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Valid Post-Selection and Post-Regularization
Inference: An Elementary, General Approach

VICTOR CHERNOZHUKOV, CHRISTIAN HANSEN, AND MARTIN SPINDLER

Abstract. Here we present an expository, general analysis of valid post-selection or post-regularization
inference about a low-dimensional target parameter in the presence of a very high-dimensional nuisance
parameter which is estimated using selection or regularization methods. Our analysis provides a set of
high-level conditions under which inference for the low-dimensional parameter based on testing or point
estimation methods will be regular despite selection or regularization biases occurring in estimation
of the high-dimensional nuisance parameter. The results may be applied to establish uniform validity
of post-selection or post-regularization inference procedures for low-dimensional target parameters over
large classes of models. The high-level conditions allow one to clearly see the types of structure needed for
achieving valid post-regularization inference and encompass many existing results. A key element of the
structure we employ and discuss in detail is the use of orthogonal or “immunized” estimating equations
that are locally insensitive to small mistakes in estimation of the high-dimensional nuisance parameter.
As an illustration, we use the high-level conditions to provide readily verifiable sufficient conditions for
a class of affine-quadratic models that include the usual linear model and linear instrumental variables
model as special cases. As a further application and illustration, we use these results to provide an
analysis of post-selection inference in a linear instrumental variables model with many regressors and
many instruments. We conclude with a review of other developments in post-selection inference and note
that many of the developments can be viewed as special cases of the general encompassing framework
of orthogonal estimating equations provided in this paper.

Key words: Neyman, orthogonalization, C(α) statistics, optimal instrument, optimal score, optimal
moment, post-selection and post-regularization inference, efficiency, optimality

1. Introduction

Analysis of high-dimensional models, models in which the number of parameters to
be estimated is large relative to the sample size, is becoming increasingly important.
Such models arise naturally in readily available high-dimensional data which have many
measured characteristics available per individual observation as in, for example, large
survey data sets, scanner data, and text data. Such models also arise naturally even
in data with a small number of measured characteristics in situations where the exact
functional form with which the observed variables enter the model is unknown. Examples
of this scenario include semiparametric models with nonparametric nuisance functions.
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More generally, models with many parameters relative to the sample size often arise
when attempting to model complex phenomena.

The key concept underlying the analysis of high-dimensional models is that regular-
ization, such as model selection or shrinkage of model parameters, is necessary if one
is to draw meaningful conclusions from the data. For example, the need for regular-
ization is obvious in a linear regression model with number of right-hand-side variables
greater than the sample size, but arises far more generally in any setting where the
number of parameters is not small relative to the sample size. Given the importance
of using regularization in analyzing high-dimensional models, it is then important to
explicitly account for the impact of this regularization on the behavior of estimators if
one wishes to accurately characterize their finite-sample behavior. The use of such reg-
ularization techniques may easily invalidate conventional approaches to inference about
model parameters and other interesting target parameters. A major goal of this paper
is to provide a general, formal framework which provides guidance about setting up esti-
mating equations and making appropriate use of regularization devices so that inference
about parameters of interest will remain valid in the presence of data-dependent model
selection or other approaches to regularization.

It is important to note that understanding estimators’ behavior in high-dimensional
settings is also useful in conventional low-dimensional settings. As noted above, deal-
ing formally with high-dimensional models requires explicitly accounting for model se-
lection or other forms of regularization. Providing results that explicitly account for
this regularization then allows us to accommodate and coherently account for the fact
that low-dimensional models estimated in practice are often the result of specification
searches. As in the high-dimensional setting, failure to account for this variable selection
will invalidate usual inference procedures while the approach that we outline will remain
valid and can easily be applied in conventional low-dimensional settings.

The chief goal of this overview paper is to offer a general framework that encompasses
many existing results regarding inference on model parameters in high-dimensional mod-
els. The encompassing framework we present and the key theoretical results are new,
though they are clearly heavily influenced and foreshadowed by previous, more special-
ized results. As application of the framework, we also present new results on inference
in a reasonably broad class of models, termed affine-quadratic models, that includes the
usual linear model and linear instrumental variables model and then apply these results
to provide new results regarding post-regularization inference on the parameters on en-
dogenous variables in a linear instrumental variables model with very many instruments
and controls. We also provide a discussion of previous research that aims to highlight
that many existing results fall within the general framework.

Formally, we present a series of results for obtaining valid inferential statements about
a low-dimensional parameter of interest, α, in the presence of a high-dimensional nui-
sance parameter η. The general approach we offer relies on two fundamental elements.
First, it is important that estimating equations used to draw inferences about α satisfy
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a key orthogonality or immunization condition.1 For example, when estimation and
inference for α is based on the empirical analog of a theoretical system of equations

M(α, η) = 0,

we show that setting up the equations in a manner such that the orthogonality or
immunization condition

∂ηM(α, η) = 0

holds is an important element in providing an inferential procedure for α that remains
valid when η is estimated using regularization. We note that this condition can generally
be established. For example, we can apply Neyman’s classic orthogonalized score in
likelihood settings; see, e.g. Neyman (1959) and Neyman (1979). We also describe
an extension of this classic approach to the GMM setting. In general, applying this
orthogonalization will introduce additional nuisance parameters that will be treated as
part of η.

The second key element of our approach is the use of high-quality, structured esti-
mators of η. Crucially, additional structure on η is needed for informative inference to
proceed, and it is thus important to use estimation strategies that leverage and perform
well under the desired structure. An example of a structure that has been usefully em-
ployed in the recent literature is approximate sparsity, e.g. Belloni et al. (2012). Within
this framework, η is well approximated by a sparse vector which suggests the use of a
sparse estimator such as the Lasso (Frank and Friedman (1993) and Tibshirani (1996)).
The Lasso estimator solves the general problem

η̂L = arg min
η

`(data, η) + λ

p∑
j=1

|ψjηj |,

where `(data, η) is some general loss function that depends on the data and the parameter
η, λ is a penalty level, and ψj ’s are penalty loadings. The leading example is the usual
linear model where `(data, η) =

∑n
i=1(yi − x′iη)2 is the usual least squares loss with yi

denoting the outcome of interest for observation i and xi denoting predictor variables,
and we provide further discussion of this example in the appendix. Other examples
of `(data, η) include suitable loss functions corresponding to well-known M-estimators,
the negative of the log-likelihood, and GMM criterion functions. This estimator and
related methods such as those in Candès and Tao (2007), Meinshausen and Yu (2009),
Bickel et al. (2009), Belloni and Chernozhukov (2013), and Belloni et al. (2011) are
computationally efficient and have been shown to have good estimation properties even
when perfect variable selection is not feasible under approximate sparsity. These good
estimation properties then translate into providing “good enough” estimates of η to
result in valid inference about α when coupled with orthogonal estimating equations as
discussed above. Finally, it is important to note that the general results we present do
not require or leverage approximate sparsity or sparsity-based estimation strategies. We

1We refer to the condition as an orthogonality or immunization condition as orthogonality is a much
used term and our usage differs from some other usage in defining orthogonality conditions used in
econometrics.



4 VICTOR CHERNOZHUKOV, CHRISTIAN HANSEN, AND MARTIN SPINDLER

provide this discussion here simply as an example and because the structure offers one
concrete setting in which the general results we establish may be applied.

In the remainder of this paper, we present the main results. In Sections 2 and 3, we
provide our general set of results that may be used to establish uniform validity of infer-
ence about low-dimensional parameters of interest in the presence of high-dimensional
nuisance parameters. We provide the framework in Section 2, and then discuss how to
achieve the key orthogonality condition in Section 3. In Sections 4 and 5, we provide
details about establishing the necessary results for estimation quality of η within the
approximately sparse framework. The analysis in Section 4 pertains to a reasonably
general class of affine-quadratic models, and the analysis of Section 5 specializes this
result to the case of estimating the parameters on a vector of endogenous variables in a
linear instrumental variables model with very many potential control variables and very
many potential instruments. The analysis in Section 5 thus extends results from Belloni
et al. (2012) and Belloni, Chernozhukov and Hansen (2014). We also provide a brief
simulation example and an empirical example that looks at logit demand estimation
within the linear many instrument and many control setting in Section 5. We conclude
with a literature review in Section 6.

Notation. We use “wp → 1” to abbreviate the phrase “with probability that con-
verges to 1”, and we use arrows →Pn and  Pn to denote convergence in probability
and in distribution under the sequence of probability measures {Pn}. The symbol ∼
means “distributed as”. The notation a . b means that a = O(b) and a .Pn b means
a = OPn(b). The `2 and `1 norms are denoted by ‖ · ‖ and ‖ · ‖1, respectively; and the
`0-“norm”, ‖ ·‖0, denotes the number of non-zero components of a vector. When applied
to a matrix, ‖ · ‖ denotes the operator norm. We use the notation a∨ b = max(a, b) and
a ∧ b = min(a, b). Here and below, En[·] abbreviates the average n−1

∑n
i=1[·] over index

i. That is, En[f(wi)] denotes n−1
∑n

i=1[f(wi)]. In what follows, we use the m-sparse
norm of a matrix Q defined as

‖Q‖sp(m) = sup{|b′Qb|/‖b‖2 : ‖b‖0 ≤ m, ‖b‖ 6= 0}.

We also consider the pointwise norm of a square matrix matrix Q at a point x 6= 0:

‖Q‖pw(x) = |x′Qx|/‖x‖2.

For a differentiable map x 7→ f(x), mapping Rd to Rk, we use ∂x′f to abbreviate the
partial derivatives (∂/∂x′)f , and we correspondingly use the expression ∂x′f(x0) to mean
∂x′f(x) |x=x0 , etc. We use x′ to denote the transpose of a column vector x.

2. A Testing and Estimation Approach to Valid Post-Selection and
Post-Regularization Inference

2.1. The Setting. We assume that estimation is based on the first n elements (wi,n)ni=1
of the stationary data-stream (wi,n)∞i=1 which lives on the probability space (Ω,A,Pn).
The data points wi,n take values in a measurable space W for each i and n. Here, Pn,
the probability law or data-generating process, can change with n. We allow the law to
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change with n to claim robustness or uniform validity of results with respect to pertur-
bations of such laws. Thus the data, all parameters, estimators, and other quantities are
indexed by n, but we typically suppress this dependence to simplify notation.

The target parameter value α = α0 is assumed to solve the system of theoretical
equations

M(α, η0) = 0,

where M = (Ml)
k
l=1 is a measurable map from A × H to Rk and A × H are some

convex subsets of Rd × Rp. Here the dimension d of the target parameter α ∈ A and
the number of equations k are assumed to be fixed and the dimension p = pn of the
nuisance parameter η ∈ H is allowed to be very high, potentially much larger than n. To
handle the high-dimensional nuisance parameter η, we employ structured assumptions
and selection or regularization methods appropriate for the structure to estimate η0.

Given an appropriate estimator η̂, we can construct an estimator α̂ as an approximate
solution to the estimating equation:

‖M̂(α̂, η̂)‖ ≤ inf
α∈A
‖M̂(α, η̂)‖+ o(n−1/2)

where M̂ = (M̂l)
k
l=1 is the empirical analog of theoretical equations M, which is a mea-

surable map from Wn×A×H to Rk. We can also use M̂(α, η̂) to test hypotheses about
α0 and then invert the tests to construct confidence sets.

It is not required in the formulation above, but a typical case is when M̂ and M are
formed as theoretical and empirical moment functions:

M(α, η) := E[ψ(wi, α, η)], M̂(α, η) := En[ψ(wi, α, η)],

where ψ = (ψl)
k
l=1 is a measurable map from W × A × H to Rk. Of course, there are

many problems that do not fall in the moment condition framework.

2.2. Valid Inference via Testing. A simple introduction to the inferential problem
is via the testing problem where we would like to test some hypothesis about the true
parameter value α0. By inverting the test, we create a confidence set for α0. The key
condition for the validity of this confidence region is adaptivity, which can be ensured
by using orthogonal estimating equations and using structured assumptions on the high-
dimensional nuisance parameter.2

The key condition enabling us to perform valid inference on α0 is the adaptivity
condition: √

n(M̂(α0, η̂)− M̂(α0, η0))→Pn 0. (1)

This condition states that using
√
nM̂(α0, η̂) is as good as using

√
nM̂(α0, η0), at least to

the first order. This condition may hold despite using estimators η̂ that are not asymp-
totically linear and are non-regular. Verification of adaptivity may involve substantial
work as illustrated below. A key requirement which often arises is the orthogonality or
immunization condition:

∂η′M(α0, η0) = 0. (2)

2We refer to Bickel (1982) for a definition of and introduction to adaptivity.
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This condition states that the equations are locally insensitive to small perturbations of
the nuisance parameter around the true parameter values. In several important models,
this condition is equivalent to the double-robustness condition (Robins and Rotnitzky
(1995)). Additional assumptions regarding the quality of estimation of η0 are also needed
and are highlighted below.

