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Abstract

This paper studies inference on fixed effects in a linear regression model estimated
from network data. We derive bounds on the variance of the fixed-effect estimator
that uncover the importance of the smallest non-zero eigenvalue of the (normalized)
Laplacian of the network and of the degree structure of the network. The eigenvalue
is a measure of connectivity, with smaller values indicating less-connected networks.
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allow to evaluate the accuracy of first-order approximations to the variance of the
fixed-effect estimator.
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1 Introduction

A substantial literature approaches dyadic interactions between agents by means of models
featuring agent-specific parameters. The Bradley-Terry model for paired comparisons of
Zermelo (1929) and Bradley and Terry (1952) and the S-model for network formation with
degree heterogeneity (Yan and Xu, 2013; Graham, 2015) are two classic examples. The use
of fixed-effect models for network data is now widespread in empirical work. Applications
include studies of risk sharing (Fafchamps and Gubert, 2007), sorting between workers
and firms in the labor market (Abowd, Kramarz and Margolis, 1999), and the interaction
between students and teachers (Aaronson, Barrow and Sander, 2007; Rivkin, Hanushek
and Kain, 2005), as well as the analysis of trade flows (Harrigan, 1996; Anderson and van
Wincoop, 2003).

The structure of the network, that is, who interacts with whom and to which extent,
differs strongly across applications. While rather dense networks might be observed in
the analysis of financial markets (Acemoglu, Ozdaglar and Tahbaz-Salehi, 2015), sparse
networks—i.e., networks with relatively few links—are typically the norm in networks of
friendship or trust (Jackson, Rodriguez-Barraquer and Tan, 2012). The network structure
is also an important determinant of the accuracy of statistical inference. One important
illustration is given by fixed-effect regressions of log wages on matched employer-employee
data (Abowd, Kramarz and Margolis, 1999). There, estimated worker and firm effects are
typically found to be negatively correlated (Goux and Maurin, 1999; Barth and Dale-Olsen,
2003), which is in contrast with economic intuition. The origin of this negative assortative
matching puzzle is limited-mobility bias (Abowd, Kramarz, Lengermann and Perez-Duarte,
2004; Andrews, Gill, Schank and Upward, 2008), that is, the fact that, throughout their
working history, workers are employed in only few firms. Moreover, even though linked
data sets are typically very large, the worker fixed effects are estimated from very small
subsamples.

We are not aware of studies of the statistical accuracy of fixed-effect estimators in the

network literature. A chief reason would appear to be that the structure of a network



becomes complex very fast and so it is rather difficult to see how data carries information
about certain parameters. In this paper we analyze this issue in the context of a linear
version of the Bradley and Terry (1952) model. The linear regression model contains all
the main features of the typical models for network data, yet is sufficiently simple to lend
itself to careful analysis.

We use results from graph theory to show that the variance of the fixed-effect estimator
is related to the Laplacian of the network. A bound on the variance of the fixed-effect
estimator is obtained that depends inversely on the smallest non-zero eigenvalue of the
(normalized) Laplacian. This eigenvalue is a measure of connectivity of the network. The
larger it is, the more dense is the network. One interesting consequence of this bound is
that consistent estimation is possible even if the network becomes less connected as the
sample grows. Eigenvalues of network matrices have previously been found to be important
in determining equilibrium conditions in games on networks (Bramboullé, Kranton and
D’Amours, 2014) but our result seems the first to uncover their importance for statistical
inference.

We next refine the variance bound to uncover how the local structure of the network
around a given vertex influences the variance of the vertex-specific parameter estimator.
Clearly, the variance of such an estimator is decreasing in the degree of the vertex—the
number of edges that originate or arrive in it—that is, the number of neighbors of the vertex.
The improved bounds, however, uncover the sensitivity of the variance with respect to the
degree of the neighbors of the vertex.

A potential issue with a global connectivity measure such as the smallest non-zero
eigenvalue is that it can lead to variance bounds that are overly conservative. A leading
situation where this will be the case is when the network consists of clusters, so that units
within a cluster are strongly connected, but the clusters are connected by relatively few
links with each other. To deal with such cases we consider within-between decompositions
of the network as a way to characterize the variance in terms of the eigenvalues within each
cluster and the number of links across clusters.

In Section 2 we introduce the model and estimator under study. In Section 3 we



derive bounds on the variance of the estimator. In Section 4 we provide corresponding
bounds for parameter differences. In Section 5 we present our results on within-between
decompositions of the network. In Section 6 we discuss weighted graphs. Concluding
remarks end the paper. An Appendix contains additional results. All technical proofs are

available as supplementary material.

2 Model and estimator

Consider a graph G := G(V, E) where m := |E| edges are placed between n := |V| vertices.
We will work with a simple undirected graph without loops. Without loss of generality
we label the vertices by natural numbers, so V' = {1,...,n}. The set E contains the
m < n(n—1)/2 unordered pairs (7, j) from the product set V' x V' that are connected by an
edge, where we assume throughout that m > 0. Vertices ¢ and j are said to be connected
if G contains a path from 7 to 7, and the graph G is said to be connected if every pair of

vertices in the graph is connected.

2.1 A fixed-effect model

Our interest lies in estimating a linear regression model where outcomes are labelled by

elements of E. For each (i,j) € E, we observe the real-valued outcome
yij = _yji = Q; — Oéj + Uij, uij ~ 1.1.d. N(O, 0'2), (21)

where a,...,q, € R are vertex-specific parameters to be estimated and the u;; € R are

2

unobserved disturbances with unknown variance 0. Equation (2.1) is overparametrized,

so we impose that

iai = 0. (2.2)

The choice of normalization on the «; is not unique but (2.1) is conventional (see, e.g.,
Simons and Yao, 1999) and will prove convenient for our purposes.
Equation (2.1) is similar to a regression version of the classic Bradley and Terry (1952)

model for paired comparisons.



