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Abstract 
 
 Economic theory often provides shape restrictions on functions of interest in applications, such as 
monotonicity, convexity, non-increasing (non-decreasing) returns to scale, or the Slutsky inequality of 
consumer theory; but economic theory does not provide finite-dimensional parametric models.  This 
motivates nonparametric estimation under shape restrictions.  Nonparametric estimates are often very noisy.  
Shape restrictions stabilize nonparametric estimates without imposing arbitrary restrictions, such as 
additivity or a single-index structure, that may be inconsistent with economic theory and the data.  This 
paper explains how to estimate and obtain an asymptotic uniform confidence band for a conditional mean 
function under possibly nonlinear shape restrictions, such as the Slutsky inequality.  The results of Monte 
Carlo experiments illustrate the finite-sample performance of the method, and an empirical example 
illustrates its use in an application. 
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NONPARAMETRIC ESTIMATION AND INFERENCE UNDER SHAPE RESTRICTIONS 
 
 

1.  INTRODUCTION 

 Let Y  be a scalar random variable and X  be a scalar random variable or vector.  This paper 

presents a method for nonparametrically estimating and carrying out inference about the conditional mean 

function 

 ( ) ( | )g x E Y X x≡ =  

under a shape restriction on g  such as monotonicity, convexity, non-increasing (non-decreasing) returns 

to scale, or the Slutsky inequality of consumer theory.  Economic theory often provides shape restrictions 

but does not provide finite-dimensional parametric models.  For example, cost functions are monotone 

increasing, concave in input prices, and may exhibit non-increasing or non-decreasing returns to scale.  

Demand functions satisfy the Slutsky inequality, which is nonlinear.  This motivates nonparametric 

estimation under shape restrictions.  This paper explains how to estimate and form a uniform confidence 

band for g  under shape restrictions that are more complicated than monotonicity or convexity and may be 

nonlinear. 

 It is well known that g  can be estimated consistently and with the optimal rate of convergence 

without imposing shape restrictions.  Fan and Gijbels (1996) and Härdle (1990), among many others, 

describe nonparametric estimation and rates of convergence without shape restrictions.  Mammen (1991a, 

1991b), Mammen and Thomas-Agnan (1999), and Wang and Shen (2013) discuss rates of convergence 

with shape restrictions.  However, fully nonparametric estimates can be noisy and inconsistent with 

economic theory due to random sampling errors.  For example, Blundell, Horowitz, and Parey (2012, 2016) 

found fully nonparametric estimates of demand functions to be wiggly and non-monotonic.  Blundell, 

Horowitz, and Parey (2012, 2016) also found that imposing the Slutsky restriction reduced random noise 

and led to well-behaved nonparametric estimates without the need for arbitrary and possibly incorrect 

parametric or semiparametric assumptions.   

 Many methods are available for carrying out consistent nonparametric estimation under shape 

restrictions.  See, for example, Hall and Huang (2001, 2002); Hall, Huang, Gifford and Gijbels (2001); Hall 

and Presnell (1999); Matzkin (1994); and the references cited in the foregoing paragraph.  Asymptotic 

inference is not difficult if the values of x  at which the shape restriction binds or does not bind in the 

sampled population are known.  Liew (1976) illustrates this in the context of inequality constrained 

estimation of a linear model.  Du, Parmeter, and Racine (2013) carry out kernel nonparametric estimation.  

In applications, however, it is not known where in the sampled population the shape restriction does or does 

not bind.  This greatly complicates inference, because random sampling errors can cause the shape 
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restriction to bind or not bind the estimated and true g  at different values of  x .  A similar problem arises 

in inference about a finite-dimensional parameter that may be on the boundary of the parameter set 

(Andrews 1999).  Existing results on inference about a shape-restricted, nonparametrically estimated 

conditional mean function are limited to functions that are assumed to be monotonic or convex.  The 

literature on inference under monotonicity or convexity restrictions is vast.  See, among many others,  

Banerjee and Wellner (2001); Birke and Dette (2006); Chernozhukov, Fernandez-Val, and Galichon 

(2009); Dette, Neumeyer, and Pilz (2006); Dumbgen (2003); Groeneboom and Jongbloed (2015); 

Groeneboom, Jongbloed, and Wellner (2001); Pal and Woodroofe (2007); and the references therein.  

Existing results do not treat shape restrictions such as increasing or decreasing returns to scale and the 

Slutsky inequality that are of particular importance in economics.  There is also a large literature on testing 

the hypothesis that a shape restriction holds.  See, for example, Andrews and Shi (2013); Chernozhukov, 

Lee, and Rosen (2013); Hall and Yatchew (2005); Lee, Song, and Whang (2013); Romano, Shaikh, and 

Wolf (2014); and the references therein. 

 This paper is concerned with inference under shape restrictions, such as the Slutsky restriction, that 

may be nonlinear in a sense that is defined in Section 4.  We formulate the estimation problem as 

minimization of a local quadratic objective function subject to constraints that implement the shape 

restriction.  In general, the shape restriction generates a continuum of constraints.  We reduce the number 

of constraints to a finite value by imposing the shape restriction and estimating g  only on a discrete grid 

of points x  in the support of X .  We obtain a confidence band that is uniform over points in the grid.  The 

grid becomes finer as the sample size, n , increases, thereby ensuring that, asymptotically, the shape 

restriction holds everywhere in the support of X .  This enables us to obtain a confidence band for g  that, 

asymptotically, is uniform over the support of X  and satisfies the shape restriction.  In practice, a 

confidence band can be computed only on a grid, so there is little practical difference between a band that 

is uniform over grid points and one that is uniform over a continuum.   

 The use of a discrete grid of points x  enables us to overcome the problem of not knowing which 

constraints are binding in the sampled population.  Let n  be the set of constraints that bind in the 

population or nearly bind in a sense that is defined in Section 4.  This set is unknown.  We find a data-based 

set ˆ
n  of “possibly binding” constraints and carry out estimation under the (possibly false) assumption that 

ˆ
n n=  .  We show that ˆ

n n=   with probability approaching 1 as n →∞ .  Consequently n  can be 

treated as known asymptotically, and asymptotic inference can be carried out as if n  were known and 

ˆ
n n=  . 
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 Let 0 ( )g x  and ˆ( )g x , respectively, denote the true conditional mean function and the shape-

restricted nonparametric estimator.  We show that with suitable scaling, 0ˆ ( ) ( )g x g x−  is asymptotically 

jointly normally distributed with mean 0 over grid points.  Asymptotic normality makes it possible to obtain 

a confidence band for 0g  that is uniform over grid points.  As n →∞  and the distance between grid points 

approaches 0, the uniform confidence band over grid points converges to a uniform confidence band over 

all values of x . 

 Estimation of ( )g x  at points x  that are not in the grid is unnecessary for forming an asymptotic 

uniform confidence band for g  but may be of interest for other reasons.  Estimation of ( )newg x  at a point 

newx  that is not in the grid can be carried out using the methods of this paper by shifting the location of the 

grid so that newx  is a point of the shifted grid.  Alternatively, ( )newg x  can be estimated using any of a 

variety of methods for interpolating ( )g x  between grid points subject to the shape restrictions.  The choice 

among interpolation methods is arbitrary and, except in special cases, does not yield an estimator that 

converges in probability as rapidly as an estimator based on the shifted grid. 

 Section 2 outlines the main steps involved in implementing our method.  Section 3 presents the 

unconstrained and constrained nonparametric estimators of g  and defines the grid.  Section 4 describes the 

method for finding the set ˆ
n  of possibly binding constraints.  Section 5 explains how to carry out inference 

about g  and form a uniform confidence band for g  under shape restrictions.  The confidence band obtained 

in Section 5 is uniform over the support of X  and also over a class of functions g  that includes nearly 

binding constraints.  To minimize notational complexity, the discussion in Sections 2-5 assumes that X  is 

a scalar random variable.  The extension to higher dimensions is outlined in Section 6.  Section 7 presents 

the results of Monte Carlo experiments and an empirical example that illustrate the numerical performance 

of our methods.  Section 8 presents concluding comments.  The proofs of theorems are in the appendix, 

which is Section 9. 

2.  A GUIDE TO IMPLEMENTATION 

 This section outlines the main steps of our method for estimating and obtaining a uniform 

confidence band for g .  We assume here that X  is a scalar random variable whose support is [0,1] .  The 

extension to a multidimensional X  is presented in Section 6. 

 1.  Define a grid 1 20 ... 1Jx x x< < < < < of J  equally spaced points on (0,1) .  A data-based method 

for choosing J  in applications is presented in Section 7. 
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 2.  Estimate ( )jg x  ( 1,...,j J= ) nonparametrically by using local quadratic estimation with 

bandwidth h .  Let ( )jg x  denote the resulting estimate.  A method for choosing h  in applications is 

presented in Section 3.1.   

 3.  Use the estimates ( )jg x  to find the set ˆ
n  of possibly binding shape constraints.  ˆ

n  is given 

by equation (4.6). 

 4.  Re-estimate ( )jg x  ( 1,...,j J= ) nonparametrically using constrained local quadratic estimation 

under the restriction that the shape constraints in ˆ
n  are binding (that is, they are equalities) and ignoring 

all other shape constraints. 

 5.  Form a uniform confidence band for g  using either the method of equations (5.8) and (5.9) or 

the method of Section 5.3. 

3.  THE ESTIMATORS OF g  

 This section describes our methods for estimating g  with and without shape restrictions.  The 

unrestricted estimator is used to estimate the set of possibly binding constraints.  The shape-restricted 

estimator is an extension of the unrestricted estimator.  Section 3.1 presents the unrestricted estimator.  

Section 3.2 presents grid and the shape-restricted estimator.   

 3.1  The Unrestricted Estimator 

 This section presents the unrestricted nonparametric estimator of g  that is used throughout the 

remainder of this paper.  Let { , : 1,..., }i iY X i n=  denote an independent random sample from the 

distribution of ( , )Y X .  Assume for now that X  is a scalar random variable.  The extension to a 

multidimensional X  is presented in Section 6.  Also assume that the support of X  is a compact interval.  

Without further loss of generality, let this interval be [0,1] .   

 We use local quadratic estimation with bandwidth 1/5h n−∝  to obtain the unrestricted 

nonparametric estimator of g .  In applications, the bandwidth can be chosen by using cross-validation or 

plug-in methods for local constant or local linear estimation.  Under our assumptions, local quadratic 

estimation with 1/5h n−∝  provides an estimator of g  that is free of asymptotic bias, and the bandwidth can 

be selected by standard methods.  Local constant, local linear, and series estimation methods with a 

bandwidth selected by cross-validation or plug-in methods do not have this property.  They require 

undersmoothing or explicit bias correction to prevent asymptotic bias, and this requires choice of an 

auxiliary bandwidth (or series length in the case of series estimation).  There are no satisfactory data-based 
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methods for choosing the auxiliary bandwidth or series length.  Hall and Horowitz (2013) provide numerical 

illustrations of this problem.  Calonico, Cattaneo, and Farrell (2014) present an alternative form of 

undersmoothing that does not require an auxiliary bandwidth.  This method has some desirable theoretical 

properties but is more complex than the one used here. 

 The following notation is used to define the unrestricted estimator of ( )g x  and in the remainder of 

this paper.  Let K  denote a probability density function that is supported on [ 1,1]−  and symmetrical about 

0.  For any [ 1,1]v∈ − , let ( ) ( / )hK v K v h= .  Let ( )U Y g X= −  and 2 ( )U Var Uσ = .  For any [0,1]x∈ , let 

xN  denote the interval [ , ]x h x h− + .  Define 

1
(| | )

n

x i
i

n I X x h
=

= − ≤∑ . 

Let 1,...,
xni i  index observations i XX N∈ .  For 

1
,...,

nx
i i xX X N∈ , define the 3xn ×  matrix 

 
1 1

2

( )

2

1 ( ) ( )

..... ,

1 ( ) ( )
n nx x

i i
x

i i

X x X x

X x X x

 − −
 
 =
 

− −  

X  

the x xn n×  diagonal matrix 

 ( ) [ ( ) : ]x
h i i xdiag K X x X N= − ∈W , 

and the 3 3×  matrix 

( ) 1 ( ) ( ) ( )x x x x
n xn− ′=S X W X . 

