: PROOF OF COROLLARY 3.1
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where (49) follows by the triangle inequality, (50) by Condition H4, (51) by
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where (53) follows by Condition H3, (54) by Condition H1, and (55) by the
definition of the Lévy concentration function pe✏n(|Gn,f

|). As in the proof of
Theorem 3.1, c
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This completes the proof of the corollary. ⌅

APPENDIX F: PROOFS FOR SECTION 4

In this section, we prove Theorem 4.1. Here constants c, C > 0 depend
only on the constants appearing in the statement of Theorem 4.1 but their
values may change at each appearance. Also, in the proof we will assume
that l

max,n

� l
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! 1. Otherwise, the results of the theorem follow from
Lemma F.2 below and Theorems 3.2 and 3.1.
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The proof is long, so we start with several preliminary lemmas.
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it su�ces to consider the case d = 1. Then (57) becomes
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Since the function
P

k2Z �(· � k)2 has period 1, it su�ces to consider x 2
[0, 1]. To prove the lower bound, note that it follows from Lemma 8.6 in [7]
that the series

P

k2Z �(·�k)2 converges uniformly, and hence
P

k2Z �(·�k)2

is continuous (the functions
P

k:|k|m

�(· � k)2 are continuous for all m by
our assumptions on the regularity of the farther wavelet). Further, it follows
from Corollary 8.1 in [7] that

P

k2Z �(· � k) is identically equal to some
non-zero constant, so that

P

k2Z �(x � k)2 > 0 for all x 2 [0, 1]. Since the
minimum of a continuous function on a compact set is achieved, the lower
bound follows. The upper bound follows by noting that both for compactly
supported wavelets and for Battle-Lemarié wavelets, |�(x)|  C exp(�c|x|)
for all x 2 R. The asserted claim follows. ⌅

Lemma F.2. Under the assumptions of Theorem 4.1, there exists n
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Here n
0

, s, �, and �̄ depend only on the constants appearing in the statement
of Theorem 4.1.

Proof of Lemma F.2. For simplicity of notation, we assume that d = 1
in this proof. The case d > 1 follows similarly. Note that we have

(61) 2�l|K
l

(y, x)|  C exp(�2lc|y � x|),

for all l 2 L
n

and x, y 2 X . Indeed, for convolution kernels and compactly
supported wavelets, this follows from compactness of the support of K(·)
and �(·), respectively, and for Battle-Lemarié wavelets, this follows from
Lemma 8.6 in [7].

Further, note that under our conditions,

E
f
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l

(X
1

, x)] ! f(x)
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as n ! 1 uniformly over all f 2 F , l 2 L
n

, and x 2 X since l

min,n

! 1.
In addition, it follows from (61) that under our conditions
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kernels. Moreover, for wavelet projection kernels,
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line follows from the argument above and the third line from orthonormality
in L

2(R) of the system {�(· � k), k 2 Z}. Since f  f(x)  f̄ for all
x 2 X and (57) holds under our conditions, (58) follows from noting that
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follows from (56) and (58), and the upper bound in (59) as well as (60)
follow from (58) by noting that
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Inequalities (58) also imply that �
n

 C.
Further, when d = 1, the function class K̄d := {2�ld

K

l

(·, x) : l 2 N, x 2
Rd} is VC(b, a, v) type for some b, a, and v independent of n by discussion
on p. 911 in [3] (for convolution kernels), Lemma 2 in [4] (for compactly sup-
ported wavelets), and Lemma 2 in [5] (for Battle-Lemarié wavelets). When
d > 1, K̄d is VC(b, a, v) type class (with possibly di↵erent b, a, and v) by
Lemma B.2. Now, another application of Lemma B.2 shows that K

n,f

is
VC(b

n

, a

n

, v

n

) type class where b

n

 C2lmax,nd/2, a
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 C. This
completes the proof of the lemma. ⌅



ANTI-CONCENTRATION AND CONFIDENCE BANDS 5

Lemma F.3. Under the assumptions of Theorem 4.1, Conditions H1-H4
are satisfied.

Proof of Lemma F.3. The claim follows from combining Lemma F.2
and Theorem 3.2. ⌅

Lemma F.4. Under the assumptions of Theorem 4.1, there exist se-
quences ⇣
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and ⇣
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�c such
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Proof of Lemma F.4. The proof follows from arguments similar to
those used to verify Condition H4 in the proof of Theorem 3.2. ⌅

Lemma F.5. Under the assumptions of Theorem 4.1, there exist c > 0
and C > 0 such that for all f 2 F ,
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Proof of Lemma F.5. Since we assume that l
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! 1, for
su�ciently large n, there will be l, l
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Now let us verify the inequality
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Also, for (x, l, l0) 2 V̄
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Lemma F.6. Under the assumptions of Theorem 4.1, there exist c > 0
and C > 0 such that

sup
f2F

P
f

 

sup
(x,l,l

0
)2

¯

Vn(s)

p
n|B

n

(x, l, l0)|
�̂

n

(x, l, l0)
� ec

n

(�
n

)

!

 �

n

+ Cn

�c

where

B

n

(x, l, l0) :=
⇣

f̂

n

(x, l)� E
f

[f̂
n

(x, l)]
⌘

�
⇣

f̂

n

(x, l0)� E
f

[f̂
n

(x, l0)]
⌘

and
V̄
n

(s) := {(x, l, l0) : x 2 X , l, l

0 2 L
n

, l  l

0 � s}

where s appears in Lemma F.2.

