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Université catholiquede Louvain
Oliver Linton‡

University of Cambridge

Haihan Tang§

University of Cambridge

May 16, 2016

Abstract

We consider a Kronecker product structure for large covariance matrices, which
has the feature that the number of free parameters increases logarithmically with
the dimensions of the matrix. We propose an estimation method of the free param-
eters based on the log linear property of this structure, and also a Quasi-Likelihood
method. We establish the rate of convergence of the estimated parameters when
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1 Introduction

Covariance matrices are of great importance in many fields including finance and psy-
chology. They are a key element in portfolio choice, for example. In psychology there is
a long history of modelling unobserved traits through factor models that imply specific
structure on the covariance matrix of observed variables. Anderson (1984) is a classic
reference on multivariate analysis that treats estimation of covariance matrices and test-
ing hypotheses on them, see also Wansbeek and Meijer (2000) for an extensive discussion
of models and applications in social sciences. More recently, theoretical and empirical
work has considered the case where the covariance matrix is large, see for example Ledoit
and Wolf (2003), Bickel and Levina (2008), Onatski (2009), and Fan et al. (2013). The
general approach is to impose some sparsity on the model or to use a shrinkage method
that achieves effectively the same dimensionality reduction.

We consider a parametric model for the covariance matrix or the correlation matrix,
the Kronecker product structure. This has been previously considered in Swain (1975)
and Verhees and Wansbeek (1990) under the title of multimode analysis. Verhees and
Wansbeek (1990) defined several estimation methods based on least squares and max-
imum likelihood principles, and provided asymptotic variances under assumptions that
the data are normal and that the covariance matrix dimension is fixed. We reconsider this
model in the setting where the matrix dimension n is large, i.e., increases with the sample
size T . In this setting, the model effectively imposes sparseness on the covariance matrix,
since the number of free parameters in the covariance matrix grows logarithmically with
dimensions. We propose a closed-form minimum distance estimator of the parameters
of this model as well as an approximate MLE. We establish the rate of convergence and
asymptotic normality of the estimated parameters when n and T diverge. In the following
two sections we discuss this model and its motivation.

2 The Model

2.1 Notation

For x ∈ Rn, let ‖x‖2 =
√∑n

i=1 x
2
i denote the `2 (Euclidean) norm. For any real ma-

trix A, let maxeval(A) and mineval(A) denote its maximum and minimum eigenval-
ues, respectively. Let ‖A‖F := [tr(AᵀA)]1/2 ≡ [tr(AAᵀ)]1/2 ≡ ‖vecA‖2 and ‖A‖`2 :=
max‖x‖2=1 ‖Ax‖2 ≡

√
maxeval(AᵀA) denote the Frobenius norm and spectral norm of A,

respectively.
Let A be a m × n matrix. vecA is a vector obtained by stacking the columns of

the matrix A one underneath the other. The commutation matrix Km,n is a mn ×mn
orthogonal matrix which translates vecA to vec(Aᵀ), i.e., vec(Aᵀ) = Km,nvec(A). If A
is a symmetric n × n matrix, its n(n − 1)/2 supradiagonal elements are redundant in
the sense that they can be deduced from the symmetry. If we eliminate these redundant
elements from vecA, this defines a new n(n+ 1)/2× 1 vector, denoted vechA. They are
related by the full-column-rank, n2×n(n+1)/2 duplication matrix Dn: vecA = DnvechA.
Conversely, vechA = D+

n vecA, where D+
n is the Moore-Penrose generalised inverse of Dn.

In particular, D+
n = (Dᵀ

nDn)−1Dᵀ
n because Dn is full column rank.

Consider two sequences of real random matrices Xt and Yt. Xt = Op(‖Yt‖), where
‖ · ‖ is some matrix norm, means that for every real ε > 0, there exist Mε > 0 and Tε > 0
such that for all t > Tε, P(‖Xt‖/‖Yt‖ > Mε) < ε. Xt = op(‖Yt‖), where ‖ · ‖ is some

1



matrix norm, means that ‖Xt‖/‖Yt‖
p−→ 0 as t→∞.

Let a∨b and a∧b denote max(a, b) and min(a, b), respectively. For two real sequences
aT and bT , aT . bT means that aT ≤ CbT for some positive real number C for all T ≥ 1.

For matrix calculus, what we adopt is called the numerator layout or Jacobian formu-
lation; that is, the derivative of a scalar with respect to a column vector is a row vector.
As the result, our chain rule is never backward.

2.2 On the Covariance Matrix

Suppose that the i.i.d. series xt ∈ Rn (t = 1, . . . , T ) with mean µ have the covariance
matrix

Σ := E(xt − µ)(xt − µ)ᵀ,

where the covariance matrix Σ is positive definite. Suppose that n is composite and has
a factorization n = n1n2 · · ·nv (nj may not be distinct).1 Then consider the n×n matrix

Σ∗ = Σ1 ⊗ Σ2 ⊗ · · · ⊗ Σv, (2.1)

where Σj are nj × nj matrices. When each Σj is positive semidefinite, then so is Σ∗.
The total number of free parameters in Σ∗ is

∑v
j=1 rj where rj := nj(nj + 1)/2, which is

much less than n(n+1)/2. When n = 256, the eightfold factorization with 2×2 matrices
has 24 parameters, while the unconstrained covariance matrix has 32,896 parameters. In
many cases it is possible to consider intermediate factorizations with different numbers
of parameters. We will discuss this further below.

This Kronecker type of structure does arise naturally in various contexts. For example,
suppose that ui,t are errors terms in a panel regression model with i = 1, . . . , n and
t = 1, . . . , T, The interactive effects model, Bai (2009), is that ui,t = γift, which implies
that u = γ⊗ f, where u is the nT × 1 vector containing all the elements of ui,t, while γ =
(γ1, . . . , γn)

ᵀ
and f = (f1, . . . , fT )

ᵀ
. If we assume that γ, f are random, γ is independent

of f , and both vectors have mean zero, this implies that

var(u) = E[uuᵀ] = Γ⊗ Φ,

where Γ = Eγγᵀ is n × n and Φ = Effᵀ is T × T.2 We can think of our more general
structure (2.1) arising from a multi-index setting with v multiplicative factors. The
interpretation is that there are v different indexes that define an observation and

ui1,i2,...,iv = εi1εi2 · · · εiv ,
1Note that if n is not composite one can add a vector of additional pseudo variables to the system until

the full system is composite. It is recommended to add a vector of independent variables ut ∼ N (0, τIk) ,
where n+ k = 2v, say. Let zt = (xᵀt , u

ᵀ
t )ᵀ denote the 2v × 1 vector with covariance matrix

B =

[
Σ 0
0 τIk

]
= B1 ⊗B2 ⊗ · · · ⊗Bv,

where Bj are 2× 2 positive definite matrices.
2In the so called BEKK model for multivariate GARCH processes, the authors consider a similar

Kronecker parameterization of the form A = A⊗A, where A is an n× n matrix, while A is an n2 × n2
matrix that is a typical parameter of the dynamic process. In the case where n is composite one could
consider further Kronecker factorizations that would allow one to treat very much larger systems.
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where the errors εi1 , . . . , εiv are mutually independent. The motivation for considering
this structure is that in a number of contexts multiplicative effects may be a valid de-
scription of relationships, especially in the multi-trait multimethod (MTMM) context
in psychometrics (see e.g. Campbell and O’Connell (1967) and Cudeck (1988)). This
structure has been considered before in Swain (1975) and Verhees and Wansbeek (1990),
where they emphasize the case where v is small and where the structure is known and
correct. Our thinking is more along the lines that we allow v to be large, and use Σ∗

in (2.1) as an approximation device to Σ. In some sense as we shall see the Kronecker
product structure corresponds to a kind of additive structure on the log of the covariance
matrix, and so from a mathematical point of view it has some advantages.

There are two issues with the model (2.1). First, there is also an identification problem
even though the number of parameters in (2.1) is strictly less than n(n + 1)/2. For
example, if we multiply every element of Σ1 by a constant C and divide every element of
Σ2 by C, then Σ∗ is the same. A solution to the identification problem is to normalize
Σ1,Σ2, · · · ,Σv−1 by setting the upper diagonal element to be 1. Second, if the matrices
Σjs are permuted one obtains a different Σ∗. Although the eigenvalues of this permuted
matrix are the same the eigenvectors are not. It is also the case that if the data are
permuted then the Kronecker structure may be lost. This begs the question of how one
chooses the correct permutation, and we discuss this briefly below.

2.3 On the Correlation Matrix

In this paper, we will mainly approximate the correlation matrix, instead of the covariance
matrix, with a Kronecker product structure. Suppose again that we observe a sample of
n-dimensional random vectors xt, t = 1, 2, . . . , T , which are i.i.d. distributed with mean
µ := Ext and a positive definite n× n covariance matrix Σ := E(xt− µ)(xt− µ)ᵀ. Define
D := diag(σ2

1, . . . , σ
2
n), where σ2

i := E(xt,i − µi)2. That is, D is a diagonal matrix with
the ith diagonal entry being Σii. Define

yt := D−1/2(xt − µ)

such that Eyt = 0 and var[yt] = D−1/2ΣD−1/2 =: Θ. Note that Θ is the correlation
matrix; that is, it has all its diagonal entries to be 1. This is the matrix which we will
estimate using our Kronecker product method.

Suppose n = 2v. We show in Section 3.1 that there exists a unique matrix

Θ0 = Θ0
1 ⊗Θ0

2 ⊗ · · · ⊗Θ0
v =

[
1 ρ1

ρ1 1

]
⊗

[
1 ρ2

ρ2 1

]
⊗ · · · ⊗

[
1 ρv
ρv 1

]
(2.2)

which minimizes ‖ log Θ− log Θ∗‖F among log Θ∗. Define

Ω0 := log Θ0

= (log Θ0
1 ⊗ I2 ⊗ · · · ⊗ I2) + (I2 ⊗ log Θ0

2 ⊗ · · · ⊗ I2) + · · ·+ (I2 ⊗ · · · ⊗ log Θ0
v),

=: (Ω1 ⊗ I2 ⊗ · · · ⊗ I2) + (I2 ⊗ Ω2 ⊗ · · · ⊗ I2) + · · ·+ (I2 ⊗ · · · ⊗ Ωv), (2.3)

where Ωi is 2× 2 for i = 1, . . . , v. For the moment consider Ω1 := log Θ0
1. We can easily

calculate that the eigenvalues of Θ0
1 are 1+ρ1 and 1−ρ1, respectively. The corresponding
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eigenvectors are (1, 1)ᵀ and (1,−1)ᵀ, respectively. Therefore

Ω1 = log Θ0
1 =

(
1 1
1 −1

)(
log(1 + ρ1) 0

0 log(1− ρ1)

)(
1
2

1
2

1
2
−1

2

)

=

 1
2

log(1− ρ2
1) 1

2
log
(

1+ρ1
1−ρ1

)
1
2

log
(

1+ρ1
1−ρ1

)
1
2

log(1− ρ2
1)

 =:

(
a1 b1

b1 a1

)
, (2.4)

whence we see that ρ1 generates two distinct entries - one negative and one positive - in
Ω1. We also see that Ω1 is not only symmetric about the diagonal, but also symmetric
about the cross-diagonal (from the upper right to the lower left). In this paper, for
simplicity we will not utilize the information about the signs of the entries of Ω1; we
merely use the estimates of entries of Ω1 to recover ρ1 (in some over-identified sense).
The same reasoning applies to Ω2, . . . ,Ωv. Therefore we obtain an estimate Θ̂0, which we
will use to approximate Θ. We achieve dimension reduction because the original Θ has
n(n − 1)/2 parameters whereas Θ0 has only v = O(log n) parameters. We shall discuss
various aspects of estimation in detail in Section 4.

