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S.1 Proofs

PROOF OF LEMMA 1 (EXISTENCE)

The estimator is defined by the constraint minimization problem in (2.3). For convenience

we express the constraint in quadratic form, (a′ιn)2 = 0. By introducing the Lagrange

multiplier λ > 0 we can write

α̂ = arg min
a∈Rn

(y −Ba)′(y −Ba) + λ (a′ιn)
2
.

Solving the corresponding first-order condition we obtain

α̂ = (B′B + λ ιnι
′
n)
−1
B′y.

Here, the matrix B′B + λ ιnι
′
n is invertible, because L = B′B only has a single zero

eigenvalue (because we assume the graph to be connected) with eigenvector ιn, so that

adding λ ιnι
′
n gives a non-degenerate matrix. The matrices B′B and ιnι

′
n commute, and

by properties of the Moore-Penrose inverse we thus have

(B′B + λ ιnι
′
n)
−1

= (B′B)
†

+ λ−1 (ιnι
′
n)
†
.

We furthermore have (ιnι
′
n)† = n−2ιnι

′
n and, because Bιn = 0, the contribution from

(ιnι
′
n)† drops out of the above formula for α̂, and we obtain α̂ = (B′B)†B′y. This

concludes the proof. �

PROOF OF THEOREM 1 (SAMPLING DISTRIBUTION)

As y = Bα+ u, Lemma 1 gives

α̂ = α+ (B′B)
†
B′u.

Conditional on B, u ∼ N (0, σ2 In), and so

α̂ ∼ N
(
α, σ2 (B′B)†

)
,

where the variance expression follows from properties of the Moore-Penrose pseudoinverse.

This concludes the proof. �

2



PROOF OF COROLLARY 1 (INFERENCE)

The result follows from Theorem 1 by standard arguments on the F -statistic in linear

regression models. Here, the degrees-of-freedom correction from m − n to m − (n − 1)

arises, because the projection matrix

Im −B (B′B)
†
B′

has rank m−(n−1). Notice that althoughB has n columns, we have that rankB = (n−1).

This concludes the proof. �

PROOF OF THEOREMS 2 AND 5 (ZERO-ORDER BOUNDS)

There are no isolated vertices, because G is connected and n > 2. That is, di > 0 for all i,

and so D is invertible. From Theorem 1 and the definition of the normalized Laplacian S

we find

var(α̂) = σ2D−
1
2S†D−

1
2 .

In the following we write M1 ≤M2 for symmetric matrices M1 and M2 to indicate that

M2−M1 is positive semi-definite. We have S† ≤ λ−12 In, because λ2 is the smallest non-zero

eigenvalue of S. Therefore,

var(α̂) ≤ σ2

λ2
D−1.

This result implies that, for any vector v ∈ Rn,

var(v′α̂) = v′var(α̂)v ≤ σ2

λ2
v′D−1v =

σ2

λ2
v′ diag(d−11 , d−12 , . . . , d−1n )v.

The bound in Theorem 2 follows on setting v = ei, the ith unit vector. The corresponding

bound for the differences in Theorem 5 follows on setting v = ei − ej for i 6= j. This

concludes the proof. �

PROOF OF THEOREMS 3 AND 6 (FIRST-ORDER BOUNDS)

We first show that, if G is connected, then

0 ≤
[
var(α̂)− σ2

(
D−1 +D−1AD−1 − ιnι

′
nD

−1

n
− D

−1ιnι
′
n

n

)]
≤ σ2

λ2
D−1AD−1AD−1.

(S.1)
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Theorems 3 and 6 will then follow readily. First note that, because G is connected, we

know that the zero eigenvalue of the Laplacian matrix L has multiplicity one, and the

corresponding eigenvector is given by ι. The Moore-Penrose pseudoinverse of L therefore

satisfies L†L = In − n−1 ιnι
′
n, where the right hand side is the idempotent matrix that

projects orthogonally to ιn. Using that L = D −A and solving this equation for L† gives

L† = D−1 +L†AD−1 − n−1 ιnι′nD−1. (S.2)

The Laplacian is symmetric, and so transposition gives

L† = D−1 +D−1AL† − n−1D−1ιnι′n. (S.3)

Replacing L† on the right-hand side of (S.2) by the expression for L† given by (S.3) yields

L† = D−1 +D−1AD−1 +D−1AL†AD−1 − n−1ιnι′nD−1 − n−1D−1ιnι′n,

where we have also used the fact that D−1Aιn = ιn. Re-arranging this equation allows us

to write

L† −
(
D−1 +D−1AD−1 − n−1ιnι′nD−1 − n−1D−1ιnι′n

)
= D−1AL†AD−1.