Proof of Lemma F.6. Note that ec
n

(�
n

) is not smaller than conditional
(1 � �

n

)-quantile of keG
n

k
¯

Vn(s)
given X

n

1

. Therefore, the proof follows from
arguments similar to those used in the proof of Theorem 3.1 since for
(x, l, l0) 2 V̄

n

(s), �
n,f

(x, l, l0) = (nVar
f

(f̂
n

(x, l) � f̂

n

(x, l0)))1/2 (truncation
is not binding). ⌅
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Proof of Theorem 4.1. First, we note that for any t

0

> t(f), f /2
⌃(t0, L); otherwise, we would have that sup

x2X

|E
f

[f̂
n

(x, l)]�f(x)|  C2�lt

0

contradicting the lower bound in (31). Therefore, (36) implies (37), and so
it su�ces to verify Conditions H1-H6 and to prove (15) and (36).

By Lemma F.3, we can and will assume that Conditions H1-H4 hold. In
addition, Condition H6 with some u

n

satisfying cu

0

n

 u

n

 Cu

0

n

follows
from Lemma F.5.

We now show that under our assumptions, Conditions H5 is also satisfied.
Let �

4n

= 1 for n  max(n
0

, n

1

), where n
0

appears in Lemma F.2, and n

1

is
chosen so that for all n > n

1

and l 2 L
n

, l � l

0

for l
0

appearing in Condition
L2, so that Condition H5 holds for these n’s with C

1

su�ciently large and
c

1

su�ciently small. Therefore, it su�ces to consider n > max(n
0

, n

1

).
Let t := t(f) and letM

1

, andM

2

be such thatM
1

(c
3

2st/C
3

�1) � 2(q+1),
and M

2

�̄/�  (q�1)/4 where s, �, and �̄ are introduced in Lemma F.2, and
q appears in (35) (by increasing s if necessary, without loss of generality, we
assume that c

3

2st > C

3

). For M > 0, define

(63) l

?(M) := inf
n

l 2 L
n

: C
3

2�lt

p
n  Mec

n

(�
n

)�̄2ld/2
o

,

and let l?
1

:= l

?(M
1

) and l

?

2

:= l

?(M
2

). We will invoke the following lemmas.

Lemma F.7. There exist c, C > 0 such that for all f 2 F ,

�

1n

:= P
f

(l̂
n

< l

?

1

� s)  Cn

�c

.

Proof of Lemma F.7. Define L1

n

:= {l 2 L
n

: l < l

?

1

� s}. If L1

n

is
empty, we are done. So, assume that L1

n

is not empty. Let l0 := l

?

1

� 1. Note
that l

0 2 L
n

by Condition L3. Then for any l 2 L1

n

, by Condition L2 and
the triangle inequality,

c

3

2�lt  sup
x2X

|E
f

[f̂
n

(x, l)]� f(x)|

 sup
x2X

|B
n

(x, l, l0)|+ sup
x2X

|f̂
n

(x, l)� f̂

n

(x, l0)|+ C

3

2�l

0
t

,

so that

sup
x2X

|f̂
n

(x, l)� f̂

n

(x, l0)| � c

3

2�lt � C

3

2�l

0
t � sup

x2X

|B
n

(x, l, l0)|.

Further, for l 2 L1

n

, it follows from (63) that

c

3

2�lt � C

3

2�l

0
t � C

3

2�l

0
t(c

3

2st/C
3

� 1)

� n

�1/2

M

1

ec

n

(�
n

)�̄2ld/2(c
3

2st/C
3

� 1)

� 2n�1/2(q + 1)ec
n

(�
n

)�̄2ld.
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Therefore,

P
f

(l̂
n

2 L1

n

)  P
f

 

inf
l2L

1

n

sup
x2X

p
n|f̂

n

(x, l)� f̂

n

(x, l0)|
�̂

n

(x, l, l0)
 qec

n

(�
n

)

!

 P
f

 

inf
l2L

1

n

sup
x2X

p
n|f̂

n

(x, l)� f̂

n

(x, l0)|
2�̄2l0d/2

 qec

n

(�
n

)

!

+ Cn

�c

 P
f

 

sup
l2L

1

n

sup
x2X

p
n|B

n

(x, l, l0)|
2�̄2l0d/2

� ec

n

(�
n

)

!

+ Cn

�c

 P
f

 

sup
(x,l,l

0
)2

¯

Vn(s)

p
n|B

n

(x, l, l0)|
�̂

n

(x, l, l0)
� ec

n

(�
n

)

!

+ Cn

�c  Cn

�c

where the second line follows from Lemmas F.2 and F.4, the third line from
inequalities presented above, the and fourth line from Lemmas F.2, F.4, and
F.6. This completes the proof of the lemma. ⌅

Lemma F.8. There exist c, C > 0 such that for all f 2 F ,

�

2n

:= P
f

(l̂
n

� l

?

2

+ s)  Cn

�c

.

Proof of Lemma F.8. Define L2

n

:= {l 2 L
n

: l � l

?