3 Some Motivating Properties of the Model

In this section we give three motivational reasons for considering the Kronecker product
model. First, we show that for any given covariance matrix (or correlation matrix) there
is a uniquely defined member of the model that is closest to it in some sense. Second,
we also discuss whether the model can approximate an arbitrary large covariance matrix
well. Third, we argue that the structure is very convenient for a number of applications.

3.1 Best Approximation

For simplicity of notation, we suppose that n = n1n2. Consider the set Cn of all n × n
real, positive definite matrices with the form

Σ∗ = Σ1 ⊗ Σ2,

where Σj is a nj × nj matrix for j = 1, 2. We assume that both Σ1 and Σ2 are positive
definite to ensure that Σ∗ is positive definite. For an identification issue we also impose the
first diagonal of Σ1 is 1. Since Σ1 and Σ2 are symmetric, we can orthogonally diagonalize
them:

Σ1 = Uᵀ
1 Λ1U1 Σ1 = Uᵀ

2 Λ2U2,

where U1 and U2 are orthogonal, and Λ1 = diag(λ1, . . . , λn1) and Λ2 = diag(u1, . . . , un2)
are diagonal matrices containing eigenvalues. Positive definiteness of Σ1 and Σ2 ensure
that these eigenvalues are real and positive. Then the (principal) logarithm of Σ∗ is:

log Σ∗ = log(Σ1 ⊗ Σ2) = log[(U1 ⊗ U2)ᵀ(Λ1 ⊗ Λ2)(U1 ⊗ U2)]

= (U1 ⊗ U2)ᵀ log(Λ1 ⊗ Λ2)(U1 ⊗ U2) (3.1)
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where the second equality is due to the mixed product property of the Kronecker product,
and the third equality is due to a property of matrix function. Now

log(Λ1 ⊗ Λ2) = diag(log(λ1Λ2), . . . , log(λn1Λ2))

= diag(log(λ1In2Λ2), . . . , log(λn1In2Λ2))

= diag(log(λ1In2) + log(Λ2), . . . , log(λn1In2) + log(Λ2))

= diag(log(λ1In2), . . . , log(λn1In2)) + diag(log(Λ2), . . . , log(Λ2))

= log Λ1 ⊗ In2 + In1 ⊗ log Λ2, (3.2)

where the third equality holds only because λjIn2 and Λ2 have real positive eigenvalues
only and commute for all j = 1, . . . , n1 (Higham (2008) p270 Theorem 11.3). Substitute
(3.2) into (3.1):

log Σ∗ = (U1 ⊗ U2)ᵀ(log Λ1 ⊗ In2 + In1 ⊗ log Λ2)(U1 ⊗ U2)

= (U1 ⊗ U2)ᵀ(log Λ1 ⊗ In2)(U1 ⊗ U2) + (U1 ⊗ U2)ᵀ(In1 ⊗ log Λ2)(U1 ⊗ U2)

= log Σ1 ⊗ In2 + In1 ⊗ log Σ2.

Let Dn denote the set of all such matrices like log Σ∗.
LetMn denote the set of all n×n real symmetric matrices. Define the inner product

〈A,B〉 = tr(AᵀB) = tr(AB), inducing the Frobenius norm ‖ · ‖F . Mn with this inner
product can be identified by Rn2

with Euclidean inner product. Since Rn2
with Euclidean

inner product is a Hilbert space (for finite n), so is Mn.
The subset Cn ⊂ Mn is not a subspace of Mn. First, ⊗ and + do not distribute in

general. That is, there might not exist positive definite Σ1,3 and Σ2,3 such that

Σ1,1 ⊗ Σ2,1 + Σ1,2 ⊗ Σ2,2 = Σ1,3 ⊗ Σ2,3,

where Σ1,j are n1 × n1 and Σ2,j are n2 × n2 for j = 1, 2. Second, Cn is a positive cone,
hence not necessarily a subspace. Third, the smallest subspace of Mn that contains Cn
is Mn itself. On the other hand, Dn is a subspace of Mn as

(log Σ1,1 ⊗ In2 + In1 ⊗ log Σ2,1) + (log Σ1,2 ⊗ In2 + In1 ⊗ log Σ2,2)

=
(
log Σ1,1 + log Σ1,2

)
⊗ In2 + In1 ⊗

(
log Σ2,1 + log Σ2,2

)
∈ Dn.

For finite n, Dn is also closed. Therefore, for any positive definite covariance matrix
Σ ∈ Mn, there exists a unique log Σ0 ∈ Dn such that via the projection theorem of
Hilbert space

‖ log Σ− log Σ0‖F = inf
log Σ∗∈Dn

‖ log Σ− log Σ∗‖F .

Note also that since log Σ−1 = − log Σ, so that this model simultaneously approximates
the precision matrix in the same norm.

This says that any covariance matrix Σ has a closest approximating matrix Σ0 (in
the least squares sense) that is of the Kronecker form. This kind of best approximating
property is found in linear regression (Best Linear Predictor) and provides a justification
(i.e., interpretation) for using this approximation Σ0 even when the model is not true.

3.2 Large n Approximation Properties

We next consider what happens to the eigenstructure of large covariance matrices. In
general, a covariance matrix can have a wide variety of eigenstructures. Suppose we have a
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sequence of covariance matrix Σn with λn,i denoting its ith largest eigenvalue. Let ωn,i :=
log λn,i and suppose that there exists a bounded continuous decreasing function ω(·)
defined on [0, 1] such that ω(i/n) = ωn,i for i = 1, . . . , n. We may further suppose without
loss of generality that ω(0) = 1 and ω(1) = 0, but otherwise ω can be anything. In some
sense this class of matrices Σn is very large with potentially a very rich eigenstructure.
On the other hand, the widely used factor models have a rather limited eigenstructure.
Specifically, in a factor model the covariance matrix (normalized by diagonal values)
has a spikedness property, namely, there are K eigenvalues 1 + δ1, . . . , 1 + δK , where
δ1 ≥ δ2 ≥ · · · ≥ δK > 0, and n−K eigenvalues that take the value one.

We next consider the eigenvalues of the class of matrices formed from the Kronecker
parameterization. Without loss of generality suppose n = 2vn . We consider the 2 × 2
matrices {Σn

j : j = 1, 2, . . . , vn}. Let ωnj and ωnj denote the logarithms of the larger
and smaller eigenvalues of Σn

j , respectively. The logarithms of the eigenvalues of the
Kronecker product matrix

Σ∗n = Σn
1 ⊗ · · · ⊗ Σn

vn

are of the form
∑vn

j=1 lj, where lj ∈ {ωnj , ωnj } for j = 1, . . . , vn. That is, the logarithms of
the eigenvalues of Σ∗n of the form ∑

j∈I

ωnj +
∑
j∈Ic

ωnj ,

for some I ⊂ {1, 2, . . . , vn}. In fact, we can think of lj as a binary random variable that
takes the two values with equal probability. Therefore, we may expect that∑vn

j=1(lj − Elj)√∑vn
j=1 var(lj)

d−→ N(0, 1),

as n → ∞. This says that the spectral distribution of Σ∗n can be represented by the
cumulative distribution function of the log normal distribution whose mean parameter
is
∑vn

j=1 Elj and variance parameter
∑vn

j=1 var(lj), provided these two quantities stabilize.
For example, suppose that ωnj + ωnj = 0, then Elj = 0, and provided

vn∑
j=1

var(lj) =
1

2

vn∑
j=1

[(
ωnj
)2

+
(
ωnj
)2
]
→ c ∈ (0,∞), (3.3)

as n → ∞, then the conditions of the CLT are satisfied. For example, suppose that
ωnj = v

−1/2
n φ

(
j/vn

)
and ωnj = v

−1/2
n µ

(
j/vn

)
for some fixed decreasing functions φ(·), µ(·)

such that
∫ (

φ(u) + µ(u)
)
du = 0. Then (3.3) is satisfied with c = 1

2

∫ (
φ2(u) + µ2(u)

)
du.

This says that the class of eigenstructures generated by the Kronecker parameteriza-
tion can be quite general, and is determined by the mean and variance of the logarithms
of the eigenvalues of the low dimensional matrices.

3.3 Portfolio Choice

In this section we consider a practical motivation for considering the Kronecker factor-
ization. Many portfolio choices require the inverse of the covariance matrix, Σ−1. For
example, the weights of the minimum variance portfolio are given by

wMV =
Σ−1ιn
ιᵀnΣ−1ιn

,
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where ιn = (1, 1, . . . , 1)
ᵀ
, see e.g., Ledoit and Wolf (2003) and Chan et al. (1999). In

our case, the inverse of the covariance matrix is easily found by inverting the lower order
submatrices Σj, which can be done analytically, whence

Σ−1 = Σ−1
1 ⊗ Σ−1

2 ⊗ · · · ⊗ Σ−1
v .

In fact, because ιn = ιn1 ⊗ ιn2 ⊗ · · · ⊗ ιnv , we can write

wMV =

(
Σ−1

1 ⊗ Σ−1
2 ⊗ · · · ⊗ Σ−1

v

)
ιn

ιᵀn
(
Σ−1

1 ⊗ Σ−1
2 ⊗ · · · ⊗ Σ−1

v

)
ιn

=
Σ−1

1 ιn1

ιᵀn1
Σ−1

1 ιn1

⊗ Σ−1
2 ιn2

ιᵀn2
Σ−1

2 ιn2

⊗ · · · ⊗ Σ−1
v ιnv

ιᵀnvΣ
−1
v ιnv

,

which is very easy to compute.