The adaptivity condition immediately allows us to use the statistic
√
nM̂(α0, η̂) to

perform inference. Indeed, suppose we have that

Ω−1/2(α0)
√
nM̂(α0, η0) Pn N (0, Ik) (3)

for some positive definite Ω(α) = Var(
√
nM̂(α, η0)). This condition can be verified using

central limit theorems for triangular arrays. Such theorems are available for both i.i.d.
as well as dependent and clustered data. Suppose further that there exists Ω̂(α) such
that

Ω̂−1/2(α0)Ω1/2(α0)→Pn Ik. (4)

It is then immediate that the following score statistic, evaluated at α = α0, is asymp-
totically normal,

S(α) := Ω̂−1/2
n (α)

√
nM̂(α, η̂) Pn N (0, Ik), (5)

and that the quadratic form of this score statistic is asymptotically χ2-square with k
degrees of freedom:

C(α0) = ‖S(α0)‖2  Pn χ
2(k). (6)

The statistic given in (6) simply corresponds to a quadratic form in appropriately
normalized statistics that have the desired immunization or orthogonality condition. We
refer to this statistic as a “generalized C(α)-statistic” in honor of Neyman’s fundamental
contributions, e.g. Neyman (1959) and Neyman (1979), because, in likelihood settings,
statistic (6) reduces to Neyman’s C(α)-statistic and the generalized score S(α0) given
in (5) reduces to Neyman’s orthogonalized score. We demonstrate these relationships
in the special case of likelihood models in Section 3.1 and provide a generalization to
GMM models in Section 3.2. Both of these examples serve to illustrate construction of
appropriate statistics in different settings, but we note that the framework applies far
more generally.

The following elementary result is an immediate consequence of the preceding discus-
sion.

Proposition 1 (Valid Inference After Selection or Regularizaton). Consider a sequence
{Pn} of sets of probability laws such that for each sequence {Pn} ∈ {Pn} the adaptivity
condition (1), the normality condition (3), and the variance consistency condition (4)
hold. Then CR1−a = {α ∈ A : C(α) ≤ c(1− a)}, where c(1− a) is the 1− a-quantile of
a χ2(k), is a uniformly valid confidence interval for α0 in the sense that

lim
n→∞

sup
P∈Pn

|P(α0 ∈ CR1−a)− (1− a)| = 0.
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We remark here that in order to make the uniformity claim interesting we should insist
that the sets of probability laws Pn are non-decreasing in n, i.e. Pn̄ ⊆ Pn whenever
n̄ ≤ n.

Proof. For any sequence of positive constants εn approaching 0, let Pn ∈ Pn be any
sequence such that

|Pn(α0 ∈ CR1−a)− (1− a)|+ εn ≥ sup
P∈Pn

|P(α0 ∈ CR1−a)− (1− a)|.

By conditions (3) and (4) we have that

Pn(α0 ∈ CR1−a) = Pn(C(α0) ≤ c(1− a))→ P(χ2(k) ≤ c(1− a)) = 1− a,

which implies the conclusion from the preceding display. �

2.3. Valid Inference via Adaptive Estimation. Suppose that M(α0, η0) = 0 holds
for α0 ∈ A. We consider an estimator α̂ ∈ A that is an approximate minimizer of the
map α 7→ ‖M̂(α, η̂)‖ in the sense that

‖M̂(α̂, η̂)‖ ≤ inf
α∈A
‖M̂(α, η̂)‖+ o(n−1/2). (7)

In order to analyze this estimator, we assume that the derivatives Γ1 := ∂α′M(α0, η0)
and ∂η′M(α, η0) exist. We assume that α0 is interior relative to the parameter space A;
namely, for some `n →∞ such that `n/

√
n→ 0,

{α ∈ Rd : ‖α− α0‖ ≤ `n/
√
n} ⊂ A. (8)

We also assume the following local-global identifiability condition holds: For some con-
stant c > 0,

2‖M(α, η0)‖ ≥ ‖Γ1(α− α0)‖ ∧ c ∀α ∈ A, mineig(Γ′1Γ1) ≥ c. (9)

Further, for Ω = Var(
√
nM̂(α0, η0)), we suppose that the central limit theorem,

Ω−1/2√nM̂(α0, η0) Pn N (0, I), (10)

and the stability condition,

‖Γ′1Γ1‖+ ‖Ω‖+ ‖Ω−1‖ . 1, (11)

hold.

Assume that for some sequence of positive numbers {rn} such that rn → 0 and

rnn
1/2 →∞, the following stochastic equicontinuity and continuity conditions hold:

sup
α∈A

‖M̂(α, η̂)−M(α, η̂)‖+ ‖M(α, η̂)−M(α, η0)‖
rn + ‖M̂(α, η̂)‖+ ‖M(α, η0)‖

→Pn 0, (12)

sup
‖α−α0‖≤rn

‖M̂(α, η̂)−M(α, η̂)− M̂(α0, η0)‖
n−1/2 + ‖M̂(α, η̂)‖+ ‖M(α, η0)‖

→Pn 0. (13)
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Suppose that uniformly for all α 6= α0 such that ‖α − α0‖ ≤ rn → 0, the following
conditions on the smoothness of M and the quality of the estimator η̂ hold, as n→∞:

‖M(α, η0)−M(α0, η0)− Γ1[α− α0]‖‖α− α0‖−1 → 0,√
n‖M(α, η̂)−M(α, η0)− ∂η′M(α, η0)[η̂ − η0]‖ →Pn 0,
‖{∂η′M(α, η0)− ∂η′M(α0, η0)}[η̂ − η0]‖‖α− α0‖−1 →Pn 0.

(14)

Finally, as before, we assume that the orthogonality condition

∂η′M(α0, η0) = 0 (15)

holds.

The above conditions extend the analysis of Pakes and Pollard (1989) and Chen et al.
(2003), which in turn extended Huber’s (1964) classical results on Z-estimators. These
conditions allow for both smooth and non-smooth systems of estimating equations. The
identifiability condition imposed above is mild and holds for broad classes of identifi-
able models. The equicontinuity and smoothness conditions imposed above require mild
smoothness on the function M as well as require that η̂ is a good-quality estimator of η0.
In particular, these conditions will often require that η̂ converges to η0 at a faster rate
than n−1/4 as demonstrated, for example, in the next section. However, the rate condi-
tion alone is not sufficient for adaptivity. We also need the orthogonality condition (15).
In addition, we need that η̂ ∈ Hn, where Hn is a set whose complexity does not grow too
quickly with the sample size, to verify the stochastic equicontinuity condition; see, e.g.,
Belloni, Chernozhukov, Fernández-Val and Hansen (2013) and Belloni, Chernozhukov
and Kato (2013b). In the next section, we use sparsity of η̂ to control this complexity.

Note that conditions (12)-(13) can be simplified by only leaving rn and n−1/2 in the
denominator, though this simplification would then require imposing compactness on A
even in linear problems.

Proposition 2 (Valid Inference via Adaptive Estimation after Selection or Regulariza-
tion). Consider a sequence {Pn} of sets of probability laws such that for each sequence
{Pn} ∈ {Pn} conditions (7)-(15) hold. Then

√
n(α̂− α0) + [Γ′1Γ1]−1Γ′1

√
nM̂(α0, η0)→Pn 0.

In addition, for Vn := (Γ′1Γ1)−1Γ′1ΩΓ1(Γ′1Γ1)−1, we have that

lim
n→∞

sup
P∈Pn

sup
R∈R
|P(V −1/2

n (α̂− α0) ∈ R)− P(N (0, I) ∈ R)| = 0,

where R is a collection of all convex sets. Moreover, the result continues to apply if Vn is
replaced by a consistent estimator V̂n such that V̂n−Vn →Pn 0 under each sequence {Pn}.
Thus, CRl1−a = [l′α̂ ± c(1− a/2)(l′V̂nl/n)1/2] where c(1− a/2) is the (1− a/2)-quantile
of N (0, 1) is a uniformly valid confidence set for l′α0:

lim
n→∞

sup
P∈Pn

|P(l′α0 ∈ CRl1−a)− (1− a)| = 0.

Note that the above formulation implicitly accommodates weighting options. Suppose
Mo and M̂o are the original theoretical and empirical systems of equations, and let
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Γo1 = ∂α′Mo(α0, η0) be the original Jacobian. We could consider k × k positive-definite

weight matrices A and Â such that

‖A2‖+ ‖(A2)−1‖ . 1, ‖Â2 −A2‖ →Pn 0. (16)

For example, we may wish to use the optimal weighting matrix A2 = Var(
√
nM̂o(α0, η0))−1

which can be estimated by Â2 obtained using a preliminary estimator α̂o resulting from
solving the problem with some non-optimal weighting matrix such as I. We can then
simply redefine the system of equations and the Jacobian according to

M(α, η) = AMo(α, η), M̂(α, η) = ÂM̂o(α, η), Γ1 = AΓo1. (17)

Proposition 3 (Adaptive Estimation via Weighted Equations). Consider a sequence
{Pn} of sets of probability laws such that for each sequence {Pn} ∈ {Pn} the conditions

of Proposition 2 hold for the original pair of systems of equations (Mo, M̂o) and that

(16) holds. Then these conditions also hold for the new pair (M, M̂) in (17), so that all
the conclusions of Proposition 2 apply to the resulting approximate argmin estimator α̂.
In particular, if we use A2 = Var(

√
nM̂o(α0, η0))−1 and Â2 − A2 →Pn 0, then the large

sample variance Vn simplifies to Vn = (Γ′1Γ1)−1.

2.4. Inference via Adaptive “One-Step” Estimation. We next consider a “one-
step” estimator. To define the estimator, we start with an initial estimator α̃ that
satisfies, for rn = o(n−1/4),

Pn(‖α̃− α0‖ ≤ rn)→ 1. (18)

The one-step estimator α̌ then solves a linearized version of (7):

α̌ = α̃− [Γ̂′1Γ̂1]−1Γ̂′1M̂(α̃, η̂) (19)

where Γ̂1 is an estimator of Γ1 such that

Pn(‖Γ̂1 − Γ1‖ ≤ rn)→ 1. (20)

Since the one-step estimator is considerably more crude than the argmin estimator, we
need to impose additional smoothness conditions. Specifically, we suppose that uniformly
for all α 6= α0 such that ‖α − α0‖ ≤ rn → 0, the following strengthened conditions on
stochastic equicontinuity, smoothness of M and the quality of the estimator η̂ hold, as
n→∞:

n1/2‖M̂(α, η̂)−M(α, η̂)− M̂(α0, η0)‖ →Pn 0,
‖M(α, η0)−M(α0, η0)− Γ1[α− α0]‖‖α− α0‖−2 . 1,√
n‖M(α, η̂)−M(α, η0)− ∂η′M(α, η0)[η̂ − η0]‖ →Pn 0,√
n‖{∂η′M(α, η0)− ∂η′M(α0, η0)}[η̂ − η0]‖ →Pn 0.

(21)

Proposition 4 (Valid Inference via Adaptive One-Step Estimators). Consider a se-
quence {Pn} of sets of probability laws such that for each sequence {Pn} ∈ {Pn} the
conditions of Proposition 2 as well as (18), (20), and (21) hold. Then the one-step
estimator α̌ defined by (19) is first order equivalent to the argmin estimator α̂:

√
n(α̌− α̂)→Pn 0.
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Consequently, all conclusions of Proposition 2 apply to α̌ in place of α̂.

The one-step estimator requires stronger regularity conditions than the argmin esti-
mator. Moreover, there is finite-sample evidence (e.g. Belloni, Chernozhukov and Wei
(2013)) that in practical problems the argmin estimator often works much better, since
the one-step estimator typically suffers from higher-order biases. This problem could
be alleviated somewhat by iterating on the one-step estimator, treating the previous
iteration as the “crude” start α̃ for the next iteration.

3. Achieving Orthogonality Using Neyman’s Orthogonalization

Here we describe orthogonalization ideas that go back at least to Neyman (1959); see
also Neyman (1979). Neyman’s idea was to project the score that identifies the parameter
of interest onto the ortho-complement of the tangent space for the nuisance parameter.
This projection underlies semi-parametric efficiency theory, which is concerned particu-
larly with the case where η is infinite-dimensional, cf. van der Vaart (1998). Here we
consider finite-dimensional η of high dimension; for discussion of infinite-dimensional η in
an approximately sparse setting, see Belloni, Chernozhukov, Fernández-Val and Hansen
(2013) and Belloni, Chernozhukov and Kato (2013b).

3.1. The Classical Likelihood Case. In likelihood settings, the construction of or-
thogonal equations was proposed by Neyman (1959) who used them in construction of
his celebrated C(α)-statistic. The C(α)-statistic, or the orthogonal score statistic, was
first explicitly used for testing (and also for setting up estimation) in high-dimensional
sparse models in Belloni, Chernozhukov and Kato (2013b) and Belloni, Chernozhukov
and Kato (2013a), in the context of quantile regression, and Belloni, Chernozhukov and
Wei (2013) in the context of logistic regression and other generalized linear models. More
recent uses of C(α)-statistics (or close variants) include those in Voorman et al. (2014),
Ning and Liu (2014), and Yang et al. (2014).

