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Abstract

We propose a simple model selection test for choosing among two parametric
likelihoods which can be applied in the most general setting without any assumptions
on the relation between the candidate models and the true distribution. That is, both,
one or neither is allowed to be correctly specified or misspecified, they may be nested,
non-nested, strictly non-nested or overlapping. Unlike in previous testing approaches,
no pre-testing is needed, since in each case, the same test statistic together with a
standard normal critical value can be used. The new procedure controls asymptotic
size uniformly over a large class of data generating processes. We demonstrate its
finite sample properties in a Monte Carlo experiment and its practical relevance in
an empirical application comparing Keynesian versus new classical macroeconomic
models.
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1 Introduction

Model selection is an important step in most empirical work and, accordingly, there exists a

vast literature devoted to this issue (Cox (1961, 1962); Atkinson (1970); Mizon and Richard

(1986); Gourieroux and Monfort (1994); Chesher and Smith (1997); Smith (1992, 1997);

Ramalho and Smith (2002); Andrews (1997, 1999); Andrews and Lu (2001); Hong, Preston,

and Shum (2003); Kitamura (2003); Zellner (1971); Leamer (1983); Sin and White (1996).

Since Akaike (1973, 1974), the Kullback-Leibler (KL) information criterion has become

a popular measure for descriminating among models taking the form of parametric likeli-

hoods, especially in the context of nested generalized linear models (“analysis of deviance”;

e.g. Nelder and Wedderburn (1972), McCullagh and Nelder (1989)). One strand of the

literature (Nishii (1988), Vuong (1989), Sin and White (1996), Inoue and Kilian (2006),

among others) uses this criterion together with earlier ideas about embedding the model

selection problem into a classical hypothesis testing framework (e.g. Hotelling (1940) and

Chow (1980)). In essence, this approach uses the maximum of the likelihood function as

a goodness-of-fit measure. If model A is found to have a statistically significantly larger

maximum likelihood than model B, then model A is to be preferred.

In an influential paper, Vuong (1989) has established that, unfortunately, the differ-

ence between the KL information criterion (KLIC) of two competing models exhibits a

wide variety of limiting distributions (normal, χ2 or even mixtures of χ2), depending on

whether the two models are overlapping or not, or whether one of the models is correctly

specified or not. As a result, using the KLIC typically requires pre-testing to establish

which distribution to use for the computation of critical values for the tests. There are

two reasons why the resulting two-step model selection test exhibits non-uniform behavior

under the null and thus may suffer from size distortions: first, the existence of different
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asymptotic distributions of the test statistic implies that size distortions can occur when

models are non-nested but “close” to each other. Second, the use of a pre-test induces

the well-known non-uniformity of two-step testing procedures (Leeb and Pötscher (2005))

that may also lead to size distortions. Shi (2015) seeks to address this issue by proposing

a modified Vuong test for non-nested models which uniformly controls size but involves

solving potentially high-dimensional optimization problems to find the appropriate critical

values from a nonstandard limiting distribution.

In this paper, we instead propose a simple method that delivers a model selection crite-

rion based on the KL discrepancy and yet only involves a test statistic that is asymptotically

N(0, 1)-distributed in all cases (nested, non-nested or overlapping), under the null that the

two models fit the data equally well. Therefore, no pre-testing is required, complicated

limiting distributions are entirely avoided, the test uniformly controls size, and we show

in simulations that it may be significantly more powerful than Vuong’s test. In fact, we

provide simulation results in which the Vuong test’s power is close to the test’s nominal

size while our test has power close to one. These advantages do come at the expense of

some power loss relative to Vuong’s test when the models are nested. However, our simu-

lations suggest that this effect is small and therefore insufficient to offset the advantages of

the method. In addition, our simulations suggest that neither Shi’s nor our test generally

dominates the other in terms of power or its ability to control size.

We test the hypothesis that two models have the same KL discrepancy to the true

distribution versus one of them being smaller. In case of a rejection, the model with

the smaller discrepancy is retained, otherwise the criterion suggests both models fit the

data equally well. Our approach remains valid even if both models are misspecified and

enables the selection of the least misspecified of the two, i.e. the model with the smallest

KL discrepancy from the truth. This capability fits nicely within the context of valid
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likelihood inference under potential model misspecification (White (1982)). We handle

the possibility of overlapping models by devising an estimator of the KLIC that smoothly

interpolates between a conventional sample-splitting scheme (e.g., Yatchew (1992), Whang

and Andrews (1993)) when the competing models overlap and a conventional full-sample

estimator when the models do not overlap. In this fashion, the statistic of interest is

never degenerate. The relative weights of the split-sample and the full-sample statistics

are governed by a regularization parameter that we choose so as to trade off power and

size of the test. The optimal regularization parameter requires only estimates of variance

terms and therefore is very easy to compute from a given sample. In this fashion, we avoid

having to consider higher-order terms of the test’s asymptotic expansion (as in Vuong

(1989), or, in a different hypothesis testing context, Fan and Li (1996)). Although higher-

order expansions (such as Edgeworth expansions) can, in principle, be used to address

the degeneracy problem, such an approach may pose significant practical problems. For

instance, a higher order analysis of likelihood functions may involve quantities that are

difficult to calculate for complex forms of likelihood functions (such as when it is obtained

via numerical methods and/or simulations).

Besides deriving the local asymptotic power of our test we also show that it is of correct

asymptotic level uniformly over a large class of data generating processes. This is a very

desirable property of a test, particularly in the model selection context, as it may be difficult

to judge a priori whether competing models are “close” to each other – a case in which the

Vuong test exhibits potentially very large finite sample distortions due to its non-uniform

behavior under the null. We also demonstrate our procedure’s small sample properties in

a Monte Carlo study and illustrate its practical usefulness in testing Keynesian versus new

classical macroeconomic models. Finally, we discuss how our approach may be extended

in various directions such as time series data or models defined by moment conditions.
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Importantly, we can also apply our sample-splitting idea to tests comparing the accuracy

of forecasts (such as those made popular by Diebold and Mariano (1995)) to gain asymptotic

uniform size control.

Model selection is an important step in empirical research as indicated by its vast cover-

age in standard statistical textbooks and in statistics courses, and the large citation count

of seminal papers such as Vuong (1989). In many applications such as the one we discuss

in Section 9, testing which of two models possesses a smaller KL discrepancy to the truth

may be of direct interest. This is, for example, the case when the two models are observable

implications from competing economic theories and the model selection test then speaks

to the question which of the two theories (jointly with some distributional assumptions)

is a better description of the economy. Another example is that of distinguishing different

theories of voter behavior as in Shi (2015). The outcome of Diebold and Mariano (1995)-

type tests of which forecasting model is more accurate are also of direct interest. In all of

these examples, the model selection step is not necessarily followed by another estimation

or inference step.

The proofs of all results in this paper can be found in the supplementary material.