Because L ≥ 0 and by the arguments in the preceding proof we also have the bounds

0 ≤ L† ≤ λ−12 D
−1.

Put together this yields

0 ≤ L† −
(
D−1 +D−1AD−1 − n−1ιnι′nD−1 − n−1D−1ιnι′n

)
≤ λ−12 D

−1AD−1AD−1,

and multiplication with σ2 gives the bounds stated in (S.1).

To show Theorems 3 and 6 we calculate, for i 6= j,

e′iD
−1 ei = d−1i ,

e′iD
−1 ej = 0,

e′iD
−1AD−1 ei = 0,

e′iD
−1AD−1 ej = d−1i d−1j (A)ij,

e′iD
−1AD−1AD−1 ei = d−1i h−1i ,

e′iD
−1AD−1AD−1 ej = d−1i d−1j dijh

−1
ij ,

e′i ιnι
′
nD

−1 ei = ι′nD
−1 ei = d−1i ,

e′i ιnι
′
nD

−1 ej = ι′nD
−1 ej = d−1j .

Combining these results with (S.1) gives the bounds on var(α̂i) = e′ivar(α̂)ei and var(α̂i−

α̂j) = (ei − ej)′var(α̂)(ei − ej) stated in the theorems and concludes the proof. �
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PROOF OF THEOREM 4 (GENERALIZED APPROXIMATION)

From the proof of Lemma 1, the least-squares estimator satisfies the first-order condition

Lα̂ = B′y.

Using that y = Bα+ u and that L = D −A this yields D1/2 (α̂−α) = D−1/2B′u+ ε,

where

ε := D−1/2A (α̂−α) .

Note that this is the vector version of the expression for
√
di(α̂i − αi) as given in the

theorem. From α̂ − α = (B′B)†B′u it follows that E(ε) = 0 while from the assumption

that E(uu′) ≤ σ2In we have that

E(εε′) = D−1/2A(B′B)†B′ E (uu′)B(B′B)†AD−1/2 = σ2D−1/2AL†AD−1/2.

As in the preceding proofs, we still have that L† ≤ λ−12 D
−1, and so

E(εε′) ≤ σ2λ−12 D
−1/2AD−1AD−1/2.

From this we find

E(ε2i ) ≤
σ2

λ2 hi
.

Thus, if σ2λ−12 h−1i → 0 as n → ∞, then by Markov’s inequality we have εi →p 0. By the

continuous mapping theorem we therefore have√
di (α̂i − αi)→p

1√
di

∑
j∈[i]

uij.

Moreover, if 1√
di

∑
j∈[i] uij is asymptotically normal, then so is

√
di (α̂i − αi). This concludes

the proof. �

PROOF OF LEMMA 2 (VARIANCE OF COMPONENT ESTIMATORS)

Additional notation. Without loss of generality we relabel the elements of V such that

V1 = {1, . . . , n1}, V2 = {n1 + 1, . . . , n2}, . . . Vq = {n− nq + 1, . . . , n}.
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We decompose β = (β′1,β
′
2, . . . ,β

′
q)
′ and β̂ = (β̂′1, β̂

′
2, . . . , β̂

′
q)
′, where each βr and β̂r are

nr column vectors. Note that the Laplacian matrix LW is block-diagonal; moreover,

LW = diag (L1,L2, . . . ,Lq) ,

where Lr is the Laplacian of the graph Gr. We also decompose A = AW +AB, where AW

andAB are the adjacency matrix of GW and GB, respectively, and writeDW = diag (AW ιn)

and DB = diag (ABιn) for the corresponding degree matrices. We have LW = DW −AW

and LB = DB −AB. We also relabel the elements of E such that

EB = {1, . . . ,mB}, EW = {mB + 1, . . . ,m},

and correspondingly we decompose B = (B′B,B
′
W )′, where BB and BW are mB × n and

mW ×n matrices, respectively, whose rows correspond to edges in GB and GW , respectively.