2

+ s}. If L2

n

is
empty, we are done. So assume that L2

n

is not empty. Then for any l 2 L2

n

,
by Condition L2 and the triangle inequality,

|f̂
n

(x, l)� f̂

n

(x, l?
2

)|  sup
x2X

|B
n

(x, l?
2

, l)|+ C

3

2�lt + C

3

2�l

?
2

t

.

Further, for l 2 L2

n

, it follows from (63) by construction of M
2

that

C

3

2�lt

p
n  M

2

ec

n

(�
n

)�̄2ld/2  4�1(q � 1)ec
n

(�
n

)�2ld/2,

and similarly,

C

3

2�l

?
2

t

p
n  M

2

ec

n

(�
n

)�̄2l
?
2

d/2  4�1(q � 1)ec
n

(�
n

)�2ld/2

since l > l

?

2

. Therefore,

P
f

(l̂
n

2 L2

n

)  P
f

 

sup
l2L

2

n

sup
x2X

p
n|f̂

n

(x, l)� f̂

n

(x, l?
2

)|
�̂

n

(x, l?
2

, l)
> qec

n

(�
n

)

!

 P
f

 

sup
l2L

2

n

sup
x2X

p
n|B

n

(x, l?
2

, l)|
�̂

n

(x, l?
2

, l)
> ec

n

(�
n

)

!

+ Cn

�c

 P
f

 

sup
(x,l,l

0
)2

¯

Vn(s)

p
n|B

n

(x, l, l0)|
�̂

n

(x, l, l0)
> ec

n

(�
n

)

!

+ Cn

�c  Cn

�c
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where the second line follows from inequalities presented above and Lemmas
F.2 and F.4 and the third line from Lemma F.6. This completes the proof
of the lemma. ⌅

Let l

?

0

:= l

?

0

(f) be l 2 L
n

satisfying (33), which exists by Condition L3.
Now we can verify Condition H5:

Lemma F.9. Under our assumptions, Condition H5 is satisfied.

Proof of Lemma F.9. We claim that with probability at least 1��
0n

,

(64)
p
n2�l

?
1

(t+d/2)  Cec

n

(�
n

).

Indeed, consider the event that

ec

n

(�
n

) � c

p

log n.

By Lemma F.5 , the probability of this event is at least 1 � �

0n

. On this
event, if l?

1

� l

?

0

, then

p
n2�l

?
1

(t+d/2) 
p
n2�l

?
0

(t+d/2) 
p

C

4

log n  Cec

n

(�
n

),

and if l?
1

< l

?

0

, then

C

3

2�l

?
1

t

p
n  M

1

ec

n

(�
n

)�̄2l
?
1

d/2

,

so that (64) holds in both cases.
Hence, with probability at least 1� �

0n

� �

1n

,

�
n,f

(l̂
n

) 
p
nC

3

2�
ˆ

lnt

inf
x2X

�

n,f

(x, l̂
n

)


p
nC

3

2�
ˆ

lnt
/(�2

ˆ

lnd/2)(65)

= C

p
n2�

ˆ

ln(t+d/2)  C

p
n2�(l

?
1

�s)(t+d/2)  Cec

n

(�
n

),(66)

where (65) follows from Condition L2 and Lemma F.2, and (66) from Lemma
F.7, and (64). Since �

0n

+ �

1n

 Cn

�c, Condition H5 follows because c

0

n

=
u

0

n

ec

n

(�
n

) and u

0

n

is su�ciently large (u0
n

� C(F)). ⌅

Finally, to prove the theorem, we will use the following lemma:

Lemma F.10. There exist c, C > 0 such that

�

3n

:= sup
f2F

P
f

 

sup
x2X

�̂

n

(x, l̂
n

)2 > C

✓

log n

n

◆

�d/(2t+d)

!

 Cn

�c

.
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Proof of Lemma F.10. We claim that with probability at least 1��
0n

,

(67) 2�(l

?
2

�1)(t+d/2)

p
n � c

p

log n.

Indeed, consider the event that

ec

n

(�
n

) � c

p

log n.

By Lemma F.5, the probability of this event is at least 1 � �

0n

. On this
event, if l?

2

� 1  l

?

0

, then

p
n2�(l

?
2

�s)(t+d/2) �
p
n2�l

?
0

(t+d/2) �
p

c

4

log n,

and if l?
2

� 1 > l

?

0

, then l

0 = l

?

2

� 1 satisfies

p
n2�l

0
(t+d/2) � cec

n

(�
n

) � c

p

log n.

Therefore, (67) holds in both cases on this event.
Hence, by Lemma F.8, with probability at least 1� �

0n

� �

2n

,

2�
ˆ

ln(t+d/2)

p
n � c

p

log n.

Conclude that with probability at least 1� �

3n

� �

0n

� �

2n

,

sup
x2X

�̂

n

(x, l̂
n

)2  (1 + ✏

3n

)2 sup
x2X

�

n,f

(x, l̂
n

)2  C2
ˆ

lnd  C

✓

log n

n

◆

�d/(2t+d)

.

Since �
3n

+ �

0n

+ �

2n

 Cn

�c, the asserted claim follows. ⌅

We now finish the proof of the theorem. We have by now verified Condi-
tions H1-H6. Since Conditions H1-H6 hold with Condition H6 being satisfied
with u

n

 Cu

0

n

 C log n, Theorem 3.1 applies, so that (15) from the main
text holds. Further, by construction,

sup
x2X

�(C
n

(x)) = 2(ĉ
n

(↵) + c

0

n

) sup
x2X

�̂

n

(x, l̂
n

)/
p
n.