2 Setup

In this paper, we define a model to consist of a set of probability distributions over the sam-

ple space of observed variables, indexed by a finite-dimensional parameter. For example,

we subsequently use models A and B defined as

PA := {PθA ∈ P : θA ∈ ΘA},

PB := {PθB ∈ P : θB ∈ ΘB},
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where P denotes the set of all probability measures and ΘA and ΘB are some finite-

dimensional parameter sets. Such a set of distributions could, for example, be the set of

all normal distributions indexed by their means and variances. An integral part in any

model selection procedure consists of choosing a criterion which measures “closeness” of

two models. We consider the KLIC here because it has a variety of convenient properties

one of which being that maximum likelihood estimators of θA in model A, say, are known to

minimize the KL distance1 between model A and the true data generating process (White

(1982)). Consequently, the so-called pseudo-true parameter value θ∗A which maximizes the

population likelihood of model A delivers a distribution Pθ∗A equal to the true distribution

P0 if model A is correctly specified, and can be interpreted as the best approximating model

(in terms of KL distance) in the case that model A is misspecified.

More formally, define the KL distance between two distributions P and Q,2 or if they

possess densities p and q, respectively, as

K(P : Q) :=

∫
ln

(
dP

dQ

)
dP = EP

[
ln

(
p(X)

q(X)

)]
.

The pseudo-true value θ∗A of a model A is then defined as the one which minimizes the KL

distance between model A and the true distribution P0, viz. θ∗A := arg minθA∈ΘA K(P0 :

PθA), and similarly for model B, θ∗B := arg minθB∈ΘB K(P0 : PθB). Under standard condi-

tions, (quasi-) maximum likelihood estimators consistently estimate this parameter (Akaike

(1973) and Sawa (1978)). If model A is correctly specified, defined as P0 ∈ PA, then there

is a true parameter θ0 ∈ ΘA such that P0 = Pθ∗A = Pθ0 . We call model B nested in model A

if PB ⊂ PA, non-nested if neither model is nested in the other, overlapping if PB ∩PA 6= ∅

and non-overlapping (or strictly non-nested) otherwise.

1Even though the KL discrepancy is not a distance metric, we will use the two terms interchangeably.
2Assume that P is absolutely continuous with respect to Q. Otherwise, we define the KL distance to

equal +∞.
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The goal of this paper is to propose a model selection test for determining the model that

fits the data “better”. We define a model to be better if it is closer to the true distribution

in the KL sense. Pθ∗A and Pθ∗B are the distributions in PA and PB which are closest to the

truth, P0, respectively. Formally, model A is defined to be better than model B if model A’s

KL distance to the truth is smaller than that of model B, i.e. K(P0 : Pθ∗A) < K(P0 : Pθ∗B). If

the two KL distances are equal, then we say models A and B are equivalent. The procedure

proposed in the next two sections selects the better model based on performing a test of

H0 : K(P0 : Pθ∗A) = K(P0 : Pθ∗B),

i.e. models A and B are equivalent, against model A is better, HA : K(P0 : Pθ∗A) < K(P0 :

Pθ∗B), or model B is better, HB : K(P0 : Pθ∗A) > K(P0 : Pθ∗B).

Before proceeding to the actual model selection test, we conclude this section with the

collection of a few formal definitions. To that end, let Xi : Ω 7→ X , i = 1, 2, . . ., be random

vectors on the probability space (Ω,F , Q0) with F a σ-algebra and Q0 a probability measure

on Ω. Further, suppose X is a Polish space X , i.e. a complete separable metric space, and

Bx the Borel σ-algebra on X . Denote by µ some underlying σ-finite measure on (X ,Bx),

e.g. the Lebesgue measure on X = Rk. Finally, let P be the set of all distributions on X

which have a measurable density with respect to µ.

3 The Test Statistic

To motivate our proposed test statistic we first briefly describe the so-called degeneracy

problem that complicates the use of existing test statistics.

Let θ := (θ′A, θ
′
B)′ ∈ Θ := ΘA × ΘB ⊂ Rp, let ∇θk denote gradient vectors with respect
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to θk, k = A,B, and define the moment conditions

EP0 g(X; θ) := EP0

 ∇θA ln fA(X; θA)

∇θB ln fB(X; θB)

 = 0 (1)

which are satisfied by the pseudo-true value θ∗ := (θ∗A
′, θ∗B

′)′. Let d∗ := EP0 [ln fA(X, θ∗A)−

ln fB(X, θ∗B)] be the pseudo-true log-likelihood ratio of the two models. Assume that we

have an i.i.d. sample X1, . . . , Xn from P0 and let ĝ(θ) :=
∑n

i=1 g(Xi; θ)/n. We assume that

θ̂ := (θ̂′A, θ̂
′
B)′ is the maximum likelihood estimator of θ∗, but in principle one could use

any estimator that solves the empirical analog of (1), i.e. ĝ(θ̂) = op(1), typically called a

“Z-estimator”3. GMM and GEL estimators of θ∗ are examples of such estimators.

For k = A,B, define the variances σ2
k := V arP0(ln fk(X; θ∗k)), the covariance σAB :=

CovP0(ln fA(X; θ∗A), ln fB(X; θ∗B)), and the variance of the likelihood ratio σ2 := σ2
A−2σAB+

σ2
B. Let d̂ be the empirical log-likelihood ratio d̂ := n−1

∑n
i=1 ln(fA(Xi; θ̂A)/fB(Xi; θ̂B)) and

define the sample variance estimators σ̂2
k of σ2

k, k = A,B, and the covariance estimator σ̂AB

of σAB, i.e. σ̂2
k := n−1

∑n
i=1(ln fk(Xi; θ̂k) − ln fk)

2 where ln fk := n−1
∑n

i=1 ln fk(Xi; θ̂k)

and similarly for σ̂AB. The variance of the likelihood ratio, σ2, we then estimate by σ̂2 :=

σ̂2
A − 2σ̂AB + σ̂2

B.

Define tn to be the t-statistic for testing H0 : d∗ = 0, i.e. tn :=
√
nd̂/σ̂. This statistic is

equivalent to the one Vuong (1989) proposes when the two candidate models are known to

be nonnested. The t-statistic possesses a standard normal limiting distribution if σ2 > 0.

The type of degeneracy ruled out by this assumption, however, poses a standard challenge

encountered in parametric model selection testing. It requires that the variance of the log-

likelihood ratio evaluated at the pseudo-true values is nonzero. This condition is violated

when both models A and B are observationally equivalent, i.e. when both are correctly

specified which implies that (i) they must be overlapping (including the nested case) and

3See van der Vaart (1998, Chapter 5) for an introduction.
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(ii) the truth must be an element of their intersection. Then the pseudo-true densities are

identical, fA(·; θ∗A) ≡ fB(·; θ∗B), which in turn implies that the variance σ2 is zero.

The common solution in the literature has been to either assume this case away or

develop a pre-test for testing whether degeneracy holds or not. See Vuong (1989), Kitamura

(2000) and Kitamura (2003) for a discussion of issues related to degeneracy and pre-tests

that have been suggested.

