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Abstract

In the regression discontinuity design, it is common practice to asses the credibility of the

design by testing whether the means of baseline covariates do not change at the cutoff (or

threshold) of the running variable. This practice is partly motivated by the stronger impli-

cation derived by Lee (2008), who showed that under certain conditions the distribution of

baseline covariates in the RDD must be continuous at the cutoff. We propose a permutation

test based on the so-called induced ordered statistics for the null hypothesis of continuity of the

distribution of baseline covariates at the cutoff; and introduce a novel asymptotic framework to

analyze its properties. The asymptotic framework is intended to approximate a small sample

phenomenon: even though the total number n of observations may be large, the number of

effective observations local to the cutoff is often small. Thus, while traditional asymptotics in

RDD require a growing number of observations local to the cutoff as n → ∞, our framework

keeps the number q of observations local to the cutoff fixed as n → ∞. The new test is easy

to implement, asymptotically valid under weak conditions, exhibits finite sample validity under

stronger conditions than those needed for its asymptotic validity, and has favorable power prop-

erties relative to tests based on means. In a simulation study, we find that the new test controls

size remarkably well across designs. We then use our test to evaluate the validity of the design

in Lee (2008), a well-known application of the RDD to study incumbency advantage.

KEYWORDS: Regression discontinuity design, permutation tests, randomization tests, induced

ordered statistics, rank tests.
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1 Introduction

The regression discontinuity design (RDD) has been extensively used in recent years to retrieve

causal treatment effects - see Lee and Lemieux (2010) and Imbens and Lemieux (2008) for exhaustive

surveys. The design is distinguished by its unique treatment assignment rule. Here individuals

receive treatment when an observed covariate (commonly referred to as the running variable) crosses

a known cutoff or threshold, and receive control otherwise. Hahn et al. (2001) illustrates that such

an assignment rule allows nonparametric identification of the average treatment effect (ATE) at

the cutoff under a weak continuity assumption, formally stated in (2). The credibility of this

identification strategy along with the abundance of such discontinuous rules in practice have made

the RDD increasingly popular in empirical applications.

The continuity assumption that is necessary for nonparametric identification of the ATE at the

cutoff is fundamentally untestable. Empirical studies however assess the validity of their RDD by

exploiting two testable implications of a stronger identification assumption proposed by Lee (2008),

restated as Assumption 2.1 here. We can describe the two implications as follows: (i) individuals

have imprecise control over the running variable, which translates into the density of the running

variable being continuous at the cutoff; and (ii) the treatment is locally randomized at the cutoff,

which translates into the distribution of all observed baseline covariates being continuous at the

cutoff. The second prediction is particularly intuitive and, quite importantly, analogous to the

type of restrictions researchers often inspect or test in a fully randomized controlled experiment, as

highlighted in Remark 2.1. The practice of judging the reliability of RDD applications by assessing

either of the two above stated implications (commonly referred to as manipulation, falsification or

placebo tests) is ubiquitous in the empirical literature.1 However, in regards to the second testable

implication, researchers often verify continuity of the means of baseline covariates at the cutoff,

which is a weaker requirement than Lee’s implication.

This paper proposes a novel permutation test for the null hypothesis on the second testable

implication, i.e., the distribution of baseline covariates is continuous at the cutoff. The new test

has a number of attractive properties. First, our test controls the limiting null rejection probability

under fairly mild conditions, and delivers finite sample validity under stronger, but yet plausible,

conditions. Second, our test is more powerful against some alternatives than those aimed at testing

the continuity of the means of baseline covariates at the cutoff, which appears to be a dominant

practice in the empirical literature. Third, our test is arguably simple to implement as it only

involves computing order statistics and empirical cdfs with a fixed number of observations closest

to the cutoff. This contrasts with the few existing alternatives that require local linear estimation,

1Table 5 surveys RDD empirical papers in four leading applied economic journals during the period 2011-2015,

see Appendix E for further details. Out of 62 papers, 42 of them include some form of manipulation, falsification or

placebo test. In fact, the most popular practice involves evaluating the continuity of the means of baseline covariates

at the cutoff (41 papers).
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undersmoothing, and delicate bandwidth choices. Finally, we have developed a companion Stata

package to facilitate the adoption of our test.2

The construction of our test is based on the simple intuition that observations close to the

cutoff are approximately (but not exactly) identically distributed to either side of it when the null

hypothesis holds. This allows us to permute these observations to construct an approximately

valid test. In other words, the formal justification for the validity of our test is asymptotic in

nature and recognizes that traditional arguments advocating the use of permutation tests are not

necessarily valid under the null hypothesis of interest; see Section 3.2 for a discussion on this

distinction. Importantly, the novel asymptotic framework we propose aims at capturing a small

sample problem: the number of observations close to the cutoff is often small even if the total sample

size is large. As highlighted in Remark 3.6, we achieve this through an asymptotic framework where

the number of observations q that the test statistic contains from either side of the cutoff is fixed

as the total sample size n goes to infinity. Formally, we exploit the recent asymptotic framework

developed by Canay, Romano and Shaikh (2016) for randomization tests, although we introduce

novel modifications to accommodate the RDD setting. Further, in an important intermediate stage,

we use induced order statistics, see Bhattacharya (1974) and (8), to frame our problem and develop

some insightful results of independent interest in Theorem 4.1.

An important contribution of this paper is to show that permutation tests can be justified

in RDD settings through a novel asymptotic framework that aims at embedding a small sample

problem. The asymptotic results are what primarily separates this paper from others in the RDD

literature that have advocated for the use of permutation tests (see, e.g., Cattaneo et al., 2015;

Sales and Hansen, 2015; Ganong and Jäger, 2015). In particular, all previous papers have noticed

that permutation tests become appropriate for testing null hypotheses under which there is a

neighborhood around the cutoff where the RDD can be viewed as a randomized experiment. This,

however, deviates from traditional RDD arguments that requires such local randomization to hold

only at the cutoff. Therefore, as explained further in Section 3.2, this paper is the first to develop

and to provide formal results that justify the use of permutation tests asymptotically for these latter

null hypotheses. Another contribution of this paper is to exploit the testable implication derived by

Lee (2008), which is precisely a statement on the distribution of baseline covariates, and note that

permutation tests arise as natural candidates to consider. Previous papers have focused attention

on hypotheses about distributional treatment effects, which deviates from the predominant interest

in ATEs, and do not directly address the testing problem we consider in this paper.

The remainder of the paper is organized as follows. Section 2 introduces the notation and

discusses the hypothesis of interest. Section 3 introduces our permutation test based on a fixed

number of observations closest to the cutoff, discusses all aspects related to its implementation in

practice, and compares it with permutation tests previously proposed in the RDD setting. Section 4

2The Stata package rdperm can be downloaded from http://sites.northwestern.edu/iac879/software/.
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contains all formal results, including the description of the asymptotic framework, the assumptions,

and the main theorems. Section 5 studies the finite sample properties of our test via Monte Carlo

simulations. Finally, Section 6 implements our test to reevaluate the validity of the design in Lee

(2008), a familiar application of the RDD to study incumbency advantage. All proofs are in the

Appendix.

2 Testable implications of local randomization

Let Y ∈ R denote the (observed) outcome of interest for an individual or unit in the population,

A ∈ {0, 1} denote an indicator for whether the unit is treated or not, and W ∈ W denote observed,

baseline covariates. Further denote by Y (1) the potential outcome of the unit if treated and by Y (0)

the potential outcome if not treated. As usual, the (observed) outcome and potential outcomes are

related to treatment assignment by the relationship

Y = Y (1)A+ Y (0)(1−A) . (1)

The treatment assignment in the (sharp) Regression Discontinuity Design (RDD) follows a discon-

tinuous rule,

A = I{Z ≥ z̄} ,

where Z ∈ Z is a scalar random variable known as the running variable and z̄ is threshold or cutoff

value. For convenience, we normalize z̄ = 0. This treatment assignment rule allows us to identify

the average treatment effect (ATE) at the cutoff; i.e.,

E[Y (1)− Y (0)|Z = 0] .

In particular, Hahn et al. (2001) establish that identification of the ATE at the cutoff relies on the

discontinuous treatment assignment rule and the assumption that

E[Y (1)|Z = z] and E[Y (0)|Z = z] are both continuous in z at z = 0 . (2)

Reliability of the RDD thus depends on whether the mean outcome for units marginally below the

cutoff identifies the true counterfactual for those marginally above the cutoff.

Despite the continuity assumption appearing weak, Lee (2008) states two practical limitations

for empirical researchers. First, it is difficult to determine whether the assumption is plausible as

it is not a description of a treatment-assigning process. Second, the assumption is fundamentally

untestable. Motivated by these limitations, Lee (2008, Condition 2b) considers an alternative (and

arguably stronger) sufficient condition for identification. The new condition is intuitive and leads

to clean testable implications that are easy to assess in an applied setting. In RDD empirical

studies, these implications are often presented (with different levels of formality) as falsification,

manipulation, or placebo tests (see Table 5 for a survey).
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In order to describe Lee’s alternative condition, let U be a scalar random variable capturing

the unobserved type or heterogeneity of a unit in the population. Assume there exist measurable

functions m0(·), m1(·), and mw(·), such that

Y (1) = m1(U), Y (0) = m0(U), and W = mw(U) .

Condition 2b in Lee (2008) can be stated in our notation as follows.

Assumption 2.1. The cdf of Z conditional on U , F (z|u), is such that 0 < F (0|u) < 1, and is

continuously differentiable in z at z = 0 for each u in the support of U . The marginal density of

Z, f(z), satisfies f(0) > 0.

This assumption has a clear behavioral interpretation - see Lee (2008) and Lee and Lemieux

(2010) for a lengthly discussion of this assumption and its implications. It allows units to have

control over the running variable, as the distribution of Z may depend on U in flexible ways. Yet,

the condition 0 < F (0|u) < 1 and the continuity of the conditional density ensure that such control

may not be fully precise - i.e., it rules out deterministic sorting around the cutoff. For example, if

for some u′ we had Pr{Z < 0|u′} = 0, then units with U = u′ would be all on one side of the cutoff

and deterministic sorting would be possible - see Lee and Lemieux (2010) for concrete examples.

Lee (2008, Proposition 2) shows that Assumption 2.1 implies the continuity condition in (2), is

sufficient for identification of the ATE at the cutoff, and further implies that

H(w|z) ≡ Pr{W ≤ w|Z = z} is continuous in z at z = 0 for all w ∈ W . (3)

In other words, the behavioral assumption that units do not precisely control Z around the cutoff

implies that the treatment assignment is locally randomized at the cutoff, which means that the

distribution of baseline covariates should not change discontinuously at the cutoff.

In this paper we propose a test for this null hypothesis of continuity in the distribution of the

baseline covariates W at the cutoff Z = 0, i.e. (3). To better describe our test, it is convenient to

define two auxiliary distributions that capture the local behavior of W to either side of the cutoff.

To this end, define

H−(w|0) = lim
z↑0

H(w|z) and H+(w|0) = lim
z↓0

H(w|z) . (4)

Using this notation, the continuity condition in (3) is equivalent to the requirement that H(w|z) is

right continuous at z = 0 and that

H−(w|0) = H+(w|0) for all w ∈ W . (5)

The advantage of the representation in (5) is that it facilitates the comparison between two sample

testing problems and the one we consider here. It also facilitates the comparison between our

approach and alternative ones advocating the use of permutation tests on the grounds of favorable

finite sample properties, see Section 3.2.
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Remark 2.1. In randomized controlled experiments where the treatment assignment is exogenous

by design, the empirical analysis usually begins with an assessment of the comparability of treated

and control groups in baseline covariates, see Bruhn and McKenzie (2008). This practice partly

responds to the concern that, if covariates differ across the two groups, the effect of the treatment

may be confounded with the effect of the covariates - casting doubts on the validity of the exper-

iment. The local randomization nature in RDD leads to the analogous (local) implication in (5).