Therefore, combining Conditions H3 and H6 and Lemma F.10, we have

(68) sup
f2F

P
f

✓

sup
x2X

�(C
n

(x)) > Cc̄

n

r

n

(t(f))p
log n

◆

 �

2n

+ �

5n

+ �

3n

,

where
c̄

n

:= c

n,f

(↵� ⌧

n

) + ✏

2n

+ u

0

n

p

log n.
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Since ⌧
n

and ✏
2n

are both bounded by C

1

n

�c

1 (Condition H3), there exists
n

2

such that ⌧
n

 ↵/2 and ✏
2n

 1 for n � n

2

. For n < n

2

, (36) from the
main text holds by choosing su�ciently large C. Consider n � n

2

. Then

c

n,f

(↵� ⌧

n

) + ✏

2n

 c

n,f

(↵/2) + 1

By Lemma B.1, c
n,f

(↵/2)  E[kG
n,f

k
Vn ]+

p

2| log(↵/2)|. By Condition H1,
E[kG

n,f

k
Vn ] is bounded from below, and so c

n,f

(↵/2) + 1  CE[kG
n,f

k
Vn ].

Further, E[kG
n,f

k
Vn ]  C

1

p
log n (Condition H1) gives

c̄

n

 C(1 + u

0

n

)
p

log n.

Substituting this expression into (68) yields (36) from the main text. This
completes the proof of the theorem. ⌅

APPENDIX G: PROOFS FOR APPENDIX A

The proof of Theorem A.2 uses the following technical results.

Theorem G.1. Let X and Y be Gaussian random vectors in Rp with
mean zero and covariance matrices ⌃X and ⌃Y , respectively. Then for every
g 2 C

2(R),
�

�

�

�

E



g

✓

max
1jp

X

j

◆�

� E



g

✓

max
1jp

Y

j

◆�

�

�

�

�

 kg00k
1

�/2 + 2kg0k
1

p

2� log p,

where � = max
1j,kp

|⌃X

jk

� ⌃Y

jk

|.

Proof. See Theorem 1 in [2]. ⌅

Theorem G.2. Let µ and ⌫ be Borel probability measures on R. Let
" > 0 and � > 0. Suppose that µ(A)  ⌫(A�)+ " for every Borel subset A of
R. Let V be a random variable with distribution µ. Then there is a random
variable W with distribution ⌫ such that P(|V �W | > �)  ".

Proof. See Lemma 4.1 in [1]. ⌅

Theorem G.3. Let � > 0 and � > 1/�. For every Borel subset B of R,
there is a smooth function g : R ! R and absolute constant A > 0 such that
kg0k

1

 �

�1, kg00k
1

 A��

�1, and for all t 2 R

(1� ")1
B

(t)  g(t)  "+ (1� ")1
B

3�(t),

where " = "

�,�

is given by

" =
p

e

�↵(1 + ↵) < 1, ↵ = �

2

�

2 � 1.
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Proof. See Lemma 4.2 in [1]. ⌅

We are now in position to prove Theorem A.2.

Proof of Theorem A.2. In this proof, C is an absolute constant but
its value can change at each appearance. Define G · G = {g · g̃ : g, g̃ 2 G}
and (G � G)2 = {(g � g̃)2 : g, g̃ 2 G}. Lemma B.2 implies that G · G is
VC(b2, 2a, 2v) type and (G � G)2 is VC(4b2, 2a, 4v) type function classes.
In addition, E[g2]  b

2

�

2 for all g 2 G · G and E[g2]  16b2�2 for all
g 2 (G�G)2. Together with the assumed condition b

2

K

n

 n�

2, this justifies
an application of Talagrand’s inequality (Theorem B.1) with t = log n, which
gives

P

 

sup
g2G

|E
n

[g(X
i

)]� E[g(X
1

)]| 
r

�

2

K

n

n

!

� 1� 1

n

,(69)

P

 

sup
g2G·G

|E
n

[g(X
i

)]� E[g(X
1

)]| 
r

b

2

�

2

K

n

n

!

� 1� 1

n

,(70)

P

 

sup
g2(G�G)

2

|E
n

[g(X
i

)]� E[g(X
1

)]| 
r

b

2

�

2

K

n

n

!

� 1� 1

n

.(71)

Let S

n,0

2 Sn be the intersection of events in (69)-(71). Then P(Xn

1

2
S

n,0

) � 1� 3/n.
Fix any x

n

1

2 S

n,0

. Let ⌧ = �/(bn1/2), and let {g
1

, . . . , g

N

} ⇢ G be a
subset of elements of G such that for any g 2 G there exists j = j(g) 2
{1, . . . , N} such that E[(g(X

1

)� g

j

(X
1

))2]  b

2

⌧

2. We can and will assume
that N  (a/⌧)v. Define

W (xn
1

)(⌧) := max
1jN

|G̃
n

(xn
1

, ⇠

n

1

)(g
j

)|,

W

0(⌧) := max
1jN

|B(g
j

)|.

In addition, define W̃

0 := kBk
G

and

G(⌧) :=
�

g � g̃ : g, g̃ 2 G,E[(g(X
1

)� g̃(X
1

))2]  b

2

⌧

2

 

.