We now propose a modified version of the t-statistic that preserves the standard nor-

mal limiting distribution even when the models are observationally equivalent. There are

several ways one could think of regularizing the model selection problem. The approach we

present here is based on re-weighting the individual log-likelihoods, which is very simple to

implement and results in desirable properties of the resulting test (see Section 5). Further-

more, the efficiency loss in the “nondegenerate” observationally distinct case seems to be

small in finite samples and is, in fact, asymptotically negligible under simple conditions.

For simplicity of exposition assume that the sample size n is an even number. We

propose to re-weight the individual log-likelihoods

ˆ̃d :=
1

n

n∑
i=1

(
ωi(ε̂n) ln fA(Xi; θ̂A)− ωi+1(ε̂n) ln fB(Xi; θ̂B)

)
with the weights

ωk(ε̂n) :=

 1, k odd

1 + ε̂n, k even
, k = 1, . . . , n+ 1 (2)

that depend on a possibly data-dependent, real-valued regularization parameter ε̂n. Straight-

forward algebra shows that the asymptotic variance of
√
n ˆ̃d can be estimated by ˆ̃σ2, where

ˆ̃σ2 := (1 + ε̂n) σ̂2 +
ε̂2
n

2

(
σ̂2
A + σ̂2

B

)
.
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With the modified estimator of d∗ and its variance estimator, we can construct a new

t-statistic t̃n defined as

t̃n :=

√
n ˆ̃d

ˆ̃σ
.

If ε̂n = 0, then ˆ̃σ = σ̂ and ˆ̃d = d̂, and the modified and unmodified t-statistics are equivalent,

i.e. t̃n = tn. Now, suppose ε̂n 6= 0. In the observationally distinct models case, the two

statistics differ only in that some observations are weighted by 1 + ε̂n rather than by one.

To understand how the weights ωk(ε̂n) regularize the t-statistic in the equivalent models

case, rewrite the new statistic as

t̃n =

√
n(d̂+ ε̂nd̂split)

ˆ̃σ

with

d̂split :=
1

n

n/2∑
i=1

(
ln fA(X2i; θ̂A)− ln fB(X2i−1; θ̂B)

)
.

This representation shows that the numerator of t̃n is equal to a weighted sum of the con-

ventional full-sample log-likelihood ratio d̂ and the split-sample log-likelihood ratio d̂split

which computes the log-likelihood of model A from the odd observations and that of model

B from the even observations. As the data are assumed to be i.i.d., the variance of the

split-sample statistic is always nonzero regardless of whether the models are observationally

distinct or equivalent. The parameter ε̂n determines how much of the split-sample statistic

should be added to the full-sample counterpart. Equivalent models lead to identical den-

sities, i.e. ln fA(·; θ∗A) ≡ ln fB(·; θ∗B) and, therefore, tn has a degenerate distribution. The

new statistic t̃n, however, continues to be nondegenerate because of the split-sample term.

When ε̂n →p 0 at a suitable rate,4 the net effect of the proposed regularization approach is

4Notice that the assumptions of Theorem 1 below do not actually require the regularization parameter

to vanish with the sample size. We only need it to be bounded in probability.
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to reduce to a sample splitting device in the observationally equivalent models case, while

smoothly reverting to the conventional full-sample expression as the models move away

from perfect overlap.

There are multiple ways one could modify the full-sample likelihood ratio statistic so as

to obtain some of the desirable properties of our proposed test such as uniform asymptotic

size control and the avoidance of a pre-test. For example, one could define a t-statistic based

only on the split sample statistic d̂split, as sample-splitting is a known and effective way

to address degeneracy issues in test statistics (e.g., Yatchew (1992), Whang and Andrews

(1993)). However, when models are non-nested such a statistic may suffer from poor

power as it ignores half of the sample whereas our proposed statistic does not because it

asymptotically equals the full-sample likelihood ratio statistic in that case.

Another simple alternative that may at first appear attractive would be to simply pre-

test whether σ2 is significantly different from zero and accordingly use a full sample or

a split sample Vuong statistic based on the result of the pre-test. While we leave the

derivation of its theoretical properties for future research, we conjecture that such a two-

step testing procedure is likely to suffer from similar lack of uniformity and power loss as

the two-step Vuong test.

In general, two-step approaches with a discontinuous change in the second step’s test

statistic likely possess poor uniformity properties. A practical consequence of this problem

is that practitioners could often be in the situation that very small changes to the data

could yield dramatic changes in the test’s p-value, which would make it hard to access the

level of confidence that the chosen model is the correct one. A smooth transition between

sample splitting and no sample splitting elegantly avoids this theoretical and practical

problem.

The benefit of our the regularization scheme is that the strong nonsingularity condition
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σ2 > 0 can be replaced by the following very weak condition.

Assumption 1. For k = A,B, σ2
k > 0, V arP0((ln fk(X; θ∗k))

2) > 0, and V arP0(∇θk ln fk(X; θ∗k))

is nonsingular.

We also need standard conditions for Z-estimators to be consistent and asymptotically

normal. They can be weakened substantially, but serve as a simple basis to discuss the

relevant issues in our model selection framework.

Assumption 2. Θ ⊂ Rdθ is compact and ln fk(x; ·), k = A,B, are twice continuously

differentiable.

For k = A,B, let ∇2
θk

denote the Hessian matrix of a function of θk, containing deriva-

tives with respect to elements of θk.

Assumption 3. (i) X1, . . . , Xn is an i.i.d. sequence of random variables with common

distribution P0 ∈ P. (ii) There is a unique θ∗ ∈ int(Θ) so that EP0g(X; θ∗) = 0. (iii)

EP0 [∇2
θk

ln fk(X; θ∗k)], k = A,B, are invertible.

Assumption 3(ii) can be overly restrictive because likelihoods with a unique global

maximizer may possess more than one root of the corresponding first-order conditions.

This means Θ has to be chosen sufficiently small so as to exclude roots not corresponding

to the global maximum. The assumption is made here to simplify the exposition. In

practice, however, one may simply estimate θA and θB separately by standard maximum

likelihood assuming that there is a unique global maximizer.

The remainder of Assumption 3, Assumptions 1 and 2 are not very restrictive and

could be termed standard regularity conditions. We also impose some moment existence

conditions on the individual likelihoods and their derivatives:
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Assumption 4. (i) EP0 [‖∇θk ln fk(X, θ
∗
k)‖2+δ] < ∞ and EP0 [| ln fk(X, θ∗k)|4+δ] < ∞ for

k = A,B and some δ > 0. (ii) There exists a function F̄1(x) such that EP0F̄1(X) < ∞

and, for j, k = A,B, for all θ = (θ′A, θ
′
B)′ ∈ Θ, for all x ∈ X , and for h(x; θ) being any

of the functions ln fk(x; θk), vec(∇2
θk

ln fk(x; θk)) and ln fk(x; θk)∇θj ln fj(x; θj), we have

‖h(x; θ)‖ ≤ F̄1(x). (iii) There exists a function F̄2(x) such that EP0 [|F̄2(X)|2+δ] < ∞ and

‖∇θk ln fk(x; θk)‖ ≤ F̄2(x) for all x ∈ X and k = A,B.