Remark 2.2. Assumption 2.1 requires continuity of the conditional density of Z given U at z = 0,

which implies continuity of the marginal density of Z, f(z), at z = 0. McCrary (2008) exploits this

testable implication and proposes a test for the null hypothesis of continuity of f(z) at the cutoff.

Our test exploits a different implication of Assumption 2.1 and therefore should be viewed as a

complement, rather than a substitute, to the density test proposed by McCrary (2008).

Remark 2.3. Gerard et al. (2016) study the consequences of discontinuities in the density of Z

at the cutoff. In particular, the authors consider a situation in which manipulation occurs only

in one direction for a subset of the population (i.e., there exists a subset of participants such that

Z ≥ 0 a.s.) and use the magnitude of the discontinuity of f(z) at z = 0 to identify the proportion of

always-assigned units among all units close to the cutoff. Using this setup, Gerard et al. (2016) show

that treatment effects in RDD are not point identified but that the model still implies informative

bounds (i.e., treatment effects are partially identified).

A common practice in applied research is to test the hypothesis

E[W |Z = z] is continuous in z at z = 0 , (6)

which is an implication of the null in (3). Table 5 in Appendix E shows that out of 62 papers pub-

lished in leading journals during the period 2011-2015, 41 of them include a formal (or informal via

some form of graphical inspection) test for the null in (6). However, if the fundamental hypothesis

of interest is the implication derived by Lee (2008), testing the hypothesis in (6) has important

limitations. First, tests designed for (6) have low power against certain distributions violating (3).

Indeed, these tests may incorrectly lead the researcher to believe that baseline covariates are “con-

tinuous” at the cutoff, when some features of the distribution of W (other than the mean) may be

discontinuous. Second, tests designed for (6) may exhibit poor size control in cases where usual

smoothness conditions required for local polynomial estimation do not hold. Section 5 illustrates

both of these points.

3 A permutation test based on induced ordered statistics

Let P be the distribution of (Y,W,Z) and X(n) = {(Yi,Wi, Zi) : 1 ≤ i ≤ n} be a random sample of

n i.i.d. observations from P . Let q be a small (relative to n) integer. The test we propose is based
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on 2q values of {Wi : 1 ≤ i ≤ n}, such that q of these are associated with the q closest values of

{Zi : 1 ≤ i ≤ n} to the right of the cutoff z̄ = 0, and the remaining q are associated with the q

closest values of {Zi : 1 ≤ i ≤ n} to the left of the cutoff z̄ = 0. To be precise, denote by

Zn,(1) ≤ Zn,(2) ≤ · · · ≤ Zn,(n) (7)

the order statistics of the sample {Zi : 1 ≤ i ≤ n} and by

Wn,[1],Wn,[2], . . . ,Wn,[n] (8)

the corresponding values of the sample {Wi : 1 ≤ i ≤ n}, i.e., Wn,[j] = Wk if Zn,(j) = Zk for

k = 1, . . . , n. The random variables in (8) are called induced order statistics or concomitants of

order statistics, see David and Galambos (1974); Bhattacharya (1974).

In order to construct our test statistic, we first take the q closest values in (7) to the right of

the cutoff and the q closest values in (7) to the left of the cutoff. We denote these ordered values

by

Z−n,(q) ≤ · · · ≤ Z
−
n,(1) < 0 and 0 ≤ Z+

n,(1) ≤ · · · ≤ Z
+
n,(q) , (9)

respectively, and the corresponding induced values in (8) by

W−n,[q], . . . ,W
−
n,[1] and W+

n,[1], . . . ,W
+
n,[q] . (10)

Note that while the values in (9) are ordered, those in (10) are not necessarily ordered.

The random variables (W−n,[1], . . . ,W
−
n,[q]) are viewed as an independent sample of W conditional

on Z being “close” to zero from the left, while the random variables (W+
n,[1], . . . ,W

+
n,[q]) are viewed

as an independent sample of W conditional on Z being “close” to zero from the right. We therefore

use each of these two samples to compute empirical cdfs as follows,

Ĥ−n (w) =
1

q

q∑
j=1

I{W−n,[j] ≤ w} and Ĥ+
n (w) =

1

q

q∑
j=1

I{W+
n,[j] ≤ w} .

Finally, letting

Sn = (Sn,1, . . . , Sn,2q) = (W−n,[1], . . . ,W
−
n,[q],W

+
n,[1], . . . ,W

+
n,[q]) , (11)

denote the pooled sample of induced order statistics, we can define our test statistic as

T (Sn) =
1

2q

2q∑
j=1

(Ĥ−n (Sn,j)− Ĥ+
n (Sn,j))

2 . (12)

The statistic T (Sn) in (12) is a Cramér Von Mises test statistic, see Hajek et al. (1999, p. 101).

We propose to compute the critical values of our test by a permutation test as follows. Let G

denote the set of all permutations π = (π(1), . . . , π(2q)) of {1, . . . , 2q}. We refer to G as the group

of permutations (in this context, “group” is understood as a mathematical group). Let

Sπn = (Sn,π(1), . . . , Sn,π(2q)) ,
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be the permuted values of Sn in (11) according to π. Let M = |G| be the cardinality of G and

denote by

T (1)(Sn) ≤ T (2)(Sn) ≤ · · · ≤ T (M)(Sn)

the ordered values of {T (Sπn) : π ∈ G}. For α ∈ (0, 1), let k = dM(1− α)e and define

M+(Sn) = |{1 ≤ j ≤M : T (j)(Sn) > T (k)(Sn)}|

M0(Sn) = |{1 ≤ j ≤M : T (j)(Sn) = T (k)(Sn)}| . (13)

Using this notation, the test we propose is given by

φ(Sn) =


1 T (Sn) > T (k)(Sn)

a(Sn) T (Sn) = T (k)(Sn)

0 T (Sn) < T (k)(Sn)

, (14)

where

a(Sn) =
Mα−M+(Sn)

M0(Sn)
.

Remark 3.1. The test in (14) is possibly randomized. The non-randomized version of the test that

rejects when T (Sn) > T (k)(Sn) is also asymptotically level α by Theorem 4.2. In our simulations,

the randomized and non-randomized versions perform similarly when M is not too small.

Remark 3.2. When M is too large the researcher may use a stochastic approximation to φ(Sn)

without affecting the properties of our test. More formally, let

Ĝ = {π1, . . . , πB} ,

where π1 = (1, . . . , 2q) is the identity permutation and π2, . . . , πB are i.i.d. Uniform(G). Theorem

4.2 in Section 4 remains true if, in the construction of φ(Sn), G is replaced by Ĝ.

Remark 3.3. Our results are not restricted to the Cramér Von Mises test statistic in (12) and

apply to other rank statistics satisfying our assumptions in Section 4, e.g., the Kolmogorov-Smirnov

statistics. We restrict our discussion to the statistic in (12) for simplicity of exposition.

3.1 Implementing the new test

In this section we discuss the practical considerations involved in the implementation of our test,

highlighting how we addressed these considerations in the companion Stata package rdperm.

The only tuning parameter of our test is the number q of observations closest to the cutoff. The

asymptotic framework in Section 4 is one where q is fixed as n → ∞, so this number should be

small relative to the sample size. In this paper we recommend to use the following rule of thumb,

qrot =

⌈
5
√
f(0)(1− ρ2)σ2W

n3/4

log n

⌉
, (15)
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where f(0) is the density of Z at zero, ρ is the correlation between W and Z, and σ2W is the

variance of W . The motivation for this rule of thumb is as follows. First, the rate n3/4

logn arises from

the proof of Theorem 4.1, which suggests that q may increase with n as long as n − q → ∞ and

q log n/(n − q) → 0. Second, the constant arises by considering the special case where (W,Z) are

bivariate normal. In such a case the slope of the conditional cdf of W depends on the conditional

variance of W given Z, which is simply (1 − ρ2)σ2W . We scale this term by the density of Z at

zero, to capture settings with few observations around the cutoff, and by a factor of 5 (which was

calibrated over many designs). All these quantities can be estimated to deliver a feasible q̂rot.

Given q, the implementation of our test proceeds in the following six steps.

Step 1. Compute the order statistics of {Zi : 1 ≤ i ≤ n} at either side of the cutoff as in (9).

Step 2. Compute the associated values of {Wi : 1 ≤ i ≤ n} as in (10).

Step 3. Compute the test statistic in (12) using the observations from Step 2.

Step 4. Generate random permutations Ĝ = {π1, . . . , πB} as in Remark 3.2 for a given B.

Step 5. Evaluate the test statistic in (12) for each permuted sample: T (Sπ`n ) for ` ∈ {1, . . . , B}.

Step 6. Compute the p-value of the test as follows,

pvalue =
1

B

B∑
`=1

I{T (Sπ`n ) ≥ T (Sn)} . (16)

Note that pvalue is the p-value associated with the non-randomized version of the test, see

Remark 3.1. The default values in the Stata package, and the values we use in the simulations in

Section 5, are B = 999 and q = q̂rot, as described in Appendix D.

Remark 3.4. The recommended choice of q in (15) is simply a sensible rule of thumb and is not

an optimal rule in any formal sense. Given our asymptotic framework where q is fixed as n goes to

infinity, it is difficult, and out of the scope of this paper, to derive optimal rules for choosing q.

Remark 3.5. The number of observations q on either side of the cutoff need not be symmetric.

All our results go through with two fixed values, ql and qr, to the left and right of the cutoff

respectively. However, we restrict our attention to the case where q is the same on both sides as it

simplifies deriving a rule of thumb for q and makes the overall exposition cleaner.

3.2 Relation to other permutation tests in the literature

Permutation tests have been previously discussed in the RDD literature for doing inference on

distributional treatment effects. In particular, Cattaneo et al. (2015, CFT) provide conditions in

8



a randomization inference context under which the RDD can be interpreted as a local randomized

controlled experiment (RCE) and develop exact finite-sample inference procedures based on such an

interpretation. Ganong and Jäger (2015) and Sales and Hansen (2015) build on the same framework

and consider related tests for the kink design and projected outcomes, respectively.

The most important distinction with our paper is that permutation tests have been previously

advocated on the grounds of finite sample validity. Such a justification requires, essentially, a

different type of null hypothesis than the one we consider. In particular, suppose it was the case

that for some b > 0, H(w|z) = Pr{W ≤ w|Z = z} was constant in z for all z ∈ [−b, b] and w ∈ W.

In other words, suppose the treatment assignment is locally randomized in a neighborhood of zero

as opposed to “at zero”. The null hypothesis in this case could be written as

H(w|z ∈ [−b, 0)) = H(w|z ∈ [0, b]) for all w ∈ W . (17)

Under the null hypothesis in (17), a permutation test applied to the sample with observations

{(Wi, Zi) : −b ≤ Zi < 0} and {(Wi, Zi) : 0 ≤ Zi ≤ b}, leads to a test that is valid in finite samples

(i.e., its finite sample size does not exceed the nominal level). The proof of this result follows from

standard arguments (see Lehmann and Romano, 2005, Theorem 15.2.1). For these arguments to

go through, the null hypothesis must be the one in (17) for a known b. Indeed, CFT clearly state

that the key assumption for the validity of their approach is the existence of a neighborhood around

the cutoff where a randomization-type condition holds. In our notation, this is captured by (17).

Contrary to those arguments, our paper shows that permutation tests can be used for the null

hypothesis in (5), which only requires local randomization at zero, and shows that the justification

for using permutation tests may be asymptotic in nature (see Remark 4.1 for a technical discussion).