We then have L = B′B = B′WBW +B′BBB = LW +LB.

Inverse expressions. Notice that, under the conventions from above, P is simply given

by

P =


ι′n1

0 . . . 0

0 ι′n2
. . . 0

...
...

. . .
...

0 0 . . . ι′nq

 .

We define the block-diagonal n× n matrix

M = In − P ′H−1P =


In1 − n−11 ιn1ι

′
n1

0 . . . 0

0 In2 − n−12 ιn2ι
′
n2

. . . 0
...

...
. . .

...

0 0 . . . Inq − n−1q ιnqι
′
nq

 .
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Some useful relations are H = PP ′, M 2 = M , PM = 0, P ′ιq = ιn, Pιn = Hιq, and

thus also H−1Pιn = ιq. The various pseudo-inverses that appear in the following satisfy

L†WLW = M ,(
H−1/2L∗H

−1/2)† (H−1/2L∗H−1/2) = Iq − n−1H1/2ιqι
′
qH

1/2,(
P ′H−1L∗H

−1P
)† (
P ′H−1L∗H

−1P
)

= P ′H−1P − n−1 ιnι′n,(
LW + P ′H−1L∗H

−1P
)† (
LW + P ′H−1L∗H

−1P
)

= In − n−1 ιnι′n, (S.4)

where on the right-hand side always appears the projector orthogonal to the null-space of

the respective matrix, e.g. we have LWM = LW . Using that
(
H−1/2P

)†
= P ′H−1/2 and

the definition of Linv
∗ we find that(

P ′H−1L∗H
−1P

)†
= P ′H−1/2

(
H−1/2L∗H

−1/2)†H−1/2P = P ′Linv
∗ P .

Proof of Lemma 2. We derive the result for β̂ first. By applying Theorem 1 to each Gr
separately we obtain

β̂r ∼ N (βr, σ
2L†r),

for r = 1, . . . , q. Note that we do not rule out nr = 1 (i.e., Gr may be a graph with one

vertex and no edges), but in this case we simply have β̂r = βr = Lr = L†r = 0, so the

result for β̂r holds trivially. Independence of the errors uij across observations implies

independence of β̂r and β̂s for all r 6= s. We thus find β̂ ∼ N (β, σ2L†W ), which is the

result in the theorem.

Now turn to γ̂. Analogous to the proof of Lemma 1 we can write the minimization

problem for γ̂ as

γ̂ = arg min
g∈Rq

(y −BWβ −BBP
′g)′(y −BWβ −BBP

′g) + λ (g′Pιn)
2
,

where λ > 0 is a Lagrange multiplier. Solving the corresponding first-order condition gives

γ̂ = (PB′BBBP
′ + λPιnι

′
nP
′)
−1
PB′B(y −BWβ)

= (PB′BBBP
′ + λPιnι

′
nP
′)
−1

[(PB′BBBP
′ + λPιnι

′
nP
′)γ + PB′Bu] ,

= γ + (PB′BBBP
′ + λPιnι

′
nP
′)
−1
PB′Bu,

7



where in the second step we used the model y = BWβ + BBP
′γ + u, and we added a

term proportional to λ in the square brackets, which is zero due to the normalization of γ,

which can be written as ι′nP
′γ = 0. Notice that PB′BBBP

′ = PLBP
′ = L∗. However,

compared to the proof of Lemma 1 the difficulty is that, here, the matrices L∗ and Pιnι
′
nP
′

do not commute. To resolve this problem we rewrite the last result as

γ̂ − γ = H−1/2
(
H−1/2L∗H

−1/2 + λH−1/2Pιnι
′
nP
′H−1/2

)−1
H−1/2PB′Bu.

Now, the matrices H−1/2L∗H
−1/2 and H−1/2Pιnι

′
nP
′H−1/2 commute, because the zero

eigenvalue of H−1/2L∗H
−1/2 has multiplicity one (as we assume GB to be connected) with

eigenvector given by H−1/2Pιn, namely we have L∗H
−1Pιn = L∗ιq = 0. Here, we used

H−1Pιn = ιq, which follows from the definition of H and P . We therefore have(
H−1/2L∗H

−1/2 + λH−1/2Pιnι
′
nP
′H−1/2

)−1
=
(
H−1/2L∗H

−1/2)† +
1

λ

(
H−1/2Pιnι

′
nP
′H−1/2

)†
= H1/2Linv

∗ H
1/2 +

1

λn2
H1/2ιqι

′
qH

1/2,

and the last term does not contribute to γ̂ − γ because we have ι′qPB
′
B = ι′nB

′
B = 0. We

therefore have, independent from the choice of λ, that

γ̂ − γ = Linv
∗ PB

′
Bu.