Finally, we place restrictions on the regularization parameter. First, we define the set

of positive sequences that are O(1) but converge to zero only at a rate slower than n−1/4.

Definition 1. Let E be the set of sequences {εn} in R such that εn > 0 for all n ≥ 1,

n1/4εn →∞, and ε := limn→∞ εn <∞.

Assumption 5. ε̂n is a sequence of real-valued, measurable functions of X1, . . . , Xn such

that there exists a sequence {εn} ∈ E with |ε̂n − εn| = OP0(n
−1/2).

Notice that this assumption allows for constant (ε̂n ≡ ε 6= 0), deterministic and random

sequences of regularization parameters {ε̂n} as long as they do not vanish too quickly and

{ε̂n} lies in the n−1/2-neighborhood of some deterministic sequence {εn} in E . Intuitively,

we need the condition n1/4εn → ∞ to make sure the the regularization parameter does

not tend to zero too quickly, otherwise it would not have any regularizing effect (at least

asymptotically).

The following theorem establishes that the regularized t-statistic is asymptotically stan-

dard normal regardless of whether the two models are observationally equivalent or not.

Theorem 1. If Assumptions 1–5 hold, then, under H0, t̃n →d N(0, 1) and, under HA∪HB,

|t̃n| →p ∞.

Remark 1. Conditional densities can be accommodated just as in Vuong (1989).
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Remark 2. The requirement εn 6= 0 (but possibly εn → 0) is necessary only for the limiting

distribution of t̃n to be nondegenerate in the observationally equivalent case. Therefore, if it

is known a priori that the two models A and B are observationally distinct (e.g. strictly non-

nested), εn ≡ 0 is permitted. However, Section 5 below shows that tests based on sequences

that do satisfy the requirements of E uniformly control size. Since observationally distinct

models can be “close” to observationally equivalent in finite samples, one may want to

employ nonzero sequences {ε̂n} even in such cases.

Remark 3. The functional form of the weights ωk(ε) in (2) can be seen as a normalization

in the following sense. In Section 6, we provide a data-driven choice of ε̂n that optimizes

a particular power and size trade-off given the functional form of 1 + ε̂n for weighting the

even observations. For any other functional form of the weight, say w̄k(ε̂n), the optimal

ε̂n would then be such that w̄k(ε̂n) = 1 + ε̂n as long as the range of the function w̄k is

large enough. On the other hand, consider choosing some constant, say c, other than 1 for

weighting the odd group together with the appropriate adjustment to the standard deviation

in the denominator of t̃n. This modified test statistic is numerically equivalent to our test

statistic when the optimal epsilon, now c(1+ ε̂n)−1 with ε̂n the optimal choice under c = 1,

is employed.

Our test statistic relies on assigning individual observations to two groups. Clearly,

the test statistic is invariant to sample re-orderings that permute observations within the

two groups, but do not re-assign observations across the two groups. In the remainder of

this section, we discuss in what sense our statistic is asymptotically invariant under re-

assignment of observations across groups and the impact of such re-assignments in finite

samples.

We introduced our test statistic by splitting the sample into odd and even observations,

which was purely for concreteness and ease of presentation. As Theorem 1 shows, the
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limiting distribution of our test statistic does not depend on the definition of the two groups.

In fact, any other partition of the sample into two groups yields the same asymptotic

distribution. In this sense, re-ordering has no effect on the test statistic in large samples.

The supplement of this paper shows that not only does every partition of the sample

into two groups lead to the same asymptotic distribution, but also the random difference

between two test statistics based on different assignment rules is negligible in large samples.

This result requires that one partition into two groups can be constructed from the other

partition by o(n) re-assignments of observations across groups.

Even though this result provides a sense in which our test statistic is asymptotically

invariant to re-assignment of observations across groups, one may be concerned that, in a

finite sample, the invariance may not hold. One should realize, however, that our critical

values account for fluctuations due to different sample orderings, so one would have to try

about 100 different re-assignments of observations across groups before finding one leading

to a false rejection of the null at the 99% level (and this is assuming that re-assignment is

the only source of noise, which is not the case, so, in reality, even more permutations than

this would have to be tried to stumble on a permutation yielding a false rejection). The fact

that our critical values account for the re-assignment noise is an automatic consequence of

the fact that they account for the usual sampling noise. Indeed, a re-ordered sample is just

another possible random draw from the population distribution.

To check robustness of the model selection results in finite samples, the user of our

test may want to report summary statistics of covariates in the two groups. Balance of

such summary statistics across the two groups ensures that estimates and test results are

not driven by significant (observable) differences across the two groups. In fact, one could

randomly assign observations to two groups to guarantee balance not only on observable,

but also on unobservable characteristics.
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Splitting samples of observations into two groups is common practice in randomized

control trials, and the effect of randomization, stratification, and possible imbalance on

estimators and test statistics is well-understood in that literature. The same advantages

and disadvantages carry over to our context of model specification tests.

4 The Model Selection Test

The results of the previous section suggest a very simple model selection procedure based on

a two-sided5 t-test: Given a nominal level α ∈ (0, 1) and some finite ε̂n such as the optimal

choice proposed in Section 6, we compute the test statistic t̃n and compare its absolute

value to the (1− α/2)-quantile z1−α/2 from the N(0, 1) distribution. If |t̃n| > z1−α/2, then

reject the null that model A and B are equally close to the truth. The rejection is in favor of

model A if t̃n > z1−α/2 and in favor of model B if t̃n < −z1−α/2. No pre-testing is necessary

and, in contrast to available methods, no complicated asymptotic distributions6 ever need

to be used.

Interestingly, conditional on a given selected model, asymptotically valid confidence re-

gions for its parameters can be readily obtained by using the first-order conditions of its like-

lihood maximization problem. This scheme automatically recovers the well-known “sand-

wich” formula for misspecification-robust estimation of the asymptotic variance (White

5Alternatively, one could use a one-sided t-test with obvious modifications to the procedure.
6The simulation of critical values from the mixture of χ2 distributions in Vuong (1989)’s test requires

the estimation of eigenvalues of a potentially large matrix which are then to be used as the mixture weights.

Such estimators may be quite imprecise in small samples and can induce further distortions. Shi (2015)’s

test, on the other hand, requires some conservative critical value because the exact limiting critical value

cannot be estimated consistently. The conservative critical value is then determined as the supremum over

a potentially very large space of nuisance parameters which can be an expensive numerical task.
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(1982), Owen (2001)). Of course, model estimation following a model selection procedure

always carries the risk that the model selection step may influence the significance levels of

subsequent tests. As our approach selects the best model of the two with probability ap-

proaching one, the model selection step has, asymptotically, no effect on further pointwise

inference. Remark 4 below discusses uniformity properties of our procedure.