Also, for 
1
,...,

nx
i i xX X N∈ , define the 1xn ×  vectors 

1

( ) ( ,..., )
nx

x
i iY Y ′=Y , 

1

( ) ( ,..., )
nx

x
i iU U ′=U , and 

1

( ) [ ( ),..., ( )]
nx

x
i ig X g X ′=g . 

Now let 1 2 3( , , )b b b ′=b  be a 3 1×  vector, and let 

( ) ( ) ( ) ( ) ( )
1 2 3

( ) ( ) ( ) ( ) ( ) ( )

( ) [ ( ), ( ), ( )] arg min( ) ( )

arg min( 2 ).

x x x x x

x x x x x x

x b x b x b x ′ ′≡ = − −

′ ′′= −

b

b

b Y X b W Y X b

b X W X b Y W X b

  

 

The unrestricted estimator of ( )g x  is 1( ) ( )g x b x=  .  Standard algebra of least squares estimation shows 

that 

 ( ) 1 1 ( ) ( ) ( ) ( ) 1 1 ( ) ( ) ( )
1 1( ) ( ) ( ) ( ) ( )x x x x x x x x

n x n xg x g x e n e n g x− − − −′ ′′ ′− = + −S X W U S X W g , 

where 1 (1,0,0)e ′= . 
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 Now make the following assumptions: 

 Assumption 1:  { , : 1,..., }i iY X i n=  is an independent random sample from the distribution of 

( , )Y X , where (i) supp( ) [0,1]X = .  (ii) ( )Y g X U= + , ( | ) 0E U X x= =  and 2 2( | ) UE U X x σ= =  (a finite 

constant) for every [0,1]x∈ .  (iii) There is an operator A  such that ( )( ) 0Ag x ≤  for every [0,1]x∈ .  (iv) 

3(| | )E U < ∞ . 

 Assumption 2:  (i) ( )g x  is four times continuously differentiable at each [0,1]x∈ . (ii) The 

distribution of X  has a probability density function with respect to Lebesgue measure, Xf , that is 

continuously differentiable everywhere in [0,1] .  (iii) ( )Xf x δ≥  for some 0δ >  and every [0,1]x∈ . 

 Assumption 3:  (i) K  is a bounded probability density function that is supported on [ 1,1]−  and 

symmetrical about 0;  (ii) 1/5h cn−=  for some finite 0c > .  

 Except for Assumptions 1(iii) and 1(iv), these are standard assumptions in local polynomial 

nonparametric estimation.  Assumption 1(iii) ensures that the shape restricted model is not misspecified.  

Section 3.2 provides further information about the operator A .  Assumption 1(iv) used in Section 3 to 

ensure that ˆ( ) 1n nP = →  , where n  is the unknown set of constraints that bind or nearly bind in the 

population and ˆ
n  is the data-based set of possibly binding or nearly binding constraints.  Assumption 1(iv) 

is also used in Section 4 to obtain the asymptotic distribution of the constrained estimator of g .  

Assumption 1(ii) requires U  to be homoscedastic.  This assumption can be removed at the cost of a more 

complex estimation procedure than the one presented here.  The extension to a heteroscedastic U  is 

outlined at the end of this section.  Assumptions 2 and 3 make the local quadratic estimator undersmoothed, 

as is necessary to avoid asymptotic bias in the estimator of g .  The assumption that g  has four continuous 

derivatives is stronger than needed to obtain the asymptotic distributional results presented in this paper.  

The results can be obtained under the assumption that g  is twice continuously differentiable.  However, 

this requires choosing an undersmoothing bandwidth or an auxiliary bandwidth for explicit bias correction.  

There are no satisfactory empirical methods for making these choices in applications.  The method of 

Calonico, Cattaneo, and Farrell (2014) permits g to have three derivatives at the cost of greater complexity 

than the method used here. 

 The following proposition states the properties of ( )g x  that are used in this paper. 

 Proposition 3.1:  Let Assumptions 1(i), 1(ii), 2, and 3 hold.  For each (0,1)x∈  

(3.1) 1/2 1/2 ( ) 1 1 ( ) ( ) ( )
1( ) [ ( ) ( )] ( ) ( )x x x x

n x nnh g x g x nh e n r− − ′′− = +S X W U  

and 
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(3.2) 1/2 2
( )( ) [ ( ) ( )] (0, )d

g xnh g x g x N σ− →


 , 

where 2
nr ch≤  for all x  and some constant c < ∞ , and 

 
2

2
( ) ( )

U
g x K

X
C

f x
σ

σ =


, 

where KC  is a constant that depends on K  but not on x , g , or h .    

Result (3.1) follows from Theorem 3.1 of Fan and Gijbels (1996).  See, also, Ruppert and Wand 

(1994).  Result (3.2) is obtained by applying the Lindeberg-Levy central limit theorem to the first term on 

the right-hand side of (3.1).  Fan and Gijbels (1996, p. 62) give the formula for KC .  In applications, ( )Xf x  

and 2
Uσ  can be replaced with consistent estimators to give the consistent estimator of 2

( )g xσ


, 

 
2

2
( )

ˆˆ ˆ ( )
U

g x K
X

C
f x
σ

σ =


, 

where ˆ ( )Xf x  is a consistent estimator of ( )Xf x  (e.g., a kernel nonparametric density estimator) and 2ˆUσ  

is a consistent estimator of 2
Uσ .  When X  is a scalar, 2

Uσ  can be estimated by the method of Rice (1984); 

Gasser, Sroka, and Jennen-Steinmetz (1986); and Buckley, Eagleson, and Silverman (1988).  To construct 

this estimator, let (1) (2) ( )... nX X X< < <  be the ordered sequence of iX ’s. and let ( ){ }iY  be the similarly 

ordered values of the iY ’s.  The estimator of 2
Uσ  is 

 
1

2 2
( 1) ( )

1

1ˆ [ ]
2( 1)

n

U i i
i

Y Y
n

σ
−

+
=

= −
− ∑ . 

This estimator is 1/2n− -consistent under Assumptions 1 and 2.   

 The foregoing discussion assumes that U  in Assumption 1(ii) is homoscedastic.  If U  is 

heteroskedastic, then the constant 2
Uσ  in Proposition 1 must be replaced with the function 

2 2( ) ( | )U x E U X xσ = =  (Fan and Gijbels 1996, Theorem 3.1).  The estimator 2ˆUσ  must be replaced by an 

estimator of 2 ( )U xσ  give the required expression for 2
( )g xσ


.  Horowitz and Spokoiny (2001) describe such 

an estimator.  The results in the remainder of this paper hold under heteroscedasticity if 2
Uσ  and 2ˆUσ , 

respectively, are replaced by 2 ( )U xσ  and an estimator of 2 ( )U xσ . 

 3.2  Shape-Restricted Estimation and the Grid 

 The shape restriction on g  is written ( )( ) 0Ag x ≤  for every [0,1]x∈ , where A  is an operator that 

maps functions satisfying Assumption 2(i) into a possibly different class of functions on [0,1] .  For 
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example, if g  is monotone non-increasing, then /Ag dg dx= .  The shape restriction constitutes infinitely 

many constraints on g .  We represent the shape restriction as a finite number of constraints by imposing it 

only at a grid of J  equally spaced points 1 20 ... 1Jx x x< < < < < .  J  increases as n  increases.  Because 

the grid points are equally spaced, the distance between two consecutive grid points is 1 / ( 1)J∆ = + .  We 

assume that: 

Assumption 4:  (i) 1/4(log )a bJ n n − −∝  for some 0 1 / 5a< ≤  and 0b > .  (ii) 1 / [2( 1)]h J< + .  (iii) 

J →∞  as n →∞ . 

 Assumptions 4(i) and 3(ii) ensure that Assumption 4(ii) holds for all sufficiently large n .  

Assumption 4(ii) requires 1 / [2( 1)]h J< +  for any n .  Under this assumption, for each 1,...,i n= , there is 

only one j  such that 
ji xX N∈ .  Therefore, ( )jg x  and ( )kg x  are statistically independent if j k≠ .  

Assumption 4(iii) ensures that the distance between grid points decreases as n  increases. 

Let ( )j jg g x= , and let g  be the 1J ×  vector 1( ,..., )Jg g ′=g .  With this notation, a shape 

restriction that is imposed only at grid points can be written 

 ( ) 0; 1,...,kA k Jκ≤ = ≤g , 

where the kA ’s are functions.  For example, the restriction that g  is non-increasing, can be represented as 

1 0j jg g+ − ≤ for every 1,..., 1j J= − .  Thus, 1( )k k kA g g+= −g , and 1Jκ = − .  J  and κ  both increase as 

n  increases.  This dependence on n  is not represented in the notation but is understood throughout this 

paper. 

 We impose shape restrictions on the grid by constraining differences between values of ( )g x  at 

different values of x , not by constraining derivatives of g .  This is because estimators of derivatives of g  

converge more slowly than the estimator of g .  Consequently, the random sampling error of the constrained 

estimator of g  is larger and the uniform confidence band for g  wider if shape restrictions are imposed by 

constraining derivatives than if they are imposed by constraining differences.   

 Let { : ( ) 0}kk A= =g  denote the set of constraints that bind in the sampled population, and let 

| |  denote the number of elements in  .  Estimation of g  subject to ( ) 0kA ≤g  ( 1,...,k κ= ) is 

asymptotically equivalent to estimating g  subject to ( ) 0kA =g  for k∈ .  In other words, constraints that 

do not bind in the population can be dropped, and constraints that do bind can be replaced by equalities.  In 

typical applications, the function ( )kA g  depends only on a few components of g .  For example, 

1( ) 0k k kA g g+= − ≤g  represents the restriction that g  is non-increasing, and ( )kA g  depends on only two 

components of g .  The restriction that g  is convex can be represented as 



9 
 

1 2( ) ( ) 2 ( ) ( ) 0k k k kA g x g x g x+ += − + − ≤g , and ( )kA g  depends on only three components of g .  If | | κ<  

(not all constraints are binding), then there may be some components of g  that do not affect the value of 

( )kA g  for any k∈ .  That is, there may be some jg ’s for which ( ) / 0k jA g∂ ∂ =g  for every k∈ .  These 

jg ’s are unconstrained.  They can be estimated and inference about them carried out using the unrestricted 

nonparametric method of Section 3.1.  It is necessary to carry out constrained estimation and inference only 

for jg ’s satisfying ( ) / 0k jA g∂ ∂ ≠g  for some k∈ .  These components affect the value of ( )kA g  for 

some k∈  and, therefore, are constrained.  Call these jg ’s “active components” of g .  Call the remaining 

components “inactive.”  Define 

{ : is an active component of }jj g= g , 

and let | |  denote the number of elements of  .  Let ( )ag  denote the | | 1×  vector of active components 

of g . 

 We use the following notation to define the shape-restricted local quadratic estimator of ( )ag .  

Index the components of ( )ag  and the grid points corresponding to them by 1,...,| |=  .  Define the 3n×  

matrix 

 

2
1 1

( )

2

1 ( ) ( )
... ; 1,..., | |

1 ( ) ( )n n

X x X x

X x X x

 − −
 

= = 
 − − 

X
 



 

  . 

Let ( )W   be the n n×  diagonal matrix whose ( , )i i  component is ( )h iK X x−


, and let Q  be the 

3 | | 3 | |×   block diagonal matrix 

 

(1) (1) (1)

(2) (2) (2)

(| |) (| |) (| |)

0 ... 0

0 ... 0
... ...

0 0 ...

 ′
 
 ′

=  
 
 ′  

X W X

X W XQ

X W X  

. 

Finally, define the 3 | | 1×  vector 

 (1) (1) (| |) (| |)[( ) ... ( ) ]′ ′′ ′ ′=d X W Y X W Y  , 

and let b  the 3 | | 1×  vector 11 21 31 1| | 2| | 3| |( , , ,..., , , )b b b b b b ′   . 

 If   were known, the shape restricted local quadratic estimator of g


 ( ∈  ) would be 1b


 , where 

1b


  is the (3 2)−  component of the 3 | | 1×  vector 
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  arg min(0.5 - )′ ′=
b

b b Qb d b  

subject to: 

  ( ) 0;kA k= ∈g  . 