Clearly, we have |W̃
n

(xn
1

)�W (xn
1

)(⌧)|  kG̃
n

(xn
1

, ⇠

n

1

)k
G(⌧)

and |W̃ 0�W

0(⌧)| 
kBk

G(⌧)

. The rest of the proof consists of 3 steps. Steps 1 and 2 pro-

vide bounds on kG̃
n

(xn
1

, ⇠

n

1

)k
G(⌧)

and kBk
G(⌧)

, respectively. Step 3 gives a
coupling inequality and finishes the proof using a method for comparing
W (xn

1

)(⌧) and W

0(⌧).
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Step 1 (Bound on kG̃
n

(xn
1

, ⇠

n

1

)k
G(⌧)

). Here we show that with probability at
least 1� 2/n,

kG̃
n

(xn
1

, ⇠

n

1

)k
G(⌧)

 L

(

r

�

2

K

n

n

+

✓

b

2

�

2

K

3

n

n

◆

1/4

)

= L 

n

for some absolute constant L.
Note that

sup
g2G(⌧)

|E
n

[g(x
i

)2]� (E
n

[g(x
i

)])2|  sup
g2G(⌧)

E
n

[g(x
i

)2] =: D(⌧).

Then D(⌧)  p

1

+ p

2

 �

2

/n+
p

b

2

�

2

K

n

/n where

p

1

:= sup
g2G(⌧)

E[g(X
1

)2]  b

2

⌧

2 = �

2

/n,

p

2

:= sup
g2G(⌧)

|E
n

[g(x
i

)2]� E[g(X
1

)2]|  sup
g2(G�G)

2

|E
n

[g(x
i

)]� E[g(X
1

)]|.


p

b

2

�

2

K

n

/n.

By the Borell-Sudakov-Tsirel’son inequality (see Theorem A.2.1 in [10]),
with probability at least 1� 2/n,

kG̃
n

(xn
1

, ⇠

n

1

)k
G(⌧)

 E
h

kG̃
n

(xn
1

, ⇠

n

1

)k
G(⌧)

i

+
p

2D(⌧) log n.

Further, E[kG̃
n

(xn
1

, ⇠

n

1

)k
G(⌧)

]  C(r
1

+ r

2

) where

r

1

:= E

"

sup
g2G(⌧)

�

�

�

�

�

1p
n

n

X

i=1

⇠

i

g(x
i

)

�

�

�

�

�

#

,

r

2

:= sup
g2G(⌧)

|E
n

[g(x
i

)]|.

To bound r

1

, let ' = �/(bn1/2)+ (�2K
n

/(b2n))1/4. Note that
p

D(⌧)/b  '

and '  1 + (K
n

/n)1/4  2 < a. Hence, by Corollary 2.2.8 in [10],

r

1

 Cb

Z

'

0

r

sup
Q

logN(G, L
2

(Q), b")d"  Cb'

p

v log(a/')


p

K

n

 

�p
n

+

✓

b

2

�

2

K

n

n

◆

1/4

!

.
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To bound r

2

, we have

r

2

 2 sup
g2G

|E
n

[g(x
i

)]� E[g(X
1

)]|+ sup
g2G(⌧)

E[|g(X
1

)|]

 2
p

�

2

K

n

/n+ b⌧  3
p

�

2

K

n

/n.

Combining these inequalities gives the claim of step 1.

Step 2 (Bound on kBk
G(⌧)

). We show that with probability at least 1�2/n,

kBk
G(⌧)


r

�

2

K

n

n

  

n

.

By the Borell-Sudakov-Tsirel’son inequality, with probability at least 1�
2/n,

kBk
G(⌧)

 E[kBk
G(⌧)

] + b⌧

p

2 log n.

By Corollary 2.2.8 in [10],

E[kBk
G(⌧)

]  Cb

Z

⌧

0

r

sup
Q

logN(G, L
2

(Q), b")d"  Cb⌧

p

v log(a/⌧).

Substituting ⌧ = �/(bn1/2) into these inequalities gives the claim of step 2.

Step 3 (Coupling Inequality). This is the main step of the proof. Let � > 0
and � = 2

p
log n/�. Then

" :=
q

e

1��

2

�

2

�

2

�

2  C/n.

Take any Borel subset B of R and apply Theorem G.3 to define a function f

corresponding to the set BL n , L 
n

-enlargement of the set B, with chosen
� and �. We have for all t 2 R,

(1� ")1
B

L n (t)  f(t)  "+ (1� ")1
B

L n+3�(t).

Further, since x

n

1

2 S

n,0

,

� := sup
g

1

,g

2

2G

|�
g

1

,g

2

|  C

r

b

2

�

2

K

n

n

,

where

�
g

1

,g

2

:= (E
n

[g
1

(x
i

)g
2

(x
i

)]� E
n

[g
1

(x
i

)]E
n

[g
2

(x
i

)])

� (E[g
1

(X
1

)g
2

(X
1

)]� E[g
1

(X
1

)]E[g
2

(X
1

)]) .
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So, applying Theorem G.1 to W (xn
1

)(⌧) and W

0(⌧) with chosen f gives

�

�E[f(W (xn
1

)(⌧))]� E[f(W 0(⌧))]
�

�  C

�

2

r

b

2

�

2

K

n

log n

n

+
C

�

✓

b

2

�

2

K

3

n

n

◆

1/4

.

