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1. Introduction

This supplement consists of two parts. The first section includes additional graphs on the
critical value function, size and power comparison. The second section provides additional
proofs for the remaining theoretical results.

2. Numerical Results

We provide additional numerical results. First, we allow for a time trend and compare the
performance of commonly-used sampling methods to our CVF approach. We then consider
flattening schemes to guarantee that the critical value function (CVF) converges to the
usual standard normal quantiles. Finally, we make further power comparisons between our
similar t-test and other similar tests for different values of the autoregressive parameter
v and degrees of endogeneity p.

2.1. Time Trend

For now, we extend the model to allow for a time trend. The model is given by

Yo = pydi + B +€f

— . xT
Ty = YT+ €,

where 11, is a two-dimensional vector and d; = (1, t)". We consider the group of translation
transformations on the data

go(y,r) = (y+ Dg,x),

where ¢ is a two-dimensional vector and D is a T x 2 matrix whose ¢-th line is given by
d;. This yields a transformation on the parameter space

go (8,7 1) = (Byvipy +9) -

Any invariant test can be written as a function of the maximal invariant statistic.
Let ¢ = (q1,92) be an orthogonal T x T matrix where the first column is given by
q =D (D’D)_l/g. Algebraic manipulations show that ¢2¢5 = Mp, where Mp = Ir —
D (D’D)_1 D’ is the projection matrix to the space orthogonal to 17. Let z_; be the
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T-dimensional vector whose ¢-th entry is x;_1, and define w* = ghw for a T-dimensional
vector w. The maximal invariant statistic is given by r = (y*, z). Its density function is
given by

[y (y",x) = (27‘-0.;8:8)_% €Xp {_ ! Z (w¢ — xt—l’Y)Q} (2.1)
t=1

2050 =
(2 )‘% 1 XT:( w pnzy I {ﬁ Ua:y]>2
X A2T0 . exp § — Yy — T — Ty _ - Y 5
Yy 20y 2 t t O e t—1 Oon

where 0yy» = 0yy — O‘iy /02, is the variance of €/ not explained by €f. Because of in-
variance, the density depends on 3 and -, but not on p,,. Furthermore, the formulae for
the sufficient statistics and the log-likelihood ratio process are exactly the same as in the
model with only an intercept, but replacing ¢ in y* and z*. The asymptotic distribution
of the new Ry () and K () statistics is, however, different when we allow for time
trend. In particular, the model curvature increases in the sense of Efron [1, 2] when v = 1.
This yields larger departures from the nominal size by conventional sampling schemes.

Fig S1: Size (intercept and time trend)
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Figure S1 plots null rejection probabilities when we allow for a time trend. Comparing
this graph with Figure 1, it is evident that both bootstrap methods and subsampling have
null rejection probabilities farther away from the 10% nominal size when we allow for a
time trend. The CVF, however, is able to correct size distortions whether there is a time
trend or not.

As such, the CVF needs to provide more curvature when we allow for time trend. This
can be seen by comparing Figure S2, which plots the CVF when the model has a time
trend, to Figure 2. The range of values that the CVF can take is larger when we make
inference in the presence of a time trend. For example, take the CVF plot when p = 0.95.
The CVF can have values as low as -2.5 and as high as 1.5 in the presence of a time trend.
On the other hand, the CVF ranges from -1 to 1.5 when we make inference knowing there
is no time trend.



Fig S2: Critical Value Function (intercept and time trend)
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2.2. Flattening Schemes

We study the behavior of the critical value function (CVF) when the series is stationary
and explosive. We focus on the main model in which there is only intercept and no
time trend. We are able to analyze the behavior of R,/K,, and K., when the series is
stationary and explosive (to save space, we again use the notation R, and K. for R 1 (1)
and K. 1 (1), respectively). Figure S3 plots the critical values as a function of R, /K.,
and K,,. It is convenient to re-scale the x-axis and y-axis in the figures to analyze the
critical value under different asymptotic regimes. We choose the scale

G(2)=2.(F(2)—0.5),

where F (z) = [1 4 exp (—2)]" is the logistic distribution. This scale is an increasing,
symmetric transformation, which preserves zero and maps oo into 1; that is, G’ (z) >
0, G(—z)=—-G (%), G(0) =0, and lim, ,,,G (z) = 1.

When the series is stationary, R./K,, converges to —oo (under local alternatives)
and K, to 0. This convergence is represented by the point (—1,0) in the domain for
G(R,/K,y) and G (K,,). When the series is explosive, R,/K,, diverges to oo (under
local alternatives) and K., to co. This limit is indicated by the point (1,1) in the new
domain. In both situations, the critical value function takes values near 1.28, the 90%
quantile of a standard normal distribution. Of course, those values are not exactly equal
to 1.28. This suggests we can try to flatten the critical value function using the values
of R,/K,, or K, themselves. For example, we could consider setting the critical value
function at 1.28 for (i) large values of |R, /K|, or (ii) small values and large values of
K. The figures below consider flattening schemes when (i) |R,/K,,| > 10? and (ii)
K, < 102 or K,, > 108. For these regions, the critical value function is forced to
take the value 1.28. Figure S4 plots the null rejection probabilities from both flattening
methods for p = 0.95 and —0.95.

The tests’ sizes are sometimes sensitive to the choice of the thresholds for both flattening
methods. When flattening slightly improves size, it does not yield a substantial effect on
the power of the respective tests. Hence, we report power using the standard critical value
function, without any auxiliary flattening method.
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Fig S3: Critical Value Function
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2.3. Additional Power Comparison

Figures S5-S8 present power for different levels of v and p. The results further support the
similar t-test in terms of size and power. The behavior of the Ly test is sensitive to the
values of ¢, sometimes behaving as a one-sided and other times as a two-sided test. At the
value b = 0, the UMPCU test presents null rejection probabilities above the nominal level
when ¢ = 5, and close to zero when ¢ = 30. This problem is possibly due to the inaccuracy
of the algorithm used by Jansson and Moreira [3] for integral approximations. Although
this problem can be conceivably fixed by using better numerical approximations for ¢ > 0,
the power of the UMPCU test is considerably below that found by the similar t-test for
¢ < 0. Overall, the similar t-test has correct size and better power than the competing
tests.
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Fig S5: Power (p = 0.5)
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Fig S6: Power
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Fig S7

Power (p = 0.95)
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Fig S8: Power (p = —0.95)
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