In the presence of a priori information justifying the exclusion of the observationally

equivalent models case, the same test can be performed using the test statistic tn instead

of t̃n. In certain modeling situations, it might be straight-forward to check whether the

condition σ2 > 0 is satisfied. For example, one might have reasons to believe that both

models are only crude approximations to the truth so that both are misspecified. If, in

addition, it can be established analytically that the models do not overlap, then σ2 > 0

holds and the test without regularization can be used.

5 Large Sample Properties of the Test

5.1 Uniformity

In this section, we define a set P which contains all distributions under which the moment

conditions and some regularity conditions similar to those in the previous section hold.

Then we show that our regularized test controls size uniformly over those distributions in

P that also satisfy the null hypothesis.

In view of the impossibility result by Bahadur and Savage (1956) and its extensions in

Romano (2004), we cannot hope to gain uniform size control over general nonparametric

classes of distributions. It has been recognized before (see section 11.4.2 in Lehmann and
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Romano (2005), for instance) that Lyapounov’s condition7 places sufficient restrictions

on the space of distributions so that one can establish uniformity for t-statistics. The

following definition of the set of distributions P follows that route and ensures that the

Lyapounov condition holds for several components of our test statistic. This can be seen

as a strengthening of the assumptions in Section 3 to allow for asymptotic theory under

sequences of data generating processes.

Subsequently, we need to be more specific about under which distribution P certain

quantities are computed. Define θ∗(P ) := (θ∗A(P )′, θ∗B(P )′)′ to be the parameter value

that satisfies EPg(Xi; θ
∗(P )) = 0 and d∗(P ) := EP [ln fA(X; θ∗A(P )) − ln fB(X; θ∗B(P ))].

Let σ2
k(P ) := V arP (ln fk(X; θ∗k(P )), σ̃2(θ, P, ε) := (1 + ε)σ2(P ) + ε2(σ2

A(P ) + σ2
B(P ))/2,

abbreviate σ̃2(θ∗(P ), P, ε) by σ̃2(P, ε), and Hk(P ) := EP [∇2
θk

ln fk(X; θ∗k(P ))]) for k = A,B.

Definition 2. For some fixed δ, κ > 0, 0 < M ≤ M < ∞, and an increasing, continuous

function ε : (0,∞) → (0,∞) with ε(0) = 0, let P be the set of distributions P on X that

satisfy the following conditions for X ∼ P : (i) There exists a unique θ∗(P ) ∈ Θ such that

EPg(X; θ∗(P )) = 0, for all µ > 0, infθ:‖θ−θ∗(P )‖≥µ ‖EPg(X; θ)‖ > ε(µ), and Bκ(θ
∗(P )) ⊆ Θ,

where Bκ(θ) denotes a ball in Rdθ with radius κ around θ. (ii) There exists a function D(x)

such that EP [|D(X)|2+δ] ≤M and, for all x ∈ X ,

|ln fA(x; θ∗A(P ))− ln fB(x; θ∗B(P ))|

≤ D(x)
(
EP
[
|ln fA(X; θ∗A(P ))− ln fB(X; θ∗B(P ))|2

])1/2
, (3)

where θ∗(P ) := (θ∗A(P )′, θ∗B(P )′)′. Further, we have EP [| ln fk(X; θ∗k(P ))|4+δ] ≤ M and,

similarly, EP [‖∇θk ln fk(X; θ∗k(P ))‖2+δ] ≤ M for k = A,B. (iii) There exists a function

F̄ (x) such that EP F̄ (X) ≤M and, for j, k = A,B, for all θ = (θ′A, θ
′
B)′ ∈ Θ, for all x ∈ X ,

and for h(x; θ) being any of the functions ln fk(X; θk), ∇θk ln fk(X; θk), vec(∇2
θk

ln fk(x; θk))

7See equation (23.35) in Davidson (1994), for example.
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and ln fk(x; θk)∇θj ln fj(x; θj), we have ‖h(x; θ)‖ ≤ F̄ (x). (iv) For k = A,B, we have

M ≤ λmin(Hk(P )) and λmax(Hk(P )) ≤ M , where λmin(A) and λmax(A), respectively,

denote the smallest and largest eigenvalue of a matrix A. Furthermore, for h(x; θ) being any

of the functions log fk(x; θk), (log fk(x; θk))
2, and ∇θk log fk(x; θk), k = A,B, θ := (θ′A, θ

′
B)′,

we have M ≤ λmin(V ar(h(X; θ∗(P ))) ≤ λmax(V ar(h(X; θ∗(P ))) ≤M .

Before stating the uniformity theorem, we slightly modify Assumption 5 to hold under

sequences of distributions.

Assumption 6. Let ε̂n be a sequence of real-valued, measurable functions of X1, . . . , Xn

such that, for every sequence {Pn} in P, there exists a sequence {εn} ∈ E with |ε̂n − εn| =

OPn(n−1/2).

In Section 6, we verify Assumption 6 for our proposed data-driven regularization pa-

rameter selection rule.

Theorem 2. Suppose Assumptions 2 and 6 hold. Let P0 := {P ∈ P : d∗(P ) = 0} be the

subset of distributions in P that satisfy the null hypothesis. Then the regularized t-test of

nominal level α is asymptotically of level α uniformly over P0, viz.

lim
n→∞

sup
P∈P0

P
(
|t̃n| > z1−α/2

)
= α.

To the best of our knowledge, this uniformity property of our model selection test is

the only result of this kind besides that of Shi (2015). If the test was only pointwise of

correct asymptotic level, then it could be the case that for any sample size N there exists

a sequence of distributions Pn ∈ P0 such that for any sample size n ≥ N the rejection

probability under Pn is arbitrarily close to one. This possibility is ruled out when the test

is uniformly of correct asymptotic level which implies that for any ε > 0 there is a sample

size N such that, for all n ≥ N , the rejection probability under any sequence Pn ∈ P0 is at
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most α+ ε. Uniform control of the level over all distributions in P0 is both important and

often difficult to establish because the distributions in the null hypothesis can be nested,

non-nested or overlapping. In tests such as the Vuong test, for example, these different cases

give rise to different limiting distributions of the test statistic so that even, in, say, non-

nested models which are “close” to overlapping, substantial finite sample size distortions

can occur. The uniformity of the level over P0 guarantees that such distortions do not

occur or, at least, vanish in large samples. In the model selection context, this uniformity

property is particularly desirable as it may be difficult to judge a priori whether competing

models are “close” to each other. When they are “close”, a formal model selection test is

arguably the most valuable as the two models may be difficult to distinguish on other, say,

theoretical grounds.

Remark 4. Our model selection test avoids pre-testing as is necessary in Vuong’s two-

step procedure and guarantees uniform asymptotic size control as shown in Theorem 2.

However, the well-known non-uniform behavior of post-model selection inference persists

so that researchers should exercise caution when using the selected model in subsequent

estimation and inference steps. In finite samples, some effect of the model selection step

cannot be completely excluded (see, e.g., White (2000), Leeb and Pötscher (2005, 2008),

and references therein, for a more detailed discussion). Fortunately, effective methods have

been developed to quantify the effect (White (2000)).