We will assume that b

2

�

2

K

3

n

/(n�4)  1 (otherwise, the bound claimed in
the statement of the theorem is trivial). Then

�

�E[f(W (xn
1

)(⌧))]� E[f(W 0(⌧))]
�

�  C

�

✓

b

2

�

2

K

3

n

n

◆

1/4

 C�

n

(�).

Therefore,

E[1
B

(W̃
n

(xn
1

))]  E[1
B

L n (W (xn
1

)(⌧))] + C/n

 E[f(W (xn
1

)(⌧))]/(1� ") + C/n

 E[f(W 0(⌧))]/(1� ") + C�

n

(�)

 E[1
B

L n+3�(W 0(⌧))] + C�

n

(�)

 E[1
B

(L+1) n+3�(W̃ 0)] + C�

n

(�),

where C is varying from line to line. The claim of the theorem follows by
applying Theorem G.2. ⌅

APPENDIX H: PROOFS OF LEMMAS B.1 AND B.2

Proof of Lemma B.1. Pick any ↵ 2 (0, 1). Since E[Y (t)2]  1 for all
t 2 T , the Borel-Sudakov-Tsirel’son inequality (see Theorem A.2.1 in [10])
gives for all r > 0,

P (kY k
T

� E[kY k
T

] + r)  e

�r

2

/2

.

Setting r =
p

2| log↵| gives

P
⇣

kY k
T

� E[kY k
T

] +
p

2| log↵|
⌘

 ↵.

This implies that c(↵)  E[kY k
T

]+
p

2| log↵|. The result withM(kY k
T

) fol-
lows similarly because the Borel-Sudakov-Tsirel’son inequality also applies
with M(kY k

T

) replacing E[kY k
T

]. ⌅

Proof of Lemma B.2. Consider part (i). Clearly, for any g 2 G
1

· G
2

,
kgk

S

 b

1

b

2

. Further, for any finitely discrete probability measure Q on
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(S,S) and j = 1, 2, let g

j1

, . . . , g

jNj be a set of functions from the class G
j

such that for any g

j

2 G
j

, there is some k(g
j

) such that

E
Q

[(g
j

� g

jk(gj)
)2]1/2  b

j

⌧/2.

By assumption, we can and will assume that N
j

 (2a
j

/⌧

j

)vj . Then the set
{g

1k

g

2l

: k = 1, . . . , N
1

; l = 1, . . . , N
2

} contains

N

1

N

2


 

2(av1
1

a

v

2

2

)1/(v1+v

2

)

⌧

!

v

1

+v

2

elements. At the same time,

E
Q

[(g
1

g

2

� g

1k(g

1

)

g

2k(g

2

)

)2]1/2  E
Q

[g2
1

(g
2

� g

2k(g

2

)

)2]1/2

+ E
Q

[(g
1

� g

1k(g

1

)

)2g2
2k(g

2

)

]1/2

 b

1

b

2

⌧/2 + b

1

b

2

⌧/2 = b

1

b

2

⌧.

The claim of part (i) follows. Parts (ii) and (iii) follow similarly. ⌅

APPENDIX I: ON USE OF NON-WAVELET PROJECTION KERNELS

In Section 3, we provided weak conditions for the construction of honest
confidence bands in density estimation. In particular, we demonstrated that,
as long as the bias can be controlled, our confidence bands are honest if as-
sumptions of Theorem 3.2 hold. In this section, we verify these assumptions
for Fourier and Legendre polynomial projection kernels. We show that these
conditions hold under weak conditions on the number of series terms for
Fourier projection kernel and under somewhat stronger conditions on the
number of series terms for Legendre polynomial projection kernel.

Fourier projection kernel. Here we show that assumptions of Theorem
3.2 hold for Fourier projection kernel under weak conditions on the number
of series terms. Assume that d = 1, X = [�1, 1], and K

l

(·, ·) is the projec-
tion kernel function based on the Fourier basis as defined in (26) and (27).
Assume in addition that the density f is supported on X , and is bounded
from below and from above on X uniformly over F . Finally, assume that
sup

x2X

|E
f

[K
l

(X
1

, x)]�f(x)|  C uniformly over f 2 F and l 2 L
n

for some
C > 0. The last assumption holds if sup

x2X

|E
f

[K
l

(X
1

, x)] � f(x)| ! 0 as
l ! 1 uniformly over f 2 F so that Fourier projection kernel estimator is
asymptotically unbiased, which is necessary for consistency of the estimator.
Then we obtain the following bounds.