However,   is unknown in applications.  Therefore, we replace it with the estimate ˆ
n  that is described in 

Section 4.  Redefine the active components of g  as the jg ’s satisfying ( ) / 0k jA g∂ ∂ ≠g  for some ˆ .nk ∈

In the definitions of Q  and d , replace   with  

 ˆ { : is a redefined active component of }jj g= g   

and replace | |  with ˆ| | , which is the number of elements of ̂ .  We estimate an active component g


 

by 1̂ĝ b=
 

, which is the (3 2)−  component of the vector 

(3.3)  ˆ arg min(0.5 - )′ ′=
b

b b Qb d b  

subject to: 

  ˆ( ) 0;k nA k= ∈g  . 

The estimator of the vector of redefined active components ( )ag  is ( )
11 14 3| | 2
ˆ ˆ ˆˆ ( , ,.., )a b b b − ′=g  .   

 In summary, we estimate the active components of g  by solving (3.3) and the remaining 

components by the unrestricted method of Section (3.1).  Denote the resulting estimator of g  by ˆ̂g .  Section 

4 obtains the asymptotic distribution of 1/2 ˆ̂( ) ( )nh −g g  and a uniform confidence band for g . 

4.  THE SET OF POSSIBLY BINDING CONSTRAINTS 

 This section explains how to find the set ˆ
n  of possibly binding constraints.  Define the 1J ×  

vectors ( )
1[ ( ),..., ( )]J

Jg x g x ′=g  and ( )
1[ ( ),..., ( )]J

Jg x g x ′=g   .  For each 1,...,k κ= , define the set  

 ( ) { : ( ) / 0 for all }k jk j A g= ∂ ∂ =g g .   

Let | ( ) |k  denote the number of components of ( )k , and define 0 1,...,max | ( ) |kJ kκ==  .  Recall that 

( )( ) 0J
kA ≤g  for every k .  For any finite constant 0C >  let Cn  be the set of constraints k  for which 

1 1/2 ( ) 1/2( ) ( ) [(log ) / ( )]J
kC nh A C n nh− − ≤ − ≤g .  That is 

 1 1/2 ( ) 1/2{ : ( ) ( ) [(log ) / ( )] }J
Cn kk C nh A C n nh− −= ≤ − ≤g . 

Let  | |Cn  be the number of constraints in Cn .  Define n  as the set of constraints that do not belong 

to Cn  for any finite 0C > .  That is 
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 ( ) 1 1/2 ( ) 1/2{ : ( ) ( )  or ( ) [(log ) / ( )] }J J
n k kk A C nh A C n nh C− −= − < − > ∀ < ∞g g  

Make the following assumption: 

 Assumption 5:  (i) There is a finite constant q  not depending on n  such that | ( ) |k q≤  for all 

1,...,k κ= .  (ii) The vector ( )Jg  is contained in a compact subset   of J
 .  (iii) kA  is a twice continuously 

differentiable function of its arguments for each 1,...,k κ= .  There is a constant < ∞  such that 

2 ( )| ( ) / |J
k jA g∂ ∂ ≤g



  for all ( )J ∈g  ; , 1,...,j J= ; and 1,...,k κ= . (iv) | | 0Cn →  as n →∞  for 

every finite 0C > . 

Assumption 5(i) is motivated by the observation that with typical shape restrictions, such as 

monotonicity, convexity, or the Slutsky inequality, ( )kA g  depends on only a few components of g .  

Assumption 5(iv) holds for typical shape restrictions if Assumption 4 holds.  Examples illustrating this are 

given in the appendix.  Assumption 5(iv) permits some non-binding constraints to be “nearly binding” in 

the sense that ( ) 1/2| ( ) | [( ) ]J
kA o nh −=g  but ( )| ( ) | 0J

kA >g  for one or more values of k . 

The following theorems state properties of ( ) ( )-J Jg g  that are used to construct the set ̂  of 

possibly binding constraints. 

 Theorem 4.1:  Let Assumptions 1-4 and 5(i)-5(iii) hold.  Define the J J×  diagonal matrix 

2
( )[ : 1,..., ]

jg xdiag j Jω σ= =


.  Let ϒ  be the κ κ×  matrix whose ( , )k   component is 

 
( ) ( )( ) ( )J J

k
k

A Aω
′   ∂ ∂

ϒ =    
∂ ∂     

g g
g g





. 

Define the random variables ~ (0, )N ωz  and ~ (0, )N ϒz .  Then  

(4.2) 1/2 ( ) ( )lim sup | [( ) ( ) ] ( ) | 0J J
n

P nh P
→∞

− ≤ − ≤ =
t

g g t z t  

and  

(4.3) 1/2 ( ) ( )lim sup | {( ) [ ( ) ( )] } ( ) | 0J J
k kn

P nh A A P
→∞

− ≤ − ≤ =
t

g g t z t  .    

 Theorem 4.2:  Let Assumptions 1-5 hold.  Define 1/2(log )nc n= , 

 { }1/2 1/2 ( ): ( ) ( )J
n kk k nk nh A c−= − ϒ ≤g , 

and 

{ }1/2 1/2 ( ): ( ) ( )J
n kk k nk nh A c−= − ϒ ≤g

 . 

Then  



12 
 

(4.4) ( )lim   for any  and finite 0 0n Cnn
P k k C

→∞
∈ ∈ > =   

and 

(4.5) lim ( ) 1n nn
P

→∞
= =  .    

These results continue to hold if kkϒ  is replaced by the consistent estimator ˆ
kkϒ  obtained by 

replacing 2
( )jg xσ


with 2
( )ˆ

jg xσ


 in ω  and ( )Jg  with ( )Jg  in kϒ 

.  Accordingly, define  

(4.6) { }1/2 1/2 ( )ˆ ˆ: ( ) ( )J
n kk k nk nh A c−= − ϒ ≤g . 

Then Theorem 4.2 implies 

 Corollary 4.3:   

 ˆlim ( ) 1n nn
P

→∞
= =  .    

ˆ
n  can be calculated from the data and is the desired set of possibly binding constraints.  Asymptotically, 

ˆ
n  contains constraints that are nearly binding in the sense defined in the paragraph following Assumption 

5 as well as constraints that are truly binding.  This property of ˆ
n  enables the asymptotic distributional 

results presented in Section 5 to hold uniformly over a class of functions for which some constraints may 

be nearly binding. 

5.  ASYMPTOTIC DISTRIBUTION OF THE CONSTRAINED ESTIMATOR AND UNIFORM 

CONFIDENCE BAND 

 This section shows that 1/2 ˆ̂( ) ( )nh −g g  is asymptotically multivariate normally distributed with 

mean 0.  The distributional result is used to obtain an asymptotic uniform confidence band for ( )Jg  on the 

grid and, therefore, for ( )g x  because the grid becomes dense as n →∞ .  Because ˆ( ) 1n nP = →   as 

n →∞ , the asymptotic distribution of 1/2 ˆ̂( ) ( )nh −g g  is unchanged by replacing the random set ˆ
n  in (3.3) 

with the non-stochastic set n .  Therefore, it suffices to derive the asymptotic distribution of 1/2 ˆ̂( ) ( )nh −g g  

and confidence band for ( )g x  under the assumption that n  is known.  Accordingly, it is assumed 

throughout this section that n  is known.  The estimator ˆ̂g  is obtained by solving problem (3.3) with n  

in place of ˆ
n .  Solving (3.3) with the constraint set n  causes any nearly binding constraints to be treated 

as binding.  The results of this section show that the consequent biases are asymptotically negligible. 

Section 5.1 treats the case of linear constraint functions kA .  Section 5.2 extends the results of 

section 5.1 to nonlinear constraints.   
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 5.1  Linear Constraints 

 If the functions kA  are linear, the inequalities ( ) 0kA ≤g  ( 1,...,k κ= ) can be written as ≤Ag r , 

where A  is a Jκ ×  matrix and r  is a 1κ ×  vector.  For example, if g  is monotone non-increasing, then 

1( ) ( ) ( )k k kA g x g x+= −g , 0=r , and A  is the ( 1)J J− ×  matrix 

 

1 1 0 0 ... 0 0
0 1 1 0 ... 0 0

...
0 0 0 0 ... 1 1

− 
 − =
 
 

− 

A . 

 It follows from (3.2) and Assumption 4 that the estimators of the inactive components of 
1/2 ˆ̂( ) ( - )nh g g  are asymptotically normally distributed with means of 0 independently of each other and of 

the active components.  Therefore, asymptotic distribution of 1/2 ˆ̂( ) ( )nh −g g  will be known after the 

asymptotic distribution of its active components has been obtained.  It follows from Corollary 4.3 and the 

discussion in the first paragraph of Section 5 that asymptotically, the active components include nearly 

binding constraints that are treated as if they were binding as well as constraints that are truly binding. 

Let κ κ≤  the number of rows of A  corresponding to constraints affecting active components of 

g .  Let ( )aA  be the | |κ×   matrix consisting of the columns of A  corresponding to active components of 

g .  The constraints on these components can be written as ( ) ( ) ( )a a a=A g r , where ( )ar  is a 1κ ×  vector.  

Let A


 denote the 3 | |κ ×   matrix in which column 3 2−  ( 1,...,| |=  ) is column   of ( )aA  and the 

remaining columns are all zeros.  Because it can be assumed as n →∞  that   is known, problem (3.3) 

with linear constraints can be rewritten as 

(5.1)  ˆ arg min(0.5 - )′ ′=
b

b b Qb d b  

subject to: 

  ( )a=Ab r


. 

Note that A


 and r  are non-stochastic.  Problem (5.1) can be solved analytically using the method of 

Lagrangian multipliers.  The solution is the well-known constrained least squares estimator 

 ( ) -1 -1 ( )ˆ ( ) ( )a a+′ ′= − −b b Q A AQ A Ab r
   

  , 

where ( )ab  is the subvector of the unconstrained local quadratic estimator of Section (3.1) corresponding 

to active components of g  and the superscript + denotes the Moore-Penrose generalized inverse.  Only 

columns 1, 4,…, 3 | | 2−  of the 3 | |κ ×   matrix A


 are non-zero, and components 1, 4,…, 3 | | 2−  of the 
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3 | | 1×  vector b  correspond to components of ( )ag , which is the local quadratic estimator of ( )ag .  The 

submatrix of A


 consisting of columns 1, 4,…, 3 | | 2−  is ( )aA .  Therefore, ( ) ( )a aA =b A g




 , 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ),

a a a a

a a a a a a a a a

A

E E

− = −

= − + − + −

b r A g r

A g g A g g A g r







  

 

and 

 ( ) -1 -1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ( ) [ ( ) ( ) ( )]a a a a a a a a a aE E+′ ′= − − + − + −b b Q A AQ A A g g A g g A g r
  



   . 

Under Assumptions 1(iii) and 5(iv),  

 ( ) ( ) ( ) 0a a a− =A g r  

for truly binding constraints, 

 ( ) ( ) ( ) 1/2[( ) ]a a a o nh −− =A g r  

for nearly binding constraints, and  

 ( ) ( ) ( ) 4 1/2( ) ( ) [( ) ]a a aE O h o nh −− = =A g g  

for all J .  Therefore, 

 

{ }

( ) ( ) ( ) ( ) -1 -1 ( ) ( ) ( ) ( ) 1/2

-1 -1 ( ) ( ) ( ) ( ) 1/2
| | | |

ˆ ( ) [ ( ) ] ( ) [( ) ]

[ ( ) ] ( ) [( ) ]

a a a a a a a a

a a a a

E o nh

I E o nh

+ −

+ −
×

′ ′− = − − − +

′ ′= − − +

g g g g Q A AQ A A g g

Q A AQ A A g g

  

  

  

  

 

for all J , where ( )[ ] a⋅  denotes the | | | |×   submatrix of the | 3 | | 3 |×   matrix [ ]⋅  consisting of rows and 

columns 1, 4,…, 3 | | 2− .  Define  

 { }( ) -1 -1 ( ) ( )
| | | | [ ( ) ]a a aI +
× ′ ′Ξ = − Q A AQ A A

  

  . 

Then 

(5.2) ( ) ( ) ( ) ( ) ( ) 1/2ˆ ( ) [( ) ]a a a a aE o nh −− = Ξ − +g g g g   

for all J . 