Example 1 (Inversion of market shares). Consider an extended version of the classic
Bradley and Terry (1952) model, where the probability that team i wins against team j
equals
pij := Pr(i beats j) = A(a; — ay + w;j),

for A(a) := (1 +e )~ The odds ratio is

A — iyt Ui

L —pij
This equation fits (2.1) with y;; = In(p;;/(1 — p;;)) and is estimable provided the p;; are
observed (or estimable). One situation where this model arises is in repeated interactions
in the Bradley-Terry setting. Suppose that teams ¢ and j meet multiple times and that, at
encounter k,

ibeats j if (o — o) + wij > €iji,

where €, ~ 1id.A. Then p;; can be recovered nonparametrically (Berry, 1994). Note
that, here, o; and «; represent team-specific heterogeneity while u;; captures heterogeneity

that is specific to the match-up. 0

Example 2 (Matched employer-employee data). Partition V' as V4 U V5 and consider a
bipartite graph. That is, suppose that F is a subset of the product set V; x V5. Then edges
are formed between the vertex sets V; and V5 but not within Vi and V5. So, for an edge
(i,7) we necessarily have that i € V; and j € V5. A leading example of a regression model
here are wage regressions as in Abowd, Kramarz and Margolis (1999), where the log wage

of worker 7 in firm j decomposes as
Yij = i + 1j + Ui,
for worker effects p; and firm effects 7;. To obtain (2.1) we set

o; =
Choosing the sign in front of n; is without loss of generality here because the graph under

consideration is bipartite; links are only formed between, but never within, V; and V5. We



extend this example to panel data, where workers and firms are observed over multiple

time periods, later. O

The literature on estimation of fixed-effect models for network data typically assumes
that m = n(n—1)/2, that is, that each vertex is connected to all other vertices by a path of
length one; see Simons and Yao (1999) and Yan and Xu (2013) for results on the Bradley
and Terry (1952) model, Dzemski (2014) and Graham (2015) for work on network-formation
models, and Fernandez-Val and Weidner (2016) for two-way models for panel data. In this
case, distribution theory for the maximum-likelihood estimator of the «; in (2.1) would be
rather standard, with the estimator of each of the a; being unbiased, normally distributed,
and converging at the y/n-rate. In this paper we specifically study the case of an incomplete
graph. Our aim is to see how the structure of G affects the precision of statistical inference.
As of yet, this is an unexplored issue in the literature. Allowing for incomplete graphs is
important, as data, where all vertices interact, is rare. In country-level data on bilateral
trade, for example, only around half of the potential trade flows are realized. Similarly, in
the bipartite graphs of workers and firms in Example 2, each worker is related to at most
a handful of firms. Finally, friendship networks are typically sparse; see, for example, the
data of Jackson, Rodriguez-Barraquer and Tan (2012).

While the model in (2.1) may appear overly restrictive, we note that certain features
are not essential to the following analysis. For example, the presumption of normality and
the assumption of homoskedastic disturbances could easily be dispensed with. They are
introduced here as they allow us to focus on exact finite-sample inference. Also, everything
to follow can be modified to hold for weighted graphs. One example would be a situation
where we observe multiple outcomes for each (i,j) € E. We will come back on each of
these issues in more detail at a later stage. Our choice of (2.1) is motivated by a desire
to concentrate on a setting that contains all essential features of a fixed-effect model for
random graphs while at the same time connecting as much as possible to the literature on

graph theory.



2.2 Estimation and inference

In the following we will work under the convention that ¢ < j for (i,j) € E. This choice
imposes an orientation on the graph G, and the corresponding oriented incidence matrix of

G is the m x n matrix B with entries

1 if the ' edge is given by (i,j) € E for some j € V,
(B)ei := § —1 if the e™ edge is given by (j,i) € E for some j € V,

0 otherwise.

The incidence matrix fully describes G. Note that the oriented incidence matrix is unique
up to negation of any of the columns, since negating the entries of a rows corresponds to
reversing the orientation of an edge. Moreover, the analysis to follow is invariant to our
choice of orientation. Indeed, changing the orientation of the edge (i,7) jointly with the
sign of y;; leaves model (2.1) invariant. Throughout, the network structure is treated as
fixed, that is, B is conditioned on.

Let o := (v, ..., ). Collect all outcomes in the m-vector y and all regression errors
in the m-vector w. Write ¢,, for the n-vector of ones and I,,, for the m x m identity matrix.

Equations (2.1)—(2.2) can then be written as
y=Ba+u, u~ N(0,0°1,),

subject to

a't, =0.

Because of normality of w, the maximum-likelihood estimator of v is equal to the (ordinary)

least-squares estimator, that is,

a:=(ay,...,a,) = ag{r;geg}tizglb o) ly — Ball?, (2.3)

where ||-|| denotes the Euclidean norm.
We first address existence and uniqueness of &. Here and later, we let M denote the

Moore-Penrose pseudoinverse of matrix M.



Lemma 1 (Existence). Let G be connected. Then
a=(B'B)'By
and is unique.'

The need for a pseudoinverse arises because B’B is singular, as Bt,, = 0. The use of the
Moore-Penrose pseudoinverse follows from our normalization choice on e, that is, a’t,, = 0.
The result of the lemma is intuitive. If G is connected, then m > n — 1 must hold, and
the zero eigenvalue of B’ B has multiplicity one and corresponding eigenvector t¢,,; see our
discussion of the Laplacian matrix below. If G is disconnected our analysis for a could be
applied separately to each connected component.

The following theorem is immediate.
Theorem 1 (Sampling distribution). Let G be connected. Then
a~ N (a, o*(B'B)")
for any n.

The main implication of Theorem 1 is the sampling distribution of the conventional

F-statistic for testing linear hypotheses on a.

Corollary 1 (Inference). Let R be an n X r matriz of mazimal column rank that is linearly
independent of t,,. If G is connected, then

m—(n—1) (6d-a)R(R(B'B)'R)"'R (a - a)
r (y — Ba)(y — Ba)

follows an F-distribution with parameters r and m — (n — 1).

The F-statistic can be used to test the null hypothesis that Ra = 0 against the alternative
that Ra # 0. The requirement that R is linearly independent of ¢, is needed because

!Note that (B'B)' B’ equals BT, and so the expression for the estimator could be shortened. Our choice
to highlight the longer formulation in the lemma is motivated by the developments to follow, where the

matrix B’B features prominently.



tha = 0 holds by construction. The degrees of freedom being m — (n — 1) rather than
m — n is for the same reason.

Corollary 1 shows that test statistics and confidence bounds constructed in the usual
way will have correct coverage. This is a direct consequence of Theorem 1. These results,
however, do not aid in understanding when test statistics will have low power or when
confidence bounds will be wide. In the sequel we aim to understand how the structure of
the network affects the standard error of the least-squares estimator. Such an analysis is
also a useful aid when setting up sampling designs. Furthermore, it also yields conditions for
consistent estimation and asymptotically-valid inference under non-normality for sequences

of growing networks.

3 Network structure and variance bounds

Theorem 1 shows that, up to the scalar factor o2, the variance of & is completely determined

by the n x n Laplacian matrix of G,
L:=B'B=D - A,

where D := diag(dy, .. .,d,) = diag (B’'B) is the degree matrix and A is the n xn adjacency

matrix of G, with entries

1 if (4,j) € Eor (j,1) € E,
(A =

0 otherwise.

Note that d;, the degree of 7, equals the number of vertices that vertex ¢ is connected to.