4 Estimation of the Correlation Matrix Θ

We now suppose that the setting in Section 2.3 holds. We observe a sample of n-
dimensional random vectors xt, t = 1, 2, . . . , T , which are i.i.d. distributed with mean µ
and a positive definite n× n covariance matrix Σ = D1/2ΘD1/2. In this section, we want
to estimate ρ1, . . . , ρv in Θ0 in (2.2) in the case where n, T → ∞ simultaneously, i.e.,
joint asymptotics (Phillips and Moon (1999)). We achieve dimension reduction because
originally Θ has n(n− 1)/2 parameters whereas Θ0 has only v = O(log n) parameters.

To study the theoretical properties of our model, we assume both µ and D are known.
The case where D is unknown is considerably much more difficult. Not only it will affect
the information bound for ρ1, . . . , ρv in the maximum likelihood, but also has a non-
trivial impact on the derivation of the asymptotic distribution of the minimum distance
estimator due to its growing dimension.

Let ρ := (ρ1, . . . , ρ2)ᵀ ∈ Rv. Recall that Ω1 in (2.4) has two distinct parameters a1

and b1. We denote similarly for Ω2, . . . ,Ωv. As mentioned before, we will not utilise
the information about the signs of the entries of Ωi for i = 1, . . . , v. Define θ† :=
(a1, b1, a2, b2, . . . , av, bv)

ᵀ ∈ R2v. Note that

vechΩ1 = vech

(
a1 b1

b1 a1

)
=

 a1

b1

a1

 =

 1 0
0 1
1 0

( a1

b1

)
.

The same principle applies to Ω2, . . . ,Ωv. By (2.3) and Proposition 5 in Appendix A, we
have

vech(Ω0) =
[
E1 E2 · · · Ev

]
vech(Ω1)
vech(Ω2)

...
vech(Ωv)



=
[
E1 E2 · · · Ev

]Iv ⊗
 1 0

0 1
1 0






a1

b1

a2

b2
...
av
bv


=: E∗θ

†, (4.1)

7



where Ei for i = 1, . . . , v are defined in (9.1). That is, the log correlation matrix Ω0 obeys
a linear model. We next give two examples.

Example 1 (v = 2).

Ω1 = log Θ0
1 =

(
a1 b1

b1 a1

)
Ω2 = log Θ0

2 =

(
a2 b2

b2 a2

)
.

In this simple case, the matrix E∗ takes the following form

vech(Ω0) = vech(Ω1 ⊗ I2 + I2 ⊗ Ω2)

= vech


a1 + a2 b2 b1 0
b2 a1 + a2 0 b1

b1 0 a1 + a2 0
0 b1 b2 a1 + a2

 =



1 0 1 0
0 0 0 1
0 1 0 0
0 0 0 0
1 0 1 0
0 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1
1 0 1 0




a1

b1

a2

b2



=: E∗


a1

b1

a2

b2

 .

Eᵀ
∗E∗ is a 4× 4 matrix:

Eᵀ
∗E∗ =


4 0 4 0
0 2 0 0
4 0 4 0
0 0 0 2

 .

Example 2 (v=3).

Ω1 = log Θ0
1 =

(
a1 b1

b1 a1

)
Ω2 = log Θ0

2 =

(
a2 b2

b2 a2

)
Ω3 = log Θ0

3 =

(
a3 b3

b3 a3

)
.
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Now

vech(Ω0) = vech(Ω1 ⊗ I2 ⊗ I2 + I2 ⊗ Ω2 ⊗ I2 + I2 ⊗ I2 ⊗ Ω3)

= vech



∑3
i=1 ai b3 b2 0 b1 0 0 0

b3

∑3
i=1 ai 0 b2 0 b1 0 0

b2 0
∑3

i=1 ai b3 0 0 b1 0

0 b2 b3

∑3
i=1 ai 0 0 0 b1

b1 0 0 0
∑3

i=1 ai b3 b2 0

0 b1 0 0 b3

∑3
i=1 ai 0 b2

0 0 b1 0 b2 0
∑3

i=1 ai b3

0 0 0 b1 0 b2 b3

∑3
i=1 ai



=: E∗



a1

b1

a2

b2

a3

b3


We can show that Eᵀ

∗E∗ is a 6× 6 matrix

Eᵀ
∗E∗ =



8 0 8 0 8 0
0 4 0 0 0 0
8 0 8 0 8 0
0 0 0 4 0 0
8 0 8 0 8 0
0 0 0 0 0 4


Take Example 2 as an illustration. We can make the following observations:

(i) Each parameter in θ†, e.g., a1, b1, a2, b2, a3, b3, appears exactly n = 2v = 8 times in
Ω0. However in vech(Ω0) because of the ”diagonal truncation”, each of a1, a2, a3

appears n = 2v = 8 times while each of b1, b2, b3 only appears n/2 = 4 times.

(ii) In Eᵀ
∗E∗, the diagonal entries summarise the information in (i). The off-diagonal

entry of Eᵀ
∗E∗ records how many times the pair to which the diagonal entry corre-

sponds has appeared in vech(Ω0).

(iii) The rank Eᵀ
∗E∗ is v + 1 = 4. To see this, we left multiply Eᵀ

∗E∗ by the 2v × 2v
permutation matrix

P :=



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


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and right multiply Eᵀ
∗E∗ by P ᵀ:

P (Eᵀ
∗E∗)P

ᵀ =



8 8 8 0 0 0
8 8 8 0 0 0
8 8 8 0 0 0
0 0 0 4 0 0
0 0 0 0 4 0
0 0 0 0 0 4


.

Note that rank is unchanged upon left or right multiplication by a nonsingular
matrix. We hence also deduce that rank(Eᵀ

∗E∗) = rank(E∗) = v + 1 = 4.

(iv) The eigenvalues of Eᵀ
∗E∗ are(

0, 0,
n

2
,
n

2
,
n

2
, vn

)
= (0, 0, 4, 4, 4, 24).

To see this, we first recognise that Eᵀ
∗E∗ and P (Eᵀ

∗E∗)P
ᵀ have the same eigenvalues

because P is orthogonal. The eigenvalues P (Eᵀ
∗E∗)P

ᵀ are the eigenvalues of its
blocks.

We summarise these observations in the following proposition

Proposition 1. Recall that n = 2v.

(i) The 2v × n(n + 1)/2 dimensional matrix Eᵀ
∗ is sparse. Eᵀ

∗ has n = 2v ones in odd
rows and n/2 ones in even rows; the rest of entries are zeros.

(ii) In Eᵀ
∗E∗, the ith diagonal entry records how many times the ith parameter of θ†

has appeared in vech(Ω0). The (i, j)th off-diagonal entry of Eᵀ
∗E∗ records how many

times the pair (θ†i , θ
†
j) has appeared in vech(Ω0).

(iii) rank(Eᵀ
∗E∗) = rank(Eᵀ

∗ ) = rank(E∗) is v + 1.

(iv) The 2v eigenvalues of Eᵀ
∗E∗ are(

0, . . . , 0︸ ︷︷ ︸
v−1

,
n

2
, . . . ,

n

2︸ ︷︷ ︸
v

, vn

)
.

Proof. See Appendix A.

Based on Example 1 or 2, we see that the number of effective parameters in θ† is
actually v+ 1: b1, b2, . . . , bv,

∑v
i=1 ai. That is, we cannot separately identify a1, a2, . . . , av

as they always appear together. That is why the rank of E∗ is only v + 1 and Eᵀ
∗E∗ has

v−1 zero eigenvalues. It is possible to leave E∗ as it is and use Moore-Penrose generalised
inverse to invert Eᵀ

∗E∗ for estimation, but this creates unnecessary technicality in the
proofs for the asymptotics. A better alternative is to re-parametrise

vech(Ω0) = E∗θ
† = Eθ, (4.2)

where θ := (
∑v

i=1 ai, b1, . . . , bv)
ᵀ and E is the n(n+ 1)/2× (v + 1) submatrix of E∗ after

deleting the duplicate columns. Then we have the following proposition.
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Proposition 2. Recall that n = 2v.

(i) rank(EᵀE) = rank(Eᵀ) = rank(E) is v + 1.

(ii) EᵀE is a diagonal matrix

EᵀE =

 n 0
0 n

2
Iv

 .

(iii) The v + 1 eigenvalues of EᵀE are(
n

2
, . . . ,

n

2︸ ︷︷ ︸
v

, n

)
.

Proof. Follows trivially from Proposition 1.

Finally note that the dimension of θ is v + 1 whereas that of ρ is v. Hence we have
over-identification in the sense that any v parameters in θ could be used to recover ρ.
For instance, in Example 1 we have the following three equations:

1

2
log(1− ρ2

1) +
1

2
log(1− ρ2

2) = θ1 =: a1 + a2

1

2
log

(
1 + ρ1

1− ρ1

)
= θ2 =: b1

1

2
log

(
1 + ρ2

1− ρ2

)
= θ3 =: b2.

Any two of the preceding three allow us to recover ρ. We shall not address this over-
identification issue in this paper.

4.1 Maximum Likelihood

The Gaussian QMLE is a natural starting point for estimation here. For maximum
likelihood estimation to make sense, we impose the Kronecker product structure Θ0 on
the true correlation matrix Θ; that is, Θ = Θ0. Then the log likelihood function for a
sample {x1, x2, . . . , xT} ⊂ Rn is given by

`T (ρ)

= −Tn
2

log(2π)− T

2
log
∣∣∣D1/2Θ(ρ)D1/2

∣∣∣− 1

2

T∑
t=1

(xt − µ)ᵀD−1/2[Θ(ρ)]−1D−1/2(xt − µ).

Note that although Θ is an n × n correlation matrix, because of the Kronecker product
structure, we can compute the likelihood itself very efficiently using

Θ−1 = Θ−1
1 ⊗Θ−1

2 ⊗ · · · ⊗Θ−1
v

|Θ| = |Θ1| × |Θ2| × · · · × |Θv| .
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We let
ρ̂MLE = arg max

ρ
`T (ρ).

Substituting Θ = Θ0 = exp(Ω0) (see (2.3)) into the log likelihood function, we have

`T (θ) =

− Tn

2
log(2π)− T

2
log
∣∣∣D1/2 exp(Ω0(θ))D1/2

∣∣∣− 1

2

T∑
t=1

(xt − µ)ᵀD−1/2[exp(Ω0(θ))]−1D−1/2(xt − µ),

(4.3)

where the parametrisation of Ω0 in terms of θ is due to (4.2). We may define

θ̂MLE = arg max
θ
`T (θ),

and use the invariance principle of maximum likelihood to recover ρ̂MLE from θ̂MLE.
To compute the MLE we use an iterative algorithm based on the derivatives of `T

with respect to either ρ or θ. We give below formulas for the derivatives with respect to θ.
The computations required are typically not too onerous, since for example the Hessian
matrix is (v + 1) × (v + 1) (i.e., of order log n by log n), but there is quite complicated
non-linearity involved in the definition of the MLE and so it is not so easy to analyse
from a theoretical point of view.