The asymptotics are non-standard as they intend to explicitly capture a situation where the number

of effective observations (q in our notation) is small relative to the total sample size (n in our

notation). This is possible in our context due to the recent asymptotic framework developed by

Canay et al. (2016) for randomization tests, although we introduce novel modifications to make

it work in the RDD setting - see Section 4.2. Therefore, even though the test we propose in this

paper may be “mechanically” equivalent to the one in CFT, the formal arguments that justify their

applicability are markedly different (see also the recent paper by Sekhon and Titiunik (2016) for a

discussion on local randomization at the cutoff versus in a neighborhood). Importantly, while our

test can be viewed as a test for (3), which is the actual implication in Lee (2008, Proposition 2),

the test in CFT is a test for (17), which does not follow from Assumption 2.1.

Remark 3.6. The motivation behind the finite sample analysis in Cattaneo et al. (2015) is that

only a few observations might be available close enough to the cutoff where a local randomization-

type condition holds, and hence standard large-sample procedures may not be appropriate. They

go on to say that “...small sample sizes are a common phenomenon in the analysis of RD designs...”,

referring to the fact that the number of effective observations typically used for inference (those local
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to the cutoff) are typically small even if the total number of observations, n, is large. Therefore, the

motivation behind their finite sample analysis is precisely the motivation behind our asymptotic

framework where, as n → ∞, the effective number of observations q that enter our test are taken

to be finite. By embedding this finite sample situation into our asymptotic framework, we can

construct tests for the hypothesis in (3) as opposed to the one in (17).

Remark 3.7. In Remark 2.1 we made a parallel between our testing problem and the standard

practice in RCEs of comparing the treated and control groups in baseline covariates. However, the

testable implication in RCEs is a global statement about the conditional distribution of W given

A = 1 and A = 0. With large sample sizes, there exists a variety of asymptotically valid tests that

are available to test Pr{W ≤ w|A = 1} = Pr{W ≤ w|A = 0}, and permutation tests are one of

the many methods that may be used. On the contrary, in RDD the testable implication is “local”

in nature, which means that few observations are actually useful for testing the hypothesis in (5).

Finite sample issues, and permutation tests in particular, thus become relevant.

Another difference between the aforementioned papers and our paper is that their goal is to

conduct inference on the (distributional) treatment effect and not on the hypothesis of continuity

of covariates at the cutoff. Indeed, they essentially consider (sharp) hypotheses of the form

Yi(1) = Yi(0) + τi for all i such that Zi ∈ [−b, b]

(for τi = 0 ∀i in the case of no-treatment effect), which deviates from the usual interest on average

treatment effects (Ganong and Jäger, 2015, is about the kink design but similar considerations ap-

ply). On the contrary, the testable implication in Lee (2008, Proposition 2) is precisely a statement

about conditional distribution functions (i.e. (3)), so our test is designed by construction for the

hypothesis of interest.

Remark 3.8. Sales and Hansen (2015), building on CFT, also use small-sample justifications in

favor of permutation tests. However, they additionally exploit the assumption that the researcher

can correctly specify a model for variables of interest (outcomes in their paper and covariates in

our setting) as a function of the running variable Z. Our results do not require such modeling

assumptions and deliver a test for the hypothesis in (3) as opposed to (17).

Remark 3.9. Shen and Zhang (2016) also investigate distributional treatment effects in the RDD.

In particular, they are interested in testing Pr{Y (0) ≤ y|Z = 0} = Pr{Y (1) ≤ y|Z = 0}, and

propose a Kolmogorov-Smirnov-type test statistic based on local linear estimators of distributional

treatment effects. Their asymptotic framework is standard and requires nh → ∞ (where h is a

bandwidth), which implies that the effective number of observations at the cutoff increases as the

sample size increases. Although not mentioned in their paper, their test could be used to test the

hypothesis in (3). We therefore compare the performance our test to the one in Shen and Zhang

(2016) in Sections 5 and 6.
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Remark 3.10. Our test can be used (replacing W with Y ) to perform distributional inference on

the outcome variable as in CFT and Shen and Zhang (2016). We do not focus on this case here.

4 Asymptotic framework and formal results

In this section we derive the asymptotic properties of the test in (14) using an asymptotic framework

where q is fixed and n→∞. We proceed in two parts. We first derive a result on the asymptotic

properties of induced order statistics in (10) that provides an important milestone in proving the

asymptotic validity of our test. We then use this intermediate result to prove our main theorem.

4.1 A result on induced order statistics

Consider the order statistics in (7) and the induced order statistics in (8). As in the previous

section, denote the q closest values in (7) to the right and left of the cutoff by

Z−n,(q) ≤ · · · ≤ Z
−
n,(1) < 0 and 0 ≤ Z+

n,(1) ≤ · · · ≤ Z
+
n,(q) ,

respectively, and the corresponding induced values in (8) by

W−n,[q], . . . ,W
−
n,[1] and W+

n,[1], . . . ,W
+
n,[q] .

To prove the main result in this section we make the following assumption.

Assumption 4.1. For any ε > 0, Z satisfies Pr{Z ∈ [−ε, 0)} > 0 and Pr{Z ∈ [0, ε]} > 0.

Assumption 4.1 requires that the distribution of Z is locally dense to the left of zero, and either

locally dense to the right of zero or have a mass point at zero, i.e. Pr{Z = 0} > 0. Importantly, Z

could be discrete or continuous with a density f(z) discontinuous at zero.

Theorem 4.1. Let Assumptions 4.1 and (3) hold. Then,

Pr


q⋂
j=1

{W−n,[j] ≤ w
−
j }

q⋂
j=1

{W+
n,[j] ≤ w

+
j }

 = Πq
j=1H

−(w−j |0) ·Πq
j=1H

+(w+
j |0) + o(1) ,

as n→∞, for any (w−1 , . . . , w
−
q , w

+
1 , . . . , w

+
q ) ∈ R2q.

Theorem 4.1 states that the joint distribution of the induced order statistics are asymptotically

independent, with the first q random variables each having limit distribution H−(w|0) and the

remaining q random variables each having limit distribution H+(w|0). The proof relies on the fact

the induced order statistics Sn = (W−n,[q], . . . ,W
−
n,[1],W

+
n,[1], . . . ,W

+
n,[q]) are conditionally independent

given (Z1, . . . , Zn), with conditional cdfs

H(w|Z−n,(q)), . . . ,H(w|Z−n,(1)), H(w|Z+
n,(1)), . . . ,H(w|Z+

n,(q)) .
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The result then follows by showing that Z−n,(j) = op(1) and Z+
n,(j) = op(1) for all j ∈ {1, . . . , q}, and

invoking standard properties of weak convergence.

Theorem 4.1 plays a fundamental role in the proof of Theorem 4.2 in the next section. It is the

intermediate step that guarantees that, under the null hypothesis in (3), we have

Sn
d→ S = (S1, . . . , S2q) , (18)

where (S1, . . . , S2q) are i.i.d. with cdf H(w|0). This implies that Sπ
d
= S for all permutations π ∈ G,

which means that the limit random variable S is indeed invariant to permutations.

Remark 4.1. Under the null hypothesis in (3) it is not necessarily true that the distribution of

Sn is invariant to permutations. That is, Sπn 6
d
= Sn. Invariance of Sn to permutations is exactly the

condition required for a permutation test to be valid in finite samples, see Lehmann and Romano

(2005). The lack of invariance in finite samples lies behind the fact that the random variables in

Sn are not draws from H−(w|0) and H+(w|0), but rather from H(w|Z−n,(j)) and H(w|Z+
n,(j)), j ∈

{1, . . . , q}. Under the null hypothesis in (3), the latter two distributions are not necessarily the same

and therefore permuting the elements of Sn may not keep the joint distribution unaffected. However,

under the continuity implied by the null hypothesis, it follows that a sample from H(w|Z−n,(j))
exhibits a similar behavior to a sample from H−(w|0), at least for n sufficiently large. This is the

value of Theorem 4.1 to prove the results in the following section.

In addition to Assumptions 4.1, we also require that the random variable W is either continuous

or discrete to prove the main result of the next section.

Assumption 4.2. The scalar random variable W is continuously distributed conditional on Z = 0.

Assumption 4.3. The scalar random variable W is discretely distributed conditional on z ∈ Z,

with m ∈ N points of support that do not depend on z.

We note that Theorem 4.1 does not require either Assumption 4.2 or Assumption 4.3. We

however use each of these assumptions as a primitive condition of Assumptions 4.4 and 4.5 below,

which are the high-level assumptions we use to prove the asymptotic validity of the permutation

test in (14) for the scalar case. For ease of exposition, we present the extension to the case where

W is a vector of possibly continuous and discrete random variables in Appendix C.

Remark 4.2. Our assumptions are considerably weaker than those used by Shen and Zhang (2016)

to do inference on distributional treatment effects. In particular, while Assumption 4.1 allows Z to

be discrete everywhere except in a local neighborhood to the left of zero, Shen and Zhang (2016,

Assumption 3.1) require the density of Z to be bounded away from zero and twice continuously

differentiable with bounded derivatives. Similar considerations apply to their conditions on H(w|z).
In addition, the test proposed by Shen and Zhang (2016) does not immediately apply to the case

where W is discrete, as it requires an alternative implementation based on the bootstrap. On the

contrary, our test applies indistinctly to continuous and discrete variables.

12



4.2 Asymptotic validity under approximate invariance

We now present our theory of permutation tests under approximate invariance. By approximate

invariance we mean that only S is assumed to be invariant to π ∈ G, while Sn may not be invariant -

see Remark 4.1. The insight of approximating randomization tests when the conditions required for

finite sample validity do not hold in finite samples, but are satisfied in the limit, was first developed

by Canay et al. (2016) in a context where the group of transformations G was essentially sign-

changes. Here we exploit this asymptotic framework but with two important modifications. First,

our arguments illustrate a concrete case in which the framework in Canay et al. (2016) can be used

for the group G of permutations as opposed to the group G of sign-changes. The result in Theorem

4.1 provides a fundamental milestone in this direction. Second, we adjust the arguments in Canay

et al. (2016) to accommodate rank test statistics, which happen to be discontinuous and do not

satisfy the so-called no-ties condition in Canay et al. (2016). We do this by exploiting the specific

structure of rank test statistics, together with the requirement that the limit random variable S

is either continuously or discretely distributed. We formalize our requirements for the continuous

case in the following assumption, where we denote the set of distributions P ∈ P satisfying the null

in (3) as

P0 = {P ∈ P : condition (3) holds} .

Assumption 4.4. If P ∈ P0, then

(i) Sn = Sn(X(n))
d→ S under P .

(ii) Sπ
d
= S for all π ∈ G.

(iii) S is a continuous random variable taking values in S ⊆ R2q.

(iv) T : S → R is invariant to rank, i.e., it only depends on the order of the elements in

(S1, . . . , S2q).

Assumption 4.4 states the high-level conditions that we use to show the asymptotic validity of

the permutation test we propose in (14) and formally state in Theorem 4.2 below. The assumption

is also written in a way that facilitates the comparison with the conditions in Canay et al. (2016). In

our setting, Assumption 4.4 follows from Assumptions 4.1-4.2, which may be easier to interpret and

impose clear restrictions on the primitives of the model. To see this, note that Theorem 4.1, and

the statement in (18) in particular, imply that Assumptions 4.4.(i)-(ii) follow from Assumption 4.1.

In turn, Assumption 4.4.(iii) follows directly from Assumption 4.2. Finally, Assumption 4.4.(iv)

holds for several rank test statistics and for the test statistic in (12) in particular.