It will be convenient to work with the normalized Laplacian
S:=D LD :=1I,—D AD 3.
We have (L1);; = d; ' (S1), and so

var(@;) = E(@i — ai)?) = Z- (8Hsi. (3.1)



Equation (3.1) highlights the importance of the degree d;, which is the effective number of
observations that are used to infer o;. However, (3.1) does not imply that var(a;) shrinks
as d; — oo, nor would it give a convergence rate if it did, as the normalized Laplacian

matrix of G, too, changes when n grows.

3.1 Zero-order bound

To make progress on bounding the variance, let \; denote the ith eigenvalue of S, arranged
in increasing order; so, Ay < Ay < --- < A,. From Chung (1997, Lemma 1.7) we have
min; A\; = 0 and max; \; < 2. Zero is always an eigenvalue of S because Bt,, = 0, but, if G
is connected, it has multiplicity one. That is, Ay > 0 is the smallest non-zero eigenvalue of
the normalized Laplacian when G is connected. As a simple example, Ay = n/(n—1) when
G is complete, that is, when m = n(n — 1)/2.

The following result bounds the variance of & as a function of \,.

Theorem 2 (Global bound). Let G be connected. Then

Q

1 2
)< L0
var(a;) < Y

>

The theorem follows from (3.1) and the fact that (ST);; < ||ST||2 = Xa, where ||.||o refers
to the spectral norm; see the proof in the supplementary material for further details. We

note that, analogous to Lemma 2, we can also show that
2
- o
var(a;) < =,
A2

where ), is the smallest non-zero eigenvalue of the (unnormalized) Laplacian L. In the
graph literature, the spectrum of L has been the subject of more study than that of S.
However,

5\2 S min dz

n—1 iv

Thus, A may be very small—and the corresponding bound on var(&;) very large—as soon
as a single vertex in V has a small degree, making it an unattractive quantity for our

purposes.

10



To interpret the bound it is useful to connect it to the Cheeger constant,

C = min 2iev Zj¢U(A)ij.
Ue{UcV:0<Y, ey di<m} > icu di

The constant C' € [0, 1] reflects how difficult it is to disconnect G by removing edges.
Moreover, a larger value of C' implies a more strongly-connected graph. From Chung

(1997, Theorems 2.1 and 2.3),
202)\221—\/1—022%02. (3.2)

Hence, Theorem 2 states that inference will be more precise when the graph is more strongly
connected.
Theorem 2 also allows to derive some asymptotic properties under sequences of growing

networks G. First, we find the pointwise consistency result

This result allows Ay — 0 as n — o00. Second, letting h be the harmonic mean of the

sequence d,...,d,, we have

and so

w&O if AMh—00 as n — oo,

by an application of Markov’s inequality.

Example 3 (Erdés-Rényi graph). Consider the Erdés and Rényi (1959) random-graph
model, where edges between n vertices are formed independently with probability p,. The
threshold on p,, for G to be connected is In(n)/n. That is, if

Inn

Pn=2°¢C
n

for a constant ¢, then, as n — oo, with probability approaching one, G is disconnected if
¢ < 1 and connected if ¢ > 1 (Erdés and Rényi, 1960). In the former case, Ay — 0 while, in
the latter case, Ay — 1, almost surely; see Hoffman, Kahle and Paquette (2013, Theorem
1.1). and Kolokolnikov, Osting and von Brecht (2014, Corollary 1.2). O

11



We next proceed by refining the variance bound in Theorem 2 to take into account the

local structure of the graph around vertex i.

3.2 First-order bound

A refinement of Theorem 2 takes into account the connectivity of the direct neighbors of
1. Here, we call a direct neighbor, or a path-one neighbor, a vertex to which 7 is connected
via a path of length one. Similarly, we will call those vertices that have geodesic distance
equal to two from ¢ path-two neighbors of 7. The collection of direct neighbors of vertex 7
is

[i] ={jeV:(ij)e€FEor(ji)e E};
note that |[i]| = d;. Let

-1
1 1

hi = EZE : (3.3)
JEli]

J

the harmonic mean of the degrees of all j € [i]. Note that, for a given vertex i, h; is

increasing in the degree of its direct neighbors.

Theorem 3 (First-order bound). Let G be connected. Then

o2 2 o2 2 1
T (1-2) <var@) < Z(1-2 .
7 ( n) < var(@) < 7 ( nWhi)

Theorem 3 states that, for a given degree d; and global connectivity measure Ay, the upper

bound on the variance of @; is smaller if the direct neighbors of vertex i are themselves more
strongly connected to other vertices in the network. Another implication of the theorem is
the rate refinement

2

var(a;) = % +o(d;Y), (3.4)

)

provided that Ash; — 0o as n — oco. Furthermore, the parametric rate is achievable even

if A9 is not treated as fixed.

12



Figure 1: three-dimensional hypercube (left) and extended hypercube (right).

In the Appendix we present a refinement of Theorem 3 that accounts for the dependence
on h; in the lower bound as well, and also adjusts the upper bound for overlap between [i]
and the sets [ji1],. .., [j4,] for ji, ..., ja, € [i], that is, for common neighbors. These bounds
can be particularly useful when h; is small, but are vacuous when all path-two neighbors of
vertex ¢ are also path-one neighbors. This is the case, for example, in the complete graph,
where all vertices are direct neighbors.

We illustrate the usefulness of improving on Theorem 2 in our running example of a

random graph.

Example 3 (cont’d). Consider the Erdds and Rényi (1959) random-graph model with
pn = ¢ In(n)/n for ¢ > 1. Let ¢ be a randomly chosen vertex. Then, as n — 0o, we have,

almost surely,

Consequently,

follows from Theorem 3. 0

The next example deals with an analytically-tractable case where Ay — 0 as n — oo.

13



Example 4 (Hypercube graph). Consider the N-dimensional hypercube, where each of
n = 2~ vertices is involved in N edges; see the left hand side of Figure 1. This is an
N-regular graph — that is, d; = h; = N for all : — with the total number of edges in the
graph equaling 2. Here,

Ao =—=0((Inn)™").

Thus, A h; is constant in n. An application of Theorem 3 yields

N var(a;)

1+o(1) < 5

3
< - 1).
= S 5 tol)

From this, we obtain the convergence rate result (@; —a;) = O, ((Inn)~*/2), but the bounds
are not sufficient to determine the leading order asymptotic variance of ;. However, using
the bound in Theorem A.1 of the Appendix one obtains var(a;) = 0?/N + O(N~2), that
is, (3.4) holds. See the Appendix for details. O

Theorem 3 allows to establish the convergence rate for the hypercube, but the conditions
are too stringent to obtain (3.4). This is so because h; does not increase fast enough to
ensure that Ay h; — co. The following example illustrates that despite Ay — 0 we can still

have \y h; — .