Suppose that the (possibly conditional, possibly quasi) log-likelihood function asso-
ciated to observation wi is `(wi, α, β), where α ∈ A ⊂ Rd is the target parameter and
β ∈ B ⊂ Rp0 is the nuisance parameter. Under regularity conditions, the true parameter
values γ0 = (α′0, β0)′ obey

E[∂α`(wi, α0, β0)] = 0, E[∂β`(wi, α0, β0)] = 0. (22)

Now consider the moment function

M(α, η) = E[ψ(wi, α, η)], ψ(wi, α, η) = ∂α`(wi, α, β)− µ∂β`(wi, α, β). (23)

Here the nuisance parameter is

η = (β′, vec(µ)′)′ ∈ B ×D ⊂ Rp, p = p0 + dp0,

where µ is the d× p0 orthogonalization parameter matrix whose true value µ0 solves the
equation:

Jαβ − µJββ = 0 ( i.e., µ0 = JαβJ
−1
ββ ), (24)
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where, for γ := (α′, β′)′ and γ0 := (α′0, β
′
0)′,

J := ∂γ′E[∂γ`(wi, γ) ]|γ=γ0 =:

(
Jαα Jαβ
Jβα Jββ

)
.

Note that µ0 not only creates the necessary orthogonality but also creates

• the optimal score (in statistical language)
• or, equivalently, the optimal instrument/moment (in econometric language)3

for inference about α0.

Provided µ0 is well-defined, we have by (22) that

M(α0, η0) = 0.

Moreover, the function M has the desired orthogonality property:

∂η′M(α0, η0) =
[
Jαβ − µ0Jββ ; FE[∂β`(wi, α0, β0)]

]
= 0, (25)

where F is a tensor operator, such that Fx = ∂µx/∂vec(µ)′ |µ=µ0 is a d× (dp0) matrix
for any vector x in Rp0 . Note that the orthogonality property holds for Neyman’s
construction even if the likelihood is misspecified. That is, `(wi, γ0) may be a quasi-
likelihood, and the data need not be i.i.d. and may, for example, exhibit complex
dependence over i.

An alternative way to define µ0 arises by considering that, under correct specification
and sufficient regularity, the information matrix equality holds and yields

J = J0 := E[∂γ`(wi, γ)∂γ`(wi, γ)′]|γ=γ0

=

(
E[∂α`(wi, γ)∂α`(wi, γ)′] E[∂α`(wi, γ)∂β`(wi, γ)′]
E[∂β`(wi, γ)∂α`(wi, γ)′] E[∂β`(wi, γ)∂β`(wi, γ)′]

)∣∣∣∣
γ=γ0

,

=:

(
J0
αα J0

αβ

J0
βα J0

ββ

)
.

Hence define µ∗0 = J0
αβJ

0−1
ββ as the population projection coefficient of the score for the

main parameter ∂α`(wi, γ0) on the score for the nuisance parameter ∂β`(wi, γ0):

∂α`(wi, γ0) = µ∗0∂β`(wi, γ0) + %, E[%∂β`(wi, γ0)′] = 0. (26)

We can see this construction as the non-linear version of Frisch-Waugh’s “partialling out”
from the linear regression model. It is important to note that under misspecification the
information matrix equality generally does not hold, and this projection approach does
not provide valid orthogonalization.

Lemma 1 (Neyman’s orthogonalization for (quasi-) likelihood scores). Suppose that
for each γ = (α, β) ∈ A × B, the derivative ∂γ`(wi, γ) exists and is continuous at γ
with probability one, and obeys the dominance condition E supγ∈A×B ‖∂γ`(wi, γ)‖2 <∞.
Suppose that condition (22) holds for some (quasi-) true value (α0, β0). Then, (i) if J
exists and is finite and Jββ is invertible, then the orthogonality condition (25) holds; (ii)

3The connection between optimal instruments/moments and likelihood/score has been elucidated by
the fundamental work of Chamberlain (1987).
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if the information matrix equality holds, namely J = J0, then the orthogonality condition
(25) holds for the projection parameter µ∗0 in place of the orthogonalization parameter
matrix µ0.

The claim follows immediately from the computations above.

With the formulations above Neyman’s C(α)-statistic takes the form

C(α) = ‖S(α)‖22, S(α) = Ω̂−1/2(α, η̂)
√
nM̂(α, η̂),

where M̂(α, η̂) = En[ψ(wi, α, η̂)] as before, Ω(α, η0) = Var(
√
nM̂(α, η0)), and Ω̂(α, η̂)

and η̂ are suitable estimators based on sparsity or other structured assumptions. The
estimator is then

α̂ = arg inf
α∈A

C(α) = arg inf
α∈A
‖
√
nM̂(α, η̂)‖,

provided that Ω̂(α, η̂) is positive definite for each α ∈ A. If the conditions of Section 2
hold, we have that

C(α) χ2(d), V −1/2
n

√
n(α̂− α0) N (0, I), (27)

where Vn = Γ−1
1 Ω(α0, η0)Γ−1

1 and Γ1 = Jαα − µ0J
′
αβ. Under correct specification and

i.i.d. sampling, the variance matrix Vn further reduces to the optimal variance

Γ−1
1 = (Jαα − JαβJ−1

ββ J
′
αβ)−1,

of the first d components of the maximum likelihood estimator in a Gaussian shift
experiment with observation Z ∼ N (h, J−1

0 ). Likewise, the result (27) also holds for the
one-step estimator α̌ of Section 2 in place of α̂ as long as conditions in Section 2 hold.

Provided that sparsity or its generalizations are plausible assumptions to make re-
garding η0, the formulations above naturally lend themselves to sparse estimation. For
example, Belloni, Chernozhukov and Wei (2013) used penalized and post-penalized max-
imum likelihood to estimate β0, and used the information matrix equality to estimate
the orthogonalization parameter matrix µ∗0 by using Lasso or Post-Lasso estimation of
the projection equation (26). It is also possible to estimate µ0 directly by finding approx-
imate sparse solutions to the empirical analog of the system of equations Jαβ−µJββ = 0
using `1-penalized estimation, as, e.g., in van de Geer et al. (2014), or post-`1-penalized
estimation.

3.2. Achieving Orthogonality in GMM Problems. Here we consider γ0 = (α′0, β
′
0)′

that solve the system of equations:

E[m(wi, α0, β0)] = 0,

where m : W ×A× B 7→ Rk, A × B is a convex subset of Rd × Rp0 , and k ≥ d + p0 is
the number of moments. The orthogonal moment equation is

M(α, η) = E[ψ(wi, α, η)], ψ(wi, α, η) = µm(wi, α, β). (28)

The nuisance parameter is

η = (β′, vec(µ)′)′ ∈ B ×D ⊂ Rp, p = p0 + dk,
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where µ is the d× k orthogonalization parameter matrix. The “true value” of µ is

µ0 = (G′αΩ−1
m −G′αΩ−1

m Gβ(G′βΩ−1
m Gβ)−1G′βΩ−1

m ),

where, for γ = (α′, β′)′ and γ0 = (α′0, β
′
0)′,

Gγ = ∂γ′E[m(wi, α, β)]
∣∣∣
γ=γ0

=
[
∂α′E[m(wi, α, β)], ∂β′E[m(wi, α, β)]

]∣∣∣
γ=γ0

=:
[
Gα, Gβ

]
,

and

Ωm = Var(
√
nEn[m(wi, α0, β0)]).

As before, we can interpret µ0 as an operator creating orthogonality while building

• the optimal instrument/moment (in econometric language),
• or, equivalently, the optimal score function (in statistical language).4

The resulting moment function has the required orthogonality property; namely, the first
derivative with respect to the nuisance parameter when evaluated at the true parameter
values is zero:

∂η′M(α0, η)|η=η0 = [µ0Gβ, FE[m(wi, α0, β0)]] = 0, (29)

where F is a tensor operator, such that Fx = ∂µx/∂vec(µ)′ |µ=µ0 is a d × (dk) matrix

for any vector x in Rk.

Estimation and inference on α0 can be based on the empirical analog of (28):

M̂(α, η̂) = En[ψ(wi, α, η̂)],

where η̂ is a post-selection or other regularized estimator of η0. Note that the previous
framework of (quasi)-likelihood is incorporated as a special case with

m(wi, α, β) = [∂α`(wi, α)′, ∂β`(wi, β)′]′.

With the formulations above, Neyman’s C(α)-statistic takes the form:

C(α) = ‖S(α)‖22, S(α) = Ω̂−1/2(α, η̂)
√
nM̂(α, η̂),

where M̂(α, η̂) = En[ψ(wi, α, η̂)] as before, Ω(α, η0) = Var(
√
nM̂(α, η0)), and Ω̂(α, η̂) and

η̂ are suitable estimators based on structured assumptions. The estimator is then

α̂ = arg inf
α∈A

C(α) = arg inf
α∈A
‖
√
nM̂(α, η̂)‖,

provided that Ω̂(α, η̂) is positive definite for each α ∈ A. If the high-level conditions of
Section 2 hold, we have that

C(α) Pn χ
2(d), V −1/2

n

√
n(α̂− α) Pn N (0, I), (30)

where Vn = (Γ′1)−1Ω(α0, η0)(Γ1)−1 coincides with the optimal variance for GMM; here
Γ1 = µ0Gα. Likewise, the same result (30) holds for the one-step estimator α̌ of Section
2 in place of α̂ as long as the conditions in Section 2 hold. In particular, the variance
Vn corresponds to the variance of the first d components of the maximum likelihood
estimator in the normal shift experiment with the observation Z ∼ N (h, (G′γΩ−1

m Gγ)−1).

4Cf. previous footnote.
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The above is a generic outline of the properties that are expected for inference using
orthogonalized GMM equations under structured assumptions. The problem of infer-
ence in GMM under sparsity is a very delicate matter due to the complex form of the
orthogonalization parameters. One potential approach to the problem is outlined in
Chernozhukov et al. (2014).

4. Achieving Adaptivity In Affine-Quadratic Models via Approximate
Sparsity

Here we take orthogonality as given and explain how we can use approximate sparsity
to achieve the adaptivity property (1).

4.1. The Affine-Quadratic Model. We analyze the case where M̂ and M are affine
in α and affine-quadratic in η. Specifically, we suppose that for all α

M̂(α, η) = Γ̂1(η)α+ Γ̂2(η), M(α, η) = Γ1(η)α+ Γ2(η),

where the orthogonality condition holds,

∂η′M(α0, η0) = 0,

and η 7→ Γ̂j(η) and η 7→ Γj(η) are affine-quadratic in η for j = 1 and j = 2. That is,

we will have that all second-order derivatives of Γ̂j(η) and Γj(η) for j = 1 and j = 2 are
constant over the convex parameter space H for η.

This setting is both useful, including most widely used linear models as a special case,
and pedagogical, permitting simple illustration of the key issues that arise in treating
the general problem. The derivations given below easily generalize to more complicated
models, but we defer the details to the interested reader.

The estimator in this case is

α̂ = arg min
α∈Rd

‖M̂(α, η̂)‖2 = −[Γ̂1(η̂)′Γ̂1(η̂)]−1Γ̂1(η̂)′Γ̂2(η̂), (31)

provided the inverse is well-defined. It follows that
√
n(α̂− α0) = −[Γ̂1(η̂)′Γ̂1(η̂)]−1Γ̂1(η̂)′

√
nM̂(α0, η̂). (32)

This estimator is adaptive if, for Γ1 := Γ1(η0),
√
n(α̂− α0) + [Γ′1Γ1]−1Γ′1

√
nM̂(α0, η0)→Pn 0,

which occurs under (10) and (11) if
√
n(M̂(α0, η̂)− M̂(α0, η0))→Pn 0, Γ̂1(η̂)− Γ1(η0)→Pn 0. (33)

Therefore, the problem of adaptivity of the estimator is directly connected to the problem
of adaptivity of testing hypotheses about α0.
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Lemma 2 (Adaptive Testing and Estimation in Affine-Quadratic Models). Consider
a sequence {Pn} of sets of probability laws such that for each sequence {Pn} ∈ {Pn}
condition (33), the asymptotic normality condition (10), the stability condition (11),
and condition (4) hold. Then all the conditions of Propositions 1 and 2 hold. Moreover,
the conclusions of Proposition 1 hold, and the conclusions of Proposition 2 hold for the
estimator α̂ in (31).

4.2. Adaptivity for Testing via Approximate Sparsity. Assuming the orthogo-
nality condition holds, we follow Belloni et al. (2012) in using approximate sparsity
to achieve the adaptivity property (1) for the testing problem in the affine-quadratic
models.

We can expand each element M̂j of M̂ = (M̂j)
k
j=1 as follows:

√
n(M̂j(α0, η̂)− M̂j(α0, η0)) = T1,j + T2,j + T3,j , (34)

where
T1,j :=

√
n∂ηMj(α0, η0)′(η̂ − η0),

T2,j :=
√
n(∂ηM̂j(α0, η0)− ∂ηMj(α0, η0))′(η̂ − η0),

T3,j :=
√
n2−1(η̂ − η0)′∂η∂η′M̂j(α0)(η̂ − η0).