5.2 Local Power

Theorem 1 shows that the limiting distribution of our test statistic is independent of the

regularization parameter ε̂n. Therefore, our test controls size (by Theorem 2 even uni-

formly) and is consistent against fixed alternatives, independently of the specific choice of
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the sequence {ε̂n}. However, as we show in this section, the local asymptotic power of our

test depends on the probability limit of {ε̂n}.

We consider local alternatives δ ∈ R so that n1/2d∗(Pn) → δ. The set Pδ contains

all sequences of distributions that satisfy the assumptions placed on P and along which

n1/2d∗(Pn) converges to δ.

Definition 3. For some δ ∈ R, let Pδ be the set of sequences {Pn} in P such that

n1/2d∗(Pn)→ δ and such that, for any (θA,∞, θB,∞, σ
2
A, σ

2
B, σAB) ∈ ΘA×ΘB×R+×R+×R,

θ∗A(Pn) → θA,∞, θ∗B(Pn) → θB,∞, σ2
A(Pn) → σ2

A, σ2
B(Pn) → σ2

B, and σAB(Pn) → σAB,

where σ2
A(P ) := V arP (ln fA(X; θ∗A(P ))), σ2

B(P ) := V arP (ln fB(X; θ∗B(P ))) and σAB(P ) :=

CovP (ln fA(X; θ∗A(P )), ln fB(X; θ∗B(P ))).

Importantly, alternatives in Pδ are allowed to approach both, observationally equivalent

(σ2 = 0) or observationally distinct (σ2 6= 0) data-generating processes, in the null. The

following theorem presents the power of our test against all local alternatives in Pδ.

Theorem 3. Suppose Assumptions 2 and 6 hold. Let {Pn} ∈ Pδ for some localization

parameter δ ∈ R. Denote by {εn} ∈ E a sequence such that |ε̂n − εn| = OPn(n−1/2) and

ε := plimn→∞ε̂n under Pn. Then, under Pn,

t̃n →d N(λ̃, 1)

with mean

λ̃ := lim
n→∞

√
nd∗(Pn)(1 + εn/2)√

(1 + εn)σ2(Pn) + ε2
n(σ2

A(Pn) + σ2
B(Pn))/2

,

and σ2(P ) = σ2
A(P )− 2σAB(P ) + σ2

B(P ).

Consider sequences {Pn} that approach an observationally distinct models case in the

null, i.e. σ2(Pn)→ σ2 > 0. Then the non-centrality parameter becomes

λ̃ =
δ(1 + ε/2)√

(1 + ε)σ2 + ε2(σ2
A + σ2

B)/2
. (4)
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If {Pn} approaches an equivalent models case in the null, i.e. σ2(Pn)→ 0, and ε 6= 0, then

λ̃ =
δ(1 + ε/2)

ε
√

(σ2
A + σ2

B)/2
. (5)

In the two cases of (4) and (5), λ̃ as functions of ε is maximized at ε = 0 or as ε approaches

0, respectively. On the other hand, when models overlap at the truth, we require a nonzero

sequence of regularization parameters, possibly converging to zero, to guarantee a nonde-

generate limiting distribution of our test statistic. In finite samples, we typically encounter

an intermediate case: we would prefer not to regularize (ε̂n = 0) if we knew that the two

candidate models are “sufficiently far apart” from each other, but we would choose a pos-

itive regularization parameter when the two candidate models are “close” to overlapping

to minimize size distortions.8 The next section formalizes the trade-off between power in

the distinct models case and size control in the equivalent models case, and shows how this

trade-off determines an optimal regularization parameter that can easily be estimated from

the data.

6 Data-driven Regularization Parameter

In this section, we provide a data-driven choice of ε̂n that minimizes higher-order distortions

to size and power of our test. Specifically, we balance the worse-case size distortion if the

models were overlapping with the worst-case power loss if the models were not overlapping.

The rationale for proceeding in this way is that, in our approach, size distortion only occurs

for overlapping models while power loss only occurs when the models are not overlapping.

Furthermore, in a finite sample, it may be difficult to accurately test whether the models

8 Notice that Theorem 2 only requires a positive value ε̂n for uniform size control, but does not imply

that larger values ε̂n lead to “better” size control in any sense.
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are overlapping or not (this is the fundamental pre-testing problem we wish to avoid) and

hence it is natural to consider both possibilities simultaneously. Such an approach also

considerably simplifies the implementation of the method.

In the supplement to this paper, we derive an asymptotic expansion of the size of our

test when the two models are overlapping, viz. for any distribution P0 such that d∗(P0) = 0

and σ2(P0) = 0,

P0(|t̃n| > z1−α/2) ≤ α + CSDε
−1
n n−1/2 ln lnn+ remainder, (6)

where CSD is some constant. Similarly, we expand the power of our test when the models are

non-nested, viz. we show that for sequences of local alternatives {Pn} satisfying d∗(Pn) =

δn−1/2 for any given δ ∈ R \ {0} and σ2 := limn→∞ σ
2(Pn) > 0,

Pn
(
|t̃n| > z1−α/2

)
= Φ

(
zα/2 +

δ

σ

)
+ Φ

(
zα/2 −

δ

σ

)
− C∗PLε2

n + remainder, (7)

where C∗PL is some constant. Size distortion for overlapping models is decreasing in εn

and power loss for distinct models is increasing in εn. Therefore, we propose a tuning

parameter εn that balances the respective leading terms of the size distortion, i.e. the term

CSDε
−1
n n−1/2 ln lnn, and power loss, i.e. the term C∗PLε

2
n. This tuning parameter choice

can be estimated by

ε̂n =

(
ĈSD

Ĉ∗PL

)1/3

n−1/6(ln lnn)1/3 (8)

with

Ĉ∗PL := φ

(
zα/2 −

δ̂∗

σ̂

)
δ̂∗(σ̂2 − 2(σ̂2

A + σ̂2
B))

4σ̂3

ĈSD := 2φ(zα/2)
max{|tr(Ĥ−1

A V̂A)|, |tr(Ĥ−1
B V̂B)|}√

(σ̂2
A + σ̂2

B)/2
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estimating the constants C∗PL and CSD. In the expressions above, δ̂∗ := σ̂/2(zα/2 −√
4 + z2

α/2), Ĥk and V̂k, k = A,B, are estimates of Hk := Hk(P0) and Vk := Vk(P0)

with Vk(P ) := EP [∇θk ln fk (Xi, θ
∗
k(P )) (∇θk ln fk (Xi, θ

∗
k(P )))′], obtained by replacing ex-

pectations by sample averages.

The proposed value of ε̂n in (8) can easily be computed from the data as it requires

only estimates of the matrices Hk and Vk, which have to be computed for the “sandwich”

variance estimator for potentially misspecified models anyway, and the sample variances σ̂,

σ̂2
A and σ̂2

B.