Using E(uu′) = σ2Im we thus find

var(γ̂) = σ2Linv
∗ PB

′
BBBP

′Linv
∗ = σ2Linv

∗ L∗L
inv
∗ = σ2Linv

∗ .

Because γ̂ − γ is a linear combination of the jointly normal errors it is also normally

distributed, so we have γ̂ ∼ N (γ, σ2Linv
∗ ). This concludes the proof. �

PROOF OF THEOREM 7 (GRAPH PARTITIONING)

Throughout the proof we maintain the same notational conventions as for the proof of

Lemma 2. Recall that the variance of α̂ is σ2L†. The variance of the infeasible estimator

based on (5.4) equals σ2(L†W + P ′Linv
∗ P ). We show below that

−Zlow − (Q+Q′) ≤ L† −
(
L†W + P ′Linv

∗ P
)
≤ Zup − (Q+Q′) , (S.5)
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for matrices

Zlow := L†WLBL
†
W , Zup := P ′Linv

∗ PLBL
†
WLBP

′Linv
∗ P ,

and Q := L†WLBP
′Linv
∗ P . We also establish that

Zlow ≤ κL†W , Zup ≤ κP ′Linv
∗ PLBP

′Linv
∗ P = κP ′Linv

∗ P , (S.6)

and that

|v′Qv| ≤ κ1/2
(
v′L†Wv

)1/2 (
v′P ′Linv

∗ Pv
)1/2

, (S.7)

for any v ∈ Rn. Combining these results yields that, for any v ∈ Rn,

− κv′L†Wv − 2κ1/2
[(
v′L†Wv

) (
v′P ′Linv

∗ P v
)]1/2

≤ v′
(
L† −L†W − P

′Linv
∗ P

)
v ≤

κ v′P ′Linv
∗ P v + 2κ1/2

[(
v′L†Wv

) (
v′P ′Linv

∗ P v
)]1/2

.

By Lemma 2 this is the result of Theorem 7. It remains only to show (S.5), (S.6), and

(S.7), which we do, in turn, next. �

Proof of (S.5). Start with the upper bound. Because LB ≥ 0 and LW ≥ 0, it holds that

0 ≤
(
L† − P ′Linv

∗ P
)
LB

(
L† − P ′Linv

∗ P
)

+
(
L† −L†W + P ′Linv

∗ PLBL
†
W

)
LW

(
L† −L†W +L†WLBP

′Linv
∗ P

)
.

Expanding those terms, and using that LW +LB = L, and L†WLW = M , and L†WLWL
†
W =

L†W , we obtain

0 ≤ L†LL† + P ′Linv
∗ PLBP

′Linv
∗ P −L†LBP

′Linv
∗ P − P ′Linv

∗ PLBL
†

−ML† −L†M + P ′Linv
∗ PLBML† +L†MLBP

′Linv
∗ P

+L†W − P
′Linv
∗ PLBL

†
W −L

†
WLBP

′Linv
∗ P + P ′Linv

∗ PLBL
†
WLBP

′Linv
∗ P .
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Using that L†LL† = L†, and P ′Linv
∗ PLBP

′Linv
∗ P = P ′Linv

∗ P , and

−L†LBP
′Linv
∗ P +L†MLBP

′Linv
∗ P = −L† (In −M)LBP

′Linv
∗ P

= −L†P ′H−1PLBP
′Linv
∗ P

= −L†P ′H−1P ,

and also the transpose of the last result, we obtain

0 ≤ L† + P ′Linv
∗ P −

(
M + P ′H−1P

)
L† −L†

(
M + P ′H−1P

)
+L†W − P

′Linv
∗ PLBL

†
W −L

†
WLBP

′Linv
∗ P + P ′Linv

∗ PLBL
†
WLBP

′Linv
∗ P .