(35)

The term T1,j vanishes precisely because of orthogonality, i.e.

T1,j = 0.

However, terms T2,j and T3,j need not vanish. In order to show that they are asymptot-
ically negligible, we need to impose further structure on the problem.

Structure 1: Exact Sparsity. We first consider the case of using an exact sparsity
structure where ‖η0‖0 ≤ s and s = sn ≥ 1 can depend on n. We then use estimators η̂
that exploit the sparsity structure.

Suppose that the following bounds hold with probability 1− o(1) under Pn:

‖η̂‖0 . s, ‖η0‖0 ≤ s,
‖η̂ − η0‖2 .

√
(s/n) log(pn), ‖η̂ − η0‖1 .

√
(s2/n) log(pn).

(36)

These conditions are typical performance bounds which hold for many sparsity-based
estimators such as Lasso, post-Lasso, and their extensions.

We suppose further that the moderate deviation bound

T̄2,j = ‖
√
n(∂η′M̂j(α0, η0)− ∂η′Mj(α0, η0))‖∞ .Pn

√
log(pn) (37)

holds and that the sparse norm of the second-derivative matrix is bounded:

T̄3,j = ‖∂η∂η′M̂j(α0)‖sp(`ns) .Pn 1 (38)

where `n →∞ but `n = o(log n).

Following Belloni et al. (2012), we can verify condition (37) using the moderate devi-
ation theory for self-normalized sums (e.g., Jing et al. (2003)), which allows us to avoid
making highly restrictive subgaussian or gaussian tail assumptions. Likewise, following
Belloni et al. (2012), we can verify the second condition using laws of large numbers
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for large matrices acting on sparse vectors as in Rudelson and Vershynin (2008) and
Rudelson and Zhou (2011); see Lemma 7. Indeed, condition (38) holds if

‖∂η∂η′M̂j(α0)− ∂η∂η′Mj(α0)‖sp(`ns) →Pn 0, ‖∂η∂η′Mj(α0)‖sp(`ns) . 1.

The above analysis immediately implies the following elementary result.

Lemma 3 (Elementary Adaptivity for Testing via Sparsity). Let {Pn} be a sequence of

probability laws. Assume (i) η 7→ M̂(α0, η) and η 7→ M(α0, η) are affine-quadratic in η
and the orthogonality condition holds, (ii) that the conditions on sparsity and the quality
of estimation (36) hold, and the sparsity index obeys

s2 log(pn)3/n→ 0, (39)

(iii) that the moderate deviation bound (37) holds, and (iv) the sparse norm of the second
derivatives matrix is bounded as in (38). Then the adaptivity condition (1) holds for the
sequence {Pn}.

We note that (39) requires that the true value of the nuisance parameter is sufficiently
sparse, which we can relax in some special cases to the requirement s log(pn)c/n→ 0, for
some constant c, by using sample-splitting techniques; see Belloni et al. (2012). However,
this requirement seems unavoidable in general.

Proof. We noted that T1,j = 0 by orthogonality. Under (36)-(37) if s2 log(pn)3/n→ 0,
then T2,j vanishes in probability, since by Hölder’s inequality,

T2,j ≤ T̄2,j‖η̂ − η0‖1 .Pn

√
s2 log(pn)3/n→Pn 0.

Also, if s2 log(pn)2/n→ 0, then T3,j vanishes in probability, since by Hölder’s inequality
and for sufficiently large n,

T3,j ≤ T̄3,j‖η̂ − η0‖2 .Pn

√
ns log(pn)/n→Pn 0.

The conclusion follows from (34). �

Structure 2. Approximate Sparsity. Following Belloni et al. (2012), we next
consider an approximate sparsity structure. Approximate sparsity imposes that, given
a constant c > 0, we can decompose η0 into a sparse component ηmr and a “small”
non-sparse component ηr:

η0 = ηm0 + ηr0, support(ηm0 ) ∩ support(ηr0) = ∅,
‖ηm0 ‖0 ≤ s, ‖ηr0‖2 ≤ c

√
s/n, ‖ηr0‖1 ≤ c

√
s2/n.

(40)

This condition allows for much more realistic and richer models than can be accommo-
dated under exact sparsity. For example, η0 needs not have any zero components at
all under approximate sparsity. In Section 5, we provide an example where (40) arises
from a more primitive condition that the absolute values {|η0j |, j = 1, ..., p}, sorted in
decreasing order, decay at a polynomial speed with respect to j.

Suppose that we have an estimator η̂ such that with probability 1 − o(1) under Pn
the following bounds hold:

‖η̂‖0 . s, ‖η̂ − ηm0 ‖2 .
√

(s/n) log(pn), ‖η̂ − ηm0 ‖1 .
√

(s2/n) log(pn). (41)
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This condition is again a standard performance bound expected to hold for sparsity-
based estimators under approximate sparsity conditions; see Belloni et al. (2012). Note
that by the approximate sparsity condition, we also have that, with probability 1− o(1)
under Pn,

‖η̂ − η0‖2 .
√

(s/n) log(pn), ‖η̂ − η0‖1 .
√

(s2/n) log(pn). (42)

We can employ the same moderate deviation and bounded sparse norm conditions as
in the previous subsection. In addition, we require the pointwise norm of the second-
derivatives matrix to be bounded. Specifically, for any deterministic vector a 6= 0, we
require

‖∂η∂η′M̂j(α0)‖pw(a) .Pn 1. (43)

This condition can be easily verified using ordinary laws of large numbers.

Lemma 4 (Elementary Adaptivity for Testing via Approximate Sparsity). Let {Pn}
be a sequence of probability laws. Assume (i) η 7→ M̂(α0, η) and η 7→ M(α0, η) are
affine-quadratic in η and the orthogonality condition holds, (ii) that the conditions on
approximate sparsity (40) and the quality of estimation (41) hold, and the sparsity index
obeys

s2 log(pn)3/n→ 0,

(iii) that the moderate deviation bound (37) holds, (iv) the sparse norm of the second
derivatives matrix is bounded as in (38), and (v) the pointwise norm of the second
derivative matrix is bounded as in (43). Then the adaptivity condition (1) holds:

√
n(M̂(α0, η̂)− M̂(α0, η0))→Pn 0.

4.3. Adaptivity for Estimation via Approximate Sparsity. We work with the
approximate sparsity setup and the affine-quadratic model introduced in the previous
subsections.

In addition to the previous assumptions, we impose the following conditions on the
components ∂ηΓ1,ml of ∂ηΓ1, where m = 1, ..., k and l = 1, ..., d,. First, we need the
following deviation and boundedness condition: For each m and l,

‖∂ηΓ̂1,ml(η0)− ∂ηΓ1,ml(η0)‖∞ .Pn 1, ‖∂ηΓ1,ml(η0)‖∞ . 1. (44)

Second, we require the sparse and pointwise norms of the following second-derivative
matrices be stochastically bounded: For each m and l,

‖∂η∂η′Γ̂1,ml‖sp(`ns) + ‖∂η∂η′Γ̂1,ml‖pw(a) .Pn 1, (45)

where a 6= 0 is any deterministic vector. Both of these conditions are mild. They can be
verified using self-normalized moderate deviation theorems and by using laws of large
numbers for matrices as discussed in the previous subsection.

Lemma 5 (Elementary Adaptivity for Estimation via Approximate Sparsity). Consider
a sequence {Pn} for which the conditions of the previous lemma hold. In addition assume
that the deviation bound (44) holds and the sparse norm and pointwise norms of the
second derivatives matrices are stochastically bounded as in (45). Then the adaptivity
condition (33) holds for the testing and estimation problem in the affine-quadratic model.
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5. Analysis of the IV Model with Very Many Control and Instrumental
Variables

Note that in the following we write w ⊥ v to denote Cov(w, v) = 0.

Consider the linear instrumental variable model with response variable:

yi = d′iα0 + x′iβ0 + εi, E[εi] = 0, εi ⊥ (zi, xi), (46)

where yi is the response variable, di = (dik)
pd

k=1 is a pd-vector of endogenous variables,
such that

di1 = x′iγ01 + z′iδ01 + ui1, E[ui1] = 0, ui1 ⊥ (zi, xi),
...

...
...

dipd = x′iγ0pd + z′iδ0pd + uipd , E[uipd ] = 0, uipd ⊥ (zi, xi).

(47)

Here xi = (xij)
px

j=1 is a px-vector of exogenous control variables, including a constant,

and zi = (zi)
pz

i=1 is a pz-vector of instrumental variables. We will have n i.i.d. draws of
wi = (yi, d

′
i, x
′
i, z
′
i)
′ obeying this system of equations. We also assume that Var(wi) is

finite throughout so that the model is well defined.

The parameter value α0 is our target. We allow px = pxn � n and pz = pzn � n, but
we maintain that pd is fixed in our analysis. This model includes the many instruments
and small number of controls case considered by Belloni et al. (2012) as a special case,
and the analysis readily accommodates the many controls and no instruments case – i.e.
the linear regression model – considered by Belloni et al. (2010a); Belloni, Chernozhukov
and Hansen (2014) and Zhang and Zhang (2014). For the latter, we simply set pzn = 0
and impose the additional condition εi ⊥ ui for ui = (uij)

pd
j=1, which together with

εi ⊥ xi implies that εi ⊥ di.
We may have that zi and xi are correlated so that zi are valid instruments only after

controlling for xi; specifically, we let zi = Πxi + ζi, for Π a pzn × pxn matrix and ζi a
pzn-vector of unobservables with xi ⊥ ζi. Substituting this expression for zi as a function
of xi into (46) gives a system for yi and di that depends only on xi:

yi = x′iθ0 + ρyi , E[ρyi ] = 0, ρyi ⊥ xi,

di1 = x′iϑ01 + ρdi1, E[ρdi1] = 0, ρdi1 ⊥ xi,
...

...
...

dipd = x′iϑ0pd + ρd
ipd
, E[ρd

ipd
] = 0, ρd

ipd
⊥ xi.

(48)

Because the dimension p = pn of

η0 = (θ′0, (ϑ
′
0k, γ

′
0k, δ

′
0k)

pd

k=1)′

may be larger than n, informative estimation and inference about α0 is impossible with-
out imposing restrictions on η0.
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In order to state our assumptions, we fix a collection of positive constants (a,A, c,C),
where a > 1, and a sequence of constants δn ↘ 0 and `n ↗∞. These constants will not
vary with P, but rather we will work with collections of P defined by these constants.

Condition AS.1 We assume that η0 is approximately sparse, namely that the de-
creasing rearrangement (|η0|∗j )

p
j=1 of absolute values of coefficients (|η0j |)pj=1 obeys

|η0|∗j ≤ Aj−a, a > 1, j = 1, ..., p. (49)

Given this assumption we can decompose η0 into a sparse component ηm0 and small
non-sparse component ηr0:

η0 = ηm0 + ηr0, support(ηm0 ) ∩ support(ηr0) = ∅,
‖ηm0 ‖0 ≤ s, ‖ηr0‖2 ≤ c

√
s/n, ‖ηr0‖1 ≤ c

√
s2/n,

s = cn
1
2a ,

(50)

where the constant c depends only on (a,A).

Condition AS.2 We assume that

s2 log(pn)3/n ≤ o(1). (51)

We shall perform inference on α0 using the empirical analog of theoretical equations:

M(α0, η0) = 0, M(α, η) := E [ψ(wi, α, η)] , (52)

where ψ = (ψk)
pd

k=1 is defined by

ψk(wi, α, η) :=

yi − x′iθ − pd∑
k̄=1

(dik̄ − x′iϑk̄)αk̄

 (x′iγk + z′iδk − x′iϑk).

We can verify that the following orthogonality condition holds:

∂η′M(α0, η)
∣∣∣
η=η0

= 0. (53)

This means that missing the true value η0 by a small amount does not invalidate the
moment condition. Therefore, the moment condition will be relatively insensitive to
non-regular estimation of η0.

We denote the empirical analog of (52) as

M̂(α, η̂) = 0, M̂(α, η) := En [ψi(α, η)] . (54)

Inference based on this condition can be shown to be immunized against small selection
mistakes by virtue of orthogonality.

The above formulation is a special case of the linear-affine model. Indeed, here we
have

M(α, η) = Γ1(η)α+ Γ2(η), M̂(α, η) = Γ̂1(η)α+ Γ̂2(η),

Γ1(η) = E[ψa(wi, η)], Γ̂1(η) = En[ψa(wi, η)],

Γ2(η) = E[ψb(wi, η)], Γ̂2(η) = En[ψb(wi, η)],
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where
ψak,k̄(wi, η) = −(dik̄ − x′iϑk̄)(x′iγk + z′iδk − x′iϑk),

ψbk(wi, η) = (yi − x′iθ)(x′iγk + z′iδk − x′iϑk).