Example 5 (Extended Hypercube graph). Start with the /N-dimensional hypercube G
from the previous example and add edges between all path-two neighbors in G; see the
right hand side of Figure 1 for an example. The resulting graph still has n = 2V vertices,

but now has N(N + 1) 2V~! edges. Here,

N(N +1) 4
di=hi= """ =
2 2T N+1

so that Ay h; — oo holds, despite Ay — 0 as n — oo. Theorem 3 therefore implies (3.4) in

this example. O

The next example illustrates that the first-order bounds can still be informative in

situations where h; does not converge to infinity.

14



Figure 2: Star graph (left) and Wheel graph (right) for n = 8.

Example 6 (Star graph). Consider a Star graph around the central vertex 1, that is, the

graph with n vertices and edges
E={(1j):2<j<n}

see the left hand side of Figure 2. Here, Ay = 1 for any n while dy = n — 1, hy = 1 and
di =1, h;=n—1fori+# 1. For i =1 one finds that the bounds in Theorem 3 imply that
var(@;) = O(n™1), and so

(&1 - Oél) = Op (n_1/2) .
In contrast, for ¢ # 1 we find Ay h; — oo and thus, although (3.4) holds, these «; cannot

be estimated consistently as d; = 1. O

Our last example shows the effect on the upper bound in Theorem 3 when neighbors

themselves are more strongly connected.

Example 7 (Wheel graph). The Wheel graph is obtained on combining a Star graph
centered at vertex 1 with a Cycle graph on the remaining n — 1 vertices; see the right hand
side of Figure 2. Thus, a Wheel graph contains strictly more edges than the underlying
Star graph, although none of these involve the central vertex directly. From Butler (2016),

4 2 2
Aoy =min< =, 1 — = cos il ;
3 3 n

15

we have



which satisfies Ay > 1 only for n < 4, and converges to 1/3 at an exponential rate. However,
while, as in the Star graph, d; = n — 1, we now have that h; = 3 for all ¢ # 1. Hence,
A2 hy > 1 for any finite n and the upper bound in Theorem 3 is strictly smaller than in the

Star graph. ([l

3.3 Asymptotic linearity under weaker assumptions

The bounds in Theorem 3 continue to hold when the errors in (2.1) are non-normal, as the
variance of @; depends only on the first and second moments of the data. The asymptotic
statements obtained in the previous subsection, too, carry over. We now want to briefly
discuss how the results can be extended to also allow for heteroskedasticity and correlation
in the error term.

If we only assume that

we have the following result.

Theorem 4 (Generalized first-order approximation). Suppose that (2.1) is weakened by
imposing only (3.5). Let G be connected. Then
Vi (@ — ;) = Lzuij+€i’
\/d_ijem

where E(e;) = 0 and E(e?) < 72/(Aah;).

It follows that

2

~ a W

a; NN O[Z‘7—Z
d;

if dl-_l/2 > el Wi < N(0,w?) for finite w?, provided E(e?) = o(1), which follows from
Aoh; — oo and o2 < oo. Thus, the key asymptotic condition that Aoh; — 0o is unchanged
compared to the previous subsection. The corresponding discussion and examples are thus
also applicable to the more general situation of heteroscedastic and weakly correlated errors,

but now with w? featuring in the asymptotic variance.

16



4 Variance bounds for differences

Our focus thus far has been inference on the «;, under the constraint in (2.2), > . a; = 0.
An alternative to normalizing the parameters that may be useful in certain applications is
to focus directly on the differences o; — a; for all ¢ # j (Bradley and Terry, 1952). We give
corresponding versions of Theorem 2 and Theorem 3 here.

The resistance distance between vertices ¢ and j in G is

Tij = (LT) + (LT) =2 (LT)

i Jj ij
(Klein and Randi¢, 1993), and is a metric on the set V' (Klein, 2002). It is linked to the
commute distance, say c;;, which is the expected time it takes for a random walk to travel

from 7 to j and back again, through the relation
Cij = 2m rij s

see, e.g., von Luxburg, Radl and Hein (2010). For example, vertices in different clusters
of a graph have a large commute distance, relative to vertices in the same cluster of the
graph. The precise connection between the magnitude of these quantities and the precision

of statistical inference is
0~ Cij

o (4.1)

var(q; — ;) = o’y =
This is the equivalent of (3.1) for differences.

The counterpart to Theorem 2 is intuitive.

Theorem 5 (Global bound for differences). Let G be connected. Then

o~ 1 1Y\ o2
VaI'(OZZ' — Olj) S d_l + d_j )\—2,

for alli # j.

Let d;; := |[¢] N [j]| be the number of vertices that are neighbors of both ¢ and j. Write
-1
(i Z i) for d;; # 0,
hij = § N4 g
o0 for d;; =0,
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for the corresponding harmonic mean of the degrees of the vertices k € [i| N [7]. We have

the following theorem.

Theorem 6 (First-order bound for differences). Let G be connected. Then

NG T4 dd, )T =G TG ddy ) e \dih  dihy dedgh;

One implication of the theorem is that, when [i] = [j] but i ¢ [j] and ¢ ¢ [j], that is, when
vertices ¢ and j share exactly the same neighbors and are not connected themselves, we
have
var(q; — a;) = o <dlZ + dl]) , (4.2)
as, in that case, both (A);; and the second term in the upper bound in Theorem 6 are zero.
Theorem 6 is related to work on the amplified commute distance by von Luxburg,
Radl and Hein (2014), which they propose as an alternative to the commute distance in
large graphs. However, their results are restricted to the class of random geometric graphs
and are purely asymptotic in nature. Here, we provide finite-sample bounds for arbitrary

connected graphs, using Ay as a measure of global connectivity.

5 Variance bounds using graph partitioning

The variance bounds obtained so far depend on Ay, which is a global measure of connectivity.
Moreover, for a given vertex 4, we require Ay h; — 0o for our bounds to yield the first-order
asymptotic variance. The value of Ay may be rather low even if most vertices are rather
densely connected. Consequently, Theorem 3 and Theorem 6 may be overly conservative.
A leading situation where this will be the case is when the network consists of clusters, so
that units within a cluster are strongly connected but the clusters themselves are connected
by relatively few links. As a remedy, in this section we obtain bounds on the variance of
a; that are based on partitioning the graph into subgraphs.

Consider a graph G = G(V, E). Partition V into ¢ non-empty subsets V;,...,V,. For
eachr=1,...,q, let E.:= EN(V, xV,), the set of edges connecting all vertices in V,., so
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Figure 3: An approximate decomposition of a graph into two components, with many

connections inside the two components (blue edges), but few across components (red edges).

that
gr = g(‘/rv Er)

denotes the subgraph of G that is induced by V,. Note that none of these subgraphs have
a vertex in common. Throughout this section we assume that G and each of Gy, ...,G, are

connected. Let Ey := U, FE, and Eg := E — Ey . The graph G can then be decomposed as

g =0wUgg, (5.1)

for Gy := G(V, Ey) and Gg := G(V, Ep). This is what we call a within-between decompo-
sition of the graph G; the graph Gy consists of ¢ connected components, Gy, ..., G,, and
the graph Gp connects these ¢ isolated components. We will let n, := |V;,| and denote by
mp the number of edges in Ep.