To see the last point more clearly, it is convenient to write the test statistic in (12) using an

alternative representation. Let

Rn,i =

2q∑
j=1

I{Sn,j ≤ Sn,i} , (19)
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be the rank of Sn,i in the pooled vector Sn in (11). Let R∗n,1 < R∗n,2 < · · · < R∗n,q denote the

increasingly ordered ranks Rn,1, . . . , Rn,q corresponding to the first sample (i.e., first q values) and

R∗n,q+1 < · · · < R∗n,2q denote the increasingly ordered ranks Rn,q+1, . . . , Rn,2q corresponding to the

second sample (i.e., remaining q values). Letting

T ∗(Sn) =
1

q

q∑
i=1

(R∗n,i − i)2 +
1

q

q∑
j=1

(R∗n,q+j − j)2 (20)

it follows that

T (Sn) =
1

q
T ∗(Sn)− 4q2 − 1

12q
,

see Hajek et al. (1999, p. 102). The expression in (20) immediately shows two properties of the

statistic T (s). First, T (s) is not a continuous function of s as the ranks make discrete changes with

s. Second, T (s) = T (s′) whenever s and s′ share the same ranks (our Assumption 4.4(iv)), which

immediately follows from the definition of T ∗(s). This property is what makes rank test statistics

violate the no-ties condition in Canay et al. (2016).

We next formalize our requirements for the discrete case in the following assumption.

Assumption 4.5. If P ∈ P0, then

(i) Sn = Sn(X(n))
d→ S under P .

(ii) Sπ
d
= S for all π ∈ G.

(iii) S and Sn are discrete random variables taking values in S = ⊗2q
j=1S1 with |S1| = m for all

n ≥ 1.

Parts (i) and (ii) of Assumption 4.5 coincide with parts (i) and (ii) of Assumption 4.4 and,

accordingly, follow from Assumption 4.1. Assumption 4.5.(iii) accommodates a case not allowed by

Assumption 4.4.(iii), which required S to be continuous. This is important as many covariates are

discrete in empirical applications, including the one in Section 6. Note that here we also require

the random variable Sn to be discrete, as opposed to the continuous case. However, Assumption

4.5 does not impose any requirement on the test statistic T : S → R.

We now formalize our main result in Theorem 4.2, which shows that the permutation test

defined in (14) leads to a test that is asymptotically level α whenever either Assumption 4.4 or

Assumption 4.5 hold. In addition, the same theorem also shows that Assumptions 4.1-4.3 are

sufficient primitive conditions for the asymptotic validity of our test.

Theorem 4.2. Suppose that either Assumption 4.4 or Assumption 4.5 holds and let α ∈ (0, 1).

Then, φ(Sn) defined in (14) satisfies

EP [φ(Sn)]→ α (21)
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as n→∞ whenever P ∈ P0. Moreover, if T : S → R is the test statistic in (12) and Assumptions

4.1-4.2 hold, then Assumption 4.4 also holds and (21) follows. Additionally, if instead Assumptions

4.1 and 4.3 hold, then Assumption 4.5 also holds and (21) follows.

Theorem 4.2 shows the validity of the test in (14) when the scalar random variable W is

either discrete or continuous. However, the test statistic in (12) and the test construction in (14)

immediately apply to the case where W is a vector consisting of a combination of discrete and

continuously distributed random variables. In Appendix C we show the validity of the test in (14)

for the vector case, which is a result we use in the empirical application of Section 6. Also note that

Theorem 4.2 implies that the proposed test is asymptotically similar, i.e., has limiting rejection

probability equal to α if P ∈ P0.

Remark 4.3. If the distribution P is such that (17) holds and q is such that −b ≤ Z−n,(q) < Z+
n,(q) ≤

b, then φ(Sn) defined in (14) satisfies

EP [φn(Sn)] = α for all n .

Since (17) implies (3), it follows that our test exhibits finite sample validity for some of the distri-

butions in P0.

Remark 4.4. As in Canay et al. (2016), our asymptotic framework is such that the number of

permutations in G, |G| = q!, is fixed as n → ∞. An alternative asymptotic approximation would

be one requiring that |G| → ∞ as n → ∞ - see, for example, Hoeffding (1952), Romano (1989),

Romano (1990), and more recently, Chung and Romano (2013) and Bugni, Canay and Shaikh

(2015). This would require an asymptotically “large” number of observations local to the cutoff

and would therefore be less attractive for the problem we consider here. From the technical point

of view, these two approximations involve quite different formal arguments.

5 Monte Carlo Simulations

In this section, we examine the finite-sample performance of several different tests of (3), including

the one introduced in Section 3, with a simulation study. The data for the study is simulated as

follows. The scalar baseline covariate is given by

Wi =

m(Zi) + U0,i if Zi < 0

m(Zi) + U1,i if Zi ≥ 0
, (22)

where the distribution of (U0,i, U1,i) and the functional form of m(z) varies across specifications. In

the baseline specification, we set U0,i = U1,i = Ui, where Ui is i.i.d. N
(
0, 0.152

)
, and use the same

function m(z) as in Shen and Zhang (2016), i.e.

m(z) = 0.61− 0.02z + 0.06z2 + 0.17z3 .
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The distribution of Zi also varies across the following specifications.

Model 1: Zi ∼ 2Beta(2, 4) − 1 where Beta(a, b) is the Beta distribution with parameters

(a, b).

Model 2: As in Model 1, but Zi ∼ 1
2 (2Beta(2, 8)− 1) + 1

2 (1− 2Beta(2, 8)).

Model 3: As in Model 1, but values of Zi with Zi ≥ 0 are scaled by 1
4 .

Model 4: As in Model 1, but Zi is discretely distributed uniformly on the support

{−1,−0.95,−0.90, . . . ,−0.15,−0.10,− 3√
n
, 0, 0.05, 0.10, 0.15, . . . , 0.90, 0.95, 1} .

Model 5: As in Model 1, but

m(z) =

1.675 + z if z < −0.175

1.5− 0.4(z + 0.175) if z ≥ −0.175
.

Model 6: As in Model 5, but Zi ∼ 1
2 (2Beta(2, 8)− 1) + 1

2 (1− 2Beta(2, 8)).

Model 7: As in Model 1, but with a discrete baseline covariate given by

Wi =



3 if 0.75 < W ∗i

2 if 0.61 < W ∗i ≤ 0.75

1 if 0.45 < W ∗i ≤ 0.61

0 if W ∗i ≤ 0.45

where W ∗i is generated as in (22).

The baseline specification in Model 1 has two features: (i) Zi is continuously distributed with a

large number of observations around the cutoff; and (ii) the functional form of m(z) is well behaved

- differentiable and relatively flat around the cutoff, see Figure 1a and 1e. The other specifications

deviate from the baseline as follows. Models 2 to 4 violate (i) in three different ways, see Figure

1b-1d. Model 5 violates (ii) by introducing a kink close to the cutoff, see Figure 1f. Model 6

combines Model 2 and 5 to violate both (i) and (ii). Finally, Model 7 corresponds to a discrete

covariate setting. These variations from the baseline model are partly motivated by the empirical

application in Almond et al. (2010), where the running variable may be viewed as discrete as in

Figure 1d, having heaps as in Figure 1b, or exhibiting discontinuities as in Figure 1c.

We consider sample sizes n ∈ {1000, 2500, 5000}, a nominal level of α = 5%, and perform 10, 000

Monte Carlo repetitions. Models 1 to 7 satisfy the null hypothesis in (3). We additionally consider

the same models but with U0,i 6
d
= U1,i to examine power under the alternative.
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(a) Model 1: f(z)
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(b) Model 2: f(z)

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

Z

f
(Z

)

(c) Model 3: f(z)
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(d) Model 4: f(z)
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(e) Model 1: m(z)
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(f) Model 5: m(z)
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Figure 1: Density of Z (upper left to middle right panel) and function m(z) (bottom left and right panel)

used in the Monte Carlo model specifications. The density of Z for Model 4 is illustrated when n = 2500.

Model P1-P7: Same as Models 1-7, but U1,i ∼ 1
2N
(
0.2, 0.152

)
+ 1

2N
(
−0.2, 0.152

)
.

We report results for the following tests.

RaPer and Per: the permutation test we propose in this paper in its two versions. The

randomized version (RaPer) in (14) and the non-randomized version (Per) that rejects when

pvalue in (16) is below α, see Remark 3.1. We include the randomized version only in the results

on size to illustrate the differences between the randomized and non-randomized versions of

the test. For power results, we simply report Per, which is the version of the test that
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practitioners will most likely use. The tuning parameter q is set to

q ∈ {10, 25, 50, qrot, q̂rot} ,

where qrot is the rule of thumb in (3.4) and q̂rot is a feasible qrot with all unknown quantities

non-parametrically estimated - see Appendix D for details. We set B = 999 for the random

number of permutations, see Remark 3.2.

SZ: the test proposed by Shen and Zhang (2016) for the null hypothesis of no distributional

treatment effect at the cutoff. When used for the null in (3) at α = 5%, this test rejects when

A
(n

2
f̃n

)2
sup
w

∣∣∣H̃−n (w)− H̃+
n (w)

∣∣∣ ,
exceeds 1.3581. Here A is a known constant based on the implemented kernel, f̃n is a non-

parametric estimate of the density of Zi at Zi = 0, and H̃−n (w) and H̃+
n (w) are local linear

estimates of the cdfs in (4). The kernel is set to a triangular kernel. Shen and Zhang (2016)

propose using the following (undersmoothed) rule of thumb bandwidth for the nonparametric

estimates,

hn = hIKn n1/5−1/ch , (23)

where hIKn is a sequential bandwidth based on Imbens and Kalyanaraman (2012), and ch is an

undersmoothing parameter - see Appendix D for details. We follow Shen and Zhang (2016)

and report results for ch ∈ {3.5, 4.0, 4.5}, where ch = 4.0 is their recommended choice.

CCT: the test proposed by Calonico et al. (2014) for the null hypothesis of no average

treatment effect at the cutoff. When used for the null in (3) at α = 5%, this test rejects when∣∣∣µ̂−,bcn − µ̂+,bcn

∣∣∣
V̂ bc
n

,

exceeds 1.96. Here µ̂−,bcn and µ̂+,bcn are bias corrected local linear estimates of the condi-

tional means of Wi to the left and right of Zi = 0, and V̂ bc
n is a novel standard error

formula that accounts for the variance of the estimated bias. The kernel is set to a tri-

angular kernel. We implement their test using the bandwidth from the Matlab code used

by Imbens and Kalyanaraman (2012), available at https://people.stanford.edu/imbens/

sites/default/files/rd_optbandwidth.zip.