Remark 5. The tuning parameter ε̂n in (8) depends on whether the models overlap or

not via the dependence of C∗PL on σ2 and thus on σAB. In addition, some model-overlap-

dependence is built into the test statistic itself. When the models are far from overlapping, ε̂n

is the prefactor of a higher-order term of the stochastic expansion of the test statistic. When

models approach overlap, the leading term tends to zero and the term of next higher order

(with ε̂n prefactor) becomes dominant. As mentioned in footnote 8 it is worth emphasizing

that Theorem 2 only requires a positive value of ε̂n for any fixed n, but does not imply that

larger values of ε̂n lead to “better” size control in any sense.

Remark 6. The choice ε̂n in (8) is derived from a particular trade-off between the worst-

case size distortion if the models were overlapping with the worst-case power loss if the

models were not overlapping. In principle, it would be possible to derive data-driven choices

of ε̂n using other criteria, such as weighted size distortion and power loss or error in

rejection probability (e.g. as in Calonico, Cattaneo, and Farrell (2016)). One attractive

feature of the trade-off presented here is the simplicity of the resulting choice in (8).
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7 Extensions

To simplify the presentation of our basic model selection procedure we restrict attention to a

simple and stylized framework: we compare two fully specified parametric models based on

the KL criterion, i.i.d. data and a t-statistic. In the supplement, we argue that our proce-

dure applies much more generally and discuss some important, but mostly straightforward,

extensions. First, one could use our test based on goodness-of-fit criteria other than KL

distance. An important example would be comparing the accuracy of competing forecasts

as in Diebold and Mariano (1995). Second, the limiting distribution of our test statistic

requires only asymptotic normality of certain sample averages, so extensions to stationary

data are straightforward. Third, instead of Z-estimators one could readily extend our test

statistic to the comparison of models defined by moment conditions that can be estimated

by GMM. Fourth, we could use our test to rank more than two models by incorporating it

into a multiple testing framework in the usual way (e.g. Lehmann and Romano (2005) and

Romano, Shaikh, and Wolf (2010)). To see this, notice that our test for the comparison of

two models is simply a t-test for whether a mean, i.e. the KL discrepancy between the two

models, is equal to zero or not. Ranking several models therefore requires testing whether

multiple means, i.e. the KL discrepancies between all possible pairs of models, are equal

to zero or not. A simple procedure that accounts for the multiplicity of hypotheses by, say,

controlling the family-wise error rate, is based on individual t-tests with adjusted critical

values. Examples of adjustments are Bonferoni’s and Holm (1979)’s procedures, but more

sophisticated step-up or step-down procedures could be used. See, for instance, Lehmann

and Romano (2005) and Romano, Shaikh, and Wolf (2010) for more details.

The idea of altering a test statistic so that it preserves a normal distribution in all cases

can be exploited in other contexts. In fact, since this paper was first circulated, Hsu and
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Shi (2013) has considered the selection among conditional moment inequality models and

argues that an effect similar to sample splitting can be accomplished by adding a generated

independent normal noise to a non-normal statistic, to obtain a test statistic that is always

normally distributed.

8 Simulations

This section reports Monte Carlo simulation results for two pairs of models (additional

models are considered in the supplementaty material).

All simulations are based on 1, 000 Monte Carlo samples. Our test based on the regular-

ized statistic t̃n is compared to the two-step Vuong procedure (see p. 321 in Vuong (1989))

and to Shi (2015)’s modified Vuong test.9 We consider our test statistic for various choices

of the regularization parameter: εn = 0 (“no reg”), εn = 0.5, εn = 1, and the optimal ε̂n as

defined in (8). The two-step Vuong procedure for a level-α test is implemented by setting

the level equal to α in both individual steps.

Example 1 (Joint Normal Location). This example is similar to one of Shi (2015)’s who

constructed it in order to illustrate the potentially poor power of Vuong’s test. We let

P0 := N((0, µ), (25, 1)I) where I is the identity matrix, PA := {N((µA, 0), I) : µA ∈ ΘA},

and PB := {N((0, µB), I) : µB ∈ ΘB}. The null and alternative models are generated by

varying µ in [0, 2.5]. µ = 0 corresponds to the null hypothesis (d = 0) and values in (0, 2.5]

to alternatives d = µ2/2. Notice that the two models are observationally equivalent under

the null, but misspecified.

9Shi (2015) also compares her test to ours but does not use the optimal regularization parameter

selection rule described in the present version of the paper.
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Example 2 (Nonnested Regressions). This example is similar to one of Shi (2015)’s who

constructed it in order to illustrate the potentially poor size control of Vuong’s test. Let

the random vector (Yi,Wi1, . . . ,Wi10), i = 1, . . . , n, satisfy the regression equation Yi =

1 + τ√
9

∑9
k=1 Wik + τWi10 + εi, with εi ∼ N(0, 22) and (Wi1, . . . ,Wi14) ∼ N(0, I). Consider

model A, Yi = α0 +
∑9

k=1 αkWik+εi with εi ∼ N(0, σ2
A), and model B, Yi = β0 +β1Wi10 +εi

with εi ∼ N(0, σ2
B). For any value of τ 6= 0, the two models have the same distance to the

true model, but are both misspecified. We vary τ in [0, 2].

In Example 1, we estimate means and variances with the sample means and variances

and, in Example 2, we estimate the regressions by ordinary least-squares. Notice that these

estimators are just the maximum-likelihood estimators in the particular models considered

here. In both examples, it is straightforward to verify the assumptions of our theoretical

results in the preceding sections.

Table 1 reports the finite sample size of the different tests. In Example 2, we consider

a family of null hypotheses whereas, in Example 1, we study the properties of our test as

the true distance |d∗| increases from zero (the null hypothesis) to a range of positive values

(alternatives). Figure 1 shows the power curves for Example 1 in panels (a)–(c) and the

null rejection probabilities for Example 2 in panel (d). In both examples, we report results

for 5%-level tests. In addition, we also show power results at the 1% level in Example 1.

The black horizontal lines in the power and size graphs mark the level of the tests. ‘no

reg’, ‘ε̂n = 0.5’, ‘ε̂n = 1’, and ‘optimal’ refer to our test using ε̂n = 0, ε̂n = 0.5, ε̂n = 1, and

the optimal epsilon defined in (8), respectively.

The two main findings from this simulation experiment can be summarized as follows.

(i) In Table 1 and Figure 1(d), we see that all three tests control size well with our test

having size very close to nominal size in most examples. Vuong’s and Shi’s test, on the

other hand, more frequently have size well below nominal size. (ii) Our new test and Shi’s
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Figure 1: Comparison of the rejection frequencies of the different tests considered. For

Example 1, panels (a)-(c) report power curves for different confidence levels α and sample

sizes n as function of the alternative model, indexed by d. For Example 2, Panel (d) reports

the actual size for a family of model pairs (indexed by τ) satisfying the null hypothesis.