Consequently we can use the results of the previous section. In order to do so we need
to provide a suitable estimator for η0. Here we use the Lasso and Post-Lasso estimators,
as defined in Belloni et al. (2012), to deal with non-normal errors and heteroscedasticity.

Algorithm 1 (Estimation of η0). (1) For each k, do Lasso or Post-Lasso Regression of

dik on xi, zi to obtain γ̂k and δ̂k. (2) Do Lasso or Post-Lasso Regression of yi on xi to

get θ̂. (3) Do Lasso or Post-Lasso Regression of d̂ik = x′iγ̂k + z′iδ̂k on xi to get ϑ̂k. The

estimator of η0 is given by η̂ = (θ̂′, (ϑ̂′k, γ̂
′
0k, δ̂

′
k)
pd

k=1)′.

We then use
Ω̂(α, η̂) = En[ψ(wi, α, η̂)ψ(wi, α, η̂)′].

to estimate the variance matrix Ω(α, η0) = En[ψ(wi, α, η0)ψ(wi, α, η0)′]. We formulate
the orthogonal score statistic and the C(α)-statistic,

S(α) := Ω̂−1/2
n (α, η̂)

√
nM̂(α, η̂), C(α) = ‖S(α)‖2, (55)

as well as our estimator α̂:

α̂ = arg min
α∈A
‖
√
nM̂(α, η̂)‖2.

Note also that α̂ = arg minα∈AC(α) under mild conditions, since we work with “exactly

identified” systems of equations. We also need to specify a variance estimator V̂n for the
large sample variance Vn of α̂. We set V̂n = (Γ̂1(η̂)′)−1Ω̂(α̂, η̂)(Γ̂1(η̂))−1.

To estimate the nuisance parameter we impose the following condition. Let fi :=

(fij)
pf
j=1 := (x′i, z

′
i)
′; hi := (hil)

ph
l=1 := (yi, d

′
i, d̄
′
i)
′ where d̄i = (d̄ik)

pd

k=1 and d̄ik := x′iγ0k +

z′iδ0k; vi = (vil)
ph
l=1 := (εi, ρ

y
i , ρ

d
i
′
, %i
′)′ where %i = (%ik)

pd

k=1 and %ik := dik − d̄ik. Let

h̃i := hi − E[hi].

Condition RF. (i) The eigenvalues of E[fif
′
i ] are bounded from above by C and from

below by c. For all j and l, (ii) E[h2
il] + E[|f2

ij h̃
2
il|] + 1/E[f2

ijv
2
il] ≤ C and E[|f2

ijv
2
il|] ≤

E[|f2
ij h̃

2
il|], (iii) E[|f3

ijv
3
il|]2 log3(pn)/n ≤ δn, and (iv) s log(pn)/n ≤ δn. With probability

no less than 1 − δn, we have that (v) maxi≤n,j f
2
ij [s

2 log(pn)]/n ≤ δn and maxl,j |(En −
E)[f2

ijv
2
il]|+ |(En − E)[f2

ij h̃
2
il]| ≤ δn and (vi) ‖En[fif

′
i ]− E[fif

′
i ]‖sp(`ns) ≤ δn.

The conditions are motivated by those given in Belloni et al. (2012). The current
conditions are made slightly stronger to account for the fact that we use zero covariance
conditions in formulating the moments. Some conditions could be easily relaxed at a
cost of more complicated exposition.

To estimate the variance matrix and establish asymptotic normality, we also need the
following condition. Let q > 4 be a fixed constant.

Condition SM. For each l and k, (i) E[|hil|q]+E[|vil|q] ≤ C, (ii) c ≤ E[ε2
i | xi, zi] ≤

C, c < E[%2
ik | xi, zi] ≤ C a.s., (iii) supα∈A ‖α‖2 ≤ C.
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Under the conditions set forth above, we have the following result on validity of
post-selection and post-regularization inference using the C(α)-statistic and estimators
derived from it.

Proposition 5 (Valid Inference in Large Linear Models using C(α)-statistics). Let Pn

be the collection of all P such that Conditions AS.1-2, SM, and RF hold for the given n.
Then uniformly in P ∈ Pn, S(α0)  N (0, I), and C(α0)  χ2(pd). As a consequence,
the confidence set CR1−a = {α ∈ A : C(α) ≤ c(1−a)}, where c(1−a) is the 1−a-quantile
of a χ2(pd) is uniformly valid for α0, in the sense that

lim
n→∞

sup
P∈Pn

|P(α0 ∈ CR1−a)− (1− a)| = 0.

Furthermore, for Vn = (Γ′1)−1Ω(Γ1)−1, we have that

lim
n→∞

sup
P∈Pn

sup
R∈R
|P(V −1/2

n (α̂− α0) ∈ R)− P(N (0, I) ∈ R)| = 0,

where R is the collection of all convex sets. Moreover, the result continues to apply if
Vn is replaced by V̂n. Thus, CRl1−a = [l′α̂ ± c(1− a/2)(l′V̂nl/n)1/2], where c(1− a/2) is
the (1− a/2)-quantile of a N (0, 1), provides a uniformly valid confidence set for l′α0:

lim
n→∞

sup
P∈Pn

|P(l′α0 ∈ CRl1−a)− (1− a)| = 0.

5.1. Simulation Illustration. In this section, we provide results from a small Monte
Carlo simulation to illustrate performance of the estimator resulting from applying Algo-
rithm 1 in a small sample setting. As comparison, we report results from two commonly
used “unprincipled” alternatives for which uniformly valid inference over the class of
approximately sparse models does not hold. Simulation parameters were chosen so that
approximate sparsity holds but exact sparsity is violated in such a way that we expected
the unprincipled procedures to perform poorly.

For our simulation, we generate data as n iid draws from the model

yi = αdi + x′iβ + 2εi
di = x′iγ + z′iδ + ui
zi = Πxi + .125ζi

∣∣∣∣∣∣


εi
ui
ζi
xi

 ∼ N
0,


1 .6 0 0
.6 1 0 0
0 0 Ipzn 0
0 0 0 Σ


 ,

where Σ is a pxn × pxn matrix with Σkj = (0.5)|j−k| and Ipzn is a pzn × pzn identity matrix.
We set the number of potential controls variables (pxn) to 200, the number of instruments
(pzn) to 150, and the number of observations (n) to 200. For model coefficients, we set

α = 0, β = γ as pxn−vectors with entries βj = γj = 1/(9νj), νj = 4/9 +
∑pxn

j=5 1/j2 for

j ≤ 4 and βj = γj = 1/(j2νj) for j > 4, δ as a pzn−vector with entries δj = 3
j2

, and

Π = [Ipzn , 0pzn×(pxn−pzn)]. We report results based on 1000 simulation replications.

We provide results for four different estimators - an infeasible Oracle estimator that
knows the nuisance parameters η (Oracle), two naive estimators, and the proposed
“Double-Selection” estimator. The results for the proposed “Double-Selection” pro-
cedure are obtained following Algorithm 1 using Post-Lasso at every step. To obtain the
Oracle results, we run standard IV regression of yi − E[yi|xi] on di − E[di|xi] using the
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single instrument ζ ′iδ. The expected values are obtained from the model above and ζ ′iδ
provides the information in the instruments that is unrelated to the controls.

The two naive alternatives offer unprincipled, though potentially intuitive alterna-
tives. The first naive estimator follows Algorithm 1 but replaces Lasso/Post-Lasso with
stepwise regression with p-value for entry of .05 and p-value for removal of .10 (Stepwise).
The second naive estimator (Non-orthogonal) corresponds to using a moment condition
which does not satisfy the orthogonality condition described previously but will produce
valid inference when perfect model selection in the regression of d on x and z is possible
or perfect model selection in the regression of y on x is possible and an instrument is
selected in the d on x and z regression.5

All of the Lasso and Post-Lasso estimates are obtained using the data-dependent
penalty level from Belloni and Chernozhukov (2013). This penalty level depends on
a standard deviation that is estimated adapting the iterative algorithm described in
Belloni et al. (2012) Appendix A using Post-Lasso at each iteration. For inference in all
cases, we use standard t-tests based on conventional homoscedastic IV standard errors
obtained from the final IV step performed in each strategy.

We display the simulation results in Figure 5.1, and we report the median bias (Bias),
median absolute deviation (MAD), and size of 5% level tests (Size) for each procedure in
Table 1. For each estimator, we plot the simulation estimate of the sampling distribution
of the estimator centered around the true parameter and scaled by the estimated stan-
dard error. With this standardization, usual asymptotic approximations would suggest
that these curves should line up with a N (0, 1) density function which is displayed as
the bold solid line in the figure. We can see that the Oracle estimator and the Double-
Selection estimator are centered correctly and line up reasonably well with the N (0, 1),
though both estimators exhibit some mild skewness. It is interesting that the sampling
distributions of the Oracle and Double-Selection estimators are very similar as predicted
by the theory. In contrast, both of the naive estimators are centered far from zero, and
it is clear that the asymptotic approximation provides a very poor guide to the finite
sample distribution of these estimators in the design considered.

The poor inferential performance of the two naive estimators is driven by different
phenomena. The unprincipled use of stepwise regression fails to control spurious in-
clusion of irrelevant variables which leads to inclusion of many essentially irrelevant
variables, resulting in many-instrument-type problems (e.g. Chao et al. (2012)). In ad-
dition, the spuriously included variables are those most highly correlated to the noise
within sample which adds an additional type of “endogeneity bias”. The failure of the

5Specifically, for the second naive alternative (Non-orthogonal), we first do Lasso regression of d
on x and z to obtain Lasso estimates of the coefficients γ and δ. Denote these estimates as γ̂L and

δ̂L, and denote the indices of the coefficients estimated to be non-zero as Îdx = {j : γ̂Lj 6= 0} and

Îdz = {j : δ̂Lj 6= 0}. We then run Lasso regression of y on x to learn the identities of controls that predict

the outcome. We denote the Lasso estimates as θ̂L and keep track of the indices of the coefficients

estimated to be non-zero as Îyx = {j : θ̂Lj 6= 0}. We then take the union of the controls selected in either

step Îx = Îyx ∪ Îdx . The estimator of α is then obtained as the usual 2SLS estimator of yi on di using all

selected elements from xi, xij such that j ∈ Îx, as controls and the selected elements from zi, zij such

that j ∈ Îdz , as instruments.
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Figure 1. The figure presents the histogram of the estimator from each
method centered around the true parameters and scaled by the estimated
standard error from the simulation experiment. The red curve is the pdf
of a standard normal which will correspond to the sampling distribution
of the estimator under the asymptotic approximation. Each panel is
labeled with the corresponding estimator from the simulation.

“Non-orthogonal” method is driven by the fact that perfect model selection is not pos-
sible within the present design: Here we have model selection mistakes in which the
control variables that are correlated to the instruments but only moderately correlated
to the outcome and endogenous variable are missed. Such exclusions result in standard
omitted variables bias in the estimator for the parameter of interest and substantial size
distortions. The additional step in the Double-Selection procedure can be viewed as a
way to guard against such mistakes. Overall, the results illustrate the uniformity claims
made in the preceding section. The feasible Double-Selection procedure following from
Algorithm 1 performs similarly to the semi-parametrically efficient infeasible Oracle. We
obtain good inferential properties with the asymptotic approximation providing a fairly
good guide to the behavior of the estimator despite working in a setting where perfect
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Table 1. Summary of Simulation Results for the Estimation of α

Method Bias MAD Size
Oracle 0.015 0.247 0.043
Stepwise 0.282 0.368 0.261
Non-orthogonal 0.084 0.112 0.189
Double-Selection 0.069 0.243 0.053

This table summarizes the simulation results from a linear IV model with many instruments and
controls. Estimators include an infeasible oracle as a benchmark (Oracle), two naive alternatives
(Stepwise and Non-orthogonal) described in the text, and our proposed feasible valid procedure
(Double-Selection). Median bias (Bias), median absolute deviation (MAD), and size for 5% level tests
(Size) are reported.

model selection is impossible. While simply illustrative of the theory, the results are
reassuring and in line with extensive simulations in the linear model with many controls
provided in Belloni, Chernozhukov and Hansen (2014), in the instrumental variables
model with many instruments and a small number of controls provided in Belloni et al.
(2012), and in linear panel data models provided in Belloni, Chernozhukov, Hansen and
Kozbur (2014).

5.2. Empirical Illustration: Logit Demand Estimation. As further illustration of
the approach, we provide a brief empirical example where we estimate the coefficients in
a simple logit model of demand for automobiles using market share data. Our example
is based on the data and most basic strategy from Berry et al. (1995). Specifically, we
estimate the parameters from the model

log(sit)− log(s0t) = α0pit + x′itβ0 + εit,

pit = z′itδ0 + x′itγ0 + uit,

where sit is the market share of product i in market t with product 0 denoting the
outside option, pit is price and treated as endogenous, xit are observed included product
characteristics, and zit are instruments. One could also adapt the proposed variable
selection procedures to extensions of this model such as the nested logit model or models
allowing for random coefficients; see, e.g., Gillen et al. (2014) for an example with a
random coefficient.