We next define a closed-form estimator that can be analysed simply, i.e., we can
obtain its large sample properties (as n, T →∞). We also consider a one-step estimator
that uses the closed-form estimator to provide a starting value and then takes a Newton-
Raphson step towards the MLE. In finite dimensional cases it is known that this estimator
is equivalent to the MLE in the sense that it shares its large sample distribution (Bickel
(1975)).

4.2 The Minimum Distance Estimator

Define the sample second moment matrix

MT := D−1/2

[
1

T

T∑
t=1

(xt − µ)(xt − µ)ᵀ
]
D−1/2 =: D−1/2Σ̃D−1/2, (4.4)

Let W be a positive definite n(n + 1)/2 × n(n + 1)/2 matrix and define the minimum
distance (MD) estimator

θ̂(W ) := arg min
θ∈Rv+1

[vech(logMT )− Eθ]ᵀW [vech(logMT )− Eθ],

where the matrix E is defined in Proposition 2. This has a closed form solution

θ̂(W ) = (E
ᵀ
WE)−1EᵀWvech(logMT ).

In the interest of space, we will only consider the special case of the identity weighting
matrix (W = I)

θ̂T := (EᵀE)−1Eᵀvech(logMT ).
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5 Asymptotic Properties

We derive the large sample properties of two estimators, the identity weighted minimum
distance estimator θ̂T and the one-step QMLE which we define below, since the one-
step QMLE depends on the properties of θ̂T . We consider the case where n, T → ∞
simultaneously.

5.1 The Identity-Weighted Minimum Distance Estimator

The following proposition linearizes the matrix logarithm.

Proposition 3. Suppose both n × n matrices A + B and A are positive definite for all
n with the minimum eigenvalues bounded away from zero by absolute constants. Suppose
the maximum eigenvalue of A is bounded from the above by an absolute constant. Further
suppose ∥∥[t(A− I) + I]−1tB

∥∥
`2
≤ C < 1 (5.1)

for all t ∈ [0, 1] and some constant C. Then

log(A+B)− logA =

∫ 1

0

[t(A− I) + I]−1B[t(A− I) + I]−1dt+O(‖B‖2
`2
∨ ‖B‖3

`2
).

Proof. See Appendix A.

The conditions of the preceding proposition implies that for every t ∈ [0, 1], t(A−I)+I
is positive definite for all n with the minimum eigenvalue bounded away from zero by
an absolute constant (Horn and Johnson (1985) p181). Proposition 3 has a flavour of

Frechet derivative because
∫ 1

0
[t(A−I)+I]−1B[t(A−I)+I]−1dt is the Frechet derivative of

matrix logarithm at A in the direction B (Higham (2008) p272); however, this proposition
is slightly stronger in the sense of a sharper bound on the remainder.

Assumption 1. {xt}Tt=1 are subgaussian random vectors. That is, for all t, for every
a ∈ Rn, and every ε > 0

P(|aᵀxt| ≥ ε) ≤ Ke−Cε
2

,

for positive constants K and C.

Assumption 1 is standard in high-dimensional theoretical work. We are aware that
financial data often exhibit heavy tails, hence violating Assumption 1. However Assump-
tion 1 is not necessary as we mainly use it to invoke some concentration inequality such as
Bernstein’s inequality in Appendix B. Concentration inequalities corresponding to weaker
versions of Assumption 1 do exist. Since the proofs of the asymptotics are already quite
involved, we stick with Assumption 1.

Assumption 2.

(i) n, T →∞ simultaneously. n/T → 0.

(ii) n, T →∞ simultaneously.

n2

T

(
T 2/γ log2 n ∨ n

)
= o(1), for some γ > 2.
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Assumption 2(i) is for the rate of convergence of the minimum distance estimator
θ̂T (Theorem 1). Assumption 2(ii) is sufficient for the asymptotic normality of both θ̂T
(Theorem 2) and the one-step estimator θ̃T (Theorem 4).

Assumption 3.

(i) Recall that D := diag(σ2
1, . . . , σ

2
n), where σ2

i := E(xt,i−µi)2. Suppose min1≤i≤n σ
2
i is

bounded away from zero by an absolute constant.

(ii) Recall that Σ := E(xt−µ)(xt−µ)ᵀ. Suppose its maximum eigenvalue bounded away
from the above by an absolute constant.

(iii) Suppose that Σ is positive definite for all n with its minimum eigenvalue bounded
away from zero by an absolute constant.

(iv) max1≤i≤n σ
2
i is bounded from the above by an absolute constant.

We assume that min1≤i≤n σ
2
i is bounded away from zero by an absolute constant

in Assumption 3(i) otherwise D−1/2 is not defined in the limit n → ∞. Assumption
3(ii) is fairly standard in the high-dimensional literature. The assumption of positive
definiteness of the covariance matrix Σ in Assumption 3(iii) is also standard, and, together
with Assumption 3(iv), ensure that the correlation matrix Θ := D−1/2ΣD−1/2 is positive
definite for all n with its minimum eigenvalue bounded away from zero by an absolute
constant by Observation 7.1.6 in Horn and Johnson (1985) p399. Similarly, Assumptions
3(i)-(ii) ensure that Θ has maximum eigenvalue bounded away from the above by an
absolute constant. To summarise, Assumption 3 ensures that Θ is well behaved; in
particular, log Θ is properly defined.

The following proposition is a stepping stone for the main results of this paper.

Proposition 4. Suppose Assumptions 1, 2(i), and 3 hold. We have

(i)

‖MT −Θ‖`2 = Op

(√
n

T

)
.

(ii) Then (5.1) is satisfied with probability approaching 1 for A = Θ and B = MT −Θ.
That is,

‖[t(Θ− I) + I]−1t(MT −Θ)‖`2 ≤ C < 1 with probability approaching 1,

for some constant C.

Proof. See Appendix A.

Assumption 4. Suppose MT := D−1/2Σ̃D−1/2 in (4.4) is positive definite for all n with
its minimum eigenvalue bounded away from zero by an absolute constant with probability
approaching 1 as n, T →∞.
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Assumption 4 is the sample-analogue assumption as compared to Assumptions 3(iii)-
(iv). In essence it ensures that logMT is properly defined. More primitive conditions in
terms of D and Σ̃ could easily be formulated to replace Assumption 4. Assumption 4,
together with Proposition 4(i) ensure that the maximum eigenvalue of MT is bounded
from the above by an absolute constant with probability approaching 1.

The following theorem gives the rate of convergence of the minimum distance estima-
tor θ̂T .

Theorem 1. Let Assumptions 1, 2(i), 3, and 4 be satisfied. Then

‖θ̂T − θ‖2 = Op

(√
n

T

)
,

where θ = (EᵀE)−1Eᵀvech(log Θ).

Proof. See Appendix A.

Note that θ contains the unique parameters of the Kronecker product Θ0 which we
use to approximate the true correlation matrix Θ. The dimension of θ is v+1 = O(log n)
while the dimension of unique parameters of Θ is O(n2). If no structure whatsoever is
imposed on covariance matrix estimation, the rate of convergence for Euclidean norm
would be

√
n2/T (square root of summing up n2 terms each of which has rate 1/T via

central limit theorem). We have some rate improvement in Theorem 1 as compared to
this crude rate.

However, given the dimension of θ, one would conjecture that the optimal rate of
convergence should be (log n/T )1/2. The reason for the rate difference lies in nonlinearity
of matrix logarithm. Linearisation of matrix logarithm introduced a non-sparse Frechet
derivative matrix, sandwiched by the sparse matrix EᵀD+

n and the vector vec(MT −Θ).
As a result, we were not able to use the sparse structure of Eᵀ except the information
about eigenvalues (Proposition 2(iii)). Had one made some assumption directly on the
entries of matrix logarithm, we conjecture that one would achieve a better rate.

To derive the asymptotic distribution of the minimum distance estimator θ̂T , we make
the following assumption to simplify the derivation.

Assumption 5. {xt}Tt=1 are normally distributed.

Assumption 5 is rather innocuous given that we already have Assumption 1. We
would like to stress that it is not necessary for the derivation of asymptotic normality
of θ̂T . All the arguments go through without normality assumption but will be more
involved.

Let H and ĤT denote the n2 × n2 matrices

H :=

∫ 1

0

[t(Θ− I) + I]−1 ⊗ [t(Θ− I) + I]−1dt,

ĤT :=

∫ 1

0

[t(MT − I) + I]−1 ⊗ [t(MT − I) + I]−1dt,
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respectively.3 Define the n2 × n2 matrix

V := var
(√

Tvec(Σ̃− Σ)
)

= var

(
√
Tvec

(
1

T

T∑
t=1

(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ
))

=
1

T
var

(
vec

T∑
t=1

(
(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

))
= var

(
vec(xt − µ)(xt − µ)ᵀ

)
= var

(
(xt − µ)⊗ (xt − µ)

)
= 2DnD

+
n (Σ⊗ Σ),

where the second last equality is due to independence, and the last equality is due to
Magnus and Neudecker (1986) Lemma 9.

Finally for any c ∈ Rv+1 define the scalar

G := cᵀ(EᵀE)−1EᵀD+
nH(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)HD+ᵀ

n E(EᵀE)−1c

= 2cᵀ(EᵀE)−1EᵀD+
nH(D−1/2 ⊗D−1/2)DnD

+
n (Σ⊗ Σ)(D−1/2 ⊗D−1/2)HD+ᵀ

n E(EᵀE)−1c

= 2cᵀ(EᵀE)−1EᵀD+
nH(D−1/2 ⊗D−1/2)(Σ⊗ Σ)(D−1/2 ⊗D−1/2)HD+ᵀ

n E(EᵀE)−1c

= 2cᵀ(EᵀE)−1EᵀD+
nH(D−1/2ΣD−1/2 ⊗D−1/2ΣD−1/2)HD+ᵀ

n E(EᵀE)−1c

= 2cᵀ(EᵀE)−1EᵀD+
nH(Θ⊗Θ)HD+ᵀ

n E(EᵀE)−1c,

where the first equality is true because given the structure of H, via Lemma 11 of Magnus
and Neudecker (1986), we have the following identity:

D+
nH(D−1/2 ⊗D−1/2) = D+

nH(D−1/2 ⊗D−1/2)DnD
+
n .