Because M + P ′H−1P = In we thus find

L† ≤ L†W + P ′Linv
∗ P − P ′Linv

∗ PLBL
†
W −L

†
WLBP

′Linv
∗ P + P ′Linv

∗ PLBL
†
WLBP

′Linv
∗ P ,

which is the upper bound given in the lemma.

Now turn to the lower bound. Introduce

∆ := MLBM + P ′H−1PLBM +MLBP
′H−1P .

We then have

L = LW +LB = LW + P ′H−1L∗H
−1P +∆.

Plugging this in the equality LL† = In − n−1ιnι′n we obtain(
LW + P ′H−1L∗H

−1P +∆
)
L† = In − n−1 ιnι′n.

Bringing ∆L† to the right-hand side, multiplying with (LW + P ′H−1L∗H
−1P )

†
from the

left, and using the last equality in (S.4), we obtain(
In − n−1 ιnι′n

)
L† =

(
LW + P ′H−1L∗H

−1P
)† (
In −∆L† − n−1 ιnι′n

)
. (S.8)

The matrices LW and P ′H−1L∗H
−1P commute, and we therefore have(

LW + P ′H−1L∗H
−1P

)†
= L†W +

(
P ′H−1L∗H

−1P
)†

= L†W + P ′Linv
∗ P .
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Using this as well as L†ιn = 0 and (LW + P ′H−1L∗H
−1P )

†
ιn = 0 we find that the

equation in (S.8) becomes

L† = L†W + P ′Linv
∗ P −

(
L†W + P ′Linv

∗ P
)
∆L†. (S.9)

Taking the transpose of this last equation gives

L† = L†W + P ′Linv
∗ P −L†∆

(
L†W + P ′Linv

∗ P
)
.

Replacing L† on the right-hand side of the last equation by the expression for L† in (S.9)

we get

L† = L†W + P ′Linv
∗ P −

(
L†W + P ′Linv

∗ P
) (
∆−∆L†∆

) (
L†W + P ′Linv

∗ P
)
.

Using the definition of ∆ we obtain

∆
(
L†W + P ′Linv

∗ P
)

= MLB

(
L†W + P ′Linv

∗ P
)

+ P ′H−1PLBL
†
W ,

and the last result on L† can therefore be rewritten as

L† −
(
L†W + P ′Linv

∗ P −L
†
WLBL

†
W −L

†
WLBP

′Linv
∗ P − P ′Linv

∗ PLBL
†
W

)
=
(
L†W + P ′Linv

∗ P
)
∆L†∆

(
L†W + P ′Linv

∗ P
)
.

Because L† ≥ 0 the last expression is positive semi-definite, which gives the lower bound

on L† in the lemma. This concludes the proof. �

Proof of (S.6). Let

Λ := diag(λr2 : i ∈ V , with r such that i ∈ Vr),

where we set λr2 = 0 if nr = 1. Then L†W ≤ (ΛDW )†.1 Also define the symmetrically

normalized Laplacian of GB2

SB :=
(
D†B

)1/2
LB

(
D†B

)1/2
.

1The diagonal matrix ΛDW has non-negative elements but may be non-invertible as, for nr = 1, we

have λr2 d
W
i = 0, with i ∈ Vr. We therefore write (ΛDW )

†
instead of just (ΛDW )

−1
.

2Again we write D†B because we may have dBi = 0 for some i ∈ V .
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From Chung (1997, Lemma 1.7) we know λn(SB) ≤ 2, which can also be written as

SB ≤ 2In. We have LB = D
1/2
B SBD

1/2
B , and thus find LB ≤ 2DB.

The diagonal matrix D
1/2
B (ΛDW )†D

1/2
B has ith diagonal element equal to dBi /(λ

r
2 d

W
i )

for nr > 1, i ∈ Vr, and equal to zero otherwise. From the definition of κ in the main text

we thus find

D
1/2
B (ΛDW )†D

1/2
B ≤ κ

2
In,

and therefore

D
1/2
B L†WD

1/2
B ≤D1/2

B (ΛDW )†D
1/2
B ≤ κ

2
In. (S.10)

The matrix D
1/2
B L†WD

1/2
B is similar to

(
L†W

)1/2
DB

(
L†W

)1/2
, and so they share the same

eigenvalues.3 We therefore have that(
L†W

)1/2
DB

(
L†W

)1/2
≤ κ

2
In (S.11)

holds.