Table 1 reports rejection probabilities under the null hypothesis for all models and all tests

considered. Across all cases, the permutation test controls size remarkably well. In particular,

the feasible rule of thumb q̂rot in (3.4) delivers rejection rates between 4.65% and 6.72%. On the

other hand, SZ returns rejection rates between 0.68% and 69.11% for their recommended choice of

ch = 4. Except in the baseline Model 1 where SZ performs similarly to Per, in all other models Per
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Model n RaPer Per SZ CCT

q q ch

10 25 50 qrot q̂rot 10 25 50 qrot q̂rot 3.5 4.0 4.5

1000 5.18 4.83 4.92 4.96 4.97 5.05 4.82 4.92 4.83 4.95 3.98 4.54 5.50 5.29

1 2500 4.67 5.08 4.86 4.85 4.98 4.57 5.06 4.85 4.83 4.95 4.67 5.27 6.21 4.99

5000 5.34 5.23 4.75 4.84 4.97 5.24 5.21 4.75 4.84 4.97 4.58 5.11 5.97 4.79

1000 5.17 5.31 4.98 5.06 5.11 5.04 5.30 4.97 4.94 5.01 10.61 18.16 28.57 5.50

2 2500 5.15 5.02 5.01 5.09 4.87 5.01 5.02 5.00 5.03 4.82 7.81 12.68 20.56 5.35

5000 5.02 5.35 4.92 5.10 5.23 4.93 5.34 4.92 5.09 5.20 6.18 8.58 14.23 5.10

1000 5.17 4.86 4.90 4.98 4.74 5.05 4.84 4.90 4.83 4.73 9.24 8.24 7.59 5.69

3 2500 4.67 5.06 4.82 4.86 4.88 4.58 5.05 4.82 4.83 4.88 9.60 8.54 7.79 4.97

5000 5.35 5.23 4.74 4.84 4.74 5.25 5.21 4.73 4.84 4.74 10.25 9.30 8.40 4.71

1000 4.84 4.63 4.69 4.87 4.72 4.75 4.62 4.69 4.78 4.65 16.82 11.41 10.81 4.98

4 2500 5.09 5.06 5.00 4.77 5.32 5.00 5.05 5.00 4.75 5.32 10.65 8.13 8.40 5.44

5000 4.59 5.01 4.76 5.04 5.18 4.53 4.98 4.76 5.02 5.15 7.01 6.32 7.18 6.08

1000 5.37 6.18 17.30 5.79 5.26 5.27 6.16 17.28 5.77 5.21 7.04 18.72 31.00 7.30

5 2500 4.66 5.34 6.71 5.60 5.12 4.54 5.34 6.71 5.60 5.12 8.15 20.44 29.98 5.86

5000 5.38 5.34 5.32 5.50 5.37 5.30 5.32 5.32 5.50 5.37 7.97 18.33 24.64 5.45

1000 6.79 32.44 77.62 7.84 6.87 6.65 32.38 77.62 7.67 6.72 10.89 42.54 75.46 25.68

6 2500 5.67 10.01 41.90 7.44 5.77 5.58 9.99 41.88 7.40 5.65 8.98 60.60 93.49 15.95

5000 5.03 6.48 14.40 6.59 6.19 4.89 6.46 14.38 6.58 6.16 7.68 69.11 95.69 9.48

1000 5.14 4.78 4.97 5.08 4.94 3.85 4.46 4.86 4.99 4.90 0.75 0.78 0.88 5.39

7 2500 4.80 5.01 4.87 4.79 4.86 3.41 4.68 4.79 4.75 4.84 0.69 0.79 1.07 4.82

5000 5.18 5.25 4.84 4.99 5.05 3.94 4.92 4.65 4.99 5.05 0.49 0.68 0.91 4.95

Table 1: Rejection probabilities (in %) under the null hypothesis. 10,000 replications.

clearly dominates SZ in terms of size control. Finally, CCT controls size very well in all models

except Model 6, where the lack of smoothness affects the local polynomial estimators and returns

rejection rates between 9.48% and 25.68%. Table 3 reports the average number of observations3

used by each of the tests and illustrates how both SZ and CCT consistently use a larger number of

observations around the cutoff than Per.

Two final lessons arise from Table 1. First, the differences between RaPer and Per are negligible,

even when q = 10. Second, Per is less sensitive to the choice of q than SZ is to the choice of ch.

The exception is Model 6 for n = 1, 000, where both tests appear to be equally sensitive.

Table 2 reports rejection probabilities under the alternative hypothesis for all models and all

tests considered. Since SZ may severely over-reject under the null hypothesis, we report both

raw and size-adjusted rejection rates. For the recommended values of tuning parameters, the size

3In the case of SZ and CCT, we compute the average of the number of observations to the left and right of the

cutoff, and then take an average across simulations. In the case of Per, we simply average q across simulations.
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Model n Per SZ SZ (Size Adj.) CCT

q ch ch

10 25 50 qrot q̂rot 3.5 4.0 4.5 3.5 4.0 4.5

1000 8.23 19.20 52.62 13.44 15.14 27.26 38.59 49.02 30.83 40.29 46.92 5.47

P1 2500 8.46 21.17 53.76 27.44 33.98 69.23 84.68 92.94 71.20 83.76 90.12 4.92

5000 8.43 20.07 53.05 49.34 60.37 95.48 99.28 99.93 96.00 99.23 99.85 5.10

1000 8.73 20.17 53.10 9.44 9.69 26.30 42.20 58.59 14.47 13.84 14.17 6.06

P2 2500 8.38 19.22 52.69 13.07 14.01 36.82 58.54 77.89 27.66 30.61 27.61 5.17

5000 8.24 20.45 53.74 23.41 24.69 53.43 78.35 94.10 48.29 65.43 68.87 5.28

1000 8.23 19.20 52.59 13.15 26.47 28.72 34.13 38.45 15.13 22.44 28.84 4.93

P3 2500 8.44 21.17 53.84 27.49 61.39 69.67 79.29 85.62 50.92 66.69 76.97 4.68

5000 8.43 20.05 52.96 49.82 89.19 95.00 98.52 99.57 85.57 95.23 98.51 4.87

1000 8.16 20.58 53.92 10.62 14.52 39.48 44.77 54.55 8.44 20.90 32.12 5.04

P4 2500 8.41 20.08 52.85 19.30 30.61 71.20 84.27 93.04 45.31 72.84 85.80 5.59

5000 8.52 20.50 53.36 35.29 56.64 95.53 99.36 99.95 91.44 98.93 99.73 4.96

1000 8.40 20.43 56.84 18.19 15.63 23.36 34.77 45.95 17.97 11.65 9.54 6.94

P5 2500 8.46 21.18 53.86 39.77 34.47 46.44 62.11 73.51 33.05 9.46 6.90 6.08

5000 8.55 20.25 52.99 66.96 60.68 71.14 86.86 94.67 56.89 9.26 5.09 6.46

1000 9.27 32.18 76.59 12.24 10.63 20.30 47.80 76.82 12.61 16.85 23.25 25.43

P6 2500 8.68 21.88 64.24 19.20 15.16 27.52 54.69 86.27 19.50 20.42 24.30 22.26

5000 8.16 21.57 56.69 34.03 26.04 41.71 65.50 91.63 33.26 19.81 20.56 15.65

1000 7.67 17.88 41.46 64.93 64.89 10.35 16.31 22.93 37.95 47.85 54.17 5.33

P7 2500 7.89 18.72 42.08 97.34 97.42 37.92 57.46 72.16 77.42 88.08 93.09 5.07

5000 7.53 17.84 41.73 99.97 99.97 78.18 92.58 97.79 96.80 99.25 99.75 4.96

Table 2: Rejection probabilities (in %) under the alternative hypothesis. 10,000 replications.

adjusted power of SZ is consistently above the one of Per in Models P1, P2, and P4. In Models P5

and P7, Per delivers higher power than SZ; while in Models P3 and P6, both tests exhibit similar

power. This is remarkable as Table 3 shows that Per uses considerably fewer observations than SZ

does.4 The power of CCT, as expected, does not exceed the rejection probabilities under the null

hypothesis.

6 Empirical application

In this section we reevaluate the validity of the design in Lee (2008). Lee studies the benefits

of incumbency on electoral outcomes using a discontinuity constructed with the insight that the

4We computed the equivalent of Table 3 for the results in Table 2 and obtained very similar numbers, so we only

report Table 3 to save space.
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Model n Per SZ CCT

q ch

qrot q̂rot 3.5 4.0 4.5

1000 16.00 15.69 153.34 195.65 235.78 278.36

1 2500 27.00 27.25 347.12 457.86 566.41 660.40

5000 42.00 41.84 634.06 858.21 1083.00 1247.40

1000 10.00 10.00 133.42 209.35 285.07 248.80

2 2500 14.00 14.04 204.30 340.58 511.30 441.95

5000 21.00 21.12 279.38 468.05 728.83 693.50

1000 16.00 21.25 123.39 143.21 160.16 179.47

3 2500 27.00 37.90 290.08 344.87 391.71 445.43

5000 42.00 59.23 554.32 671.33 771.59 884.51

1000 10.00 13.81 153.15 196.01 237.38 255.06

4 2500 18.00 24.16 321.22 424.72 527.68 558.31

5000 27.00 37.26 563.47 763.76 967.83 1016.60

1000 21.00 15.69 141.80 181.03 218.32 193.35

5 2500 37.00 27.25 284.41 375.34 464.25 374.28

5000 56.00 41.84 462.52 625.78 789.49 605.42

1000 11.00 10.00 97.91 157.45 231.41 274.02

6 2500 19.00 14.16 185.49 308.38 473.28 405.76

5000 29.00 21.17 301.59 510.67 803.85 494.06

1000 73.00 73.00 157.60 201.07 242.35 280.80

7 2500 147.00 147.00 353.37 466.31 576.89 667.52

5000 251.00 250.62 644.04 871.78 1100.90 1267.50

Table 3: Average number of observations (to one side) used in the tests reported in Table 1.

party with the majority wins. Specifically, the running variable Z is the difference in vote shares

between Democrats and Republicans in time t. The assignment rule then takes a cutoff value of

zero that determines the treatment of incumbency to the Democratic candidate, which is used

to study their election outcomes in time t + 1. The data set contains six covariates that contain

electoral information on the Democrat runner and the opposition in time t − 1 and t. Out of the

six variables, one is continuous (Democrat vote share t − 1) and the remaining are discrete. The

total number of observations is 6,559 with 2,740 below the cutoff. The dataset is publicly available

at http://economics.mit.edu/faculty/angrist/data1/mhe and all the results in this section

were computed using the rdperm Stata package available at http://sites.northwestern.edu/

iac879/software/.

Lee assessed the credibility of the design in this application by inspecting discontinuities in

means of the baseline covariates. His test is based on local linear regressions with observations in

different margins around the cutoff. The estimates and graphical illustrations of the conditional
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Variable Per CCT

Democrat vote share t− 1 0.60 93.01

Democrat win t− 1 1.00 5.66

Democrat political experience t 0.00 18.85

Opposition political experience t 2.70 70.17

Democrat electoral experience t 0.00 24.90

Opposition electoral experience t 27.43 88.40

Joint Test - CvM statistic 17.62

Joint Test - Max statistic 1.70

Table 4: Test results with p-value (in %) for covariates in Lee (2008)

means are used to conclude that there are no discontinuities at the cutoff in the baseline covariates.

Here, we frame the validity of the design in terms of the hypothesis in (3) and use the newly

developed permutation test as described in Section 3.1, using q̂rot as our default choice for the

number of observations q.5 Our test allows for continuous or discrete covariates, and so it does not

require special adjustments to accommodate discrete covariates; cf. Remark 4.2. In addition, our

test allows the researcher to test for the hypothesis of continuity of individual covariates, in which

case W includes a single covariate; as well as continuity of the entire vector of covariates, in which

case W includes all six covariates. Finally, we also report the results of test CCT, as described in

Section 5, for the continuity of means at the cutoff.

Table 4 reports the p-values for continuity of each of the six covariates individually, as well as

the joint test for the continuity of the six dimensional vector of covariates; see Appendix C for

details. Our results show that the null hypothesis of continuity of the conditional distributions

of the covariates at the cutoff is rejected for most of the covariates at a 5% significance level, in

contrast to the results reported by Lee (2008) and the results of the CCT test in Table 4. The

differences between our test and tests based on conditional means can be illustrated graphically.

Figure 2(a)-(b) displays the histogram and empirical cdf (based on q̂rot observations on each side)

of the continuous covariate Democrat vote share t − 1. The histogram exhibits a longer right tail

for observations to the right of the threshold (in orange), and significant more mass at shares below

50% for observations to the left of the threshold (in blue). The empirical CDFs are similar up

until the 20th quantile, approximately, and then are markedly different. Our test formally shows

that the observed differences are statistically significant. On the contrary, the conditional means

from the left and from the right appear to be similar around the cutoff and so tests for the null

hypothesis in (6) fail to reject the null in (3); see Figure 2c. A similar intuition applies to the rest

of the covariates. Finally, we note that q̂rot in the implementation of our test ranges from 51 to 310,

depending on the covariate, while the average number of effective observations (i.e. the average of

5We also computed our test using 0.75q̂rot and 1.25q̂rot and found similar results.
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Figure 2: Histogram, CDF, and conditional means for Democrat vote share t− 1

observations to the left and right of the cutoff) used by CCT ranges from 828 to 1192. This is

consistent with one asymptotic framework assuming few effective observations around the cutoff

and another assuming a large and growing number of observations around the cutoff.