 Now rearrange the components of g  and ˆ̂g  into the vectors ( ) ( )[ , ]a a− ′g g  and ( ) ( )ˆ ˆˆ ˆ[ , ]a a− ′g g , 

respectively, where the superscript ( )a−  denotes inactive components of g  and ˆ̂g .  It follows from 

Theorem 4.1 that 1/2 ( ) ( )( ) ( )a anh E−g g   is asymptotically multivariate normally distributed with a diagonal 

covariance matrix.  Therefore, (5.2) implies that 1/2 ( ) ( )ˆ( ) ( )a anh −g g  and 1/2 ˆ̂( ) ( )nh −g g  are linear 

combinations of asymptotic multivariate normals and are, themselves, asymptotically multivariate normal.  

Consequently, we have the following theorem. 
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 Theorem 5.1:  Let Assumptions 1-5 hold.  Let nΣ  be the J J×  matrix  

 

( )

( )

0

0
 

a
n

n a
n

− Σ
Σ =  

Σ  
, 

( ) 2
( )[ : ( ) is inactive]

j

a
n g x jdiag g xσ−Σ =



, 

( ) ( ) ( )a a a
n ′Σ = Ξ Ω Ξ , 

and 

 2
( )[ : ( ) is active]

jg x jdiag g xσΩ =


.   

Let z  be a random vector that is distributed as (0, )nN Σ . If the constraints on g  are linear, then  

(5.3) 1/2 ˆ̂lim sup sup | [( ) ( ) ] ( ) | 0
n

n g
P nh P

→∞ ∈
− ≤ − ≤ =

t
g g t z t


.    

The asymptotic normality property stated in (5.3) holds uniformly over functions ng∈ .  That 

is, it holds uniformly over a class of functions in which some constraints may be nearly binding.  This class 

does not include functions Cng∈  for any finite C .  Thus, there is a “gap” in the class of functions for 

which uniformity holds.  A similar gap arises in penalized least squares or maximum likelihood estimation 

of high-dimensional models.  See for example, Bühlmann and van de Geer (2011) and Horowitz and Huang 

(2013).  Results of Leeb and Pötscher (2005, 2006) indicate that removing the gap for the large class of 

shape restrictions treated in this paper would be difficult or impossible.   The methods for inference under 

monotonicity or convexity cited in Section 1 do not establish uniformity.  It is not known if a 

computationally tractable method can be developed for achieving uniformity without a gap like Cng∈  

for the general class of shape restrictions treated in this paper. 

In the econometrics literature on moment inequalities, interest often centers on inference about a 

partially identified finite-dimensional parameter.  As in this paper, it is not known which inequality 

constraints are or are not equalities.  In moment inequalities, a confidence region for the parameter that has 

the correct asymptotic coverage probability uniformly over a class of distributions that includes nearly 

binding inequality constraints can be achieved without a gap by inverting a statistic for testing the 

hypothesis that the inequalities hold for a given parameter value.  See, for example, Andrews and Soares 

(2010).  In principle, a confidence region for a conditional mean function might be found by inverting a 

statistic such as that of Lee, Song, and Whang (2013, 2014) for testing the hypothesis that a shape restriction 

holds.  However, a computationally tractable method for finding the resulting confidence region even for a 

finite-dimensional parameter has not been found. 
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Another possibility is to relax the shape restrictions slightly so that no shape constraint is binding 

in the sampled population.  We do not adopt this approach here because it would allow the shape restrictions 

to be violated in finite samples.  Depending on the application, such violations of the shape restrictions 

could have undesirable consequences.  For example, violation of the Slutsky restriction could cause 

estimates of deadweight losses and other welfare measures to have incorrect signs.   

Result (5.3) continues to hold if 2
( )jg xσ


 is replaced in nΣ  with the estimator 2
( )ˆ

jg xσ


 described in 

Section 3.1.  Denote the resulting matrix by ˆ
nΣ .  Then it follows from (5.3) that a two-sided, asymptotic 

1 α−  confidence interval for ( )jg x  is 

(5.4) 1/2 1/2 1/2 1/2
, 1 /2 , 1 /2

ˆ ˆˆ ˆˆ ˆ( ) ( )j n jj j j n jjg nh z g g nh zα α
− −

− −− Σ ≤ ≤ + Σ , 

where ˆ̂
jg  is the j ’th component of ˆ̂g  and 1 /2z α−  is the 1 / 2α−  quantile of the standard normal 

distribution.  It follows from the properties of constrained least squares estimators that ( )cov( )J
nΣ − g  is 

positive semidefinite.  Therefore, the confidence interval (5.4) is no wider and may be narrower than a 

confidence interval for jg  based on the unconstrained estimator jg . 

 An asymptotic 1 α−  uniform confidence band for ( )jg x  ( 1,...,j J= ) is  

 1 1 2 1
ˆ̂{ ,..., : ; 1,..., }J j j j jg g g g j Jα γ γ− = − ≤ − ≤ = ,  

where 1jγ  and 2jγ  are critical values.  The coverage probability is 

 2 1
1

ˆ̂[ ]
J

j j j j
j

P g gγ γ
=

  − ≤ − ≤ 
  


 

or, equivalently,  

(5.5) 1 2
1

ˆ ˆˆ ˆ[ ]
J

j j j j j
j

P g g gγ γ
=

  − ≤ ≤ + 
  


. 

An asymptotic coverage probability of 1 α−  can be obtained by choosing the 1jγ ’s and 2jγ ’s so that 

(5.6) 2 1
1
{ } 1

J

j j j
j

P Zγ γ α
=

  − ≤ ≤ = − 
  


, 

where 1( ,..., )JZ Z Z ′=  is a random variable with the 1 ˆ[0,( ) ]nN nh − Σ  distribution.  For a symmetrical 

confidence band, 1 2j j jγ γ γ= = , where 0jγ > , and 
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(5.7) 
1
{| | } 1

J

j j
j

P Z γ α
=

  ≤ = − 
  


. 

The probability in (5.7) can be estimated by Monte Carlo for any jγ ’s by drawing random samples from 

the 1 ˆ[0,( ) ]nN nh − Σ  distribution. 

 A symmetrical confidence band with minimum average width and asymptotic coverage probability 

1 α−  is 

 1 1
ˆ̂{ ,..., : | | ; 1,..., }J j j jg g g g j Jα γ− = − ≤ = , 

where the jγ ’s satisfy 

(5.8) 
1,..., 1

minimize :
J

J

j
jγ γ
γ

=
∑  

subject to 

 
1
{ } 1

J

j j j
j

P Zγ γ α
=

  − ≤ ≤ = − 
  


 

 0; 1,..., ,j j Jγ ≥ =  

and 1( ,..., )JZ Z ′  is a random variable with the 1 ˆ[0,( ) ]nN nh − Σ  distribution.  Denote the optimal solution to 

this problem by 1( ,..., )J optγ γ ′ ≡ γ .  The average width of the confidence band is 2 /opt J′e γ , where e  is a 

column vector of ones.   

 An equivalent result can be obtained by Studentizing 1/2 ˆ̂( ) ( - )nh g g .  Let ˆ
nD  be the diagonal matrix 

whose ( , )j j  component is ˆ
jjΣ .  Define 

 1/2 1/2ˆ ˆˆ
n n n nV D D− −= Σ . 

Then the minimum-average-width symmetrical confidence band is 

 1/2 1/2
1 1

ˆ ˆˆ{ ,..., : | | ( ) ; 1,..., }J j j jj jg g g g nh j Jα κ−
− = − ≤ Σ = , 

where 

 1/2 1/2ˆ( )j jj jnhκ γ−= Σ  

and the jγ ’s solve (5.8). 

 An upper bound on the width of the minimum-average-width confidence band can be obtained by 

adding to (5.8) the constraint 

 1 2 ... Jκ κ κ= = = . 
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Let κ  denote the common value of 1,..., Jκ κ , and let 1( ,..., )JZ Z Z ′≡    be a random vector with the (0, )nN V  

distribution.  Then (5.8) becomes 

(5.9) minimize:  κ  

subject to 

 
1
{ } 1

J

j
j

P Zκ κ α
=

  − ≤ ≤ = − 
  





 

 0κ ≥ . 

Denote the optimal value of κ  by optκ .  The width of the resulting uniform confidence band is 

1/2 1/22( ) jj optw nh κ−= Σ .  Let the notation n na b  for sequences of positive constants { }na  and { }nb  mean 

that /n na b  is bounded away from zero and infinity.   Then we have 

 Theorem 5.2:  Let assumptions 1-5 hold.  Then there is a sequence { }nd  such that nw d≤  and 

 1/2[log / ( )]nd n nh  .    

The width of a uniform confidence band for a conditional mean function without shape restrictions 

is asymptotic to 1/2[log / ( )]n nh  (Liero 1982).  The shape restrictions treated in this paper do not increase 

the rate of convergence of an estimator.  A uniform confidence band based on the shape restricted estimator 

is narrower than a band based on an unrestricted estimator, but the rate of convergence to zero of the band’s 

width is the same with or without shape restrictions.  Chernozhukov, Fernandez-Val, and Galichon (2009) 

present a related finite-sample result. 

 Except in special cases, the boundaries of the confidence band (5.8) do not satisfy the shape 

restrictions that are assumed to hold for g .  To obtain a confidence band of minimum average width whose 

boundaries satisfy the shape restrictions, define e  to be a 1J ×  vector of ones, 1 11 1( ,..., )Jγ γ ′=γ , and 

2 12 2( ,..., )Jγ γ ′=γ .  The uniform confidence band that has the minimum average width among bands 

satisfying the shape restrictions can be obtained by solving the nonlinear programming problem 

(5.10) 
1 2

1 2 2 1,
( , ) arg min ( )′ ′= −

ζ ζ
γ γ e ζ ζ  

subject to 
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2 1
1

1

2

{ } 1

ˆ̂( - ) 0

ˆ̂( ) 0.

J

j j j
j

P Zζ ζ α
=

  − ≤ ≤ = − 
  

≤

≤

A g ζ

A g + ζ



 

The resulting confidence band is 1 2
ˆ ˆˆ ˆ≤ ≤g - γ g g + γ .  The minimum width symmetrical confidence band 

that satisfies the shape restrictions can be obtained by setting 2 1= −γ γ  in problem (5.10). 

 The confidence bands described in the foregoing paragraphs are uniform only over grid points.  

However, the grid points { }jx  become dense in [0,1]  as n →∞ .  Therefore, { : 1,..., }j j Jγ =  and (5.6)-

(5.10) provide an asymptotic uniform confidence region for ( )g x .  As is explained in Section 1, there is 

little practical difference between a band that is uniform over grid points and one that is uniform over a 

continuum.   

 5.2 Nonlinear Constraints 

 This section explains how to obtain an asymptotic uniform confidence band for g  when one or 

more of the functions ( )kA g  specifying the shape constraints is nonlinear.  As was explained in the 

introduction to Section 4, we assume that ˆ
n n=   in deriving asymptotic uniform confidence band. 

 As in Section 3.1, let g  denote the unconstrained local quadratic estimator of g .  For k∈ , define 

the scalar kη  by ( )k kA η=g .   Let (1)b  denote the intercept components of b  (that is, components 1, 4,…,

3 | | 2− ).  Then unrestricted estimates of the active components of g , denoted by ( )ab , can be obtained 

by solving 

(5.11)  ( ) arg min(0.5 - )a ′ ′=
b

b b Qb d b  

subject to: 

  (1)( ) ( )k k nA kη= ∈b  . 

The constrained estimates are obtained by solving 

(5.12)  ˆ arg min(0.5 - )′ ′=
b

b b Qb d b  

subject to: 

  (1)( ) 0 ( )k nA k= ∈b  . 
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But nk∈  implies that 0kη →  as n →∞ .  Therefore, finding ĝ  is equivalent to finding the effect of a 

small change in the kη ’s on the optimal solution to (5.11).  This can be done by using the theory of 

sensitivity analysis in nonlinear programming (Fiacco 1983).  

 To state the result of the sensitivity analysis, modify the definition of ( )kA ⋅  to include all 

components of b  in its arguments.  Let | |n  denote the number of constraints in n .  Let ( )A b  be the 

| | 1n ×  vector whose k ’th component is ( )kA b .  Let bA  be the | | 3 | |n ×   matrix whose ( , )k j  

component is 0( ) /k jA∂ ∂b b , where 0b  is the 3 | | 1×  vector 

 0 {[ ( ), ( ), ( )] : }j j jg x g x g x j′ ′′ ′= ∈b  . 