We also define its estimate ĜT :

ĜT := 2cᵀ(EᵀE)−1EᵀD+
n ĤT (MT ⊗MT )ĤTD

+ᵀ

n E(EᵀE)−1c.

Theorem 2. Let Assumptions 1, 2(ii), 3, 4, and 5 be satisfied. Then

√
Tcᵀ(θ̂T − θ)√

ĜT

d−→ N(0, 1),

for any (v + 1)× 1 non-zero vector c with ‖c‖2 = 1.

Proof. See Appendix A.

5.2 An Approximation to the Maximum Likelihood Estimator

We first define the score function and Hessian function of (4.3), which we give in the
theorem below, since it is a non-trivial calculation.

3In principle, both matrices depend on n as well but we suppress this subscript throughout the paper.
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Theorem 3. The score function takes the following form

∂`T (θ)

∂θᵀ
=

T

2
EᵀDᵀ

n

∫ 1

0

etΩ
0 ⊗ e(1−t)Ω0

dt
[
vec
(

[exp(Ω0)]−1D−1/2Σ̃D−1/2[exp(Ω0)]−1 −
[
exp(Ω0)

]−1
)]
,

where Σ̃ is defined in (4.4). The Hessian matrix takes the following form

H(θ) =
∂2`T (θ)

∂θ∂θᵀ
=

− T

2
EᵀDᵀ

nΨ1

(
[exp Ω0]−1D−1/2Σ̃D−1/2 ⊗ In + In ⊗ [exp Ω0]−1D−1/2Σ̃D−1/2 − In2

)
·(

[exp Ω0]−1 ⊗ [exp Ω0]−1
)

Ψ1DnE

+
T

2
(Ψᵀ

2 ⊗ EᵀDᵀ
n)

∫ 1

0

P
(
In2 ⊗ vece(1−t)Ω0) ∫ 1

0

estΩ
0 ⊗ e(1−s)tΩ0

ds · tdtDnE

+
T

2
(Ψᵀ

2 ⊗ EᵀDᵀ
n)

∫ 1

0

P
(
vecetΩ

0 ⊗ In2

) ∫ 1

0

es(1−t)Ω
0 ⊗ e(1−s)(1−t)Ω0

ds · (1− t)dtDnE.

where

Ψ1 :=

∫ 1

0

etΩ
0 ⊗ e(1−t)Ω0

dt,

Ψ2 := vec
(

[exp Ω0]−1D−1/2Σ̃D−1/2[exp Ω0]−1 −
[
exp Ω0

]−1
)
,

P := In ⊗Kn,n ⊗ In.

Proof. See Appendix A.

Note that EΨ2 = 0, so the normalized Hessian matrix taken expectation at θ takes
the following form

Υ := EH(θ)/T = −1

2
EᵀDᵀ

nΨ1

(
[exp Ω0]−1 ⊗ [exp Ω0]−1

)
Ψ1DnE

= −1

2
EᵀDᵀ

nΨ1

(
Θ−1 ⊗Θ−1

)
Ψ1DnE

Therefore, define:

Υ̂T := −1

2
EᵀDᵀ

nΨ̂1,T

(
M−1

T ⊗M
−1
T

)
Ψ̂1,TDnE,

where

Ψ̂1,T :=

∫ 1

0

M t
T ⊗M1−t

T dt.

Using Ψ̂1,T to estimate Ψ1 does not utilise the information that Θ now has a Kronecker
product structure (2.2). An alternative choice of an estimate for Θ in Ψ1 could be the
one formulated from the minimum distance estimator θ̂T taking into account of the Kro-
necker product structure. However, different choices should not matter for the asymptotic
distribution.
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We then propose the following one-step estimator in the spirit of van der Vaart (1998)
p72 or Newey and McFadden (1994) p2150:

θ̃T := θ̂T − Υ̂−1
T

∂`T (θ̂T )

∂θᵀ
/T.

We will show in Appendix A that Υ̂T is invertible with probability approaching 1. We did
not use the vanilla one-step estimator because the Hessian matrix is rather complicated
to analyse. We next provide the large sample theory for θ̃T .

Assumption 6. For every positive constant M and uniformly in b ∈ Rv+1 with ‖b‖2 = 1,

sup
‖θ∗−θ‖≤M

√
n/T

∣∣∣∣∣√Tbᵀ
[

1

T

∂`T (θ∗)

∂θᵀ
− 1

T

∂`T (θ)

∂θᵀ
−Υ(θ∗ − θ)

]∣∣∣∣∣ = op(1).

Assumption 6 is one of the sufficient conditions needed for Theorem 4. This kind of
assumption is standard in the asymptotics of one-step estimators (see (5.44) of van der
Vaart (1998) p71 or Bickel (1975)) or of M-estimation (see (C3) of He and Shao (2000)).
Roughly speaking, Assumption 6 implies that 1

T
∂`T
∂θᵀ

is differentiable at θ, with derivative
tending to Υ in probability, but this is not an assumption. The radius of the shrinking
neighbourhood

√
n/T is determined by the rate of convergence of any preliminary es-

timator, say, θ̂T in our case. The uniform requirement of the shrinking neighbourhood
could be relaxed using Le Cam’s discretization trick (see van der Vaart (1998) p72). It
is possible to relax the op(1) on the right side of Assumption 6 to op(n

1/2) if one looks at
the proof of Theorem 4.

Theorem 4. Let Assumptions 1, 2(ii), 3, 4, and 6 be satisfied. Then

√
Tbᵀ(θ̃T − θ)√
bᵀ(−Υ̂T )−1b

d−→ N(0, 1)

for any (v + 1)× 1 vector b with ‖b‖2 = 1.

Proof. See Appendix A.

Theorem 4 says that
√
Tbᵀ(θ̃T − θ)

d−→ N
(
0, bᵀ

(
−EH(θ)/T

)−1
b
)
. In the finite n case,

this estimator achieves the parametric efficiency bound. This shows that our one-step
estimator θ̃T is efficient when D (the variances) is known. When D is unknown, one has
to differentiate (4.3) with respect to both θ and the diagonal elements of D. The working
becomes considerably more involved and we leave it for the future work.

Remark. We may consider the choice of factorization in (2.1). Suppose that n = 2v

for some positive v integer. Then there are several different Kronecker factorizations,
which can be described by the dimensions of the square submatrices. That is,

2× 2× · · · × 2︸ ︷︷ ︸
v times

, 2× 2× · · · × 2︸ ︷︷ ︸
v−2 times

×4, . . . , 4× 4× · · · × 4︸ ︷︷ ︸
v/2 times

, . . . ,

2× 2v−1, . . . , 2v,

18



have varying numbers of parameters. We might choose between these using some model
choice criterion that penalizes the larger models. For example,

BIC = −2`T (θ̂) + p log T.

Typically, there are not so many subfactorizations to consider, so this is not so compu-
tationally burdensome.

Remark. The Kronecker structure is not invariant with respect to permutations of
the series in the system. One may want to find the permutation that is ”closest” to a
Kronecker structure in a certain sense. For example, one could estimate the model for
many permutations and choose the one that maximizes the likelihood. In practice it
may not be feasible to compute the likelihood for all possible permutations, as there are
too many if the dimension is high (n!). One possibility is to use random permutations
and choose the one that is closest to a Kronecker structure according to the likelihood
criterion. It is interesting to note that for particular functions of the covariance matrix,
the ordering of the data does not matter. For example, the minimum variance portfolio
(MVP) weights only depend on the covariance matrix through the row weights of its
inverse, Σ−1ιn, where ιn is a vector of ones. If a Kronecker structure is imposed on Σ,
then its inverse has the same structure. If the Kronecker factors are (2 × 2) and all
variances are identical, then the row sums of Σ−1 are the same, leading to equal weights
for the MVP: w = (1/n)ιn, and this is irrespective of the ordering of the data.

6 Simulation Study

We provide a small simulation study that evaluates the performance of the QMLE in two
cases: when the Kronecker structure is true; and when the Kronecker structure is not
present.

6.1 Kronecker Structure Is True

We simulate T random vectors y of dimension n according to

yt = Σ1/2ξt, ξt ∼ N(0, In)

Σ = Σ1 ⊗ Σ2 ⊗ · · · ⊗ Σv,

where n = 2v and v ∈ N. The matrices Σj are (2 × 2). These matrices are generated
with unit variances and off-diagonal elements drawn from a uniform distribution on (0, 1).
This ensures positive definiteness of Σ.

The sample size is set to n = 300. The upper diagonal elements of Σj, j ≥ 2, are set
to 1 for identification. Altogether, there are 2v + 1 parameters to estimate by maximum
likelihood.

As in Ledoit and Wolf (2004), we use a percentage relative improvement in average
loss (PRIAL) criterion, to measure the performance of the Kronecker estimator wrt the
sample covariance estimator, S. It is defined as

PRIAL1 = 1− E||Σ̂− Σ||2/E||S − Σ||2

where Σ is the true covariance matrix generated as above, Σ̂ is the maximum likelihood
estimator, and S is the sample covariance matrix. Often the estimator of the precision
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n 4 8 16 32 64 128 256
PRIAL1 0.33 0.69 0.86 0.94 0.98 0.99 0.99
PRIAL2 0.34 0.70 0.89 0.97 0.99 1.00 1.00

VR 0.997 0.991 0.975 0.944 0.889 0.768 0.386

Table 1: Median over 1000 replications of the PRIAL1 and PRIAL2 criteria for Kro-
necker estimates wrt to sample covariance matrix in the case of true non-Kronecker
structure. VR is median of the ratio (multiplied by 100) of the variance of the MVP
using Kronecker factorization to that using the sample covariance estimator. The sample
size is fixed at T = 300.

matrix, Σ−1, is more important than that of Σ itself, so we also compute the PRIAL for
the inverse covariance matrix, i.e.

PRIAL2 = 1− E||Σ̂−1 − Σ−1||2/E||S−1 − Σ−1||2

Note that this requires invertibility of the sample covariance matrix S and therefore can
only be calculated for n < T .

Our final criterion is the minimum variance portfolio (MVP) constructed from an
estimator of the covariance matrix, see Section 3.3. These weights are applied to construct
a portfolio from out-of-sample returns generated with the same distribution and the same
covariance matrix as the in-sample returns. The first portfolio uses the sample covariance
matrix, the second the Kronecker factorized matrix, and the ratio of the variances VR of
the two portfolios is recorded.