Using the inequalities SB ≤ 2In and LB ≤ 2DB along with (S.10) and (S.11) we obtain

L†WLBL
†
W ≤ 2L†WDBL

†
W

= 2
(
L†W

)1/2 (
L†W

)1/2
DB

(
L†W

)1/2 (
L†W

)1/2
≤ κ

(
L†W

)1/2 (
L†W

)1/2
≤ κL†W ,

(S.12)

and

LBL
†
WLB = D

1/2
B S

1/2
B S

1/2
B D

1/2
B L†WD

1/2
B S

1/2
B S

1/2
B D

1/2
B

≤ κ

2
D

1/2
B S

1/2
B SBS

1/2
B D

1/2
B

≤ κD
1/2
B S

1/2
B S

1/2
B D

1/2
B

= κLB.

(S.13)

These yield the inequalities stated in (S.6). This concludes the proof. �

3Two square matrices M1 and M2 are similar if there exists an invertible matrix M3 such that M1 =

M−1
3 M2M3. Two similar matrices have the same eigenvalues.
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Proof of (S.7). Recall that

Q = L†WLBP
′Linv
∗ P .

Applying the Cauchy-Schwarz inequality (x′y)2 ≤ (x′x)(y′y) with x = L
1/2
B L†Wv and

y = L
1/2
B P ′Linv

∗ Pv, and using (S.6) we find

|v′Qv|2 ≤ κ
(
v′L†Wv

) (
v′(P ′Linv

∗ P )v
)
,

which gives (S.7). This concludes the proof. �

PROOF OF THEOREM A.1 (SECOND-ORDER BOUND)

Proof of Theorem A.1. We start with the lower bound given in the theorem. Let

Vo := {i} ∪ [i]; then no := |Vo| = 1 + di. Without loss of generality we fix i = 1 and relabel

the elements of V so that Vo = {1, 2, . . . , 1 + di}. Let

Lo :=

 di −ι′di
−ι′di L[i]

 , L[i] := D[i] −A[i],

using obvious notation for the di×di degree and adjacency matrices in the latter definition.

Now, by the inversion formula for partitioned matrices,

L−1◦ =
1

di − ι′diL
−1
[i] ιdi

 1 ι′diL
−1
[i]

L−1[i] ιdi

[
L[i]−d−1

i ιdiι
′
di

di−ι′diL
−1
[i]
ιdi

]−1
 .

Below we show that

0 ≤

var(α̂i)−
σ2
[
1− 2

n

(
1 + ι′diL

−1
[i] ιdi

)]
di − ι′diL

−1
[i] ιdi

 ≤ σ2 ι′diL
−1
[i] (A◦#)D−1# (A◦#)′L−1[i] ιdi

λ2

(
di − ι′diL

−1
[i] ιdi

)2 ,

(S.14)

where L◦ is the upper left n◦ × n◦ block of L, A◦# is the upper right n◦ × n# block of A,

and D# is the lower right n# × n# block of D. To make further progress, note that the

expansion

L−1[i] =
∞∑
q=0

(
D−1[i] A[i]

)q
D−1[i]

13



is convergent, because we have ‖D−1[i] A[i]‖∞ < 1, where ‖.‖∞ denotes the maximum absolute

row sum matrix norm. We therefore have

ι′diL
−1
[i] ιdi = ι′diD

−1
[i] ιdi + ι′di

∞∑
q=1

(
D−1[i] A[i]

)q
D−1[i] ιdi

≥ ι′diD
−1
[i] ιdi =

∑
j∈[i]

d−1j , (S.15)

where we used that ι′di
∑∞

q=1

(
D−1[i] A[i]

)q
D−1[i] ιdi ≥ 0, because this is a product and sum of

vector and matrices that all have non-negative entries. Define the n◦× n◦ diagonal matrix

D[i] = diag(dj,i : j ∈ [i]). We have

L[i] −D[i] = diag(A[i]ιdi)−A[i] ≥ 0, (S.16)

because diag(A[i]ιdi)−A[i] can be expressed as a sum of matrices of the form 1 −1

−1 1

 ≥ 0,

embedded into an n◦ × n◦ matrix. We therefore have L−1[i] ≤D
−1
[i] , implying

ι′diL
−1
[i] ιdi ≤ ι

′
di
D−1[i] ιdi =

∑
j∈[i]

d−1j,i . (S.17)

Combining (S.14), (S.15) and (S.17) gives

var(α̂i) ≥
σ2
[
1− 2

n

(
1 +

∑
j∈[i] d

−1
j,i

)]
∑

j∈[i]
(
1− d−1j

) =
σ2

di(1− h−1i )

(
1− 2

n
− 2

n

di
hi

)
,

which is the lower bound stated in the theorem.