Let ( )[ ] a⋅  denote the | | | |×   submatrix of the | 3 | | 3 |×   matrix [ ]⋅  consisting of rows and columns 1, 

4,…, 3 | | 2− .  Define  

 { }( ) -1 -1 ( )
| | | | [ ( ) ]a aI +
× ′ ′Ξ = − b b b bQ A A Q A A  . 

The result is given by the following theorem. 

 Theorem 5.3:  Let Assumptions 1-5 hold.  Define nΣ  as the J J×  matrix  whose ( , )j k  element is 

 

( )

, ( )

0

0
 

a
n

n jk a
n

− Σ
Σ =  

Σ  
, 

( ) 2
( )[ : ( ) is inactive]

j

a
n g x jdiag g xσ−Σ =



, 

( ) ( ) ( )a a a
n ′Σ = Ξ Ω Ξ , 

and 
2

( )[ : ( ) is active]
jg x jdiag g xσΩ =



. 

Let NLz  be a random vector that is distributed as (0, )nN Σ .  Then  

(5.13) 1/2 ˆ̂lim sup sup | [( ) ( ) ] ( ) | 0
n

NLn g
P nh P

→∞ ∈
− ≤ − ≤ =

t
g g t z t


.    

 An asymptotic uniform confidence region for g  and ( )g x  can now be constructed as in Section 

5.1 by replacing (5.3) with (5.13).   

5.3  Finite-Sample Issues 

 Corollary 4.3 shows that n̂ n=   with probability approaching 1 as n →∞ .  In a finite sample, 

however, it is possible that constraints k  for which ( ) 0kA <g  are included in n̂  and, therefore, 
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erroneously treated as binding in forming the constrained estimator ĝ .  The resulting bias of ĝ can be large 

enough to cause the coverage probability of a confidence band for g  to be well below the nominal 

probability obtained from the asymptotic distribution of 1/2 ˆ( ) ( )nh −g g  .   

 The possibility of a large error in coverage probability can be reduced at the cost of a wider 

confidence band by reducing the size of n̂  and including a bias correction term in the asymptotic 

distribution of 1/2 ˆ( ) ( )nh −g g .  Specifically, redefine the set of possibly binding constraints as  

 { }1/2 1/2 1/2 ( )ˆ̂ ˆ( ) : (log ) ( ) ( )J
n kk kc k c n nh A−= − ≤ ϒ g  

for some constant 0c >  and replace (5.3) and (5.13) by 

 1/2 ˆ̂lim sup sup | [( ) ( ) ] ( ) | 0
n

n g
P nh P

→∞ ∈
− ≤ − ≤ =

t
g g t z - μ t


, 

where μ  is the bias correction term described in the next two paragraphs.   If c  is small, the bias caused 

by erroneously treating a constraint as binding and the bias correction μ  are small.  In addition, the 

estimator ĝ  obtained with ˆ̂
n  in place of n̂  satisfies the shape restrictions ˆ( ) 0kA ≤g  for all 1,...,k κ= .  

However, if c  and μ  are small, the probability that ˆ̂( )k nA ∉g   may be high in a finite sample even if 

( ) 0kA =g .  If ( ) 0kA =g  but ˆ̂( )k nA ∉g  , the confidence band for g  is wider than it would be if the 

constraint ˆ( ) 0kA =g  were imposed.  The size of μ  can be chosen by the user, so there is a tradeoff between 

the size of μ  and the width of a confidence band. 

 We now describe a method for choosing μ .  We focus on linear constraints with 0=r .  As is 

shown in Section 5.2, nonlinear constraints are asymptotically equivalent to properly constructed linear 

ones.  Therefore, the following discussion also applies to nonlinear constraints.  Define 
( )

( )

a

a

− 
=   
 

0
μ

μ
 , 

where ( )a−0  is a column vector of 0’s corresponding to inactive components of g  and 

(5.14)  ( ) -1 -1 ( ) ( ) ( )[ ( ) ] ( )a a a a a+′ ′= −μ Q A AQ A A g r
  

. 

Let jµ  denote the j ’th component of  μ .  Then equation (5.7) becomes 

 
1
{ } 1

J

j j j j
j

P Zγ µ γ α
=

  − ≤ − ≤ = − 
  


 

or 
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(5.15) 
1
{ } 1

J

j j j j j
j

P Zγ µ γ µ α
=

  − + ≤ ≤ + = − 
  


. 

Because 0jγ >  for all j , the probability on the left-hand side of (5.14) is a decreasing function of | |jµ  

for any j .  Define 

 
0 if   is an inactive component of 

if   is an active component of j
j

m
m j


= 


g
g

  

where | |jm µ≥  for all active components j .  Choose mjγ  ( 1,..., )j J=  so that 

(5.16) 
1
{ } 1

J

mj j j mj j
j

P m Z mγ γ α
=

  − + ≤ ≤ + = − 
  


. 

Then 

 
1
{ } 1

J

mj j j mj j
j

P Zγ µ γ µ α
=

  − + ≤ ≤ + ≥ − 
  


. 

Redefine the estimated set of active components of g  as 

ˆ ˆˆ ˆ( ) { : ( ) / 0 for some ( )}k j nc j A g k c= ∂ ∂ ≠ ∈g  . 

Note that ˆ̂( )c  depends on c .  

The distribution of jZ  depends on which components of g  are active and, therefore, on the 

possibly identified set.  Therefore, it is necessary to find the possibly identified set for which | |j mµ ≤ .  

This set is  

  

{ }

{ }

1/2 1/2 1/2 ( )

1/2 1/2 ( )

ˆ̂ ˆ( ) : (log ) ( )

ˆ: [log / ( )]

J
n kk k

J
kk k

c k c n nh A

k c n nh A

−= − ≤ ϒ

= − ϒ ≤

g

g







 

for some 0c > .   Because ( ) 0a =r  in (5.14), ( ) -1 -1 ( ) ( ) ( )[ ( ) ]a a a a+′ ′=μ Q A AQ A A g
  

.  Therefore, if j  is 

active, 

 

-1 -1 ( ) ( ) ( )

ˆ̂ ( )

-1 -1 ( ) ( )

ˆ̂ ( )

{[ ( ) ] } ( )

{[ ( ) ] }

n

n

a a a
j jk k

k c

a J
jk k

k c

A

µ +

∈

+

∈

′ ′=

′ ′=

∑

∑

Q A AQ A A g

Q A AQ A g

  

  





  

and 
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 -1 -1 ( ) ( )

ˆ̂ ( )

| | |{[ ( ) ] } || |
n

a J
j jk k

k c

Aµ +

∈

′ ′≤ ∑ Q A AQ A g
  



. 

( ) 0J
kA ≤g  for all k .  Therefore, with probability approaching 1 as n →∞ ,  

 1/2 1/2 ( ) ( ) 1/2 1/2ˆ ˆ[log / ( )] [log / ( )]J J
kk k k kkc n nh A A c n nh− ϒ ≤ − ≤ ϒg g , 

  ( ) ( ) 1/2 1/2ˆ [log / ( )]J J
k k kkA A c n nh− ≤ − + ϒg g , 

 ( ) 1/2 1/2 ( ) 1/2 1/2ˆ ˆ| | [log / ( )] 2 [log / ( )]J J
k kk k kkA c n nh A c n nh≤ ϒ − ≤ ϒg g , 

and 
1/2 -1 -1 ( ) 1/2

ˆ̂ ( )

ˆ| | 2 [log / ( )] |{[ ( ) ] } |
n

a
j jk kk

k c

c n nhµ +

∈

′ ′≤ ϒ∑ Q A AQ A
  



. 

Choose c  so that 

(5.17) 1/2 -1 -1 ( ) 1/2
ˆ̂( ) ˆ̂ ( )

ˆmax 2 [log / ( )] |{[ ( ) ] } |
n

a
jk kk

j c k c

c n nh m+

∈ ∈

 
 ′ ′ ϒ = 
  

∑ Q A AQ A
  

 

. 

 The following sequence of steps implement the bias-corrected confidence band. 

1. Choose m . 
2. Use m  to choose 0c >  by solving (5.17). 

3. Use c  to specify ˆ̂
n  . 

4. Use ˆ̂
n  to obtain the asymptotic distribution of 1/2 ˆ̂( ) ( )nh −g g  from Theorem 5.1 or 5.3.  

5. Find confidence band by simulation from (5.16).  

6.  MULTIVARIATE EXTENSION 

 This section outlines the extension of the results of Sections 3-5 to a two-dimensional explanatory 

vector X , such as price and income in a demand function.  Extensions to higher dimensions are possible 

but are less useful for economics and likely to yield low estimation precision because of the curse of 

dimensionality.  The extension to a two-dimensional X  involves mainly notational adjustments to the 

results of Sections 3-5.  Therefore, the results of the extension are presented without proofs. 

 Denote the data by 1 2{ , , : 1,...., }i i iY X X i n= .  Assume that 2
1 2supp( , ) [0,1]i iX X =  for all 

1,..., .i n=   The following notation is used to state the unrestricted estimator of 1 2( , )g x x .  Let K  denote a 

probability density function that is supported on 2[ 1,1]−  and whose odd moments are all zero.  For any 

2
1 2( , ) [ 1,1]ν ν ν≡ ∈ −  and bandwidths 1h  and 2h , let  

(6.1) 1 1 2 2( ) ( / , / )hK K h hν ν ν= .   

For any 2
1 2, [0,1]x x ∈ , let xN  denote the rectangle 1 1 2 2{ , : | | , | | }x h x hξ ζ ξ ζ− ≤ − ≤ .  Define 
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 1 1 1 2 2 2
1

(| | ) (| | )
n

x i i
i

n I X x h I X x h
=

= − ≤ − ≤∑ . 

For 1 2, ,...,
xni i i i=  and 

1 11 2 1 2( , ),..., ( , )
n nx x

i i i i xX X X X N∈ , define the 1 6×  vector 

 ( ) 2 2
1 1 2 2 1 1 2 2 1 1 2 21 ( ) ( ) ( ) ( ) ( )( )x

i i i i i i iX x X x X x X x X x X x = − − − − − − X  

and the 6xn ×  matrix 

 
1

( )

( )

( )

...

nx

x
i

x

x
i

 
 
 =
 
 
 

X

X

X

. 

For 1 2( , )i i iX X X=  and 1 2( , )x x x= , define the x xn n×  diagonal matrix 

 ( ) [ ( )] : ]x
h i i xdiag K X x X N= − ∈W  

and the 6 6×  matrix 

 ( ) 1 ( ) ( ) ( )x x x x
n xn− ′=S X W X . 

For 
1
,...,

nx
i i xX X N∈ , define the 1xn ×  vector 

1

( ) ( ,..., )
nx

x
i iY Y ′=Y  and 

1

( ) [ ( ),..., ( )]
nx

x
i ig X g X ′=g . 

Now let 1 6( ,..., )b b ′=b  be a 6 1×  vector, and let 

( ) ( ) ( ) ( ) ( )
1 6

( ) ( ) ( ) ( ) ( ) ( )

( ) [ ( ),..., ( )] arg min( ) ( )

arg min( 2 ).

x x x x x

x x x x x x

x b x b x ′ ′≡ = − −

′ ′′= −

b

b

b Y X b W Y X b

b X W X b Y W X b

 

 

The unrestricted estimator of ( )g x  is 1( ) ( )g x b x=  .  Standard algebra of least squares estimation shows 

that 

( ) 1 1 ( ) ( ) ( )( ) ( )x x x x
n xx n− − ′=b S X W Y  

Therefore, 

 ( ) 1 1 ( ) ( ) ( )
1( ) ( ) ( ) ( )x x x x

n xg x g x e n g x− − ′′− = −S X W Y , 

where 1 (1,0,0,0,0,0)e ′= . 

 Now make the following assumptions, which are modifications of Assumptions 1-3: 

 Assumption 1´:  { , : 1,..., }i iY X i n=  is an independent random sample from the distribution of 

( , )Y X , where (i) 2supp( ) [0,1]X = .  (ii) ( )Y g X U= + , ( | ) 0E U X x= =  and 2 2( | ) UE U X x σ= =  (a finite 
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constant) for every 2[0,1]x∈ .  (iii) There is an operator A  such that ( )( ) 0Ag x ≤  for every 2[0,1]x∈ .   (iv) 

3(| | )E U < ∞ . 