In our example, we use the same set of product characteristics (x-variables) as used
in obtaining the basic results in Berry et al. (1995). Specifically, we use five variables
in xit: a constant, an air conditioning dummy, horsepower divided by weight, miles per
dollar, and vehicle size. We refer to these five variables as the baseline set of controls.

We also adopt the argument from Berry et al. (1995) to form our potential instru-
ments. Berry et al. (1995) argue that that characteristics of other products will satisfy
an exclusion restriction, E[εit|xjτ ] = 0 for any τ and j 6= i, and thus that any function
of characteristics of other products may be used as instrument for price. This condition
leaves a very high-dimensional set of potential instruments as any combination of func-
tions of {xjτ}j 6=i,τ≥1 may be used to instrument for pit. To reduce the dimensionality,
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Berry et al. (1995) use intuition and an exchangeability argument to motivate considera-
tion of a small number of these potential instruments formed by taking sums of product
characteristics formed by summing over products excluding product i. Specifically, we
form baseline instruments by taking

zk,it =

 ∑
r 6=i,r∈If

xk,rt,
∑

r 6=i,r /∈If

xk,rt


where xk,it is the kth element of vector xit and If denotes the set of products produced
by firm f . This choice yields a vector zit consisting of 10 instruments. We refer to this
set of instruments as the baseline instruments.

While the choice of the baseline instruments and controls is motivated by good intu-
ition and economic theory, it should be noted that theory does not clearly state which
product characteristics or instruments should be used in the model. Theory also fails
to indicate the functional form with which any such variables should enter the model.
The high-dimensional methods outlined in this paper offer one strategy to help address
these concerns which complements the economic intuition motivating the baseline con-
trols and instruments. As an illustration, we consider an expanded set of controls and
instruments. We augment the set of potential controls with all first order interactions
of the baseline variables, quadratics and cubics in all continuous baseline variables, and
a time trend which yields a total of 24 x-variables. We refer to these as the augmented
controls. We then take sums of these characteristics as potential instruments following
the original strategy which yields 48 potential instruments.

We report estimation results in Table 2. We report results obtained by applying the
method outlined in Algorithm 1 using just the baseline set of five product characterstics
and 10 instruments in the row labeled “Baseline 2SLS with Selection” and results ob-
tained by applying the method to the augmented set of 24 controls and 48 instruments
in the row labeled “Augmented 2SLS with Selection.” In each case, we apply the method
outlined in Algorithm 1 using post-Lasso in each step and forcing the intercept to be
included in all models. We employ the heteroscedasticity robust version of Post-Lasso
of Belloni et al. (2012) following the implementation algorithm provided in Appendix A
of Belloni et al. (2012). For comparison, we also report OLS and 2SLS estimates using
only the baseline variables in “Baseline OLS” and “Baseline 2SLS,” respectively; and
we report OLS and 2SLS estimates using the augmented variable set in “Augmented
OLS” and “Augmented 2SLS,” respectively. All standard errors are conventional het-
eroscedasticity robust standard errors.

Considering first estimates of the price coefficient, we see that the estimated price
coefficient increases in magnitude as we move from OLS to 2SLS and then to the selection
based results. After selection using only the original variables, we estimate the price
coefficient to be -.185 with an estimated standard error of .014 compared to an OLS
estimate of -.089 with estimated standard error of .004 and 2SLS estimate of -.142 with
estimated standard error of .012. In this case, all five controls are selected in the log-
share on controls regression, all five controls but only four instruments are selected in the
price on controls and instruments regression, and four of the controls are selected for the
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Table 2. Estimates of Price Coefficient

Price Coefficient Standard Error Number Inelastic
Estimates Without Selection

Baseline OLS -0.089 0.004 1502
Baseline 2SLS -0.142 0.012 670
Augmented OLS -0.099 0.005 1405
Augmented 2SLS -0.127 0.014 874

2SLS Estimates With “Double Selection”
Baseline 2SLS Selection -0.185 0.014 139
Augmented 2SLS Selection -0.221 0.015 12

This table reports estimates of the coefficient on price (“Price Coefficient”) along with the estimated
standard error (“Standard Error”) obtained using different sets of controls and instruments. The rows
“Baseline OLS” and “Baseline 2SLS” respectively provide OLS and 2SLS results using the baseline set
of variables (5 controls and 10 instruments) described in the text. The rows “Augmented OLS,”
“Augemented 2SLS ”are defined similarly but use the augmented set of variables described in the text
(24 controls and 48 instruments). The rows “Baseline 2SLS with Selection” and “Augmented 2SLS
with Selection” applies the “double selection” approach developed in this paper to select a set of
controls and instruments and perform valid post-selection inference about the estimated price
coefficient where selection occurs considering only the baseline variables. For each procedure, we also
report the point estimate of the number of products for which demand is estimated to be inelastic in
the column “Number Inelastic.”

price on controls relationship. The difference between the baseline results is thus largely
driven by the difference in instrument sets. The change in the estimated coefficient
is consistent with the wisdom from the many-instrument literature that inclusion of
irrelevant instruments biases 2SLS toward OLS.

With the larger set of variables, our post-model-selection estimator of the price co-
efficient is -.221 with an estimated standard error .015 compared to OLS estimate of
-.099 with estimated standard error of .005 and 2SLS estimate of -.127 with estimated
standard error of .014. Here, we see some evidence that the original set of controls may
have been overly parsimonious as we select some terms that were not included in the
baseline variable set. We also see a closer agreement between the OLS estimate and 2SLS
estimate without selection which is likely driven by the larger number of instruments
considered and the usual bias towards OLS seen in 2SLS with many weak or irrelevant
instruments. In the log-share on controls regression, we have that eight control variables
are selected; and we have seven controls and only four instruments selected in the price
on controls and instrument regression. We also have that 13 variables are selected for
the price on controls relationship. The selection of these additional variables suggests
that there is important nonlinearity missed by the baseline set of variables.

The most interesting feature of the results is that estimates of own-price elasticities
become more plausible as we move from the baseline results to the results based on
variable selection with a large number of controls. Recall that facing inelastic demand
is inconsistent with profit maximizing price choice within the present context, so theory
would predict that demand should be elastic for all products. However, the baseline
point estimates imply inelastic demand for 670 products. When we use the larger set
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of instruments without selection, the number of products for which we estimate inelas-
tic demand increases to 874 with the increase being generated by the 2SLS coefficient
estimate moving back towards the OLS estimate. Using the variable selection results
provides results closer to the theoretical prediction. The point estimates based on se-
lection from only the baseline variables imply inelastic demand for 139 products, and
we estimate inelastic demand for only 12 products using the results based on selection
from the larger set of variables. Thus, the new methods provide the most reasonable
estimates of own-price elasticities.

We conclude by noting that the simple specification above suffers from the usual draw-
backs of the logit demand model. However, the example illustrates how the application
of the methods we have outlined may be used in estimation of structural parameters
in economics and add to the plausibility of the resulting estimates. In this example,
we see that we get more sensible estimates of key parameters with at most a modest
cost in increased estimation uncertainty after applying the methods in this paper while
considering a flexible set of variables.

6. Overview of Related Literature

Inference following model selection or regularization more generally has been an active
area of research in econometrics and statistics for the last several years. In this section,
we provide a brief overview of this literature highlighting some key developments. This
review is necessarily selective due to the large number of papers available and the rapid
pace at which new papers are appearing. We choose to focus on papers that deal
specifically with high-dimensional nuisance parameter settings, and note that the ideas
in these papers apply in low dimensional settings as well.

Early work on inference in high-dimensional settings focused on inference based on
the so-called oracle property; see, e.g., Fan and Li (2001) for an early paper, Fan and
Lv (2010) for a more recent review, and Bühlmann and van de Geer (2011) for a text-
book treatment. A consequence of the oracle property is that model selection does not
impact the asymptotic distribution of the parameters estimated in the selected model.
This feature allows one to do inference using standard approximate distributions for the
parameters of the selected model ignoring that model selection was done. While conve-
nient and fruitful in many applications (e.g. signal processing), such results effectively
rely on strong conditions that imply that one will be able to perfectly select the correct
model. For example, such results in linear models require the so called “beta-min con-
dition” (Bühlmann and van de Geer (2011)) that all but a small number of coefficients
are exactly zero and the remaining non-zero coefficients are bounded away from zero,
effectively ruling out variables that have small, non-zero coefficients. Such conditions
seem implausible in many applications, especially in econometrics, and relying on such
conditions produces asymptotic approximations that may provide very poor approxi-
mations to finite-sample distributions of estimators as they are not uniformly valid over
sequences of models that include even minor deviations from conditions implying perfect
model selection. The concern about the lack of uniform validity of inference based on
oracle properties was raised in a series of papers, including Leeb and Pötscher (2008a)
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and Leeb and Pötscher (2008b) among many others, and the more recent work on post-
model-selection inference has been focused on offering procedures that provide uniformly
valid inference over interesting (large) classes of models that include cases where perfect
model selection will not be possible.

To our knowledge, the first work to formally and expressly address the problem of
obtaining uniformly valid inference following model selection is Belloni et al. (ArXiv,
2010b) which considered inference about parameters on a low-dimensional set of en-
dogenous variables following selection of instruments from among a high-dimensional
set of potential instruments in a homoscedastic, Gaussian instrumental variables (IV)
model. The approach does not rely on implausible “beta-min” conditions which im-
ply perfect model selection but instead relies on the fact that the moment condition
underlying IV estimation satisfies the orthogonality condition (2) and the use of high-
quality variable selection methods. These ideas were further developed in the context
of providing uniformly valid inference about the parameters on endogenous variables
in the IV context with many instruments to allow non-Gaussian heteroscedastic dis-
turbances in Belloni et al. (2012). These principles have also been applied in Belloni
et al. (2010a), which outlines approaches for regression and IV models; Belloni, Cher-
nozhukov and Hansen (2014) (ArXiv 2011), which covers estimation of the parametric
components of the partially linear model, estimation of average treatment effects, and
provides a formal statement of the orthogonality condition (2); Farrell (2013) which
covers average treatment effects with discrete, multi-valued treatments; Kozbur (2014)
which covers additive nonparametric models; and Belloni, Chernozhukov, Hansen and
Kozbur (2014) which extends the IV and partially linear model results to allow for fixed
effects panel data and clustered dependence structures. The most recent, general ap-
proach is provided in Belloni, Chernozhukov, Fernández-Val and Hansen (2013) where
inference about parameters defined by a continuum of orthogonalized estimating equa-
tions with infinite-dimensional nusiance parameters is analyzed and positive results on
inference are developed. The framework in Belloni, Chernozhukov, Fernández-Val and
Hansen (2013) is general enough to cover the aforementioned papers and many other
parametric and semi-parametric models considered in economics.

As noted above, providing uniformly valid inference following model selection is closely
related to use of Neyman’s C(α)-statistic. Valid confidence regions can be obtained by
inverting tests based on these statistics, and minimizers of C(α)-statistics may be used
as point estimators. The use of C(α) statistics for testing and estimation in high-
dimensional approximately sparse models was first explored in the context of high-
dimensional quantile regression in Belloni, Chernozhukov and Kato (2013b) (Oberwol-
fach, 2012) and Belloni, Chernozhukov and Kato (2013a) and in the context of high-
dimensional logistic regression and other high-dimensional generalized linear models by
Belloni, Chernozhukov and Wei (2013). More recent uses of C(α)-statistics (or close
variants, under different names) include those in Voorman et al. (2014), Ning and Liu
(2014), and Yang et al. (2014) among others.

There have also been parallel developments based upon ex-post “de-biasing” of esti-
mators. This approach is mathematically equivalent to doing classical “one-step” correc-
tions in the general framework of Section 2. Indeed, while at first glance this “de-biasing”
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approach may appear distinct from that taken in the papers listed above in this section,
it is the same as approximately solving – by doing one Gauss-Newton step – orthogonal
estimating equations satisfying (2). The general results of Section 2 suggest that these
approaches – the exact solving and “one-step” solving – are generally first-order asymp-
totically equivalent, though higher-order differences may persist. To the best of our
knowledge, the “one-step” correction approach was first employed in high-dimensional
sparse models by Zhang and Zhang (2014) (ArXiv 2011) which covers the homoscedastic
linear model (as well as in several follow-up works by the authors). This approach has
been further used in van de Geer et al. (2014) (ArXiv 2013) which covers homoscedastic
linear models and some generalized linear models, and Javanmard and Montanari (2014)
(ArXiv 2013) which offers a related, though somewhat different approach. Note that Bel-
loni, Chernozhukov and Kato (2013b) and Belloni, Chernozhukov and Wei (2013) also
offer results on “one-step” corrections as part of their analysis of estimation and infer-
ence based upon the orthogonal estimating equations. We would not expect that the
use of orthogonal estimating equations or the use of “one-step” corrections to dominate
each other in all cases, though computational evidence in Belloni, Chernozhukov and
Wei (2013) suggests that the use of exact solutions to orthogonal estimating equations
may be preferable to approximate solutions obtained from “one-step” corrections in the
contexts considered in that paper.