In addition to the tests reported in Table 4, we also computed the test by Shen and Zhang

(2016) as described in Section 5. This tests fails to reject the null hypothesis for each of the six

covariates at a 10% significance level. Note, however, that most of the covariates in this empirical

application are discrete and so the results in Shen and Zhang (2016) do not immediately apply; see

Remark 4.2 and Appendix D for details.

The standard practice in applied work appears to be to test the hypothesis of continuity indi-

vidually for each covariate. This is informative as it can provide information as to which covariate

may or may not be problematic. However, testing many individual hypotheses may lead to spuri-

ous rejections (due to a multiple testing problem). In addition, the statement in (3) is a statement

about the vector W that includes all baseline covariates in the design. We therefore report in Table

4, in addition to each individual test, the results for the joint test that uses all six covariates in the

construction of the test statistic - as explained in detail in Section C. Table 4 shows that the results

for the joint test depend on the choice of test statistic used in its construction. If one uses the

Cramér Von Mises test statistic in (12), the null hypothesis in (3) is not rejected, with a p-value of

17.62%. However, a closer inspection to the test statistic in (12) suggests that such a test statistic

may exhibit low power for alternative hypotheses in which a subset of the covariates are continuous

at the threshold. We therefore also implement our test using the max-type test statistic introduced

in Appendix C, see (C-33). Table 4 shows that such a test statistic exhibits significant more power
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in this particular application, with a p-value of 1.70%. It is worth noting that in the case of scalar

covariates, these two test statistics are numerically identical. We therefore recommend the test

statistic in (C-33) for the multivariate case, which is the default option in the companion rdperm

Stata package.

7 Concluding remarks

In this paper we propose an asymptotically valid permutation test for the hypothesis of continuity

of the distribution of baseline covariates at the cutoff in the regression discontinuity design (RDD).

The asymptotic framework for our test is based on the simple intuition that observations close to the

cutoff are approximately identically distributed on either side of it when the null hypothesis holds.

This allows us to permute these observations to conduct an approximately valid test. Formally, we

exploit the framework, with novel additions, from Canay et al. (2016), which first developed the

insight of approximating randomization tests in this manner. Our results also represent a novel

application of induced order statistics to frame our problem, and we present a result on induced

order statistics that may be of independent interest.

A final aspect we would like to highlight of our test is its simplicity. The test only requires

computing two empirical cdfs for the induced order statistic, and does not involve kernels, local

polynomials, bias correction, or bandwidth choices. Importantly, we have developed the rdperm

Stata package that allows for effortless implementation of the test we propose in this paper.
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A Proof of Theorem 4.1

First, note that the joint distribution of the induced order statistics W−n,[q], . . . ,W
−
n,[1],W

+
n,[1], . . . ,W

+
n,[q] are

conditionally independent given (Z1, . . . , Zn), with conditional cdfs

H(w|Z−n,(q)), . . . ,H(w|Z−n,(1)), H(w|Z+
n,(1)), . . . ,H(w|Z+

n,(q)) .

A proof of this result can be found in Bhattacharya (1974, Lemma 1). Now let A = σ(Z1, . . . , Zn) be the

sigma algebra generated by (Z1, . . . , Zn). It follows that

Pr


q⋂
j=1

{W−n,[j] ≤ w
−
j }

q⋂
j=1

{W+
n,[j] ≤ w

+
j }

 = E

Pr


q⋂
j=1

{W−n,[j] ≤ w
−
j }

q⋂
j=1

{W+
n,[j] ≤ w

+
j }
∣∣A



= E
[
Πq
j=1H(w−j |Z

−
n,(j)) ·Π

q
j=1H(w+

j |Z
+
n,(j))

]
.

The first equality follow from the law of iterated expectations and the last equality follows from the condi-

tional independence of the induced order statistics.

Let fn,(q−,...,q+)(zq− , . . . , zq+) denote the joint density of

Z−n,(q) ≤ · · · ≤ Z
−
n,(1) < 0 ≤ Z+

n,(1) ≤ · · · ≤ Z
+
n,(q) ,

so that we can write the last term in the previous display as∫ ∞
0

∫ zq+

0

· · ·
∫ z(q−1)−

0

Πq
j=1H(w−j |zj−) ·Πq

j=1H(w+
j |zj+)fn,(q−,...,q+)(zq− , . . . , zq+)dzq− , . . . , dzq+ .

By (3), the integrand term

Πq
j=1H(w−j |zj−) ·Πq

j=1H(w+
j |zj+)

is a bounded continuous function of (zq− , . . . , z1− , z1+ , . . . , zq+) at (0, 0, . . . , 0). Suppose that the order

statistics Z−n,(j) and Z+
n,(q), for j ∈ {1, . . . , q}, converge in distribution to a degenerate distribution with

mass at (0, 0, . . . , 0). It would then follow from the definition of weak convergence, the asymptotic uniform

integrability of the integrand term above, and van der Vaart (1998, Theorem 2.20) that

lim
n→∞

E
[
Πq
j=1H(w−j |zj−) ·Πq

j=1H(w+
j |zj+)

]
= E

[
Πq
j=1H

−(w−j |0) ·Πq
j=1H

+(w+
j |0)

]
.

Hence, it is sufficient to prove that for any given j ∈ {1, . . . , q}, Z−n,(j) = op(1) and Z+
n,(q) = op(1). We prove

Z+
n,(q) = op(1) by complete induction, and omit the other proof as the result follows from similar arguments.

Take j = 1 and let ε > 0. By Assumption 4.1, it follows that

F+(ε) = Pr{Zi ∈ [0, ε]} > 0 .

Next, note that

F+
n,(1)(ε) ≡ Pr{Z+

n,(1) ≤ ε} = Pr{ at least 1 of the Zi is such that Zi ∈ [0, ε]}

=

n∑
i=1

(
n

i

)
[F+(ε)]i[1− F+(ε)]n−i

=

n∑
i=0

(
n

i

)
[F+(ε)]i[1− F+(ε)]n−i − [1− F+(ε)]n

= 1− [1− F+(ε)]n . (A-24)
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Since F+(ε) > 0 for any ε > 0, it follows that Pr{Z+
n,(1) > ε} = [1−F+(ε)]n → 0 as n→∞ and Z+

n,(1) = op(1).

Now let F+
n,(j)(ε) denote the cdf of Z+

n,(j), which is given by

F+
n,(j)(ε) = Pr{Z+

n,(j) ≤ ε}

= Pr{ at least j of the Zi are such that Zi ∈ [0, ε]}

=

n∑
i=j

(
n

i

)
[F+(ε)]i[1− F+(ε)]n−i

= F+
n,(j+1)(ε) +

(
n

j

)
[F+(ε)]j [1− F+(ε)]n−j ,

so that we can write

1− F+
n,(j+1)(ε) = 1− Fn,(j)(ε)−

(
n

j

)
[F+(ε)]j [1− F+(ε)]n−j for j ∈ {1, . . . , q − 1} . (A-25)

It follows from (A-24) that 1 − F+
n,(1)(ε) → 0 for any ε > 0 as n → ∞. In order to complete the proof we

assume that 1− F+
n,(j)(ε)→ 0 for j ∈ {1, . . . , q− 1} and show that this implies that 1− F+

n,(j+1)(ε)→ 0. By

(A-25) this is equivalent to showing that(
n

j

)
[F+(ε)]j [1− F+(ε)]n−j → 0 .

To this end, note that(
n

j

)
[F+(ε)]j [1− F+(ε)]n−j ≤ nj [1− F+(ε)]n−j =

[
e

j log n
n−j [1− F+(ε)]

]n−j
→ 0 ,

where the convergence follows after noticing that there exists N ∈ R such that e
j log n
n−j [1− F+(ε)] < 1 for all

n > N and any j ∈ {1, . . . , q − 1}. The result follows.

B Proof of Theorem 4.2

Part 1.

Continuous case: Let Pn = ⊗ni=1P with P ∈ P0 be given. By Assumption 4.4(i) and the Almost Sure

Representation Theorem (see van der Vaart, 1998, Theorem 2.19), there exists S̃n, S̃, and U ∼ U(0, 1),

defined on a common probability space (Ω,A, P̃ ), such that

S̃n → S̃ w.p.1 ,

S̃n
d
= Sn, S̃

d
= S, and U ⊥ (S̃n, S̃). Consider the permutation test based on S̃n, this is,

φ̃(S̃n, U) ≡

1 T (S̃n) > T (k)(S̃n) or T (S̃n) = T (k)(S̃n) and U < a(S̃n)

0 T (S̃n) < T (k)(S̃n)
.

Denote the randomization test based on S̃ by φ̃(S̃, U), where the same uniform variable U is used in φ̃(S̃n, U)

and φ̃(S̃, U).
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Since S̃n
d
= Sn, it follows immediately that EPn [φ(Sn)] = EP̃ [φ̃(S̃n, U)]. In addition, since S̃

d
= S,

Assumption 4.4(ii) implies that EP̃ [φ̃(S̃, U)] = α by the usual arguments behind randomization tests, see

Lehmann and Romano (2005, Chapter 15). It therefore suffices to show

EP̃ [φ̃(S̃n, U)]→ EP̃ [φ̃(S̃, U)] . (B-26)

In order to show (B-26), let En be the event where the ordered values of {Sj : 1 ≤ j ≤ 2q} and

{Sn,j : 1 ≤ j ≤ 2q} correspond to the same permutation π of {1, . . . , 2q}, i.e., if Sπ(j) = Sk then Sn,π(j) = Sn,k

for 1 ≤ j ≤ 2q and 1 ≤ k ≤ 2q. We first claim that I{En} → 1 w.p.1. To see this, note that Assumption

4.4(iii) and S̃
d
= S imply that

S̃(1)(ω) < S̃(2)(ω) < · · · < S̃(2q)(ω) (B-27)

for all ω in a set with probability one under P̃ . Moreover, since S̃n → S̃ w.p.1, there exists a set Ω∗

with P̃{Ω∗} = 1 such that both (B-27) and S̃n(ω) → S̃(ω) hold for all ω ∈ Ω∗. For all ω in this set, let

π(1, ω), . . . , π(2q, ω) be the permutation that delivers the order statistics in (B-27). It follows that for any

ω ∈ Ω∗ and any j ∈ {1, . . . , 2q − 1}, if S̃π(j,ω)(ω) < S̃π(j+1,ω)(ω) then

S̃n,π(j,ω)(ω) < S̃n,π(j+1,ω)(ω) for n sufficiently large . (B-28)

We can therefore conclude that

I{En} → 1 w.p.1 ,

which proves the first claim.

We now prove (B-26) in two steps. First, we note that

EP̃ [φ̃(S̃n, U)I{En}] = EP̃ [φ̃(S̃, U)I{En}] . (B-29)

This is true because, on the event En, the rank statistics in (19) of the vectors S̃πn and S̃π coincide for all

π ∈ G, and by Assumption 4.4(iv), the test statistic T (S) only depends on the order of the observations,

leading to φ̃(S̃n, U) = φ̃(S̃, U) on En. Second, since I{En} → 1 w.p.1 it follows that φ̃(S̃, U)I{En} → φ̃(S̃, U)

w.p.1 and φ̃(S̃n, U)I{Ecn} → 0 w.p.1. We can therefore use (B-29) and invoke the dominated convergence

theorem to conclude that,

EP̃ [φ̃(S̃n, U)] = EP̃ [φ̃(S̃n, U)I{En}] + EP̃ [φ̃(S̃n, U)I{Ecn}]

= EP̃ [φ̃(S̃, U)I{En}] + EP̃ [φ̃(S̃n, U)I{Ecn}]

→ EP̃ [φ̃(S̃, U)] .

This completes the proof of the first part of the statement of the theorem for the continuous case.