To show the upper bound, consider the the graph G̃ := (V, Ẽ), with Ẽ := E \ [i] × [i].

That is, we construct G̃ by deleting all edges between neighbors of i from G. Note that G̃ is

still connected, because all vertices in [i] are connected through i. Let α̃ be the estimator

for α obtained for G̃, in the same way that α̂ was obtained for G. Let L̃ be the Laplacian

matrix of G̃. Analogous to (S.16) we have L̃ ≤ L, and therefore L̃† ≥ L†. The result

(S.14) holds for any connected graph, and so can equally be applied to G̃, we only need to

14



replace var(α̂i) by var(α̃i) and L by L̃. The matrices A◦# and D−1# are identical for G̃ and

G. However, for G̃ we find D̃[i] = D[i], because the degree of vertex j is given by dj,i, and

we have Ã[i] = 0, because there are no edges that connect elements in [i]. We thus have

L̃[i] = D̃[i] − Ã[i] = D[i]. Therefore,

var(α̂i) ≤ var(α̃i) ≤
σ2
[
1− 2

n

(
1 + ι′diD

−1
[i] ιdi

)]
di − ι′diD

−1
[i] ιdi

+
σ2 ι′diD

−1
[i] (A◦#)D−1# (A◦#)′D−1[i] ιdi

λ2

(
di − ι′diD

−1
[i] ιdi

)2 ,

and evaluating the right-hand side of the last inequality gives the upper bound on var(α̂i)

in the theorem. This concludes the proof. �

Proof of (S.14). We prove the following more general result. Let G be connected. Choose

V◦ ⊂ V with 0 < |V◦| < n, and let V# = V \ V◦. Let n◦ = |V◦| and n# = n − n◦. Relabel

the elements in V such that V◦ = {1, 2, . . . , n◦}. Let α̂◦ = (α̂1, . . . , α̂n◦)
′, L◦ be the upper

left n◦ × n◦ block of L, A◦# be the upper right n◦ × n# block of A, and D# be the lower

right n# × n# block of D. Then,

0 ≤
[
var(α̂◦)− σ2

(
L−1◦ −

ιn◦ι
′
n◦L

−1
◦ +L−1◦ ιn◦ι

′
n◦

n

)]
≤ σ2

λ2
L−1◦ (A◦#)D−1# (A◦#)′L−1◦

holds.

To show the result, define the n× n matrices

Lb :=

 L◦ 0

0 L#

 , Ab :=

 0 A◦#

(A◦#)′ 0

 ,

with obvious definition of L# such that L = Lb−Ab. Because the graph is connected the

pseudo-inverse L† satisfies L†L = In−n−1ιnι′n. Plugging L = Lb−Ab into this expression

we obtain

L† = L−1b

(
In +AbL

† − n−1 ιnι′n
)
.

Using the transposed of this last equation to replace L† = (L†)′ on the right-hand side of

that same equation we obtain

L† = L−1b +L−1b AbL
−1
b +L−1b AbL

†AbL
−1
b − n

−1L−1b ιnι
′
n − n−1L−1b Abιnι

′
nL
−1
b

= L−1b +L−1b AbL
−1
b +L−1b AbL

†AbL
−1
b − n

−1L−1b ιnι
′
n − n−1 ιnι′nL−1b ,

15



where in the last step we have used that L−1b Abιn = ιn, which follows from 0 = Lιn =