 Assumption 2´:  (i) ( )g x  is four times continuously differentiable with respect to any combination 

of the components of 2[0,1]x∈ . (ii) The distribution of X  has a probability density function with respect 

to Lebesgue measure, Xf , that is continuously differentiable everywhere in 2[0,1] .  (iii) ( )Xf x δ≥  for 

some 0δ >  and every 2[0,1]x∈ . 

 Assumption 3´:  (i) K  is a bounded probability density function that is supported on 2[ 1,1]− , and 

all odd moments of K  are zero;  (ii) 1/6
j jh c n−=  ( 1,2j = ) for some finite 0jc > .  

 The bandwidths undersmooth g , so there is no asymptotic bias, and can be selected by applying 

cross-validation or plug-in methods to the local linear estimator of g .  The following proposition 

generalizes Proposition 1 to the case of a bivariate X . 

 Proposition 1´:  Let Assumptions 1´(i), 1´(ii), 2´, and 3´ hold.  For each 2(0,1)x∈ , 

 1/2 2
1 2 ( )( ) [ ( ) ( )] (0, )d

g xnh h g x g x N σ− →


 , 

where 2
( ) 0g xσ >


 is finite.  

The expression for 2
( )g xσ


 is lengthy and is given by Ruppert and Wand (1994, equation (4.7)).  It requires 

a consistent estimator of 2
Uσ  for a bivariate X .  To do this, let j(i) (i = 1, …, n) be a set of indices that is 

defined through the following recursion: 

 j X X
j n j( ) arg min

,...,
1

2 1= −
=

 

and 

 j i X X i n
j i j j i j i( ) arg min ; ,..., .

, (1),... ( )
= − =

≠ −1
2  

The number j(i) is the index of the design point that is nearest to Xi among those whose indices are not j(1), 

…, j(i - 1).  Then 2
Uσ  can be estimated by  

 2 2
( )

1

1ˆ ( )
2

n

U i j i
i

Y Y
n

σ
=

= −∑ . 

Under Assumption 1´, 2ˆUσ  is a n1/2-consistent estimator of 2
Uσ  (Horowitz and Spokoiny 2001). 

 The grid consists of 2J  equally spaced points 1 2{ ( , ) : , 1,..., }jk j kx x x j k J= = .  The shape 

restriction is 
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 ( ) 0; 1,...,kA k κ≤ =g , 

where g  is the 2 1J ×  vector whose components are 1 2( , )j kg x x  ( , 1,...,j k J= ).  To obtain the bivariate 

extension of Theorem 5.1 replace Assumption 4 by 

Assumption 4´:  (i) 1/4(log )a bJ n n − −∝  for some 0 1 / 6a< ≤  and 0b > .  (ii) 1 2, 1 / [2( 1)].h h J< +  

(iii) J →∞  as n →∞ . 

The bivariate extension of Theorem 5.1 is obtained from the scalar version by replacing Assumptions 1-4 

with Assumptions 1´-4´, J  with 2J , and 2
( )jg xσ


 with its bivariate extension, 2
( )jkg xσ


.   

 To define the constrained estimator, index the grid points by ∈  .  For ∈   let 

(6.2) ( ) 2 2
1 1 2 2 1 1 2 2 1 1 2 21 ( ) ( ) ( ) ( ) ( )( )i i i i i i iX x X x X x X x X x X x = − − − − − − X 

     

. 

Define the matrix Q  and vector d  as in Section 2 but with hK  and ( )X   as in (6.1) and (6.2).  Let b  be 

the 6 | | 1×  vector 11 21 61 1| | 2| | 6| |( , ..., ,..., , ,..., )b b b b b b ′   .  Define 

(6.3) ˆ arg min(0.5 - )′ ′=
b

b b Qb d b  

subject to: 

  ˆ( ) 0;kA k= ∈g  . 

Problem (6.3) is the same as (3.3) but with hK  and ( )X   as in (6.1) and (6.2).  Define active components 

of g  as in Section 3.  The constrained estimator of the active components of g  is  

 ( )
11 71 6| | 5
ˆ ˆ ˆˆ ( , ,.., )a b b b − ′=g  . 

 To obtain the bivariate extensions of Theorems 5.1 and 5.3, redefine | |Cn as the number of 

constraints for which 1 1/2 ( ) 1/2
1 2 1 2( ) ( ) [(log ) / ( )]J

kC nh h A C n nh h− − ≤ − ≤g , where ( )Jg  is the 2 1J ×  vector 

11[ ( ),..., ( )]JJg x g x ′  .  The bivariate extensions of Theorems 5.1 and 5.2 are obtained from the scalar versions 

of these theorems by replacing Assumptions 1-4 with Assumptions 1´-4´, using the redefined | |Cn  in 

Assumption 5(iv), replacing J  with 2J , 1/2( )nh  with 1/2
1 2( )nh h , and the scalar version of 2

( )jg xσ


 with its 

bivariate extension.  The appendix gives an example in which the redefined | | 0Cn →  in the bivariate 

case. 
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7.  MONTE CARLO EXPERIMENTS AND AN EMPIRICAL EXAMPLE 

 This section presents the results of Monte Carlo experiments and an empirical example that 

illustrate the usefulness of the shape-restricted estimator described in Sections 3-6.  The empirical example 

consists of estimating a production function under a shape constraint.  The Monte Carlo experiments are 

designed to mimic the empirical example and illustrate the finite-sample performance of the uniform 

confidence band based on the shape-restricted estimator.   

 To describe the model used in the experiments and example, let Y , K , and L , respectively, denote 

value-added output, capital, and labor.  Suppose that 

(7.1) log ( , )Y f K L U= + , 

where U  is an unobserved random variable that is independent of K  and L  and satisfies ( ) 0E U = .  

Suppose that the function exp[ ( , )]f K L  satisfies constant or decreasing returns to scale in levels.  That is 

(7.2) exp[ ( , )] exp[ ( , )]f K L f K Lλ λ λ≤  

for all 0λ > .  It is customary to use the log transformation in empirical economics, and we follow that 

convention here.  Taking logarithms on both sides of (7.2) yields 

(7.3) ( , ) log ( , )f K L f K Lλ λ λ≤ +  

for all 0λ > .  Define logy Y= , logk K= , log L= , ( , ) ( , )kg k f e e= 

 , and logλ λ= .  Then (7.3) is 

equivalent to 

(7.4) ( , ) ( , )g k g kλ λ λ+ + ≤ +  

  . 

Model (7.1) is equivalent to 

(7.5) ( , )y g k U= + . 

The Monte Carlo experiments and empirical example are based on (7.4) and (7.5). 

 7.1  Monte Carlo Experiments 

 This section presents the results of a small set of Monte Carlo experiments that illustrate the finite-

sample performance of the uniform confidence band for ( , )g k   in (7.5) using the shape restricted 

estimator.  In the experiments, samples of size 1000n =  and 2000n =  were generated from the production 

function 

 [ ] [ ]{ }21/2 1/2( , ) log exp( ) exp( )g k k
τ 

= + 
 

   

for some constant 0τ > .  The resulting model is 
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(7.6) [ ] [ ]{ }21/2 1/2log exp( ) exp( )y k U
τ 

= + + 
 

 . 

Model (7.6) is equivalent to the following production function model in levels: 

 1/2 1/2[( ) ] UY K L eτ2= + . 

Values of k and   in (7.6) were generated randomly and independently of each other from the [0,1]U  

distribution.  U  was sampled independently of ( , )k   from the (0,0.01)N  distribution.   

 We report results for 1τ =  (constant returns to scale), 0.9τ =  (slightly decreasing returns to scale), 

and 0.5τ =  (strongly decreasing returns to scale).  In each experiment, the shape restriction is that g  

satisfies non-increasing returns to scale.  Thus, 1τ =  when the shape constraint is binding. 

 We used the grid 

(7.7) ( , ) , : , 1,...,
1 1i j

i jk i j J
J J

  = =  + +  
 , 

where J  is chosen using the method described in the next paragraph.  Using this grid, the discrete version 

of (7.4) is 

 1 1 1, ,
1 1 1 1 1

i j i jg g
J J J J J
+ +   ≤ +   + + + + +   

 

for every , 1,..., 1i j J= − . 

 We used the local quadratic estimator of g  described in Section 3 with the uniform kernel function.  

A baseline bandwidth 0 0.15h =  was determined by auxiliary simulations.  Then we set 

1/6
0 ( /1000)hh C h n −= , where 0.95,1,hC =  or 1.05 , depending on the experiment.  In practice, as is 

explained in Section 3, h  can be chosen by cross-validation for local linear estimation.  We did not use 

cross-validation in the Monte Carlo experiments because of its computational cost.  The size of the grid, 

,J  was ( )J J h=    , the largest integer not greater than ( )J h , where 

(7.8) 1/21 1( ) min (log ) , 1.1
2

J h n
h h

− = −  
. 

This choice of J  satisfies Assumptions 4 ´(i) and 4´(ii). 

 There were 1,000 Monte Carlo replications in each experiment with 10,000 draws used to estimate 

the distribution of Z .  When the estimated set of possibly binding constraints is nonempty, the limiting 

distribution of Z  is degenerate.  We used the singular value decomposition (SVD) to deal with singularity. 

 We present results for symmetrical nominal 95% uniform confidence bands for g  obtained from 

the shape-restricted estimator.  We also present results on uniform confidence bands using the 

unconstrained estimator (that is, the returns to scale constraint was not imposed), the infeasible constrained 
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(or oracle) estimator in which the true set of binding constraints   is used in place of the estimated set ˆ,

and the bias corrected estimator of Section 5.3 with 0.005m = .   

 The results of the experiments are shown in Tables 1-3.  Column 4 of the tables shows the empirical 

coverage probabilities of the uniform confidence bands.  Column 5 shows the relative average widths of 

the various confidence bands.  These are the ratios of the average widths of the bands to the average width 

of the band based on the unconstrained estimator.  The relative width of the latter band is 1.0 by definition.  

The relative widths of the bands based on the constrained and oracle estimators are smaller (larger) than 

1.0 according to whether the average widths of these bands are smaller (larger) than the average widths of 

the bands obtained from the unconstrained estimator.  The results show that when 1.0τ =  or 0.5τ = , the 

empirical coverage probabilities of the bands obtained with all estimators are close to the nominal 

probability of 0.95.  The confidence bands based on the constrained estimator are narrower than the bands 

based on the unconstrained estimator when the constraints are binding ( 1τ = ) and have almost the same 

width when the constraints are not binding ( 0.5τ = ).  In this set of experiments, the constrained estimator 

performs as well as the oracle estimator.  When 1τ = , the relative width of the confidence band obtained 

from the bias-corrected estimator is larger than the relative widths of the bands obtained from the 

constrained and oracle estimators.  As is explained in Section 5.3, this is because the bias-corrected 

estimator uses a set of possibly binding constraints ˆ̂
n  that is smaller than the set n̂  used by the constrained 

estimator.  Consequently, bias correction results in a higher probability that the constraints are not in the 

possibly binding set and not imposed in the second estimation step.  Although the width of the confidence 

band obtained from the bias corrected estimator is closer to the width of the band obtained from the 

unconstrained estimator, the bias-corrected estimator satisfies the shape restrictions.  The unconstrained 

estimator does not.   

 When 0.9τ = , the constraints are nearly binding.  Consequently, they have a relatively high 

probability of being in n̂  and erroneously treated as binding in the second estimation step.  As is explained 

in Section 5.3, this causes the constrained estimator to be biased and the coverage probability of the 

resulting confidence band to be too low.  The bias-corrected estimator largely overcomes this problem and 

yields coverage probabilities that are close to the nominal probability.   The width of the bias-corrected 

confidence band is less than that of the oracle band because the constraints can be in ˆ̂
n  when bias 

correction is used, in which case the bias-corrected estimator is constrained. 