Discrete case: The proof for the discrete setting is similar to the continuous one with few intuitive

differences. We reproduce it here for completeness.

Let Pn = ⊗ni=1P with P ∈ P0 be given. By Assumption 4.5(i) and the Almost Sure Representation

Theorem (see van der Vaart, 1998, Theorem 2.19), there exists S̃n, S̃, and U ∼ U(0, 1), defined on a common

probability space (Ω,A, P̃ ), such that

S̃n → S̃ w.p.1 ,
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S̃n
d
= Sn, S̃

d
= S, and U ⊥ (S̃n, S̃). Consider the permutation test based on S̃n, this is,

φ̃(S̃n, U) ≡

1 T (S̃n) > T (k)(S̃n) or T (S̃n) = T (k)(S̃n) and U < a(S̃n)

0 T (S̃n) < T (k)(S̃n)
.

Denote the randomization test based on S̃ by φ̃(S̃, U), where the same uniform variable U is used in φ̃(S̃n, U)

and φ̃(S̃, U).

Since S̃n
d
= Sn, it follows immediately that EPn

[φ(Sn)] = EP̃ [φ̃(S̃n, U)]. In addition, since S̃
d
= S,

Assumption 4.5(ii) implies that EP̃ [φ̃(S̃, U)] = α by the usual arguments behind randomization tests, see

Lehmann and Romano (2005, Chapter 15). It therefore suffices to show

EP̃ [φ̃(S̃n, U)]→ EP̃ [φ̃(S̃, U)] . (B-30)

In order to show (B-30), let En be the event where S̃n = S̃. We first claim that I{En} → 1 w.p.1. To

see this, note that Assumption 4.5(iii), both S̃ and S̃n are discrete random variables taking values in S with

|S| = m. Moreover, since S̃n → S̃ w.p.1, there exists a set Ω∗ with P̃{Ω∗} = 1 such that S̃n(ω) → S̃(ω)

holds for all ω ∈ Ω∗. It follows that for any ω ∈ Ω∗ and any j ∈ {1, . . . , 2q},

S̃n,j(ω) = S̃j(ω) for n sufficiently large , (B-31)

which follows from the fact that both S and Sn are discretely distributed. We can therefore conclude that

I{En} → 1 w.p.1 ,

which proves the first claim.

We now prove (B-30) in two steps. First, we note that

EP̃ [φ̃(S̃n, U)I{En}] = EP̃ [φ̃(S̃, U)I{En}] . (B-32)

This is true because, on the event En, S̃πn and S̃π coincide for all π ∈ G, leading to φ̃(S̃n, U) = φ̃(S̃, U) on

En. Second, since I{En} → 1 w.p.1 it follows that φ̃(S̃, U)I{En} → φ̃(S̃, U) w.p.1 and φ̃(S̃n, U)I{Ecn} → 0

w.p.1. We can therefore use (B-32) and invoke the dominated convergence theorem to conclude that,

EP̃ [φ̃(S̃n, U)] = EP̃ [φ̃(S̃n, U)I{En}] + EP̃ [φ̃(S̃n, U)I{Ecn}]

= EP̃ [φ̃(S̃, U)I{En}] + EP̃ [φ̃(S̃n, U)I{Ecn}]

→ EP̃ [φ̃(S̃, U)] .

This completes the proof for the discrete case and the first part of the statement of the theorem.

Part 2.

Let Pn = ⊗ni=1P with P ∈ P0 be given and note that by Theorem 4.1 it follows that

Sn = (Sn,1, . . . , Sn,2q) = (W−n,[1], . . . ,W
−
n,[q],W

+
n,[1], . . . ,W

+
n,[q])

d→ (S1, . . . , S2q) ,
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where (S1, . . . , S2q) are i.i.d. with cdf H(w|0). The conditions in Assumption 4.4.(i)-(ii) immediately follow

as (S1, . . . , S2q)
d
= (Sπ(1), . . . , Sπ(2q)) for any π ∈ G. Assumption 4.4.(iii) follows the fact that (S1, . . . , S2q)

are i.i.d. with cdf H(w|0), where H(w|0) is the cdf of a continuous random variable by Assumption 4.2.

Similarly, Assumption 4.5.(iii) follows the fact that (S1, . . . , S2q) are i.i.d. with cdf H(w|0), where H(w|0) is

the cdf of a discrete random variable by Assumption 4.3.

We are left to prove that the test statistic in (12) satisfies Assumption 4.4.(iv). To show this, note that

T (S) as in (12) admits the alternative representation

T (S) =
1

q
T ∗(S)− 4q2 − 1

12q
,

where

T ∗(S) =
1

q

q∑
i=1

(R∗i − i)2 +
1

q

q∑
j=1

(R∗q+j − j)2 ,

R∗1 < R∗2 < · · · < R∗q denote the increasingly ordered ranks R1, . . . , Rq of the first q variables in S, and

R∗q+1 < · · · < R∗2q are the increasingly ordered ranks Rq+1, . . . , R2q of the last q values in S. It follows

immediately that this test statistic satisfies Assumption 4.4.(iv). This completes the proof of the second

part of the statement of the theorem.

C The multidimensional case

In this appendix we discuss the case where W is a K-dimensional vector. The test statistic in (12) and the

test construction in (14) immediately apply to this case where W is a vector consisting of a combination

of discrete and continuously distributed random variables. However, in the multidimensional case we also

consider an alternative test statistic that may exhibit better power when W includes several components

and some are continuous and some are discontinuous at the threshold. We call this test statistic the max

test statistic and define it as follows,

Tmax(Sn) = max
c∈Ĉ

T (c′Sn) , (C-33)

where T (·) is the test statistic in (12),

c′Sn = (c′Sn,1, . . . , c
′Sn,2q) = (c′W−n,[1], . . . , c

′W−n,[q], c
′W+

n,[1], . . . , c
′W+

n,[q]) , (C-34)

and Ĉ is a collection of elements from the unit sphere C ≡ {c ∈ RK : ||c|| = 1}. The intuition behind this

test statistic arises from observing that the null hypothesis in (3) is equivalent to the same statement applied

to any univariate projection c′W of W , i.e.,

Pr{c′W ≤ w|Z = z} is continuous in z at z = 0 for all w ∈ R and all c ∈ C. (C-35)

In the empirical application of Section 6 we choose Ĉ to include 100 − K i.i.d. draws from Uniform(C)

together with the K canonical elements (i.e., vectors c with zeros in all coordinates except for one). We

also set q̂rot to be the minimum value across the rule of thumb across each individual covariate, i.e., q̂rot =

min{q̂rot,1, . . . , q̂rot,K}.

Given a test statistic, here we show that the permutation test for this setting is also asymptotically valid.

We first state the primitive conditions required to prove this.
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Assumption C.1. For any ε > 0, Z satisfies Pr{Z ∈ (−ε, 0)} > 0 and Pr{Z ∈ [0, ε]} > 0.

Assumption C.2. The random vector W takes values in Rdw and has components Wk, for k ∈ {1, . . . , dw},
that satisfy either Assumption 4.2 or Assumption 4.3 with mk ∈ N points of support.

Assumption C.1 is the same as Assumption 4.1, which is required for Theorem 4.1 to hold. Moreover,

Assumption C.2 essentially requires that each component of the vector W satisfies one of the two assumptions

we used for the scalar case.

We formalize the high level assumptions required for the validity of the permutation test for the vector

case in the following assumption.

Assumption C.3. If P ∈ P0, then

(i) Sn = Sn(X(n))
d→ S under Pn.

(ii) Sπ
d
= S for all π ∈ G.

(iii) S = (S1, . . . , S2q) is such that each Sj, j ∈ {1, . . . , 2q}, takes values in Rdw and has single compo-

nents Sj,k, k ∈ {1, . . . , dw}, that are either continuously distributed taking values in R or discretely

distributed taking values in Sk with |Sk| = mk. For each discrete component, Sn,j,k is also discretely

distributed with the same support for all n ≥ 1. The resulting support of S is S.

(iv) T : S → R is invariant to rank with respect to each continuous component, i.e., it only depends on

the order of the elements of each continuous component.

We now formalize our result for the vector case in Theorem C.1, which shows that the permutation test

defined in (14) leads to a test that is asymptotically level α whenever Assumption C.3 holds. In addition,

the same theorem also shows that Assumption C.1-C.2 are sufficient primitive conditions for the asymptotic

validity of our test.

Theorem C.1. Suppose that Assumption C.3 holds and let α ∈ (0, 1). Then, φ(Sn) defined in (14) satisfies

EP [φ(Sn)]→ α (C-36)

as n → ∞ whenever P ∈ P0. Moreover, if T : S → R is the Cramér Von Mises test statistic in (12) and

Assumptions C.1-C.2 hold, then Assumption C.3 also holds and (C-36) follows.

C.1 Proof of Theorem C.1

Part 1.

Let Pn = ⊗ni=1P with P ∈ P0 be given. By Assumption C.3(i) and the Almost Sure Representation

Theorem (see van der Vaart, 1998, Theorem 2.19), there exists S̃n, S̃, and U ∼ U(0, 1), defined on a

common probability space (Ω,A, P̃ ), such that

S̃n → S̃ w.p.1 ,
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S̃n
d
= Sn, S̃

d
= S, and U ⊥ (S̃n, S̃). Consider the permutation test based on S̃n, this is,

φ̃(S̃n, U) ≡

1 T (S̃n) > T (k)(S̃n) or T (S̃n) = T (k)(S̃n) and U < a(S̃n)

0 T (S̃n) < T (k)(S̃n)
.

Denote the randomization test based on S̃ by φ̃(S̃, U), where the same uniform variable U is used in φ̃(S̃n, U)

and φ̃(S̃, U).

Since S̃n
d
= Sn, it follows immediately that EPn [φ(Sn)] = EP̃ [φ̃(S̃n, U)]. In addition, since S̃

d
= S,

Assumption C.3(ii) implies that EP̃ [φ̃(S̃, U)] = α by the usual arguments behind randomization tests, see

Lehmann and Romano (2005, Chapter 15). It therefore suffices to show

EP̃ [φ̃(S̃n, U)]→ EP̃ [φ̃(S̃, U)] . (C-37)

Before we show (C-37), we introduce the additional notation to easily refer to the different components

of the vectors Sj and Sn,j for j ∈ {1, . . . , 2q}. Let the first Kc elements of Sj and Sn,j denote the continuous

components, where each component is denoted by Scj,k and Scn,j,k for 1 ≤ k ≤ Kc. Let the remaining

subvector Sdj and Sdn,j of dimension Kd = K − Kc denote the discrete component of Sj and Sn,j , and

(s∗1, . . . , s
∗
m) denote their points of support. Using this notation, we can partition Sj and Sn,j as (Scj , S

d
j )

and (Scn,j , S
d
n,j), respectively.

In order to show (C-37), let En be the event where the following holds. First, the ordered values of each

continuous component {Scj,k : 1 ≤ j ≤ 2q} and {Scn,j,k : 1 ≤ j ≤ 2q} correspond to the same permutation πk

of {1, . . . , 2q} for 1 ≤ k ≤ Kc, i.e., if Sck,πk(j)
= Sck,l then Scn,k,πk(j)

= Scn,k,l for 1 ≤ j, l ≤ 2q and 1 ≤ k ≤ Kc.

Second, the discrete subvectors {Sdj : 1 ≤ j ≤ 2q} and {Sdn,j : 1 ≤ j ≤ 2q} coincide, i.e., Sdj = Sdn,j for

1 ≤ j ≤ 2q.