On all graphs, the nominal level is marked by a black horizontal line.
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our test

n no reg εn = 0.5 εn = 1 optimal Vuong Shi

100 0.000 0.041 0.045 0.037 0.000 0.000

200 0.000 0.046 0.045 0.039 0.000 0.000

500 0.000 0.039 0.037 0.038 0.000 0.000

Table 1: Null rejection probabilities (nominal size 0.05) for Example 1.

test can have significantly higher power than Vuong’s test. Since our test has size closer to

nominal size than Shi’s, ours possesses more power to detect alternatives close to the null,

i.e. models that are difficult to distinguish. For alternatives further away from the null,

neither test seems to dominate the other.

These simulations suggest that our test performs well in practice, with performance

comparable and sometimes superior to existing methods. These results are especially en-

couraging in light of our method’s conveniently straightforward implementation.

9 Empirical Application

A major part of the classic debate over (New) Keynesian versus (new) classical macroeco-

nomic theory has focused on whether government policies, monetary or fiscal, can have any

systematic impact on outcomes such as output or unemployment (Dadkhah (2009) gives a

nice general overview of the literature and how it has evolved more recently). Under the

new classical hypothesis of rational expectations (“RE”) and natural rate of unemployment

(“NR”), it has been shown (Sargent and Wallace (1975)) that, under certain assumptions,

there is no such effect. Consequently, a lot of effort has been devoted to testing the joint
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NR/RE hypothesis. In an influential paper, Barro (1977) proposes such a test based on a

two equation system, one for money growth (DMt),

DMt = Z ′tθ1 + ε1t (9)

and one for unemployment (UNt),

UNt = X ′tθ2 + ε2t (10)

where Xt and Zt are exogenous explanatory variables known at time t − 1. Specif-

ically, he suggests the covariates Zt := (1, DMt−1, DMt−2, FEDVt, UNt−1) and Xt :=

(1, DMRt, DMRt−1, DMRt−2,MILt,MINWt) with FEDVt a measure of federal govern-

ment expenditure, DMRt := ε1t the unanticipated part of DMt, MILt a measure of

military conscription and MINWt a minimum wage variable.10 The NR/RE hypothesis

implies that unemployment deviates from its so-called natural level (here proxied by MILt

and MINWt) only due to unanticipated changes in money growth (DMRt, DMRt−1,

DMRt−2). Therefore, equation (10) fitting the data well Barro interprets as evidence

supporting the NR/RE hypothesis.

Pesaran (1982) criticizes this approach arguing that failing to reject the NR/RE hy-

pothesis in a particular model is necessary, but not sufficient for failing to reject it against

rival hypotheses. Therefore, he proposes to test it against “proper” or “genuine” alterna-

tives, in particular against three different models with Keynesian features that satisfy (9)

10For exact definitions of the variables involved, see Barro (1977). He also studies output, but we confine

our discussion here to unemployment as the outcome of interest.
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and (10) with the following set of covariates:

K1 : Xt := (1, DMt, DMt−1, DGt,MILt,MINWt, t),

K2 : Xt := (1, DMt, DMt−1, DMt−2, DGt,MILt,MINWt, t),

K3 : Xt := (1, DMt, DMt−1, DMRt, DGt,MILt,MINWt, t),

where DGt is a measure of government spending. Subsequently, we test each of these

models against Barro’s new classical model and a slight variant with a time trend in the

unemployment equation:

B1 : Xt := (1, DMRt, DMRt−1, DMRt−2,MILt,MINWt),

B2 : Xt := (1, DMRt, DMRt−1, DMRt−2,MILt,MINWt, t).

We refer the reader to Pesaran (1982) for specifics about these five models and their theo-

retical foundations.

Based on Barro (1977)’s annual data from 1946 to 1973, we estimate each of the models

in two different ways. First, we estimate both equations (9) and (10) jointly by full-

information maximum likelihood (FIML) assuming that the errors in the two equations are

jointly normal. Second, we estimated only the unemployment equation (10) by maximum

likelihood, again assuming normality of the errors and taking the estimated series {DMRt}

from Barro (1977) as given.

The results of the pairwise model selection tests of new classical models versus Keynesian

models are reported in Table 2 and are based on the estimated optimal epsilon-parameters

which ranged from 1.1 to 1.4 across the twelve pairs of models. As a sensitivity analysis

we also performed our test for epsilon values in a range from 0.1 to 2.0 but the conclusions

derived from the optimal epsilon do not change. When we compare Keynesian and new

classical models based only the unemployment equation, all three tests fail to reject the
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K1 K2 K3

both equations B1 -0.136 -0.664 -0.126

B2 0.767 0.186 0.775

only unemployment equation B1 -0.527 -1.070 -0.507

B2 0.390 -0.247 0.408

Table 2: Value of our regularized model selection test statistic t̃n based on the optimal ε̂n.

hypothesis that the models are equally distant from the truth. Even adding the money

growth equation does not lead to rejections. The sign of our test static suggests that the

Keynesian models are closer to the truth than the new classical model B1, but further away

from the the truth than B2. However, none of these statements is statistically significant at

reasonable levels of confidence. Since, in the simulations, our new test tends to reject at a

higher rate, both, under the null and under alternatives, with significantly higher power in

some scenarios, the fact that our test fails to reject in all 12 model comparisons strenghtens

the findings of the Vuong test which we found to also fail to reject in all twelve comparisons.

The Vuong test’s failure to distinguish the two theories is therefore less likely to be due to

it under-rejecting under the null or to its potentially low power. In conclusion, we interpret

the findings as there not being enough information in the present dataset to discriminate

between the candidate new classical and Keynesian models. A larger sample or imposing

more structure on the models might lead to different conclusions.

There are some interesting differences in these findings compared to the results reported

in Pesaran (1982). He compares models based only on the unemployment equation em-

ploying an F-test as well as a Cox-type test for non-nested models. In the latter testing

procedure, the null hypothesis is that model A is the true data generating process to be
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tested against the alternative that model B is the truth. In terms of the F-test, no model

in {B1, B2} is found to be superior to any model in {K1, K2, K3}. His application of the

Cox-type test, however, results in any model in {B1, B2} being rejected against any alter-

native in {K1, K2, K3} and vice versa. The testing outcomes of the Cox-type procedure

are not possible in our test because both models are treated symmetrically: As soon as our

test rejects equivalence between any two models, the one with the smaller KL distance to

the truth is concluded superior to the other. Even though the null hypothesis in our test

does not assume correct specification of any model, we still do not reject any model com-

bination. Small (1979) and Pesaran (1982) criticize Barro’s specification of the model and

argue that the estimates of the unemployment equation may be sensitive to variations in

the specification of the money growth equation. Our test results show that, at least based

on the present data set, the inclusion the money growth equation has no implications on

whether the new classical or the Keynesian theory is superior to the other.

SUPPLEMENTARY MATERIAL

This supplement provides the proofs of all results in the main text, additional results

referenced in the main text, and additional simulations.
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