   7.2  Empirical Example 

 This section reports the results of estimating a production function for the Chinese chemical 

industry using the firm-level data of Jacho-Chávez, Lewbel, and Linton (2010).  We estimated the 
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production function using data for 1995 and 2001.  The dependent variable, y , is the logarithm of value-

added real output.  The explanatory variables are the logarithm of the net value of real fixed assets, k , and 

the logarithm of the number of employees,  .  As in Jacho-Chávez, Lewbel, and Linton (2010), 

observations with outliers are removed and both regressors are normalized by their respective medians.  As 

in the Monte Carlo experiments, we used the local quadratic estimator with a uniform kernel function.  For 

each year, the bandwidth, h , was chosen by cross-validation.  The grid points were chosen to be within the 

support of ( , )k   in the data.  The number of points, J , was determined by (7.8).  The sample sizes were 

1560n =  for 1995 and 1638n =  for 2001.  Increasing returns to scale are unlikely in the chemical industry.  

Accordingly, we carried out unconstrained estimation of g  and estimation under the restriction of non-

increasing returns to scale.  

 Table 4 and Figures 1-2 present the estimation results at several points ( , )k   for which the 

normalized values of k  and   are equal.  The constrained, unconstrained, and bias-corrected point 

estimates are similar, as is to be expected in an industry that has non-increasing returns.  However, the 

constrained estimates are more precise than the unconstrained ones.  For example, in 1995 the constrained 

and unconstrained point estimates of (2.524,2.524)g  are nearly the same, but the standard error of the 

constrained estimate is much less than that of the unconstrained estimate.  It can be seen from Figure 1 that 

the constrained estimates are slightly more precise than the unconstrained ones in the middle of the 

distribution of ( , )k   and much more precise near the boundaries of the support of ( , )k  .  As expected, the 

bias-corrected estimates are less precise than the constrained ones are.  It can be seen from Figure 2 that the  

bias-corrected confidence band is similar to that of the unconstrained band.  However, the bias-corrected 

estimate of g  is constrained to satisfy the shape restriction, whereas the unconstrained estimate is not. 

8.  CONCLUSIONS 

 Economic theory often provides shape restrictions on functions of interest in applications, but it 

does not provide finite-dimensional parametric models.  This motivates nonparametric estimation under 

shape restrictions.  Shape restrictions can stabilize noisy nonparametric estimates without imposing 

arbitrary restrictions, such as additivity or a single-index structure, that may be inconsistent with economic 

theory and the data.  This paper has explained how to estimate and obtain an asymptotic uniform confidence 

band for a conditional mean function under a possibly nonlinear shape restriction.  There is a large literature 

in statistics and econometrics on estimating a conditional mean function under linear shape restrictions, 

such as monotonicity or convexity.  To our knowledge, this paper is the first to construct a uniform 

confidence band under shape restrictions such as non-increasing or non-decreasing returns to scale and the 

Slutsky inequality of consumer theory.  The results of Monte Carlo experiments and an empirical 
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application have illustrated the finite-sample performance and usefulness of our method.  The methods of 

this paper can be extended to conditional quantile functions with shape restrictions, though doing so is 

complicated technically because of the non-differentiability of the objective function of quantile estimation.  

Estimation of conditional quantile functions under shape restrictions is a topic for further research. 

9.  PROOFS OF THEOREMS 

 9.1  Examples in which | | (1)Cn o=  as n →∞  for every C < ∞  

 Scalar case:  Let X  be a scalar and  

 2

0 if 0 0.5
( )

( 0.5)   if  0.5 1.

x
g x

x x

≤ ≤= 
− < ≤

 

Let there be J  equally spaced grid points in [0,1] .  Assume that J  is odd so that ( 1)/2 0.5Jx + =  and 

0.5jx >  implies that ( 1) / 2j J> + .  The shape restriction is that g  is non-decreasing, so 

1( ) ( ) 0j jg x g x− − ≤ .  Let 1 0.5j jx x −> ≥  be grid points.  Then ( 3) / 2j J≥ + , and 

 

1 2

2

1| ( ) ( ) | [2 1 ( 1)]
( 1)

2 .
( 1)

j jg x g x j J
J

j
J

−− = − − +
+

<
+

 

Therefore,  

(9.1) 
1/2

1
log0 | ( ) ( ) |j j

ng x g x
nh−

 < − ≤  
 

 

implies that  

 
1/22( 1) log

2
J nj

nh
+  ≤  

 
 

Under Assumptions 3(ii) and  4(i), 

 
1/22( 1) log 0

2
J n

nh
+   → 

 
 

as n →∞ .  Therefore, there can be no grid points jx  and 1jx −  satisfying (9.1) if n  is sufficiently large, 

which implies that | | 0Cn =  if n  is sufficiently large. 

 Bivariate case:  Let 1 2( , )X X X ′=  be two dimensional.  Let 
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2 2
1 2

1 2 2 2 2 2
1 2 1 2

0 if 0.25
( , )

0.25 if 0.25

x x
g x x

x x x x

 + ≤= 
+ − + >

 

Let there be J  equally spaced grid points in each of the two dimensions.  Assume that J  is odd so that 

1,( 1)/2 2,( 1)/2 0.5J Jx x+ += = .  Therefore, 1, 0.5jx >  or 2, 0.5kx >  implies that 1j k J+ > + .  The shape 

restriction is 

 
1, 1 2 1 2

1 2, 1 1 2

( , ) ( , ) 0

( , ) ( , ) 0.

j k j k

j k j k

g x x g x x

g x x g x x

−

−

− ≤

− ≤
 

This is the finite-difference analog of the restriction 1 2 1( , ) / 0g x x x∂ ∂ ≥  and 1 2 2( , ) / 0g x x x∂ ∂ ≥ .   

 If 1 2( , ) 0j kg x x >  and 2j ≥ , then  

 

1 2 1, 1 2 1, 1 22

1 2 1, 1 2 1, 1 22

1( , ) ( , ) (2 1) if ( , ) 0
( 1)

1( , ) ( , ) (2 1) if ( , ) 0.
( 1)

j k j k j k

j k j k j k

g x x g x x j g x x
J

g x x g x x j g x x
J

− −

− −

− = − >
+

− ≤ − =
+

 

Therefore, 

 1, 2 1, 1 2 2
2( , ) ( , )

( 1)j k j k
jg x x g x x

J−− ≤
+

. 

Similarly, if 1 2( , ) 0j kg x x >  and 2k ≥ , then 

 1 2 1 2, 1 2
2( , ) ( , )

( 1)j k j k
kg x x g x x

J−− ≤
+

. 

Now proceed as in the example for a scalar X . 

 9.2  Proofs of Theorems 4.1, 4.2, and 5.1-5.3 

 Proof of Theorem 4.1:  By (3.1),  

 ( ) ( ) ( ) ( )1/2 1 1/2
1( ) [ ( ) ( )] ( / )( ) ( )j j j j

j

x x x xd
j j x nnh g x g x e nh n nh− − ′′− → S X W U . 

Define 

 
1 1

1 2 2

( )

1 2 2

1 ( ) ( )

.....

1 ( ) ( )

j

n nx x

i j i j
x

i j i j

h X x h X x

h X x h X x

− −

− −

 − −
 
 =
 

− −  

X  

and  
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2

1 0 0
0 0

0 0
h h

h

 
 

=  
 
 

e .   

Then, 

 ( ) ( ) ( ) ( )1/2 1 1/2
1( ) [ ( ) ( )] ( / )( ) ( )j j j j

j

x x x xd
j j x n hnh g x g x e nh n nh− − ′′− → S e X W U

 . 

The 3 1×  vector ( ) ( ) ( )1/2( ) j j jx x xnh − ′X W U  is asymptotically trivariate normally distributed with mean 0 by 

the multivariate extension of the Lindeberg-Levy central limit theorem.  Let jΣ  denote the covariance 

matrix of the limiting distribution.  Let J  denote the set of all convex sets in J
  and jZ  be a random 

vector with the (0, )jN Σ  distribution.  It follows from Theorem 1.1 of Bentkus (2003) (see, also, Corollary 

11.1 of DasGupta (2008)) that for some constant 1c < ∞  

(9.2) 
3

( ) ( ) ( )1/2 1/2
1sup [( ) ] ( ) ( )j j jx x x

j
B

P nh B P Z B c nh− −

∈

′ ∈ − ∈ ≤X W U


. 

Let ξ  denote the 3 1J ×  vector whose 3 2,...,3j j−  components are ( ) ( ) ( )1/2( ) j j jx x xnh − ′X W U .  Let Z  

denote a random vector with the (0, )N Σ  distribution, where 

 
1 ... 0

0 ... 0
0 ... J

 Σ
 

Σ =  
 Σ 







. 

Then (9.2) implies that for some 2c < ∞  

(9.3) 
3

1/2
2sup ( ] ( ) ( )

JB
P B P Z B c J nh −

∈
∈ − ∈ ≤ξ 


. 

Let jL  denote the probability limit of ( ) 1
1( / )( )j

j

x
x ne nh n −′ S  as n →∞ .  Standard calculations for kernel 

estimators show that 

(9.4) ( ) 1 1/2
1( / )( ) [( ) ]j

j

x
x n j pe nh n L O nh− −′ = +S . 

Result (4.2) follows by combining (9.3), (9.4), and Assumption 4. 

 To obtain (4.3), observe that under Assumption 5(iii), a Taylor series expansion gives 
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( ) 2( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( )(9.5) ( ) ( ) ( )

( ) ( ) [ / ( )].

J
J J J J J Jk

k k p

J
J Jk

p

AA A O

A O J nh

′ ∂  − = − + −   ∂    

′ ∂
= − + 

∂  

gg g g g g g
g

g g g
g

  



 

Result (4.3) follows by combining (9.3) and (9.5).  Q.E.D. 

Proof of Theorem 4.2:  By the definition of nc , 1/21 ( ) [( log ) ]nc O n n −−Φ = , where Φ  is the 

standard normal distribution function.  It follows from (4.3) that asymptotically, 

 ( ) 11/2 1/2 ( ) ( )( ) | ( ) ( ) | logJ J
kk k k nP nh A A c O n n

−−   ϒ − > =     
g g  

and 

(9.6) ( ) 11/2 1/2 ( ) ( )( ) | ( ) ( ) |  for any 1,..., log (1)J J
kk k k nP nh A A c k O n n oκ κ

−−   ϒ − > = = =    
g g . 

If nk∈ , then either ( ) 1/2( ) [( ) ]J
kA o nh −=g  or ( ) 1/2| ( ) | [log / ( )] .J

kA n nhg    By (9.6) 

( )

( ) 1/2 1/2 ( ) 1/2

1

(9.7) {| ( ) | ( )  for every  such that | ( ) | [( ) ]}

1 log 1.

J J
k kk n kP A nh c k A o nh

O n nκ

− −

−

≤ ϒ =

 = − →  

g g 
 

In addition, by the triangle inequality, 

 1/2 ( ) 1/2 ( ) 1/2 ( ) ( )| ( ) | | ( ) | | ( ) ( ) |J J J J
kk k kk k kk k kA A A Aϒ ≥ ϒ −ϒ −g g g g  . 

Therefore, if ( ) 1/2| ( ) | [(log ) / ( )]J
kA n nhg   and 1/2 1/2 ( ) ( )( ) | ( ) ( ) |J J

kk k k nnh A A c−ϒ − ≤g g , then for all 

sufficiently large n , 

 1/2 ( ) 1/2 ( ) 1/2 1/2| ( ) | | ( ) | ( ) ( )J J
kk k kk k n nA A nh c nh c− −ϒ ≥ ϒ − >g g . 

Consequently, 

(9.8) 1/2 1/2 ( ) ( ) 1/2( ) | ( ) |   for any  for which | ( ) | [(log ) / ( )] (1)J J
kk k n kP nh A c k A n nh o− ϒ ≤ = g g

 . 

 | |
nC  is an integer, and | | 0

nC →  as n →∞  for every C < ∞  by Assumption 5(iv).  Therefore, 

1/2 1/2 ( )( ) | ( ) |J
kk k nnh A cϒ >g  or 1/2 1/2 ( ) 1/2( ) | ( ) | [( ) ]J

kk knh A o nh −ϒ =g  for every k  and all sufficiently large 

n .  But 1/2 1/2 ( )[ ( ) ( ) ] 0J
kk k nP nh A cϒ ≥ →g  as n →∞ .  Combining these facts with (9.7) and (9.8) gives 

(4.4).  Combining (4.4) with (9.7) and (9.8) gives (4.5).  Q.E.D. 
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 Proof of Theorem 5.1:  By Theorem 4.1, 1/2 ( ) ( )( ) ( )a anh −g g   and 1/2 ( ) ( )ˆ̂( ) ( )a anh − −−g g  are 

asymptotically multivariate normal with means of zero.  Therefore, 1/2 ˆ̂( ) ( )nh −g g  is a linear combination 

of asymptotic multivariate normals with means of zero and is asymptotically multivariate normally 

distributed with a mean of 0.  The covariance matrix nΣ  follows from (3.2), (5.2), and independence of the 

components of ˆ̂ −g g  from one another.  Q.E.D. 