We first claim that I{En} → 1 w.p.1. To see this, note that Assumption C.3(iii) and S̃
d
= S imply that

for all ω in a set with probability one under P̃ we have for each continuous component k of S that

S̃ck,(1)(ω) < S̃ck,(2)(ω) < · · · < S̃ck,(2q)(ω) , (C-38)

and for the discrete subvector of S̃ that

S̃dj (ω) = s∗l , (C-39)

for 1 ≤ j ≤ 2q and some 1 ≤ l ≤ m. Moreover, since S̃n → S̃ w.p.1, there exists a set Ω∗ with P̃{Ω∗} = 1 such

that (C-38), (C-39) and S̃n(ω) → S̃(ω) hold for all ω ∈ Ω∗. For all ω in this set, let πk(1, ω), . . . , πk(2q, ω)

be the permutation that delivers the order statistics in (C-38) for the kth continuous component. It follows

that for any ω ∈ Ω∗ and any j ∈ {1, . . . , 2q − 1}, if for any continuous component k we have S̃ck,πk(j,ω)
(ω) <

S̃ck,πk(j+1,ω)(ω) then

S̃cn,k,πk(j,ω)
(ω) < S̃cn,k,πk(j+1,ω)(ω) for n sufficiently large , (C-40)

and moreover, if for the discrete subvector we have S̃dj (ω) = s∗l then

S̃dn,j(ω) = s∗l for n sufficiently large , (C-41)

which follows from the fact that both {Sdj : 1 ≤ j ≤ 2q} and {Sdn,j : 1 ≤ j ≤ 2q} are discretely distributed

with common support points. We can therefore conclude that

I{En} → 1 w.p.1 ,
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which proves the first claim.

We now prove (C-37) in two steps. First, we note that

EP̃ [φ̃(S̃n, U)I{En}] = EP̃ [φ̃(S̃, U)I{En}] . (C-42)

This is true because, on the event En, the following two hold. First, for each continuous component the rank

statistics in (19) of the vectors S̃c,πn,k and S̃c,πk coincide for 1 ≤ k ≤ Kc and for all π ∈ G. Then we have by

Assumption C.3(iv) that the test statistic T (S) only depends on the order of the elements of each continuous

component. Second, the discrete subvectors S̃d,πn and S̃d,π coincide for all π ∈ G. These two properties in

turn result in, on the event En, T (S̃πn) equaling T (S̃π) for all π ∈ G, which leads to φ̃(S̃n, U) = φ̃(S̃, U) on

En.

Then for the second step in proving (C-37), since I{En} → 1 w.p.1 it follows that φ̃(S̃, U)I{En} →
φ̃(S̃, U) w.p.1 and φ̃(S̃n, U)I{Ecn} → 0 w.p.1. We can therefore use (C-42) and invoke the dominated

convergence theorem to conclude that,

EP̃ [φ̃(S̃n, U)] = EP̃ [φ̃(S̃n, U)I{En}] + EP̃ [φ̃(S̃n, U)I{Ecn}]

= EP̃ [φ̃(S̃, U)I{En}] + EP̃ [φ̃(S̃n, U)I{Ecn}]

→ EP̃ [φ̃(S̃, U)] .

This completes the proof of the first part of the statement of the theorem.

Part 2.

Let Pn = ⊗ni=1P with P ∈ P0 be given and note that by Theorem 4.1 it follows that

Sn = (Sn,1, . . . , Sn,2q) = (W−n,[1], . . . ,W
−
n,[q],W

+
n,[1], . . . ,W

+
n,[q])

d→ (S1, . . . , S2q) ,

where (S1, . . . , S2q) are i.i.d. with cdf H(w|0). The conditions in Assumption C.3.(i)-(ii) immediately follow

as (S1, . . . , S2q)
d
= (Sπ(1), . . . , Sπ(2q)) for any π ∈ G. Assumption C.3.(iii) also follows immediately by

Assumption C.2. Finally, to show Assumption C.3.(iv) we first demonstrate that the test statistic in (12)

admits an alternate representation. By Assumption C.2, let without loss of generality the firstKc components

be continuous and the rest be discrete. Denote by Sdi the discrete subvector of Si and by

Ri,k =

2q∑
j=1

I{Scj,k ≤ Sci,k} ,

the rank of the kth continuous component of Si for 1 ≤ i ≤ 2q and 1 ≤ k ≤ Kc. Finally, the test statistic

can be rewritten in the following alternate representation

T (S) =
1

2q

2q∑
j=1

1

q

q∑
i=1

[
I{Sdi ≤ Sdj }

Kc∏
k=1

1{Ri,k ≤ Rj,k}

]
− 1

q

2q∑
i=q+1

[
I{Sdi ≤ Sdj }

Kc∏
k=1

{Ri,k ≤ Rj,k}

]2

.

The above representation follows from first rewriting

I{Si ≤ Sj} = I{Sdi ≤ Sdj }
Kc∏
k=1

I{Sci,k ≤ Scj,k} ,
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and then noticing that for 1 ≤ k ≤ Kc

I{Sci,k ≤ Scj,k} = I{Ri,k ≤ Rj,k} .

This representation illustrates that for the continuous components the test statistic only depends on their

individual orderings. It then follows immediately that this test statistic satisfies Assumption C.3.(iv). This

completes the proof of the second part of the statement of the theorem.

D Additional details on the simulations

In this appendix we document some computational details on the simulations of Section 5. The Matlab

codes to replicate all our results are available online and include a discussion on the details mentioned here.

Details on q̂rot. The feasible rule of thumb for q is computed (in our simulations and in the companion

Stata package) as follows:

q̂rot =

⌈
max

{
min

{
5
(
f̂n(0)(1− ρ̂2n)σ̂2

n,w

)1/2 n3/4
log n

, qUB

}
, qLB

}⌉
,

where qLB and qUB are a lower and upper bounds, respectively. We set qLB = 10, as less than 10 observations

leads to tests where the randomized and non-randomized versions of the permutation test differ. We then

set qUB = n0.9

logn , as n
logn is the rate that violates the conditions we require for q in the proof of Theorem 4.1.

The estimator f̂n(0) of f(0) is a kernel estimator with a triangular kernel and a bandwidth h computed using

Silverman’s rule of thumb. The estimators ρ̂n and σ̂2
n,w are the (local) sample correlation between Wi and

Zi and (local) sample variance of Wi. That is, we compute these two estimators using the same observations

used in the estimation of f̂n(0), i.e., Zi ∈ [−h, h] and the associated values of Wi.

Details on SZ bandwidth. Shen and Zhang (2016) propose the rule of thumb bandwidth in (23),

where hIKn is a two step bandwidth estimate based on Imbens and Kalyanaraman (2012, IK). In the first

step, a pilot bandwidth is selected using IK for estimating the average treatment effect at the cutoff. Then,

in the second step, IK is used again with the dependent variables as I{Wi ≤ w̃}, where w̃ corresponds to

the minimum amongst the values that attain the maximum estimated distributional treatment effect. In

our simulations, however, this results in no variation in the dependent variable in some models, which leads

to the termination of the program. In such cases when there is no variation, for example Model 6, we first

take w̃ to be the estimated median value of Wi using the whole sample of data. If this additionally fails,

we take hIKn to be the pilot bandwidth. Shen and Zhang (2016) additionally propose an alternative rule of

thumb based on the bandwidth proposed by Calonico et al. (2014), and find similar results. We hence do

not include results of this alternative choice in our comparisons.

We finally note that in the cases were W is discrete (either in our simulations or in the empirical

application) we implemented test SZ as described in Section 5. Shen and Zhang (2016) mention an alternative

implementation of their test based on the Wald test statistic and a bootstrap critical value, but do not provide

further details on the implementation of such a variation. For this reason, we use the same test regardless

of whether W is continuous or discrete.
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Authors (Year) Journal Density Test Mean Test

Schmieder et al. (2016) AER X X

Feldman et al. (2016) AER X X

Jayaraman et al. (2016) AER × ×
Dell (2015) AER X X

Hansen (2015) AER X X

Anderson (2014) AER × ×
Martin et al. (2014) AER × ×
Dahl et al. (2014) AER X X

Shigeoka (2014) AER × X

Crost et al. (2014) AER × X

Kostol and Mogstad. (2014) AER X X

Clark and Royer (2013) AER × X

Brollo et al. (2013) AER X X

Bharadwaj et al. (2013) AER X X

Pop-Eleches and Urquiola (2013) AER X X

Lacetera et al. (2012) AER X ×
Duflo et al. (2012) AER × ×
Gopinath et al. (2011) AER X X

Auffhammer and Kellogg (2011) AER × ×
Duflo et al. (2011) AER × ×
Ferraz and Finan (2011) AER × ×
McCrary and Royer (2011) AER × X

Beland (2015) AEJ:AppEcon X X

Buser (2015) AEJ:AppEcon X X

Fack and Grenet (2015) AEJ:AppEcon X X

Cohodes and Goodman (2014) AEJ:AppEcon X X

Haggag and Paci (2014) AEJ:AppEcon X X

Dobbie and Fryer (2014) AEJ:AppEcon X X

Sekhri (2014) AEJ:AppEcon X X

Schumann (2014) AEJ:AppEcon X X

Lucas and Mbiti (2014) AEJ:AppEcon X X

Authors (Year) Journal Density Test Mean Test

Miller et al. (2013) AEJ:AppEcon X X

Litschig and Morrison (2013) AEJ:AppEcon X X

Dobbie and Skiba (2013) AEJ:AppEcon X X

Kazianga et al. (2013) AEJ:AppEcon X X

Magruder (2012) AEJ:AppEcon × ×
Dustmann and Schnberg (2012) AEJ:AppEcon × ×
Clots-Figueras (2012) AEJ:AppEcon X X

Manacorda et al. (2011) AEJ:AppEcon X X

Chetty et al. (2014) QJE X X

Michalopoulos and Papaioannou (2014) QJE × X

Fredriksson et al. (2013) QJE X X

Schmieder et al. (2012) QJE X X

Lee and Mas (2012) QJE × ×
Saez et al. (2012) QJE × ×
Barreca et al. (2011) QJE × ×
Almond et al. (2011) QJE × ×
Malamud and Pop-Eleches (2011) QJE X X

Fulford (2015) ReStat × X

Snider and Williams (2015) ReStat × ×
Doleac and Sanders (2015) ReStat × ×
Coşar et al. (2015) ReStat × ×
Avery and Brevoort (2015) ReStat × ×
Carpenter and Dobkin (2015) ReStat × X

Black et al. (2014) ReStat X X

Anderson et al. (2014) ReStat × ×
Alix-Garcia et al. (2013) ReStat × X

Albouy (2013) ReStat × ×
Garibaldi et al. (2012) ReStat X X

Manacorda (2012) ReStat X X

Martorell and McFarlin (2011) ReStat X X

Grosjean and Senik (2011) ReStat × ×

Table 5: Papers using manipulation/placebo tests from 2011− 2015.

E Surveyed papers on RDD

Table 5 displays the list of papers we surveyed in leading journals that use regression discontinuity designs.

We specifically note whether these papers test for any of the two implications we mention in the introduction,

namely, validating the continuity of the density of the running variable and validating the continuity of the

means of the baseline covariates.

We briefly describe the criteria used to prepare our list. The journals selected were the American Eco-

nomic Review (AER), the American Economic Journal: Applied Economics (AEJ:AppEcon), the Quarterly

Journal of Economics (QJE), and the Review of Economics and Statistics (ReStat), and the years used were

from the beginning of 2011 to the end of 2015. All papers in each volumes were surveyed with the exception

of the May volume for AER. We first categorized papers using regression discontinuity methods by searching

the main text for the keywords ‘regression discontinuity’. We then individually inspected the papers along

with their appendices for whether they validated their design, and, if so, by either checking the continuity

of the density of the running variable or the continuity of the means of the baseline covariates, or both. We

allowed for both formal test results as well as informal graphical evidence.

We find that out of the 62 papers that use regression discontinuity methods, 34 validate by checking the

continuity of the density, 41 validate by checking continuity of the baseline covariates, 33 validate using both

tests, and 20 do not include any form of manipulation or placebo test.
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