We repeat the simulation 1000 times and obtain for each simulation PRIAL1, PRIAL2
and VR. Table 1 reports the median of the obtained PRIALs and RV for each dimension.
Clearly, as the dimension increases, the Kronecker estimator rapidly outperforms the
sample covariance estimator. The relative performance of the precision matrix estimator
(PRIAL2) is very similar. In terms of the ratio of MVP variances, the Kronecker estimator
yields a 23.2 percent smaller variance for n = 128 and 61.4 percent for n = 256. The
reduction becomes clear as n approaches T .

6.2 Kronecker Structure Is Not True

We now generate random vectors with covariance matrices that do not have a Kronecker
structure. Similar to Ledoit and Wolf (2004), and without loss of generality, we generate
diagonal covariance matrices with log-normally distributed diagonal elements. The mean
of the true eigenvalues is, w.l.o.g., fixed at one, while their dispersion varies and is given
by α2.

Figure 1 depicts the PRIAL1 of the Kronecker estimator for three different ratios
n/T : 1/2, 1 and 2, as a function of the dispersion of eigenvalues of the true covariance
matrix. Clearly, the PRIAL1 is higher for higher ratios n/T , while it decreases as the
eigenvalue dispersion increases. The reason for the latter is that the distance from a
Kronecker structure increases with the eigenvalue dispersion, so that the bias of the
Kronecker estimator becomes more important. At the other extreme with no dispersion
(α close to zero), the Kronecker structure is true, so that the PRIAL1 is high. Note that
this behavior of the Kronecker estimator as a function n/T and α resembles that of the
shrinkage estimator of Ledoit and Wolf (2004).
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α2 0.05 0.25 0.5 0.75 1 1.25 1.5 1.75 2

n/T = 0.5
PRIAL1 89.92 60.85 31.10 2.87 -23.70 -46.81 -65.29 -85.59 -106.30
PRIAL2 99.17 96.60 93.37 90.74 88.25 86.61 84.11 82.99 80.47

VR 73.33 77.90 84.44 89.49 93.83 97.14 100.78 102.85 108.71

n/T = 0.8
PRIAL1 92.78 74.29 54.05 36.36 20.31 4.59 -8.14 -15.60 -25.70
PRIAL2 99.97 99.89 99.78 99.71 99.61 99.56 99.49 99.45 99.38

VR 47.26 51.42 54.82 57.06 61.40 62.59 64.69 67.77 69.12

Table 2: Median over 1000 replications of the PRIAL1 and PRIAL2 criteria for Kro-
necker estimates wrt to sample covariance matrix in the case of true non-Kronecker
structure. VR is the median of the ratio (multiplied by 100) of the variance of the MVP
using Kronecker factorization to that using the sample covariance estimator. α2 is the
dispersion of eigenvalues of the true covariance matrix.

Figure 2 depicts the condition number of the estimated (Kronecker and sample) and
true covariance matrices. Again as in the shrinkage case, the condition number of the
Kronecker estimator is smaller than that of the true one, while the condition number of
the sample covariance estimator increases strongly with the eigenvalue dispersion.

The precision matrix can not be estimated by the inverse of the sample covariance
matrix in cases where n ≥ T ). We therefore consider the additional case n/T = 0.8 and
report in Table 2 the results for the PRIALs and the variance ratios of MVP. First of
all, the relative performance of the Kronecker precision matrix estimator is better than
that of the covariance matrix itself, comparing PRIAL2 with PRIAL1. Thus, even in
cases where the sample covariance matrix has a smaller average squared loss than the
Kronecker estimator, it often occurs that the inverse of the Kronecker estimator has a
smaller average squared loss for the precision matrix.

While the variance ratios (VR) indicate that for large eigenvalue dispersions and non-
Kronecker structures it may be better to use the sample covariance matrix (i.e., VR is
larger than 100%), this result diminishes as n/T approaches one.

7 Application

We apply the model to a set of n = 441 daily stock returns xt of the S&P 500 index,
observed from January 3, 2005, to November 6, 2015. The number of trading days is
T = 2732.

The Kronecker model is fitted to the correlation matrix Θ = D−1/2ΣD−1/2, where D
is the diagonal matrix containing the variances on the diagonal. The first model (M1)
uses the factorization 29 = 512 and assumes that

Θ = Θ1 ⊗Θ2 ⊗ · · · ⊗Θ9,

where Θj are (2 × 2) correlation matrices. We add a vector of 71 independent pseudo
variables ut ∼ N (0, I71) such that n + 71 = 29, and then extract the upper left (n × n)
block of Θ to obtain the correlation matrix of xt.
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The estimation is done in two steps: First, D is estimated using the sample variances,
and then the correlation parameters are estimated by maximum likelihood using the stan-
dardized returns, D−1/2xt. Random permutations only lead to negligible improvements
of the likelihood, so we keep the original order of the data. We experiment with more
generous decompositions by looking at all prime factorizations of the numbers from 441 to
512, and selecting those yielding not more than 30 parameters. Table 2 gives a summary
of these models including estimation results. The Schwarz information criterion favors
the specification of model M6 with 27 parameters.

Sample cov SFM (K = 3) SFM (K = 4)
Model p decomp logL/T BIC/T prop impr prop impr prop impr

M1 9 512 = 29 -145.16 290.34 .89 27% .25 -14% .27 -15%
M2 16 486 = 2× 35 -141.85 283.74 .90 29% .43 -4% .42 -6 %
M3 17 512 = 25 × 42 -140.91 281.87 .90 29% .44 -2% .41 -6%
M4 18 480 = 25 × 3× 5 -139.63 279.31 .90 30% .49 1% .47 0%
M5 25 512 = 44 × 2 -139.06 278.19 .91 30% .53 5% .53 4%
M6 27 448 = 26 × 7 -134.27 268.61 .91 32% .58 11% .57 9%
M7 27 450 = 2× 32 × 52 -137.33 274.73 .91 31% .57 8% .56 6%

Table 3: Summary of Kronecker specifications of the correlation matrix. p is the number
of parameters of the model, decomp is the factorization used for the full system including
the additional pseudo variables, logL/T the log-likelihood value, divided by the number of
observations, and BIC/T is the value of the Schwarz information criterion, divided by
the number of observations. Prop is the proportion of the time that the Kronecker MVP
outperforms a competing model (sample covariance matrix, and a strict factor model
(SFM) with K = 3 and K = 4 factors), and Impr is the percentage of average risk
improvements.

Next, we follow the approach of Fan et al. (2013) and estimate the model on windows
of size m days that are shifted from the beginning to the end of the sample. After each
estimation, the model is evaluated using the next 21 trading days (one month) out-of-
sample. Then the estimation window of m days is shifted by one month, etc. After each
estimation step, the estimated model yields an estimator of the covariance matrix that
is used to construct minimum variance portfolio (MVP) weights. The same is done for
two competing devices: the sample covariance matrix and the strict factor model (SFM).
For the SFM, the number of factors K is chosen as in Bai and Ng (2002), and equation
(2.14) of Fan et al. (2013). The penalty functions IC1 and IC2 give optimal values K of
3 and 4, respectively, so we report results for both models. The last columns of Table
2 summarize the relative performance of the Kronecker model with respect to SFM and
the sample covariance matrix.

All models outperform the sample covariance matrix, while only the more generous
factorizations also outperform the SFM. Comparing the results with Table 6 of Fan et al.
(2013) for similar data, it appears that the performance of the favored model M6 is quite
close to their POET estimator. So our estimator may provide a non-sparse alternative
to high dimensional covariance modelling.
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8 Conclusions

We have established the large sample properties of our estimation methods when the ma-
trix dimensions increase. In particular, we obtained consistency and asymptotic normal-
ity. The method outperforms the sample covariance method theoretically, in a simulation
study, and in an application to portfolio choice. It is possible to extend the framework
in various directions to improve performance.

9 Appendix A

9.1 More Details about the Matrix E∗

Proposition 5. If

Ω0 = (Ω1 ⊗ I2 ⊗ · · · ⊗ I2) + (I2 ⊗ Ω2 ⊗ · · · ⊗ I2) + · · ·+ (I2 ⊗ · · · ⊗ Ωv),

where Ω0 is n× n ≡ 2v × 2v and Ωi is 2× 2 for i = 1, . . . , v. Then

vech(Ω0) =
[
E1 E2 · · · Ev

]
vech(Ω1)
vech(Ω2)

...
vech(Ωv)

 ,
where

Ei := D+
n (I2i⊗K2v−i,2i⊗I2v−i)

(
I22i ⊗ vecI2v−i

)
(I2i−1⊗K2,2i−1⊗I2)(vecI2i−1⊗I4)D2, (9.1)

where D+
n is the Moore-Penrose generalised inverse of Dn, Dn and D2 are the n2×n(n+

1)/2 and 22 × 2(2 + 1)/2 duplication matrices, respectively, and K2v−i,2i and K2,2i−1 are
commutation matrices of various dimensions.

Proof of Proposition 5. We first consider vec(Ω1 ⊗ I2 ⊗ · · · ⊗ I2).

vec(Ω1 ⊗ I2 ⊗ · · · ⊗ I2) = vec(Ω1 ⊗ I2v−1) =
(
I2 ⊗K2v−1,2 ⊗ I2v−1

) (
vecΩ1 ⊗ vecI2v−1

)
=
(
I2 ⊗K2v−1,2 ⊗ I2v−1

) (
I4vecΩ1 ⊗ vecI2v−1 · 1

)
=
(
I2 ⊗K2v−1,2 ⊗ I2v−1

) (
I4 ⊗ vecI2v−1

)
vecΩ1,

where the second equality is due to Magnus and Neudecker (2007) Theorem 3.10 p55.
Thus,

vech(Ω1 ⊗ I2 ⊗ · · · ⊗ I2) = D+
n

(
I2 ⊗K2v−1,2 ⊗ I2v−1

) (
I4 ⊗ vecI2v−1

)
D2vechΩ1, (9.2)

where D+
n is the Moore-Penrose inverse of Dn, i.e., D+

n = (Dᵀ
nDn)−1Dᵀ

n, and Dn and D2

are the n2 × n(n + 1)/2 and 22 × 2(2 + 1)/2 duplication matrices, respectively. We now
consider vec(I2 ⊗ Ω2 ⊗ · · · ⊗ I2).

vec(I2 ⊗ Ω2 ⊗ · · · ⊗ I2) = vec(I2 ⊗ Ω2 ⊗ I2v−2) = (I4 ⊗K2v−2,4 ⊗ I2v−2)
(
vec(I2 ⊗ Ω2)⊗ vecI2v−2

)
= (I4 ⊗K2v−2,4 ⊗ I2v−2)

(
I24 ⊗ vecI2v−2

)
vec(I2 ⊗ Ω2)

= (I4 ⊗K2v−2,4 ⊗ I2v−2)
(
I24 ⊗ vecI2v−2

)
(I2 ⊗K2,2 ⊗ I2)(vecI2 ⊗ vecΩ2)

= (I4 ⊗K2v−2,4 ⊗ I2v−2)
(
I24 ⊗ vecI2v−2

)
(I2 ⊗K2,2 ⊗ I2)(vecI2 ⊗ I4)vecΩ2.
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Thus

vech(I2 ⊗ Ω2 ⊗ · · · ⊗ I2)

= D+
n (I4 ⊗K2v−2,4 ⊗ I2v−2)

(
I24 ⊗ vecI2v−2

)
(I2 ⊗K2,2 ⊗ I2)(vecI2 ⊗ I4)D2vechΩ2.