Our variance bounds in terms of Ay turn out to be conservative when mp/n, is small.

Example 8 (Partition into two sets). Partition V' into two sets V; and V2. An example is

given in Figure 3. Using, (3.2) we find

mp mpg
Ao S o— < — . .
2 min (Zz‘evl d;, ZiEVQ di) 2min(ny, ne) miney d;
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Suppose that max;ecy d;/ min;ey d; = O(1), so that all degrees grow at the same rate as

n — oo. Then A\yh; — oo requires that

mp
"B, 5.2
min(nl, ng) o0 ( )

In this section we show that the actually-required condition for the rate result in (3.4) in

this setting is

— 00, (5.3)
which is considerably weaker. 0

Example 3 (cont’d). Specialize Example 8 by assuming that G; and G, are both Erdds-
Rényi graphs with p, = cIn(n)/n of equal size, that is, n; = ny. Then

d; = clog(n1) (1 +o(1)) < ng,

which highlights the importance of the improvement of (5.3) over (5.2). O
To make use of the partitioning G = Gy UG we decompose ay, . .., a, accordingly. We
let
1
Bi = a; — Y, Tr = n—rzoﬁ,
i€Vy

foralli € V. and each r =1,...,q. Welet 8 := (f1,...,05,) and v := (71,...,7,)"- The

relation between both these vectors and ae = (v, ..., ;)" can then be succinctly stated as

, 1 itieV,,
a=08+P~, (P),; := (5.4)
0 otherwise.
This decomposition gives an alternative (infeasible) estimator of a based on estimators of
the within parameter B and the between parameter «v. The estimator of 3 is simply the

least-squares estimator applied to the subgraph Gy, subject to the proper normalization

constraints, namely

~

B := arggrel%gr% (yi; — (b; — b;))?  s.t. Zbi =0, r=1,...,q
(i.j)€Ew i€V,
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Similarly, an (infeasible) least-squares estimator for -y, which assumes 3 to be known,

equals

q

N ) 2

v = arg;rel% . )ZE (yij — (Bi + gr»)) + (B + gr(j))) s.t. Zl n, g, =0,
(2% crp r=

where we write 7(-) to denote the map V' — {1,...,q} that satisfies i € V,(;). Note that
these estimators are statistically independent of each other. The sampling variability of
these estimators can be studied, and can be used to sharpen our results on the statistical
accuracy of a.

Let Ly and Lg be the n x n Laplacian matrices of the graphs Gy and Gp, respectively.

We also introduce H := diag(ny,...,n,) and the ¢ x ¢ matrix
L,:= PLyP,

which is the Laplacian matrix of the multigraph G, with vertex set {1,...,q}, obtained
from G by edge contraction of the subgraphs G,, r € {1,...,¢}. Analogous to Theorem 1

for a one can show the following lemma.

Lemma 2 (Variances of component estimators). Let G and Gy, ..., G, be connected. Then
B~N(B. *Liy).  and  F~N(y, o L),

for L™ .= H-V2(H-V2L, H-V/2) T H-1/? 2

If we label the elements of V' such that V; = {1,...,n1}, Vo = {n1+1,...,ns}, etc, then
Ly is a block-diagonal matrix with ¢ non-zero blocks given by L, the Laplacian of G,,
r=1,...,q. The Moore-Penrose inverse L%V is also block-diagonal with ¢ non-zero blocks
given by LI. The first part of Lemma 2 therefore is simply Theorem 1 applied separately
to each of the connected components of Gy, and all our results from the previous sections

W
%

apply. For example, with d! the degree of vertex i in Gy, h!" the corresponding harmonic

mean, and A} the second-smallest eigenvalue of the normalized Laplacian of G,, we have

~ o? 1
Var(ﬁi) = d_W +o0 d_W s (55)
i i
2 Liknv is a pseudoinverse of L., but unless n; = ny = ... = n, it is not the Moore-Penrose pseudoinverse.
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provided that A}’hY — 0o as n — oo. The second part of the lemma deals with the
between component of the graph. The following example illustrates the result for the case

where ¢ = 2.

Example 8 (cont’d). When V' is partitioned into two sets V; and V, we have that

2

mpgp —mpg iy 1 ny —Nning

L, = , LY = — ,

—mp Mg n“mp \ —nine ny

Lemma 2 then yields

~ no\ 2 o? ~ ni\ 2 o ~ ~ o?
var (1) = | — ) —, var (o) = (—) —, var (41 — ) = —
n mp n mpg mpg

As one would expect, the variance of 4 crucially depends on the magnitude of mp, but also

on the relative size n; and ns of the two graph components. O]

The following theorem allows us to use Lemma 2 to bound the variance of our estimator

of interest, &. To state the result we introduce

2 dP
K = 1Imax mln —
an>1 i€V, )\T dW7

where, analogous to d!¥, we denote by d” the degree of vertex i in the graph Gp. If n, = 1

for all r € {1,...,q}, then we define x = 0.

Theorem 7 (Variance bounds from graph partitioning). Let G and Gy, ..., G, be connected.
Then, for any v € R,

R R 1/2
— Kvar (U’ﬁ) — 25172 [Var ('U’,B) var (U’P’ﬁ)]
< var (v'&) — [var (v'B) + var (v/P'F)|
R 1/2
< kvar (v'P'7) + 2x*/? [var (’U’,B) var (’U/P/;)/\)} .

The theorem shows that, if x is small, the variance of & is close the the variance of an

infeasible estimator of a constructed from (5.4), which equals
o*(L}, + P'L™P).
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One can also show that not only their variances but actually the estimators a and B\ +P'y
themselves are close to each other when x is small; see Section S.2 of the supplementary
material.

Only components with n, > 1 enter into the definition of k. For those components
we need d? > \od!V, uniformly over i € V,, for x to be small. This requires that for
every vertex ¢ € V, the number of between edges is much smaller than the number of

within edges, that is, the vertices need to be much more connected within components

than between components.