(Lb −Ab)ιn. Evaluating the last result for the upper left n◦ × n◦ block gives

(L†)◦ = L−1◦ +L−1◦ (A◦#)(L†)#(A◦#)′L−1◦ − n−1L−1◦ ιn◦ι′n◦ − n
−1 ιn◦ι

′
n◦L

−1
◦ ,

with obvious definition of (L†)#. We obtain the result searched for for var(α̂◦) = σ2(L†)◦

by also using 0 ≤ (L†)# ≤ λ−12 D
−1
# . This concludes the proof. �

S.2 Component estimators from graph partitioning

Here we strenghten the result of Theorem 7 by showing that the estimator α̂ is close to

the (infeasible) estimator β̂+P ′γ̂ when κ is small. We also provide a corresponding result

for the feasible version β̂ + P ′γ̃, where

γ̃ := arg min
g∈Rq

∑
(i,j)∈EB

(
yij − (β̂i + gr(i)) + (β̂j + gr(j))

)2
s.t.

q∑
r=1

nr gr = 0.

Our focus in the main text is on the infeasible estimator. This is so because we use it as

a devise to analyze the variance of α̂, and γ̂ is independent of β̂ while its feasible version

is clearly not. If an alternative estimator to α̂ is desired, β̂ + P ′γ̃ will obviously be of

interest. Note, however, that var(α̂i) ≤ var(β̂+P ′γ̃) by the Gauss-Markov theorem (this,

in fact, yields the upper bound given in (S.5)).

The following theorem is the main result of this section.

Theorem S.1. Let G and G1, . . . ,Gq be connected. For i ∈ V define ri, Ri ∈ R by

α̂i = β̂i + γ̃r(i) + ri, α̂i = β̂i + γ̂r(i) + ri +Ri.

We then have

E(r2i ) ≤ κ
[
var(β̂i) + var(γ̂r(i))

]
, E(R2

i ) ≤ κ var(γ̂r(i)).

The theorem shows that, if κ is small, then the differences between α̂i and β̂i + γ̃r(i), and

between α̂i and β̂i+γ̂r(i), are both small compared to the stochastic variability of β̂i and γ̂r(i)
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themselves. Thus, the result of Theorem 7 generalizes from the variances to the estimators

themselves.

The result (and its proof) also immediately extends to a setting as in Theorem 4,

where the errors uij can be non-normal, heteroscedastic, or correlated. One only needs to

replace var(β̂i) by σ2(L†W )ii and var(γ̂r(i)) by σ2(Linv)rr, where σ2 is a bound on the largest

eigenvalue of E (uu′).

Proof of Theorem S.1. In vector notation the estimator decompositions reads

α̂ = β̂ + P ′γ̃ + r, α̂ = β̂ + P ′γ̂ + r +R.

Analogous to the proof of Lemma 1 and Lemma 2 above we can use the first-order conditions

of their respective minimization problem to obtain explicit formulas for β̂, γ̃ and γ̂. We

thus find

r = C1Y , C1 =
(
L†B′ −L†WB

′
W − P ′Linv

∗ PB
′
B + P ′Linv

∗ PLBL
†
WB

′
W

)
,

and

r +R = C2Y + P ′Linv
∗ PLBβ, C2 =

(
L†B′ −L†WB

′
W − P ′Linv

∗ PB
′
B

)
.

It is easy to verify that C1B = 0 and C2Bα+ P ′Linv
∗ PLBβ = 0, and therefore

r = C1U , r +R = C2U .

Using this we find

σ−2E (rr′) = C1C
′
1

= −L† +L†W + P ′Linv
∗ P + P ′Linv

∗ PLBL
†
WLBP

′Linv
∗ P

− P ′Linv
∗ PLBL

†
W −L

†
WLBP

′Linv
∗ P

≤ L†WLBL
†
W + P ′Linv

∗ PLBL
†
WLBP

′Linv
∗ P

≤ κ
(
L†W + P ′Linv

∗ P
)

= κ
[
var
(
β̂
)

+ var (P ′γ̂)
]
,
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where in the second to last inequality we used the lower bound for L† in (S.5) above, and

in the last inequality we used results from the proof of Theorem 7. We have thus shown

the result for E(r2i ) in the theorem. Similarly we find

σ−2E (RR′) = (C1 −C2)(C1 −C2)
′

= P ′Linv
∗ PLBL

†
WLBP

′Linv
∗ P

≤ κP ′Linv
∗ P ≤ κ var

(
P ′γ̂ inf

)
,

which implies the result for E(R2
i ) in the theorem. This concludes the proof. �
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