 Proof of Theorem 5.2:  The optimal κ  in (5.9) satisfies 

 
1
{ } 1

J

opt j opt
j

P Zκ κ α
=

  − ≤ ≤ = − 
  





. 

Equivalently, 

 
1
(| | )

J

j opt
j

P Z κ α
=

  ≥ = 
  





. 

But ~ (0,1)jZ N , so 

 
11

(| | ) (| | )

2 [1 ( )]

J J

j j
jj

P Z P Z

J

κ κ

κ

==

  ≥ ≤ ≥ 
  

= −Φ

∑ 



 

for any κ .  Let κ  satisfy 2 [1 ( )]J κ α−Φ = .  Then 

 
1
(| | )

J

j
j

P Z κ α
=

  ≥ ≤ 
  







 

and optκ κ≤  .  But 

 
2 2/ /

1/2 1/2
2 22[1 ( )]

(2 ) (2 )
e e

c
κ κκ

π κ π κ
− 2 − 2≤ −Φ ≤ 



 

 

and  

 
2 2/ /

1/2 1/2
2 22 [1 ( )]

(2 ) (2 )
J Je J e

c
κ κκ

π κ π κ
− 2 − 2≤ −Φ ≤ 



 

 

for any constant 1c >  when κ  is sufficiently large.  Set  

 
1/2

2 1/2
2

1 2log log[(2log ) ] log
2

J Jκ
πα

  = − +   
   

 . 

Then 1/2(log )nκ  , 
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2 /

1/2
2

1 (1)(2 )
J e

o
κ α

π κ
− 2 =

+




 

as n →∞ , and 

 2 [1 ( )]
[1 (1)] 1 (1)

J
c o o

α ακ≤ −Φ ≤
+ +

 . 

for any 1c >  as n →∞ .  The width of the confidence band for the Studentized ˆ̂( )−g g  is 2 2optκ κ≤  .  

Therefore, the width, w , of the minimum-average-width confidence band for g  without Studentization 

satisfies 1/2 1/2 1/22( ) [log / ( )]jjw nh n nhκ−≤ Σ   .  Q.E.D. 

 The following notation is used in the proof of Theorem 5.3.  Define the (3 | | | |) (3 | | | |)+ × +     

matrix 

 
| | | |0

H
×

′ 
=  
 

b

b

Q A
A  

 

and the (3 | | | |) | |+ ×   matrix 

 3| | | |

3| | | |

0
V

I
×

×

 
=   
 

 

 
. 

Then 

 11 12

12 22

R R
H

R R
+  
=  ′ 

, 

where 

1 1 1
11 3| | 3| |[ ( ) ]R I− − + −

× ′ ′= − b b b bQ A A Q A A Q  , 

 1 1
12 ( )R − − +′ ′= b b bQ A A Q A , 

and 

 1
22 ( )R − +′= − b bA Q A . 

In addition, 

 12

22

R
H V

R
+  

=  
 

. 

Proof of Theorem 5.3:  Let b̂  denote the solution to (5.10), and note that only components of g  

in   are affected by the constraints.  It follows by corollaries 3.2.4 and 3.2.5 of Fiacco (1983) that 

2( ) ( ) ( )
12

ˆ ( ) (a a aR O − = − +  
 

b b A b A b   , 
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where 1 | |( ) [ ( ),..., ( )]A A ′⋅ = ⋅ ⋅A   and ⋅  is the Euclidean norm in | |


 .  Therefore, 

 
2( ) 1 ( ) ( )ˆ ( ) ( ) ( ) ,a a aO A− +  ′ ′= − +  

 
-1

b b bb b Q A A Q A A b b    

Recall that 0b  denotes the 3 | | 1×  vector   

 0 {[ ( ), ( ), ( )] : }j j jg x g x g x j′ ′′ ′= ∈b   

and that the modified definition of ( )kA ⋅  includes all components of b  in its arguments.  Then Taylor 

series expansions yield 

 

( ) ( )
0 0

( ) ( )0 0
0 0 0

( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

a ak k
k k

a ak k k k
k

AA A

A A AA

∂
= + −

′∂

 ∂ ∂ ∂
= + − + − − ′ ′ ′∂ ∂ ∂ 

bb b b b
b

b b bb b b b b
b b b



 



 

 

for each 1,...,| |k =  , where b


 is between ( )ab  and 0b .  Under Assumption 5, ( ) /kA∂ ∂b b  is a 

continuous function of b .  Moreover columns of ( ) /kA∂ ∂b b  corresponding to derivatives of g  are zero, 

and 0( ) 0=A b  because A  is defined as the vector giving the binding constraints.  Therefore, 

 
2( ) ( ) ( ) ( ) ( )( ) ( )a a a a aO = − + − 

 bA b A g g g g

   

and 

 
2-1 1 ( ) ( )

0 3| | 3| | 0
ˆ [ ( ) ]( ) a aI O− +

×
 ′ ′− = − − + − 
 b b b bb b Q A A Q A A b b g g

  . 

But 0( ) ( - )E− =b bA b b A b b   , because the estimator of g  is undersmoothed and columns of bA  

corresponding to derivatives of g  are zero.  Therefore, 

 

2( ) -1 1 ( ) ( ) ( ) ( ) ( )
3| | 3| |

2-1 1 ( ) ( ) ( ) ( ) ( )
| | | |

ˆ [ ( ) ] ( )

{ [ ( ) ] }( ) ,

a a a a a a

a a a a a

I O

I O

− +
×

− +
×

 ′ ′− = − − + − 
 

 ′ ′= − − + − 
 

b b b b

b b b b

g g Q A A Q A A g g g g

Q A A Q A A g g g g

 

 

 

 

 

and 

1/2 ( ) -1 1 ( ) 1/2 ( ) ( )
| | | |ˆ( ) ( ) { [ ( ) ] }( ) ( ) (1)a a a a

pnh I nh o− +
× ′ ′− = − − +b b b bg g Q A A Q A A g g  . 

Now proceed as in the proof of Theorem 5.1.  Q.E.D.  
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Table 1:  Results of Monte Carlo Experiments when the Constraints Are Binding 
 

Model:  Constant returns to scale; 1τ =  
Nominal coverage probability:  0.95 

 
 

n hC  Estimation Method Empirical Cov. Prob. Relative Width 
1000 0.95 Unconstrained 0.946 1.0 

 1.00  0.942 1.0 
 1.05  0.945 1.0 

2000 0.95  0.954 1.0 
 1.00  0.952 1.0 
 1.05  0.951 1.0 
     

1000 0.95 Constrained 0.947 0.818 
 1.00  0.933 0.818 
 1.05  0.944 0.818 

2000 0.95  0.953 0.819 
 1.00  0.954 0.819 
 1.05  0.960 0.818 
     

1000 0.95 Oracle 0.949 0.816 
 1.00  0.935 0.817 
 1.05  0.944 0.817 

2000 0.95  0.958 0.817 
 1.00  0.959 0.817 
 1.05  0.962 0.817 
     

1000 0.95 Bias Corrected 0.936 0.906 
 1.00  0.956 0.901 
 1.05  0.955 0.907 

2000 0.95  0.946 0.908 
 1.00  0.938 0.911 
 1.05  0.949 0.911 
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Table 2:  Results of Monte Carlo Experiments when the Constraints Are Nearly Binding 
 

Model:  Decreasing returns to scale; 0.9τ =  
Nominal coverage probability:  0.95 

 
 

n hC  Estimation Method Empirical Cov. Prob. Relative Width 
1000 0.95 Unconstrained 0.946 1.0 

 1.00  0.942 1.0 
 1.05  0.945 1.0 

2000 0.95  0.954 1.0 
 1.00  0.952 1.0 
 1.05  0.951 1.0 
     

1000 0.95 Constrained 0.771 0.828 
 1.00  0.742 0.829 
 1.05  0.729 0.831 

2000 0.95  0.680 0.832 
 1.00  0.660 0.836 
 1.05  0.615 0.837 
     

1000 0.95 Oracle 0.948 1.0 
 1.00  0.943 1.0 
 1.05  0.944 1.0 

2000 0.95  0.953 1.0 
 1.00  0.950 1.0 
 1.05  0.952 1.0 
     

1000 0.95 Bias Corrected 0.934 0.972 
 1.00  0.909 0.970 
 1.05  0.931 0.977 

2000 0.95  0.931 0.983 
 1.00  0.930 0.987 
 1.05  0.923 0.986 
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Table 3:  Results of Monte Carlo Experiments when the Constraints Are Far from Binding 
 

Model:  Decreasing returns to scale; 0.5τ =  
Nominal coverage probability:  0.95 

 
n hC  Estimation Method Empirical Cov. Prob. Relative Width 

1000 0.95 Unconstrained 0.946 1.0 
 1.00  0.941 1.0 
 1.05  0.943 1.0 

2000 0.95  0.954 1.0 
 1.00  0.951 1.0 
 1.05  0.951 1.0 
     

1000 0.95 Constrained 0.946 0.999 
 1.00  0.942 1.0 
 1.05  0.944 1.0 

2000 0.95  0.953 1.0 
 1.00  0.949 1.0 
 1.05  0.952 1.0 
     

1000 0.95 Oracle 0.948 1.0 
 1.00  0.942 1.0 
 1.05  0.944 1.0 

2000 0.95  0.953 1.0 
 1.00  0.949 1.0 
 1.05  0.952 1.0 
     

1000 0.95 Bias Corrected 0.941 1.0 
 1.00  0.940 1.0 
 1.05  0.942 1.0 

2000 0.95  0.962 1.0 
 1.00  0.958 1.0 
 1.05  0.955 1.0 
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Table 4:  Results of Estimating a Production Function 
 

Year Estimation 
Method 

,k   Function 
Estimate 

Standard 
Error 

Lower 95% 
Uniform 
Bound 

Upper 95% 
Uniform 
Bound 

1995 Unconstrained -1.002 8.591 0.117 8.309 8.872 
  0.761 10.403 0.092 10.183 10.623 
  2.524 12.058 1.044 9.550 14.565 
       
 Constrained -1.002 8.621 0.072 8.481 8.761 
  0.761 10.384 0.072 10.244 10.524 
  2.524 12.147 0.072 12.007 12.287 
       

1995 Bias Corr. -1.002 8.621 0.072 8.464 8.789 
  0.761 10.384 0.072 10.226 10.552 
  2.524 12.058 1.044 9.701 14.414 
       

2001 Unconstrained -1.662 8.546 0.239 7.971 9.121 
  0.168 9.833 0.101 9.590 10.075 
  1.997 11.538 0.295 10.830 12.246 
       
 Constrained -1.662 8.066 0.089 7.894 8.239 
  0.168 9.896 0.089 9.723 10.068 
  1.997 11.725 0.089 11.553 11.898 
       

2001 Bias Corr. -1.662 8.546 0.239 7.971 9.121 
  0.168 9.833 0.101 9.590 10.075 
  1.997 11.538 0.295 10.830 12.246 

 
 
 
 



Figure 1. Nonparametric Estimates and their Uniform Confidence Bands
(No Bias Correction)
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Note: The solid lines represent nonparametric estimates, whereas the dashed lines show
95% uniform confidence bands. The circles correspond to the grid. On one hand, the top
and bottom panels show estimates for 1995 and 2001, respectively. On the other hand, the
left and right panels show unconstrained and constrained estimates, respectively.
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Figure 2. Nonparametric Estimates and their Uniform Confidence Bands
(Bias Correction Implemented)
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Note: The solid lines represent nonparametric estimates, whereas the dashed lines show
95% uniform confidence bands. The circles correspond to the grid. On one hand, the top
and bottom panels show estimates for 1995 and 2001, respectively. On the other hand, the
left and right panels show unconstrained and constrained estimates, respectively. The bias
correction is implemented with m = 0.005.
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