Example 8 (cont’d). Consider the example with two components, V' = V3 U V,. Assume
that the mp edges between V; and V5 are chosen such that max;cy d? = O(1). For example,
if the vertices of those edges are drawn without repetition from V; and V5, then we have
max;cy d? = 1, but this requires mp < max(ny,ny). If we furthermore assume that
min;ey )\g(i)d,}y — 00, then we have k — 0. This also implies that /\g(i)h?/ — 00, so that

(5.5) holds. Applying Theorem 7 we then find, as n — oo,
~ 1 2 1 - 1 2 1
var(Q;) < o (E@ + (%) m_3> ) var(a;) =< o’ <d_j + <%> m—B) 5

~ o~ 1 1 1
var(q; — @;) < o (d_i+d_j+ m—B) :

and

where we write d; instead of d!V, because d;/d})¥ = 1+dP/d}¥ — 1 under our assumptions.
Thus, if mp/d; — oo, then our original first-order results (3.4) still holds. For mp values
that are smaller the asymptotic variance needs to be adjusted. Finally, if ny/ny, — ¢ €
(0,00) and mp/d; — 0, then the asymptotic variance is completely dominated by the weak
global connectivity of G, and the local structure of the graph is no longer of first-order

relevance. O

Example 9 (Partition into three sets). Consider an analogous situation as in Example 8,

only now with ¢ = 3 partitions, each of which containing many vertices; as in Figure 4.
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connections inside each of the three components (blue edges), but few across components
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Figure 4: An approximate decomposition of a graph into three components, with many

(red, green and cyan edges).



For r,s € {1,2,3}, with r # s, let m,s be the number of edges between V, and V. Then

mi2 + M3 —M12 —mM13
L, = —M12 M1z + Ma3 —Mo3
—Mmi3 —Mag mi3 + Ma3

For the pseudo-inverse L™ we calculate

2 2 2
- N3 MmMmio -+ USKLUGES -+ (n2 -+ 713) Mo3

), - ,
o n2 (mygmag + migmaz + myzmoag)
and
!
1 1
o|L™| o= it e :
M12M13 + M12Maz + M13Mo3
-1 -1

Thus, if we again assume that max;cy d? = O(1) and miney )\;(i)d}y — 00, applying

Theorem 7 for ¢ € Vi and j € V3 we have

var(a;) < o2 (i n n3myg + n3mz + (ng + n3)2m23)

d; 1% (migmag + miamaz + MigMmas)

and

o 1 1 Mg + Mag
var(q; — aj) < o | &+ + — + :
di d;j  maigmys + miamag + mizmas

The asymptotic result for var(a@;) again depends not only on mis, my3 and mag, but also on
the relative component sizes ny, ny and ng, while those component sizes do not matter at all
for the asymptotic result on var(a;—a;). Our original first-order results (4.2) for var(a; —a;)
still holds if, for example, either m;3/ min(d;, d;) — oo or min(mso, mes)/ min(d;, d;) — oo.
An interesting special case is mis = 0, where the result simplifies to
o~ A 5 (1 1 1 1
var(o; — a;) <o (d_l+d_]+m_12+m_23)
This simple formula generalizes to four and more components. For example, for ¢ = 4 with

miz = myy = Moy = 0 we find for 2 € V; and j € V; under the asymptotic assumptions

above that Var(ai — 64]) = 02(1/dl + 1/d] + 1/m12 + 1/m23 + 1/m34). ]
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Figure 5: An approximate decomposition of a graph into three components with ny, = 1

and mqy3 = 0.

Theorem 7 is also applicable if n, = 1 for some r € {1,...,¢q}, as the following example

illustrates.

Example 10 (Subgraphs connected by individual vertices). Take the setup of Example 9
but now set

ng = 1, ni,ng = large , mq3 = 0.
This situation is depicted in Figure 5. This is a setting where one vertex ¢ € V5 provides
the only connection between V; and Vj3; the degree of this connecting vertex is mqo + mog3.
For r € {1, 3} we again assume max;cy, d” = O(1) and min;ey, A\5d}¥ — oo. Application of
Theorem 7 then gives the same asymptotic conclusions as in Examples 9, in particular for

1€ Vy and j € V3 we again find

1 1 1 1
var(q; — ;) < o° (—+—+—+—).
d; dj mio mas

This example can again be extended. If we introduce an additional vertex ¢ € V, that

also connects the subgraphs Vi and V3, and we have mys = 0 and ny = 1, then applying

Theorem 7 with ¢ =4, ¢ € V] and 5 € V3 yields

-1
G _ar=o2| Lyl RN S A T T
var(oy — Q) <o +—+ + + +
d; dj mi2 M3 M1y M3y

The result for three and more connecting vertices is analogous. U
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6 Weighted graphs

So far we have considered simple graphs. Our variance bounds generalize to weighted
graphs. Let G be an undirected weighted graph with associated (weighted) adjacency
matrix A. A simple example is a multigraph, which differs from a simple graph in that
multiple edges may exist between vertices. In this case, (A);; equals the number of edges
between ¢ and j. More generally, A is symmetric, has diagonal entries equal to zero, and
has off-diagonal entries that are non-negative.

Our variance bounds generalize to situations where an estimator ¢, constructed from

G, has variance L' for

L=D- A,

where, as before, D is a diagonal (weighted) degree matrix with entries d; = »"_ (A);;.

A symmetric matrix L is such a Laplacian matrix if and only if

(i) All off-diagonal elements of L are negative;
(ii) All column sums of L are equal to zero;
(ili) rank (L) =n — 1.

The variance bounds in Theorems 2-7 continue to apply, on setting 0 = 1 and redefining

the harmonic means

(1N Ay - (L (A (A)ji -
hl_(d_zz d, > ; hij_(d_zd—k) )

Jjev i gev

with dij = >,y (A)ik (A)jx. Our proofs of the theorems fully cover the weighted-graph
case.

We give some examples of weighted graphs.

Example 11 (Weighted least squares). We generalize the least-squares estimator in (2.3)

to situations where (4, j) € E interact on m;; > 1 occasions and errors are heteroskedastic
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across meetings. Using obvious notation, the weighted least-squares estimator of a equals

mij 2
- . Yijk — (a; — ay)
& = arg ae{aeg}l{g,mzo}(z Z < o ) .

i,J)€EE k=1

Let A be the weighted adjacency matrix with entries

ot if (i,5) € Eor (4,4) € E,
(A)y = _
0 otherwise.

and let L be the associated Laplacian matrix. Then Theorem 1 can be suitably extended

to yield & ~ N (e, LT). O

Example 12 (Profiled estimator for bipartite graph). Consider a bipartite graph G, where
V' is partitioned as V; U V5 and edges are formed between V) and V5 but not within these
sets. Let ny := V| and ny := |V3|. The Laplacian is

D, 0 0o C
L=D- A= —
0 D, ' 0
where D and Dy are ny X ny; and ny X ny diagonal degree matrices and C' is the ny X no
upper-right block of the adjacency matrix of the graph. Decompose a accordingly as
a = (a),a))'. The corresponding estimator & is defined in (2.3) for the case of a simple
graph, but the following construction works for any estimator that satisfies var(a) = o2L",

with L being the Laplacian matrix of a simple, weighted or multigraph, as described above

(we may simply have o = 1). We also define
dg = 642 — 52, Ay (— — Q.

corresponding to the natural normalization ¢;, &, = 0. By the block-inversion formula we
find

var(éy) = LT, L:=07?(Dy,-C'D;'C).