(9.3)

Next we consider vec(I2 ⊗ I2 ⊗ Ω3 ⊗ · · · ⊗ I2).

vec(I2 ⊗ I2 ⊗ Ω3 ⊗ · · · ⊗ I2) = vec(I4 ⊗ Ω3 ⊗ I2v−3)

= (I23 ⊗K2v−3,23 ⊗ I2v−3)
(
vec(I4 ⊗ Ω3)⊗ vecI2v−3

)
= (I23 ⊗K2v−3,23 ⊗ I2v−3)

(
I26 ⊗ vecI2v−3

)
vec(I4 ⊗ Ω3)

= (I23 ⊗K2v−3,23 ⊗ I2v−3)
(
I26 ⊗ vecI2v−3

)
(I4 ⊗K2,4 ⊗ I2)(vecI4 ⊗ vecΩ3)

= (I23 ⊗K2v−3,23 ⊗ I2v−3)
(
I26 ⊗ vecI2v−3

)
(I4 ⊗K2,4 ⊗ I2)(vecI4 ⊗ I4)vecΩ3.

Thus

vech(I2 ⊗ I2 ⊗ Ω3 ⊗ · · · ⊗ I2)

= D+
n (I23 ⊗K2v−3,23 ⊗ I2v−3)

(
I26 ⊗ vecI2v−3

)
(I4 ⊗K2,4 ⊗ I2)(vecI4 ⊗ I4)D2vechΩ3.

(9.4)

By observing (9.2), (9.3) and (9.4), we deduce the following general formula: for i =
1, 2, . . . , v

vech(I2 ⊗ · · · ⊗ Ωi ⊗ · · · ⊗ I2)

= D+
n (I2i ⊗K2v−i,2i ⊗ I2v−i)

(
I22i ⊗ vecI2v−i

)
(I2i−1 ⊗K2,2i−1 ⊗ I2)(vecI2i−1 ⊗ I4)D2vechΩi

=: EivechΩi, (9.5)

where Ei is a n(n+ 1)/2× 3 matrix. Using (9.5), we have

vech(Ω0) = E1vech(Ω1) + E2vech(Ω2) + · · ·+ Evvech(Ωv)

=
[
E1 E2 · · · Ev

]
vech(Ω1)
vech(Ω2)

...
vech(Ωv)



Proof of Proposition 1. The Eᵀ
∗E∗ can be written down using the analytical formula in

(4.1). The R code for computing this is available upon request. The proofs of the claims
(i) - (iv) are similar to those in the observations made in Example 2.

9.2 Proof of Proposition 3

Proof. Since both A+B and A are positive definite for all n, with minimum eigenvalues
real and bounded away from zero by absolute constants, by Theorem 5 in Appendix B,
we have

log(A+B) =

∫ 1

0

(A+B−I)[t(A+B−I)+I]−1dt, logA =

∫ 1

0

(A−I)[t(A−I)+I]−1dt.
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Use (5.1) to invoke Proposition 13 in Appendix B to expand [t(A− I) + I + tB]−1 to get

[t(A− I) + I + tB]−1 = [t(A− I) + I]−1 − [t(A− I) + I]−1tB[t(A− I) + I]−1 +O(‖B‖2
`2

)

and substitute into the expression of log(A+B)

log(A+B)

=

∫ 1

0

(A+B − I)
{

[t(A− I) + I]−1 − [t(A− I) + I]−1tB[t(A− I) + I]−1 +O(‖B‖2
`2

)
}
dt

= logA+

∫ 1

0

B[t(A− I) + I]−1dt−
∫ 1

0

t(A+B − I)[t(A− I) + I]−1B[t(A− I) + I]−1dt

+ (A+B − I)O(‖B‖2
`2

)

= logA+

∫ 1

0

[t(A− I) + I]−1B[t(A− I) + I]−1dt−
∫ 1

0

tB[t(A− I) + I]−1B[t(A− I) + I]−1dt

+ (A+B − I)O(‖B‖2
`2

)

= logA+

∫ 1

0

[t(A− I) + I]−1B[t(A− I) + I]−1dt+O(‖B‖2
`2
∨ ‖B‖3

`2
),

where the last equality follows from that maxeval(A) < C <∞ and mineval[t(A−I)+I] >
C ′ > 0.

9.3 Proof of Proposition 4

Denote µ̂ := 1
T

∑T
t=1 xt.

Proposition 6. Suppose Assumptions 1, 2(i), and 3(i) hold. We have

(i) ∥∥∥∥ 1

T

T∑
t=1

xtx
ᵀ
t − Extxᵀt

∥∥∥∥
`2

= Op

(
max

(
n

T
,

√
n

T

))
= Op

(√
n

T

)
.

(ii) ‖D−1‖`2 = O(1), ‖D−1/2‖`2 = O(1).

(iii)

‖2µµᵀ − µ̂µᵀ − µµ̂ᵀ‖`2 = Op

(√
n

T

)
.

(iv)
max
1≤i≤n

|µi| = O(1).

Proof. For part (i), invoke Lemma 2 in Appendix B with ε = 1/4:∥∥∥∥ 1

T

T∑
t=1

xtx
ᵀ
t − Extxᵀt

∥∥∥∥
`2

≤ 2 max
a∈N1/4

∣∣∣∣aᵀ( 1

T

T∑
t=1

xtx
ᵀ
t − Extxᵀt

)
a

∣∣∣∣
=: 2 max

a∈N1/4

∣∣∣∣ 1

T

T∑
t=1

(z2
a,t − Ez2

a,t)

∣∣∣∣ ,
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where za,t := xᵀt a. By Assumption 1, {za,t}Tt=1 are independent subgaussian random
variables. For ε > 0,

P(|z2
a,t| ≥ ε) = P(|za,t| ≥

√
ε) ≤ Ke−Cε.

We shall use Orlicz norms as defined in van der Vaart and Wellner (1996): Let ψ be
a non-decreasing, convex function with ψ(0) = 0. Then, the Orlicz norm of a random
variable X is given by

‖X‖ψ = inf
{
C > 0 : Eψ

(
|X|/C

)
≤ 1
}
,

where inf ∅ = ∞. We shall use Orlicz norms for ψ(x) = ψp(x) = ex
p − 1 for p = 1, 2

in this paper. It follows from Lemma 2.2.1 in van der Vaart and Wellner (1996) that
‖z2

a,t‖ψ1 ≤ (1 +K)/C. Then

‖z2
a,t − Ez2

a,t‖ψ1 ≤ ‖z2
a,t‖ψ1 + E‖z2

a,t‖ψ1 ≤
2(1 +K)

C
.

Then, by the definition of the Orlicz norm, E
[
eC/(2+2K)|z2a,t−Ez2a,t|

]
≤ 2. Use Fubini’s

theorem to expand out the exponential moment. It is easy to see that z2
a,t−Ez2

a,t satisfies

the moment conditions of Bernstein’s inequality in Appendix B with A = 2(1+K)
C

and

σ2
0 = 8(1+K)2

C2 . Now invoke Bernstein’s inequality for all ε > 0

P
(∣∣∣∣ 1

T

T∑
t=1

(z2
a,t − Ez2

a,t)

∣∣∣∣ ≥ σ2
0

[
Aε+

√
2ε
])
≤ 2e−Tσ

2
0ε.

Invoking Lemma 1 in Appendix B, we have |N1/4| ≤ 9n. Now we use the union bound:

P

∥∥∥∥ 1

T

T∑
t=1

xtx
ᵀ
t − Extxᵀt

∥∥∥∥
`2

≥ 2σ2
0

[
Aε+

√
2ε
] ≤ 2en(log 9−σ2

0εT/n).

Fix ε > 0. There exist Mε = M = log 9 + 1, Tε, and Nε = − log(ε/2). Setting ε = nMε

Tσ2
0

,

the preceding inequality becomes, for all n > Nε

P
(∥∥∥∥ 1

T

T∑
t=1

xtx
ᵀ
t − Extxᵀt

∥∥∥∥
`2

≥ Bε
n

T
+ Cε

√
n

T

)
≤ ε,

where Bε := 2AMε and Cε := σ0

√
8Mε. Thus, for all ε > 0, there exist Dε :=

2 max(Bε, Cε), Tε and Nε, such that for all T > Tε and all n > Nε

P
(

1

max
(
n
T
,
√

n
T

)∥∥∥∥ 1

T

T∑
t=1

xtx
ᵀ
t − Extxᵀt

∥∥∥∥
`2

≥ Dε

)
≤ ε.

The result follows immediately from the definition of stochastic orders. Part (ii) follows
trivially from Assumption 3(i). For part (iii), first recognise that 2µµᵀ − µ̂µᵀ − µµ̂ᵀ is
symmetric. Invoking Lemma 2 in Appendix B for ε = 1/4, we have

‖2µµᵀ − µ̂µᵀ − µµ̂ᵀ‖`2 ≤ 2 max
a∈N1/4

|aᵀ
(
2µµᵀ − µ̂µᵀ − µµ̂ᵀ

)
a|.
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It suffices to find a bound for the right hand side of the preceding inequality.

max
a∈N1/4

|aᵀ
(
2µµᵀ − µ̂µᵀ − µµ̂ᵀ

)
a| = max

a∈N1/4

|aᵀ
(
(µ− µ̂)µᵀ + µ(µ− µ̂)ᵀ

)
a|

≤ max
a∈N1/4

|aᵀµ
(
µ̂− µ

)ᵀ
a|+ max

a∈N1/4

|aᵀ
(
µ̂− µ

)
µᵀa| ≤ 2 max

a∈N1/4

|aᵀ(µ̂− µ)| max
a∈N1/4

|µᵀa|

We bound maxa∈N1/4
|(µ̂− µ)ᵀa| first.

(µ̂− µ)ᵀa =
1

T

T∑
t=1

(xᵀt a− Exᵀt a) =:
1

T

T∑
t=1

(za,t − Eza,t).