Another branch of the recent literature takes a complementary, but logically distinct,
approach that aims at doing valid inference for the parameters of a “pseudo-true” model
that results from the use of a model selection procedure, see Berk et al. (2013). Specif-
ically, this approach conditions on a model selected by a data-dependent rule and then
attempts to do inference – conditional on the selection event – for the parameters of
the selected model, which may deviate from the “true” model that generated the data.
Related developments within this approach appear in G’Sell et al. (2013), Lee and Tay-
lor (2014), Lee et al. (2013), Lockhart et al. (2014), Loftus and Taylor (2014), Taylor
et al. (2014), and Fithian et al. (2014). Some of the developments still explicitly rely on
“beta-min” conditions. To remove these conditions, it seems intellectually very interest-
ing to combine the developments of the present paper (and other preceding papers cited
above) with developments in this literature.

The previously mentioned work focuses on doing inference for low dimensional pa-
rameters in the presence of high dimensional nuisance parameters. There have also been
developments on performing inference for high dimensional parameters. Chernozhukov
(2009) proposed inverting a Lasso performance bound in order to construct a simulta-
neous, Scheffé-style confidence band on all parameters. An interesting feature of this
approach is that it uses weaker design conditions than many other approaches but re-
quires the data analyst to supply explicit bounds on restricted eigenvalues. Gautier
and Tsybakov (2011) (ArXiv 2011) and Chernozhukov et al. (2013) employ similar ideas
while also working with various generalizations of restricted eigenvalues. van de Geer and
Nickl (2013) construct confidence ellipsoids for the entire parameter vector using sample
splitting ideas. Somewhat related to this literature are the results of Belloni, Cher-
nozhukov and Kato (2013b) who use the orthogonal estimating equations framework
with infinite-dimensional nuisance parameters and construct a simultaneous confidence
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rectangle for many target parameters where the number of target parameters could be
much larger than the sample size. They relied upon the high-dimensional central limit
theorems and bootstrap results established in Chernozhukov et al. (2013).

Most of the aforementioned results rely on (approximate) sparsity and related sparsity-
based estimators. Some examples of the use of alternative regularization schemes are
available in the many instrument literature in econometrics. For example, Chamberlain
and Imbens (2004) use a shrinkage estimator resulting from use of a Gaussian random
coefficients structure over first-stage coefficients, and Okui (2010) uses ridge regression
for estimating the first-stage regression in a framework where the instruments may be
ordered in terms of relevance. Carrasco (2012) employs a different strategy based on
directly regularizing the inverse that appears in the definition of the 2SLS estimator
allowing for a number of moment conditions that are larger than the sample size; see
also Carrasco and Tchuente Nguembu (2012). The theoretical development in Carrasco
(2012) relies on restrictions on the covariance structure of the instruments rather than on
the coefficients of the instruments. Hansen and Kozbur (2014) considers a combination
of ridge-regularization and the jackknife to provide a procedure that is valid allowing for
the number of instruments to be greater than the sample size under weak restrictions on
the covariance structure of the instruments and the first-stage coefficients. In all cases,
the orthogonality condition holds allowing root-n consistent and asymptotically normal
estimation of the main parameter α.

Many other interesting procedures beyond those mentioned in this review have been
developed for estimating high-dimensional models; see, e.g. Hastie et al. (2009) for a
textbook review. Developing new techniques for estimation in high-dimensional settings
is also still an active area of research, so the list of methods available to researchers
continues to expand. The use of these procedures and the impact of their use on inference
about parameters of interest is an interesting research direction to explore. It seems likely
that many of these procedures will provide sufficiently high-quality estimates that they
may be used for estimating the nuisance parameters η in the present setting.

Appendix A. The Lasso and Post-Lasso Estimators in the Linear Model

Suppose we have data {yi, xi} for individuals i = 1, ..., n where xi is a p-vector of predictor
variables and yi is an outcome of interest. Suppose that we are interested in a linear prediction
model for yi, yi = x′iη + εi, and define the usual least squares criterion function:

Q̂(η) :=
1

n

n∑
i=1

(yi − x′iη)2.

The Lasso estimator is defined as a solution of the following optimization program:

η̂L ∈ arg min
η∈Rp

Q̂(η) +
λ

n

p∑
j=1

|ψjηj | (56)

where λ is the penalty level and {ψj}pj=1 are covariate specific penalty loadings. The covariate
specific penalty loadings are used to accommodate data that may be non-Gaussian, heteroscedas-
tic, and/or dependent and also help ensure basic equivariance of coefficient estimates to rescaling
of the covariates.
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The Post-Lasso estimator is defined as the ordinary least square regression applied to the

model Î selected by Lasso:6

Î = support(η̂L) = {j ∈ {1, . . . , p} : |η̂Lj | > 0}.
The Post-Lasso estimator η̂PL is then

η̂PL ∈ arg min{Q̂(η) : η ∈ Rp such that ηj = 0 for all j /∈ Î} (57)

In words, this estimator is ordinary least squares (OLS) using only the regressors whose coeffi-
cients were estimated to be non-zero by Lasso.

Lasso and Post-Lasso are motivated by the desire to predict the target function well without
overfitting. The Lasso estimator is a computationally attractive alternative to some other classic
approaches, such as model selection based on information criteria, because it minimizes a convex
function. Moreover, under suitable conditions, the Lasso estimator achieves near-optimal rates
in estimating the regression function x′iη. However, Lasso does suffer from the drawback that
the regularization by the `1-norm employed in (56) naturally shrinks all estimated coefficients
towards zero causing a potentially significant shrinkage bias. The Post-Lasso estimator is meant
to remove some of this shrinkage bias and achieves the same rate of convergence as Lasso under
sensible conditions.

Practical implementation of the Lasso requires setting the penalty parameter and loadings.
Verifying good properties of the Lasso typically relies on having these parameters set so that the
penalty dominates the score in the sense that

ψjλ

n
≥ max

j≤p
2c

∣∣∣∣∣ 1n
n∑
i=1

xj,iεi

∣∣∣∣∣ or, equivalently
λ√
n
≥ max

j≤p
2c

∣∣∣∣∣
1√
n

∑n
i=1 xj,iεi

ψj

∣∣∣∣∣
for some c > 1 with high probability. Heuristically, we would have the term inside the ab-
solute values behaving approximately like a standard normal random variable if we set ψj =

Var
[

1√
n

∑n
i=1 xj,iεi

]
. We could then get the desired domination by setting λ

2c
√
n

large enough

to dominate the maximum of p standard normal random variables with high probability, for
example, by setting λ = 2c

√
nΦ−1 (1− .1/[2p log(n)]) where Φ−1(·) denotes the inverse of the

standard normal cumulative distribution function. Verifying that this heuristic argument holds
with large p and data which may not be i.i.d. Gaussian requires careful and delicate arguments
as in, for example, Belloni et al. (2012) which covers heteroscedastic non-Gaussian data or Bel-
loni, Chernozhukov, Hansen and Kozbur (2014) which covers panel data with within individual
dependence. The choice of the penalty parameter λ can also be refined as in Belloni et al. (2011).
Finally, feasible implementation requires that ψj be estimated which can be done through the
iterative procedures suggested in Belloni et al. (2012) or Belloni, Chernozhukov, Hansen and
Kozbur (2014).

Appendix B. Proofs

B.1. Proof of Proposition 2. Consider any sequence {Pn} in {Pn}.

Step 1 (rn-rate). Here we show that ‖α̂ − α0‖ ≤ rn wp → 1. We have by the identifiability
condition, in particular the assumption mineig(Γ′1Γ1) ≥ c, that

Pn(‖α̂− α0‖ > rn) ≤ Pn(‖M(α̂, η0)‖ ≥ ι(rn)), ι(rn) := 2−1({
√
crn} ∧ c).

6We note that we can also allow the set Î to contain additional variables not selected by Lasso, but
we do not consider that here.
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Hence it suffices to show that wp → 1, ‖M(α̂, η0)‖ < ι(rn). By the triangle inequality,

‖M(α̂, η0)‖ ≤ I1 + I2 + I3,

I1 = ‖M(α̂, η0)−M(α̂, η̂)‖,
I2 = ‖M(α̂, η̂)− M̂(α̂, η̂)‖,
I3 = ‖M̂(α̂, η̂)‖.

By assumption (12), wp → 1

I1 + I2 ≤ o(1){rn + I3 + ‖M(α̂, η0)‖}.

Hence,

‖M(α̂, η0)‖(1− o(1)) ≤ o(1)(rn + I3) + I3.

By construction of the estimator,

I3 ≤ o(n−1/2) + inf
α∈A
‖M̂(α, η̂)‖ .Pn

n−1/2,

which follows because

inf
α∈A
‖M̂(α, η̂)‖ ≤ ‖M̂(ᾱ, η̂)‖ .Pn

n−1/2, (58)

where ᾱ is the one-step estimator defined in Step 3, as shown in (59). Hence wp → 1

‖M(α̂, η0)‖ ≤ o(rn) < ι(rn),

where to obtain the last inequality we have used the assumption mineig(Γ′1Γ1) ≥ c.

Step 2 (n−1/2-rate). Here we show that ‖α̂ − α0‖ .Pn
n−1/2. By condition (14) and the

triangle inequality, wp → 1

‖M(α̂, η0)‖ ≥ ‖Γ1(α̂− α0)‖ − o(1)‖α̂− α0‖ ≥ (
√
c− o(1))‖(α̂− α0)‖ ≥

√
c/2‖(α̂− α0)‖.

Therefore, it suffices to show that ‖M(α̂, η0)‖ .Pn
n−1/2. We have that

‖M(α̂, η0)‖ ≤ II1 + II2 + II3,

II1 = ‖M(α̂, η0)−M(α̂, η̂)‖,
II2 = ‖M(α̂, η̂)− M̂(α̂, η̂)− M̂(α0, η0)‖,
II3 = ‖M̂(α̂, η̂)‖+ ‖M̂(α0, η0)‖.

Then, by the orthogonality ∂η′M(α0, η0) = 0 and condition (14), wp → 1,

II1 ≤ ‖M(α̂, η̂)−M(α̂, η0)− ∂η′M(α̂, η0)[η̂ − η0]‖+ ‖∂η′M(α̂, η0)[η̂ − η0]‖
≤ o(1)n−1/2 + o(1)‖α̂− α0‖
≤ o(1)n−1/2 + o(1)(2/

√
c)‖M(α̂, η0)‖.

Then, by condition (13) and by I3 .Pn
n−1/2,

II2 ≤ o(1){n−1/2 + ‖M̂(α̂, η̂)‖+ ‖M(α̂, η0)‖}
.Pn o(1){n−1/2 + n−1/2 + ‖M(α̂, η0)‖}.

Since II3 .Pn n−1/2 by (58) and ‖M̂(α0, η0)‖ .Pn n−1/2 , it follows that wp → 1, (1 −
o(1))‖M(α̂, η0)‖ .Pn

n−1/2.

Step 3 (Linearization). Define the linearization map α 7→ L̂(α) by L̂(α) := M̂(α0, η0)+Γ1(α−
α0). Then

‖M̂(α̂, η̂)− L̂(α̂)‖ ≤ III1 + III2 + III3,

III1 = ‖M(α̂, η̂)−M(α̂, η0)‖,
III2 = ‖M(α̂, η0)− Γ1(α̂− α0)‖,
III3 = ‖M̂(α̂, η̂)−M(α̂, η̂)− M̂(α0, η0)‖.
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Then, using the assumptions (14) and (13), conclude

III1 ≤ ‖M(α̂, η̂)−M(α̂, η0)− ∂η′M(α̂, η0)[η̂ − η0]‖+ ‖∂η′M(α̂, η0)[η̂ − η0]‖
≤ o(1)n−1/2 + o(1)‖α̂− α0‖,

III2 ≤ o(1)‖α̂− α0‖,
III3 ≤ o(1)(n−1/2 + ‖M̂(α̂, η̂)‖+ ‖M(α̂, η0)‖)

≤ o(1)(n−1/2 + n−1/2 + III2 + ‖Γ1(α̂− α0)‖).

Conclude that wp → 1, since ‖Γ′1Γ1‖ . 1 by assumption (11),

‖M̂(α̂, η̂)− L̂(α̂)‖ .Pn o(1)(n−1/2 + ‖α̂− α0‖) = o(n−1/2).