ANTI-CONCENTRATION AND CONFIDENCE BANDS 17

First, since '
1

(x) = 1, '
j+1

(x) = cos(⇡jx), j = 1, 2, . . . , we have

(72) cm 
m

X

j=1

'

j

(x)2  Cm,

uniformly over all x 2 [�1, 1] and m � 1 for some c, C > 0. The upper
bound in (72) is trivial because | cos(⇡jx)|  1. To prove the lower bound,
we have

m

X

j=1

cos2(⇡jx) =
1

2

m

X

j=1

(1 + cos(2⇡jx)) =
m

2
� 1

4
+

1

2

0

@

1

2
+

m

X

j=1

cos(2⇡jx)

1

A

=
m

2
� 1

4
+

sin((2m+ 1)⇡x)

4 sin(⇡x)
,(73)

and the last term in (73) is bounded from below by some absolute constant
yielding the lower bound in (72). Therefore, |K

l

(y, x)|  C2l, |E
f

[K
l

(X
1

, x)]| 
C and

c2l  c

[2

l
]

X

j=1

'

j

(x)2  E
f

[K
l

(X
1

, x)2]  C

[2

l
]

X

j=1

'

j

(x)2  C2l,

uniformly over f 2 F , l 2 L
n

, and x 2 X . This implies that c2l 
�

n,f

(x, l)2  C2l uniformly over f 2 F , l 2 L
n

, and x 2 X and so �
n

 C.
Further, uniformly over x

1

, x

2

, y 2 X ,
�

�

�

�

�

�

[2

l
]

X

j=1

'

j

(y)'
j

(x
1

)�
[2

l
]

X

j=1

'

j

(y)'
j

(x
2

)

�

�

�

�

�

�



�

�

�

�

�

�

[2

l
]

X

j=1

'

j

(y)('
j

(x
1

)� '

j

(x
2

))

�

�

�

�

�

�



0

@

[2

l
]

X

j=1

'

j

(y)2
[2

l
]

X

j=1

('
j

(x
1

)� '

j

(x
2

))2

1

A

1/2

 C2l/2|x
1

� x

2

|

0

@

[2

l
]

X

j=1

j

2

1

A

1/2

= C22l|x
1

� x

2

|.

Therefore, it follows from Example 19.7 in [9] that the function class {K
l

(·, x) :
x 2 X} is VC(b

l

, a

l

, v

l

) type class with b

l

 C2l, a
l

 C2l, and v

l

 C,
and so Lemma B.2 implies that K

n,f

is VC(b
n

, a

n

, v

n

) type class with b

n


C2lmax,n/2, a

n

 C22lmax,n , and v

n

 C where l

max,n

= sup{L
n

}. Hence, the
assumption that b

2

n

�

4

n

K

4

n

/n  C

2

n

�c

2 becomes 2lmax,n(log4 n)/n  C

2

n

�c

2

(with possibly di↵erent c

2

, C

2

) as long as l

max,n

 C log n for some C > 0.
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When d > 1 and X = [�1, 1]d, a similar argument shows that the assump-
tion that b

2

n

�

4

n

K

4

n

/n  C

2

n

�c

2 becomes 2lmax,nd(log4 n)/n  C

2

n

�c

2 (with
possibly di↵erent c

2

, C

2

) as long as l
max,n

 C log n for some C > 0.

Legendre polynomial projection kernel. Here we provide primitive
conditions that su�ce for assumptions of Theorem 3.2 in the case of Leg-
endre polynomial projection kernel. Assume that d = 1, X = [�1, 1], and
K

l

(·, ·) is the projection kernel function based on the Legendre polynomial
basis as defined in (26) and (28). Assume in addition that the density f is
supported on X and is bounded from above on X uniformly over F . Further,
assume that sup

x2X

|E
f

[K
l

(X
1

, x)] � f(x)|  C uniformly over f 2 F and
l 2 L

n

for some C > 0. See discussion of this assumption for the case of
Fourier projection kernel above.

Note that when '

1

(·),'
2

(·), . . . are Legendre polynomials, it is known
that

P

K

j=1

'

j

(x)2  CK

2 for some C > 0; see, for example, [8]. There-

fore, under our assumptions, |K
l

(y, x)|  C22l, |E
f

[K
l

(X
1

, x)]|  C, and
E
f

[K
l

(X
1

, x)2]  C22l uniformly over f 2 F , l 2 L
n

, and x 2 X . Assume
also that E

f

[K
l

(X
1

, x)2] � c22l uniformly over f 2 F , l 2 L
n

, and x 2 X .
Given the upper bound on E

f

[K
l

(X
1

, x)2] above, the last assumption can be
interpreted as that the variance of the kernel estimator is of the same order
for all x 2 X . These bounds imply that c22l  �

n,f

(x, l)2  C22l uniformly
over f 2 F , l 2 L

n

, and x 2 X and so �
n

 C. Further, the same argument
as that applied in the case of Fourier series shows that {K

l

(·, x) : x 2 X}
is VC(b

l

, a

l

, v

l

) type class with b

l

 C22l, a
l

 C2cl, and v

l

 C, and so
Lemma B.2 implies that K

n,f

is VC(b
n

, a

n

, v

n

) type class with b

n

 C2lmax,n ,
a

n

 C2clmax,n , and v

n

 C where l
max,n

= sup{L
n

}. Hence, the assumption
that b2

n

�

4

n

K

4

n

/n  C

2

n

�c

2 becomes 22lmax,n(log4 n)/n  C

2

n

�c

2 (with possi-
bly di↵erent c

2

and C

2

) as long as l

max,n

 C log n for some C > 0. When
d > 1 and X = [�1, 1]d, a similar argument shows that the assumption that
b

2

n

�

4

n

K

4

n

/n  C

2

n

�c

2 becomes 22lmax,nd(log4 n)/n  C

2

n

�c

2 (with possibly
di↵erent c

2

and C

2

) as long as l
max,n

 C log n for some C > 0.