This is the variance formula after profiling-out all the parameters corresponding to vertices

in V. It can be verified that L satisfies the Conditions (i)-(iii). The adjacency matrix
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Figure 6: A simple bipartite graph G (left) with links between V) (red vertices) and V5
(vellow vertices), and the induced weighted graph G (right) on V5 alone resulting from

profiling out the parameters associated with V;.

of the corresponding graph, say G, that involves only the vertices in V5 is given by the
off-diagonal part of 0=2 C'D;'C. Thus, even when starting with a simple bipartite graph
G we naturally obtain a weighted graph G when profiling out some of the parameters.
Moreover, two vertices in G are connected if and only if they are path-two neighbors in the
original graph G. O
An interesting application of Example 12 is Example 2.
Example 2 (cont’d) (Matched employer-employee data). Consider the wage regression
with panel data, where the log wage of worker ¢ in firm j at time t equals
Yijt = Mi + 15 + Ugje, t=1,...,my.

To maintain focus, assume that the wu;;; are i.i.d. Then, with a = (o, —m’)" as discussed

before, the pooled (ordinary) least squares estimator satisfies
var(a) = o? L,
where L is the Laplacian associated with the adjacency matrix

mij lf (Z,]) GE,

0 otherwise.
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This illustration is interesting because, here, the p; cannot be estimated precisely due to
limited cross-firm mobility (Andrews, Gill, Schank and Upward, 2008). It therefore makes

sense to focus on the n;, that is, on the firm effects. Profiling-out p and letting

< A~ = = 1 —~
n:=n-—mn, n:=— Mis
2 i€Va
where ny := |V5| is the number of firms, application of Example 12 gives
var(s) = L,

where L is the ny x ny Laplacian matrix associated with the weighted ny x ns adjacency

matrix

_9 mg; Mg .

(A)ji = ’ iE%[k] di ek

0 for j =k,
where d; = ) ey i is the degree of ¢ € V;, that is, the total number of observations for
that worker, and [j] N[k] is the set of all workers for which wages are observed both in firm
j and in firm k. In this example the vertex set of of the weighted graph G are the firms.
Two firms are connected by an edge if there is at least one worker who has worked in both
firms. The weight (A);). of the edge is larger the more workers there are connecting firms
j and k, and the longer these workers have worked in both firms. Figure 6 provides an
illustration of a simple bipartite graph (with all m;; = 1) for workers (red vertices) and
firms (yellow vertices), given in the left plot, and the induced weighted graph featuring
only firms, given in the right plot. The thickness of the edge between (j, k) in the plot of

G reflects the magnitude of the weight (A);p. O

7 Conclusions and outlook

The model we have discussed has the feature that each observed outcome depends on
exactly two fixed-effect parameters, and we accordingly consider the graph G where each

parameter is a vertex and observations are edges connecting those vertices. Examples
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are the Bradley and Terry (1952) model for paired comparisons, wage regressions with
worker and firm fixed effects (e.g. Abowd, Kramarz and Margolis, 1999), gravity equations
with exporter and importer fixed effects (e.g. Harrigan, 1996), and panel data models with
individual specific fixed effects and time dummies. In applications of such models it is
often the case that not all possible pairings of parameters are actually observed in the
data, implying that the underlying G is not a complete graph or a complete bipartite
graph, but has a more complicated connectivity structure.

We have derived bounds on the variance of the fixed-effect estimators for such network
data applications. The bounds highlight the role of both global and local measures of
network connectivity on the precision of statistical inference.

The local-connectivity measures that are relevant for our first-order variance bounds on
the estimator a; of the fixed effect «; are the degree d;, that is, the number of observations
that depend on the parameter «;, and the harmonic mean h; of the degrees of the direct
neighbors of vertex i. For the second-order bound (given in the appendix) the degrees of
the path-two neighbors are also important as local measures of connectivity. These are
very natural descriptors of the local connectivity of the vertex .

For most of our variance bounds the global connectivity of the graph is described by
the second-smallest eigenvalue of the normalized graph Laplacian matrix, which is well
studied in the graph theory literature (e.g. Chung, 1997), and is closely related to other
conventional connectivity measures like the Cheeger constant. We also discuss cases where
our bounds based on those global connectivity measures are crude, and we derive more
precise variance bounds for situations where the graph consists of well-connected clusters
that are only connected by relatively few observations with each other.

Our variance bounds provide new insight into the potential for accurate statistical
inference from network data that highlight the structure of the network. This can aid
when deciding on sampling design or when performing sample selection. The bounds also
readily yield conditions for consistent estimation and asymptotically valid inference under
non-normality.

We have focused on linear models in this paper. In ongoing work we are extending
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our analysis to nonlinear models, such as the original Bradley and Terry (1952) model. In
that case, again, the variance of the estimator takes the form of (the inverse of) a weighted
Laplacian. A complication, however, is the presence of bias in the estimator coming from
the nonlinearity. Like the variance, the magnitude of the bias is driven by the structure of
the network, and so requires careful analysis. For example, it is not guaranteed that, even
in regular problems, the bias is small relative to the standard deviation.

A restriction of our model is that each observation involves only two model parameters,
which enter complementarily (that is, the off-diagonal Hessian elements have the opposite
sign from the diagonal Hessian elements, implying that the Hessian of the log-likelihood can
be interpreted as a graph Laplacian). Focusing on such a model allows us to connect very
closely with the graph-theory literature, in particular with the results on global-connectivity
measures for graphs. Models where more than two fixed-effect parameters determine one
observation would lead to hypergraphs. Extrapolating our results, one would again expect
that the precision of statistical inference in such models is governed by the local and global
connectivity of the underlying hypergraph, but formalizing this relation is left for future

research.

Appendix Second-order bound

This section discusses an improvement on the bounds in Theorem 3. Recall that d;; =
I[{] N [j]| denotes the number of vertices that are direct neighbors of both vertex i and
vertex j. For j € [i], let d,; := d; — di;, the number of direct neighbors of j that are not
also direct neighbors of 7. The following example illustrates that d;; can be a more relevant

measure than d; for the dependence of var(@;) on the connectedness of a neighbor j of i.