Also consider the minimizer of the map α 7→ ‖L̂(α)‖, namely,

ᾱ = α0 − (Γ′1Γ1)−1Γ′1M̂(α0, η0)

which obeys ‖
√
n(ᾱ − α0)‖ .Pn n−1/2 under the conditions of the proposition. We can repeat

the argument above to conclude that wp → 1, ‖M̂(ᾱ, η̂) − L̂(ᾱ)‖ .Pn
o(n−1/2). This implies,

since ‖L̂(ᾱ)‖ .Pn n
−1/2,

‖M̂(ᾱ, η̂)‖ .Pn
n−1/2. (59)

This also implies that ‖L̂(α̂)‖ = ‖L̂(ᾱ)‖+ oPn
(n−1/2), since ‖L̂(ᾱ)‖ ≤ ‖L̂(α̂)‖ and

‖L̂(α̂)‖ − oPn(n−1/2) ≤ ‖M̂(α̂, η̂)‖ ≤ ‖M̂(ᾱ, η̂)‖+ o(n−1/2) = ‖L̂(ᾱ)‖+ oPn(n−1/2).

The former assertion implies that ‖L̂(α̂)‖2 = ‖L̂(ᾱ)‖2 + oPn(n−1), so that

‖L̂(α̂)‖2 − ‖L̂(ᾱ)‖2 = ‖Γ1(α̂− ᾱ)‖2 = oPn
(n−1),

from which we can conclude that
√
n‖α̂− ᾱ‖ →Pn 0.

Step 4. (Conclusion). Given the conclusion of the previous step, the remaining claims are
standard and follow from the Continuous Mapping Theorem and Lemma 8. �

B.2. Proof of Proposition 3. We have wp → 1 that, for some constants 0 < u < l < 0,
l‖x‖ ≤ ‖Ax‖ ≤ u‖x‖ and l‖x‖ ≤ ‖Âx‖ ≤ u‖x‖. Hence

sup
α∈A

‖ÂM̂o(α, η̂)−AMo(α, η̂)‖+ ‖AMo(α, η̂)−AMo(α, η0)‖
rn + ‖ÂM̂o(α, η̂)‖+ ‖AMo(α, η0)‖

≤ sup
α∈A

u

l

‖M̂o(α, η̂)−Mo(α, η̂)‖+ ‖Mo(α, η̂)−Mo(α, η0)‖
(rn/l) + ‖M̂o(α, η̂)‖+ ‖Mo(α, η0)‖

+ sup
α∈A

‖Â−A‖‖M̂o(α, η̂)‖
rn + l‖M̂o(α, η̂)‖

.Pn
o(1) + ‖Â−A‖/l→Pn

0.

The proof that the rest of the conditions hold is analogous and is therefore omitted. �

B.3. Proof of Proposition 4. Step 1. We define the feasible and infeasible “one-steps”

α̌ = α̃− F̂ M̂(α̃, η̂), F̂ = (Γ̂′1Γ̂1)−1Γ̂′1,

ᾱ = α0 − F M̂(α0, η0), F = (Γ′1Γ1)−1Γ′1.

We deduce by (20) and (11) that

‖F̂‖ .Pn
1, ‖F̂Γ1 − I‖ .Pn

rn, ‖F̂ − F‖ .Pn
rn.
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Step 2. By Step 1 and by condition (21), we have that

D = ‖F̂ M̂(α̃, η̂)− F̂ M̂(α0, η0)− F̂Γ1(α̃− α0)‖
≤ ‖F̂‖‖M̂(α̃, η̂)− M̂(α0, η0)− Γ1(α̃− α0)‖
.Pn ‖M̂(α̃, η̂)−M(α̃, η̂)− M̂(α0, η0)‖+ D1 .Pn o(n

−1/2) + D1,

where D1 := ‖M(α̃, η̂)− Γ1(α̂− α0)‖.

Moreover, D1 ≤ IV1 + IV2 + IV3, where wp → 1 by condition (21) and r2n = o(n−1/2)

IV1 := ‖M(α̃, η0)− Γ1(α̃− α0)‖ . ‖α̃− α0‖2 . r2n = o(n−1/2),

IV2 := ‖M(α̃, η̂)−M(α̃, η0)− ∂η′M(α̃, η0)[η̂ − η0]‖ . o(n−1/2),

IV3 := ‖∂η′M(α̃, η0)[η̂ − η0]‖ . o(n−1/2).

Conclude that n1/2D→Pn 0.

Step 3. We have by the triangle inequality and Steps 1 and 2 that
√
n‖α̌− ᾱ‖ ≤

√
n‖(I − F̂Γ1)(α̃− α0)‖+

√
n‖(F̂ − F )M̂(α0, η0)‖+

√
nD

≤
√
n‖(I − F̂Γ1)‖‖α̃− α0‖+ ‖F̂ − F‖‖

√
nM̂(α0, η0)‖+

√
nD

.Pn

√
nr2n + o(1) = o(1).

Thus,
√
n‖α̌ − ᾱ‖ →Pn

0, and
√
n‖α̌ − α̂‖ →Pn

0 follows from the triangle inequality and the
fact that

√
n‖α̂− ᾱ‖ →Pn

0. �

B.4. Proof of Lemma 2. The conditions of Proposition 1 are clearly satisfied, and thus the
conclusions of Proposition 1 immediately follow. We also have that, for Γ̂1 = Γ̂1(η̂),

√
n(α̂− α0) = −F̂

√
nM̂(α0, η̂), F̂ = (Γ̂′1Γ̂1)−1Γ̂1,

√
n(ᾱ− α0) := −F

√
nM̂(α0, η0), F = (Γ′1Γ1)−1Γ1.

We deduce by (33) and (11) that ‖F̂‖ .Pn
1 and ‖F̂ − F‖ →Pn

0. Hence we have by triangle
and Hölder inequalities and condition (33) that

√
n‖α̂− ᾱ‖ ≤ ‖F̂‖

√
n‖M̂(α0, η̂)− M̂(α0, η0))‖+ ‖F̂ − F‖

√
n‖M̂(α0, η0)‖ →Pn

0.

The conclusions regarding the uniform validity of inference using α̂, of the form stated in con-
clusions of Proposition 2, follow from the conclusions regarding the uniform validity of inference
using ᾱ, which follow from the Continuous Mapping Theorem, Lemma 8, and the assumed sta-
bility conditions (11). This establishes the second claim of the Lemma. Verification of the
conditions of Proposition 2 is omitted. �

B.5. Proof of Lemma 3 and 4. The proof of Lemma 3 is given in the main text. As in the
proof of Lemma 3, we can expand:

√
n(M̂j(α0, η̂)− M̂j(α0, η0)) = T1,j + T2,j + T3,j , (60)

where the terms (Tl,j)
3
l=1 are as defined in the main text. We can further bound T3,j as follows:

T3,j ≤ Tm3,j + T4,j ,
Tm3,j :=

√
n|(η̂ − ηm0 )′∂η∂η′M̂j(α0)(η̂ − ηm0 )|,

T4,j :=
√
n|ηr0 ′∂η∂η′M̂j(α0)ηr0|.

(61)

Then T1,j = 0 by orthogonality, T2,j →Pn 0 as in the proof of Lemma 3. Since s2 log(pn)2/n→ 0,
Tm3,j vanishes in probability because, by Hölder’s inequality and for sufficiently large n,

Tm3,j ≤ T̄3,j‖η̂ − ηm0 ‖2 .Pn

√
ns log(pn)/n→Pn

0.
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Also, if s2 log(pn)2/n→ 0, T4,j vanishes in probability because, by Hölder’s inequality and (43),

T4,j ≤
√
n‖∂η∂η′M̂j(α0)‖pw(ηr0)‖η

r
0‖2 .Pn

√
ns log(pn)/n→Pn

0.

The conclusion follows from (60). �

B.6. Proof of Lemma 5. For m = 1, ..., k and l = 1, ..., d, we can bound each element Γ̂1,ml(η)

of matrix Γ̂1(η) as follows:

|Γ̂1,ml(η̂)− Γ̂1,ml(η0)| ≤
4∑
k=1

Tk,ml,

T1,ml := |∂ηΓ1,ml(η0)′(η̂ − η0)|,
T2,ml := |(∂ηΓ̂1,ml(η0)− ∂ηΓ1,ml(η0))′(η̂ − η0)|,
T3,ml := |(η̂ − ηm0 )′∂η∂η′ Γ̂1,ml(η̂ − ηm0 )|,
T4,ml := |ηr0 ′∂η∂η′ Γ̂1,mlη

r
0|.

Under conditions (44) and (45) we have that wp → 1

T1,ml ≤ ‖∂ηΓ1,ml(η0)‖∞‖η̂ − η0‖1 .Pn

√
s2 log(pn)/n→ 0,

T2,ml ≤ ‖∂ηΓ̂1,ml(η0)− ∂ηΓ1,ml(η0)‖∞‖η̂ − η0‖1 .Pn

√
s2 log(pn)/n→ 0,

T3,ml ≤ ‖∂η∂η′ Γ̂1,ml‖sp(`ns)‖η̂ − η
m
0 ‖2 .Pn

s log(pn)/n→ 0,

T4,ml ≤ ‖∂η∂η′ Γ̂1,ml‖pw(ηr0)‖η
r
0‖2 .Pn

s log(pn)/n→ 0.

The claim follows from the assumed growth conditions, since d and k are bounded. �

Appendix C. Key Tools

Let Φ and Φ−1 denote the distribution and quantile function ofN (0, 1). Note that in particular

Φ−1(1− a) ≤
√

2 log(a) for all a ∈ (0, 1/2).

Lemma 6 (Moderate Deviation Inequality for Maximum of a Vector). Suppose that Sj :=∑n
i=1 Uij/

√∑n
i=1 U

2
ij , where Uij are independent random variables across i with mean zero and

finite third-order moments. Then

P

(
max
1≤j≤p

|Sj | > Φ−1(1− γ/2p)
)
≤ γ

(
1 +

A

`3n

)
,

where A is an absolute constant, provided for `n > 0

0 ≤ Φ−1(1− γ/(2p)) ≤ n1/6

`n
min

1≤j≤p
M2
j − 1, Mj :=

(
1
n

∑n
i=1 E[U2

ij ]
)1/2(

1
n

∑n
i=1 E[|Uij |3]

)1/3 .
This result is essentially due to Jing et al. (2003). The proof of this result, given in Belloni

et al. (2012), follows from a simple combination of union bounds with their result.

Lemma 7 (Laws of Large Numbers for Large Matrices in Sparse Norms). Let sn, pn, kn and
`n be sequences of positive constants such that `n →∞ but `n/ log n→ 0 and c1 and c2 be fixed
positive constants. Let (xi)

n
i=1 be i.i.d. vectors such that ‖E[xix

′
i]‖sp(sn logn) ≤ c1, and either one

of the following holds: (a) xi is a sub-Gaussian random vector with sup‖u‖≤1 ‖x′iu‖ψ2,P ≤ c2,

where ‖·‖ψ2,P denotes the ψ2-Orlizs norm of a random variable, and sn(log n)(log(pn∨n))/n→ 0;

or (b) ‖xi‖∞ ≤ kn a.s. and k2nsn(log4 n) log(pn ∨ n)/n → 0. Then there is o(1) term such that
with probability 1− o(1):

‖En[xix
′
i]− E[xix

′
i]‖sp(sn`n) ≤ o(1), ‖En[xix

′
i]‖sp(sn`n) ≤ c1 + o(1).
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Under (a) the result follows from Theorem 3.2 in Rudelson and Zhou (2011) and under (b)
the result follows from Rudelson and Vershynin (2008), as shown in the Supplemental Material
of Belloni and Chernozhukov (2013).

Lemma 8 (Useful implications of CLT in Rm). Consider a sequence of random vectors Zn in
Rm such that Zn  Z = N (0, Im). The elements of the sequence and the limit variable need not
be defined on the same probability space. Then

lim
n→∞

sup
R∈R
|P(Zn ∈ R)− P(Z ∈ R)| = 0,

where R is the collection of all convex sets in Rm.

Proof. Let R denote a generic convex set in Rm. Let Rε = {z ∈ Rm : d(z,R) ≤ ε} and R−ε =
{z ∈ R : B(z, ε) ⊂ R}, where d is the Euclidean distance and B(z, ε) = {y ∈ Rm : d(y, z) ≤ ε}.
The set Rε may be empty. By Theorem 11.3.3 in Dudley (2002), εn := ρ(Zn, Z)→ 0, where ρ is
the Prohorov metric. The definition of the metric implies that P(Zn ∈ R) ≤ P(Z ∈ Rεn) + εn.
By the reverse isoperimetric inequality [Prop 2.5. Chen and Fang (2011)] |P(Z ∈ Rεn)− P(Z ∈
R)| ≤ m1/2εn. Hence P(Zn ∈ R) ≤ P(Z ∈ R) + εn(1 + m1/2). Furthermore, for any convex
set R, (R−εn)εn ⊂ R (interpreting the expansion of an empty set as an empty set). Hence for
any convex R we have P(Z ∈ R−εn) ≤ P(Zn ∈ R) + εn by definition of Prohorov’s metric.
By the reverse isoperimetric inequality |P(Z ∈ R−εn) − P(Z ∈ R)| ≤ m1/2εn. Conclude that
P(Zn ∈ R) ≥ P(Z ∈ R)− εn(1 +m1/2). �
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