APPENDIX J: MONTE CARLO SIMULATION STUDY

In this section, we provide results of a small scale simulation study. The
main purpose of this simulation study is to calibrate parameters for our
procedure of constructing honest and adaptive confidence bands considered
in Section 4. We consider two design settings. In the first design, random
variables X

1

, . . . , X

n

are drawn from the distribution of 1.5N(0, 1), that is,
the density f has the form f(x) = (1/1.5)�(x/1.5) for all x 2 R where �(x)
is the pdf of standard normal distribution. In the second design, random
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variables X

1

, . . . , X

n

are drawn from the mixture of normal distributions;
specifically, the pdf of X

i

’s is given by f(x) = 0.5�(x�1.5)+0.5�(x+1.5) for
all x 2 R. The same distributions are considered, for example, in [6]. In all
simulations, we set n = 1000 and we consider uniform confidence bands on
the interval (�3,+3). Also, we use the kernel function K(x) = 0.75(1� x

2)
for x 2 (�1,+1) and K(x) = 0 otherwise, and we consider the confidence
bands with level ↵ = 0.10. For our implementation of the Lepski estimator,
we set �

n

= 0.02 and, depending on the experiment, we set q in the range
between 1.1 and 1.5. We choose the set of smoothing parameters L for the
Lepski estimator so that the set of bandwith values {2�l

, l 2 L} is equal to
{0.5, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}. We check that the Lepski
estimator is not on the boundary of this set in most cases. Both ĉ

n

(↵) and
ec

n

(�
n

) are based on the Gaussian Multiplier bootstrap procedure described
in Algorithms 1 and 2 with the number of bootstrap samples B = 500.
Finally, depending on the experiment, we set u

0

n

in the range between 0.5
and 1.0. For each experiment, the results are based on 500 simulations.

The results of the simulation study are presented in Tables 1 and 2. Table
1 contains information on coverage probability, and Table 2 gives the average
value over 500 simulations of the average length of the confidence bands over
the interval (�3,+3). From these tables, we conclude that the parameter
values q = 1.1 and u

0

n

= 0.5 strike a good balance between control of the
coverage probability and the average length of the confidence bands. Also,
it seems that setting q = 1.1 and u = 1.0 should be a rather safe choice from
the point of view of coverage probability control in many settings. However,
as a cautionary remark, we note that empirical researchers should always
test out di↵erent values of q and u

0

n

in Monte Carlo examples that mimic
the data at hand.

Finally, to get an idea how our confidence bands with the proposed values
of the parameters (q = 1.1 and u

0

n

= 0.5) look in practice, we draw confidence
bands with this choice of values of the parameters for 4 simulated data sets
as well as true density functions in Figure 1. Two of the data sets are based
on the normal density and the other two are based on the mixture of normal
densities. In all data sets, we have n = 1000. Both for the case of the normal
density and for the case of the mixture of normal densities, these data sets
are the first two used in the simulations behind Tables 1 and 2. Overall,
we conclude that the confidence bands follow the shape of the true density
functions.



20 CHERNOZHUKOV CHETVERIKOV KATO

Table 1
Results of Monte Carlo experiments for coverage probability.

Density u

0
n

q

1.1 1.2 1.3 1.4 1.5

normal

0.5 0.89 0.84 0.88 0.83 0.78
0.6 0.97 0.94 0.92 0.88 0.79
0.7 0.98 0.96 0.97 0.93 0.81
0.8 0.99 1.00 0.98 0.94 0.85
0.9 1.00 1.00 0.98 0.94 0.84
1.0 1.00 1.00 0.99 0.95 0.82

mixture

0.5 0.93 0.83 0.68 0.51 0.38
0.6 0.94 0.87 0.70 0.57 0.52
0.7 0.95 0.92 0.84 0.79 0.64
0.8 0.96 0.94 0.89 0.86 0.81
0.9 0.98 0.97 0.94 0.91 0.89
1.0 0.99 0.99 0.98 0.95 0.94

Table 2
Results of Monte Carlo experiments for average length of confidence bands.

Density u

0
n

q

1.1 1.2 1.3 1.4 1.5

normal

0.5 0.064 0.060 0.059 0.056 0.055
0.6 0.069 0.065 0.063 0.061 0.059
0.7 0.074 0.070 0.068 0.066 0.063
0.8 0.079 0.075 0.072 0.070 0.068
0.9 0.084 0.080 0.076 0.075 0.073
1.0 0.089 0.084 0.082 0.079 0.077

mixture

0.5 0.076 0.072 0.069 0.066 0.064
0.6 0.082 0.078 0.074 0.071 0.068
0.7 0.088 0.084 0.080 0.077 0.074
0.8 0.093 0.089 0.085 0.082 0.078
0.9 0.100 0.095 0.090 0.087 0.083
1.0 0.105 0.100 0.096 0.092 0.089
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Fig 1. Confidence bands with the proposed values of the parameters in 4 simulated
data sets. In two data sets, denoted “normal density”, Xi’s have the density f(x) =
(1/1.5)�(x/1.5), and in the other two, denoted “mixed normal density”, Xi’s have the
density f(x) = 0.5�(x�1.5)+0.5�(x+1.5). Nominal coverage probability is 0.9 (↵ = 0.1).
Continuous line is the true density function; dashed lines are confidence bands.
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