Example 6 and 7 (cont’d). Both for the Star and for the Wheel graph example above

one finds

o’n—1

var(ay) = —

by direct calculation. Thus, the additional edges in the Wheel graph between the neighbors

of vertex i = 1 relative to the Star graph do not lower the variance of a;. For i # 1 we
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have d; = 1 for the Star graph but d; = 3 for the Wheel graph, while for both graphs we
have d;;, = 1. O

Let
[l = (J U\ ()
el
the set of all path-two neighbors of vertex ¢. Analogous to the definition of the harmonic
mean h; above we let
-1 -1

1 1 1 1
Sl v el B e\ 2 T

. d. .
b jeli] T j€lila 7

In addition, for « € V' we define the set
W, ={(,k0)eV®: k#i & (i,j)€ E & (j,k) € E & (k,{) € E},

which is the set of all triplets (j, k, £) such that (i, j, k, ¢,) is a closed walk in G that reaches
distance two from 4 (thus ruling out & = 7). Notice that we may have j = ¢, that is, the

closed walk need not be a simple cycle.

Theorem A.1 (Second-order bound). Let G be connected and let h; > 1. Then

O'2 1 2 2 dz < (A ) < (72 1 2 2 dz i CZ
P E— -— - — var(o;) < ———— - — - — —_—
di(1—h;") n mnh;) d;(1—h; " n nh Ao hia(h; — 1)
where Cy = by hiz d7' Y e pew, (dudyidy;)

Including the factor h; hi.o d; in the definition of C; guarantees that C; is naturally scaled
in many examples; see below.

An asymptotic implication of Theorem A.1 is that

0_2

T 0
Ga—n1n "

o? 1
T 1\ < Q) < —M —— - - d~_1h»_1
(min(di,ﬁi)n) < verl) < di(1— hi ') o (min(di,ﬁi)n) old; hi),

(A1)

provided Agh;2/C; — 00 as n — oo and h; > 1 + € for some constant € > 0 independent

of n. Notice that this does not require that h, — oo, and the refinement obtained here
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relative to the first order asymptotic result (3.4) is in fact particularly important for those
cases where h; and h; are small.
The term C; requires further discussion. Notice that (j, k, ¢) € W; implies j, ¢ € [i] and
k € [i]2, and for any tensor a;jze we have
Z Qijke = Z Z Z Qijke- (A.2)
(4,k,0)eW; kelila jeldn[k] LedN[k]

Applying this to a;jx = 1 and using that > = d;; we obtain

JeliN(k]
(Wil = Z d?k-
kelil2

Thus, the number of elements in W, depends on the number of path-two neighbors of 7
and on the typical number of neighbors that ¢ has in common with one of its path-two
neighbors. The cases of interest in the following are those where the typical value of d;;, is
small compared to the degree d; for k € [i]o, so that the ratio between |W;| and |[i]s| is not

large. This is true in many interesting examples. Applying (A.2) to C; gives

1 1 1
Ci=lihiag > | 2 T

; o=
kelila  \delinikl

2

2

_ [ 1 2 (hiz) [ 1 b,
= ik, |[z12\2d““(dk> p

kefi]2 i F€]N[K] dji
Using the last result we want to argue that C; is of order one in cases where d;; is not
large for k € [i]s. To do so, first notice that the sums in the last expression for C; are
all self-normalized (i.e., divided by the number of terms that is summed over). We also

typically have % = 0(1), because

and one expects the arithmetic mean (di > ielil c_ijﬂ-) to be of the same order as the harmonic

mean h,;.
In the following we present concrete examples where d;;, is relatively small for k& € [i],

and thus C; is of order one asymptotically.

34



Example 3 (cont’d). Consider the Erdés and Rényi (1959) random-graph model with
pn = c(lnn)/n. Let ¢ > 1 to guarantee that the graph is connected as n — oco. In this
model for randomly picked (i,j) € E we have d;; = d;[1 + O(p,)], that is, the difference
between d;,; and d; is typically very small. Also, for randomly picked ¢ € V and k € [i]2
we have dj, = 1+ O(np?), and therefore |W;| = |[i]2| [1 + O(np?)] = n?p? + O(n’pl).
We therefore have Ay — 1, d;/(Inn) — ¢, d;,/(Inn) — ¢, hi/(Inn) — ¢, h;/(Inn) — ¢,
hio/(Inn) — c and C; — 1, almost surely, as n — oo. Applying Theorem A.1 thus gives

0.2

di(1—h;")

var(a;) =

+ O (d;'hi'hiy),

which is simpler than (A.1), because in this example 3-cycles are relatively rare, implying

that h; and h; are typically very close to each other. ([l

Example 2 (cont’d) (Matched employer-employee data). In the worker-firm example the
graph G is bipartite, so that two neighboring vertices have no direct neighbors in common,
implying that d;; = d; and h; = h;. Let i € V5 be a firm. Then, j € [i] are workers,
and the number of observations d; for workers are typically small in this application, so
that the harmonic mean h; is typically small. Also, j € [i]; are firms, and the number of
observations d; for firms are often large in this application, so the harmonic mean h; is
often large. Therefore, the second-order bound in Theorem A.1 is particularly simple in this
example (because the distinction between d; ; and d; is irrelevant), and is also particularly
important (because h, = h; is small, so that the improvement relative to the first-order
bound is very relevant). For simplicity, we consider the case of a simple graph where d; = 2

for all workers j € V;.? Then, for i € V, the bounds in Theorem A.1 become

200 (1 D2 Y ey < 22 (12 oG 206
d; =V YT, Ao d; i’

n n n n

3This occurs if we observe wages annually for two years, and we drop workers from the dataset that
do not change firms in those two years, because their observations are not informative for the firm fixed
effects. For all remaining workers we then have exactly d; = 2 log wage observations and the graph is

simple.
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where
2

y d;
C; = hl’zl Z — < 1maxd?’-

d 2 jelil2 W

where for the last inequality we used the definition of h;;y and |[i]s| < d; maxjep, d;;. For
example, if any two firms are connected by at most two workers, then we have d;; <1 and
therefore C; = 1/2. Thus, the leading order asymptotic variance is increased by a factor of

two compared to the first order result in (3.4). O

It is also possible that Theorem A.1 cannot be used to obtain a refinement of the
variance as in (A.1) but that it can justify the first-order rate in (3.4) for cases where
this first-order asymptotic variance of @; does not follow from Theorem 3. The following

example illustrates this.

Example 4 (cont’d). For N > 2 consider the N-dimensional hypercube graph, which
has n = 2V edges, as introduced above. In that case, firstly, we have d; = N for all i € V.
Secondly, there are no edges among the vertices in [i], implying that d; ; = d; = N and
h; = h; = N for all possible 7,7 € V. Thirdly, we have |[i]s] = N(N — 1)/2, and for all
i €V and k € [i]s we have d;; = 2 implying that |W;| = 4|[i]s] = 2N (/N —1). We thus find
C; =2(N —1)/N. The bounds in Theorem A.1 thus become

g

—2 1_i < ar(a.)<‘7—2 1_i+ 2
N(1—-N-Y) on ) = VS = NN oN TN N2

Because \y = 2/N we thus find,

2

var(Q;) = ~ T O(N?),

Q

as N — oo. O
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