By Assumption 1, {za,t}Tt=1 are independent subgaussian random variables. For ε > 0,
P(|za,t| ≥ ε) ≤ Ke−Cε

2
. It follows from Lemma 2.2.1 in van der Vaart and Wellner (1996)

that ‖za,t‖ψ2 ≤ (1 +K)1/2/C1/2. Then ‖za,t −Eza,t‖ψ2 ≤ ‖za,t‖ψ2 + E‖za,t‖ψ2 ≤
2(1+K)1/2

C1/2 .
Next, using the second last inequality in van der Vaart and Wellner (1996) p95, we have

‖za,t − Eza,t‖ψ1 ≤ ‖za,t − Eza,t‖ψ2(log 2)−1/2 ≤ 2(1 +K)1/2

C1/2
(log 2)−1/2 =:

1

W
.

Then, by the definition of the Orlicz norm, E
[
eW |za,t−Eza,t|

]
≤ 2. Use Fubini’s theorem

to expand out the exponential moment. It is easy to see that za,t − Eza,t satisfies the
moment conditions of Bernstein’s inequality in Appendix B with A = 1

W
and σ2

0 = 2
W 2 .

Now invoke Bernstein’s inequality for all ε > 0

P
(∣∣∣∣ 1

T

T∑
t=1

(za,t − Eza,t)
∣∣∣∣ ≥ σ2

0

[
Aε+

√
2ε
])
≤ 2e−Tσ

2
0ε.

Invoking Lemma 1 in Appendix B, we have |N1/4| ≤ 9n. Now we use the union bound:

P
(

max
a∈N1/4

∣∣∣∣ 1

T

T∑
t=1

(za,t − Eza,t)
∣∣∣∣ ≥ 2σ2

0

[
Aε+

√
2ε
])
≤ 2en(log 9−σ2

0εT/n).

Using the same argument as in part (i), we get

max
a∈N1/4

|(µ̂− µ)ᵀa| = Op

(√
n

T

)
. (9.6)

Now aᵀµ = Eaᵀxt =: Eya,t. Again via Assumption 1 and Lemma 2.2.1 in van der Vaart
and Wellner (1996), ‖ya,t‖ψ2 ≤ C. Hence

max
a∈N1/4

|Eya,t| ≤ max
a∈N1/4

E|ya,t| = max
a∈N1/4

‖ya,t‖L1 ≤ max
a∈N1/4

‖ya,t‖ψ1 ≤ max
a∈N1/4

‖ya,t‖ψ2(log 2)−1/2

≤ C(log 2)−1/2,

where the second and third inequalities are from van der Vaart and Wellner (1996) p95.
Thus we have

max
a∈N1/4

|aᵀµ| = O(1).

The preceding display together with (9.6) deliver the result. For part (iv), via Assumption
1, we have xt,i to be subgaussian for all i:

P(|xt,i| ≥ ε) ≤ Ke−Cε
2

,
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for positive constants K and C. It follows from Lemma 2.2.1 in van der Vaart and Wellner
(1996) that ‖xt,i‖ψ2 ≤ (1 +K)1/2/C1/2. Now

max
1≤i≤n

|µi| = max
1≤i≤n

|Ext,i| ≤ max
1≤i≤n

‖xt,i‖L1 ≤ max
1≤i≤n

‖xt,i‖ψ1 ≤ max
1≤i≤n

‖xt,i‖ψ2(log 2)−1/2,

where the second and third inequalities follow from van der Vaart and Wellner (1996)
p95. We have already shown that the ψ2-Orlicz norms are uniformly bounded, so the
result follows.

Proof of Proposition 4. For part (i),

‖MT −Θ‖`2 = ‖D−1/2Σ̃D−1/2 −D−1/2ΣD−1/2‖`2 = ‖D−1/2(Σ̃− Σ)D−1/2‖`2
≤ ‖D−1/2‖2

`2
‖Σ̃− Σ‖`2 = O(1)‖Σ̃− Σ‖`2

= O(1)

∥∥∥∥ 1

T

T∑
t=1

xtx
ᵀ
t − Extxᵀt + 2µµᵀ − µ̂µᵀ − µµ̂ᵀ

∥∥∥∥
`2

= Op

(√
n

T

)
, (9.7)

where the third and fifth equalities are due to Proposition 6. For part (ii),

‖[t(Θ− I) + I]−1t(MT −Θ)‖`2 ≤ t‖[t(Θ− I) + I]−1‖`2‖MT −Θ‖`2
= ‖[t(Θ− I) + I]−1‖`2Op(

√
n/T ) = Op(

√
n/T )/mineval(t(Θ− I) + I) = op(1),

where the first equality is due to part (i), and the last equality is due to that mineval(t(Θ−
I) + I) > C > 0 for some absolute constant C and Assumption 2(i).

9.4 Proof of Theorem 1

Proof.

‖θ̂T − θ‖2

= ‖(EᵀE)−1EᵀD+
n vec(logMT − log Θ)‖2 ≤ ‖(EᵀE)−1Eᵀ‖`2‖D+

n ‖`2‖vec(logMT − log Θ)‖2,

where D+
n := (Dᵀ

nDn)−1Dᵀ
n and Dn is the duplication matrix. Since Proposition 4 holds

under the assumptions of Theorem 1, together with Assumption 4 and Lemma 2.12
in van der Vaart (1998), we can invoke Proposition 3 stochastically with A = Θ and
B = MT −Θ:

logMT − log Θ =

∫ 1

0

[t(Θ−I)+I]−1(MT −Θ)[t(Θ−I)+I]−1dt+Op(‖MT −Θ‖2
`2

). (9.8)

(We can invoke Proposition 3 stochastically because the remainder of the log lineariza-

tion is zero when the perturbation is zero. Moreover, we have ‖MT − Θ‖`2
p−→ 0 under

Assumption 2(i).) Then

‖vec(logMT − log Θ)‖2

≤
∥∥∥∥∫ 1

0

[t(Θ− I) + I]−1 ⊗ [t(Θ− I) + I]−1dtvec(MT −Θ)

∥∥∥∥
2

+ ‖vecOp(‖MT −Θ‖2
`2

)‖2

≤
∥∥∥∥∫ 1

0

[t(Θ− I) + I]−1 ⊗ [t(Θ− I) + I]−1dt

∥∥∥∥
`2

‖MT −Θ‖F + ‖Op(‖MT −Θ‖2
`2

)‖F

≤ C
√
n‖MT −Θ‖`2 +

√
n‖Op(‖MT −Θ‖2

`2
)‖`2

≤ C
√
n‖MT −Θ‖`2 +

√
nOp(‖MT −Θ‖2

`2
) = Op(

√
n2/T ), (9.9)
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where the third inequality is due to (9.12), and the last inequality is due to Proposition
4. Finally,

‖(EᵀE)−1Eᵀ‖`2 =
√

maxeval
([

(EᵀE)−1Eᵀ
]ᵀ

(EᵀE)−1Eᵀ
)

=
√

maxeval
(
(EᵀE)−1Eᵀ

[
(EᵀE)−1Eᵀ

]ᵀ)
=
√

maxeval
(
(EᵀE)−1EᵀE(EᵀE)−1

)
=
√

maxeval
(
(EᵀE)−1

)
=
√

2/n, (9.10)

where the second equality is due to that for any matrix A, AAᵀ and AᵀA have the same
non-zero eigenvalues, the third equality is due to (Aᵀ)−1 = (A−1)ᵀ, and the last equality
is due to Proposition 2. On the other hand, Dᵀ

nDn is a diagonal matrix with diagonal
entries either 1 or 2, so

‖D+
n ‖`2 = ‖D+ᵀ

n ‖`2 = O(1), ‖Dn‖`2 = ‖Dᵀ
n‖`2 = O(1). (9.11)

The result follows after assembling the rates.

9.5 Proof of Theorem 2

Proposition 7. Let Assumptions 1, 2(i), 3, and 4 be satisfied. Then we have

‖H‖`2 = O(1), ‖ĤT‖`2 = Op(1), ‖ĤT −H‖`2 = Op

(√
n

T

)
. (9.12)

Proof. The proofs for ‖H‖`2 = O(1) and ‖ĤT‖`2 = Op(1) are exactly the same, so we only
give the proof for the latter. Define At := [t(MT − I) + I]−1 and Bt := [t(Θ− I) + I]−1.

‖ĤT‖`2 =

∥∥∥∥∫ 1

0

At ⊗ Atdt
∥∥∥∥
`2

≤
∫ 1

0

∥∥At ⊗ At∥∥`2 dt ≤ max
t∈[0,1]

∥∥At ⊗ At∥∥`2 = max
t∈[0,1]

‖At‖2
`2

= max
t∈[0,1]

{maxeval([t(MT − I) + I]−1)}2 = max
t∈[0,1]

{
1

mineval(t(MT − I) + I)

}2

= Op(1),

where the second equality is to Proposition 14 in Appendix B, and the last equality is
due to Assumption 4. Now,

‖ĤT −H‖`2 =

∥∥∥∥∫ 1

0

At ⊗ At −Bt ⊗Btdt

∥∥∥∥
`2

≤
∫ 1

0

‖At ⊗ At −Bt ⊗Bt‖`2 dt

≤ max
t∈[0,1]

‖At ⊗ At −Bt ⊗Bt‖`2 = max
t∈[0,1]

‖At ⊗ At − At ⊗Bt + At ⊗Bt −Bt ⊗Bt‖`2

= max
t∈[0,1]

∥∥At ⊗ (At −Bt) + (At −Bt)⊗Bt

∥∥
`2
≤ max

t∈[0,1]

(∥∥At ⊗ (At −Bt)
∥∥
`2

+
∥∥(At −Bt)⊗Bt

∥∥
`2

)
= max

t∈[0,1]

(
‖At‖`2 ‖At −Bt‖`2 + ‖At −Bt‖`2 ‖Bt‖`2

)
= max

t∈[0,1]
‖At −Bt‖`2 (‖At‖`2 + ‖Bt‖`2)

= Op(1) max
t∈[0,1]

∥∥[t(MT − I) + I]−1 − [t(Θ− I) + I]−1
∥∥
`2

where the first inequality is due to Jensen’s inequality, the third equality is due to special
properties of Kronecker product, the fourth equality is due to Proposition 14 in Appendix
B, and the last equality is because Assumption 4 and Assumption 3(iii)-(iv) implies

‖[t(MT − I) + I]−1‖`2 = Op(1) ‖[t(Θ− I) + I]−1‖`2 = O(1).
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Now ∥∥[t(MT − I) + I]− [t(Θ− I) + I]
∥∥
`2

= t‖MT −Θ‖`2 = Op(
√
n/T ),

where the last equality is due to Proposition 4. The proposition then follows after invoking
Lemma 3 in Appendix B.

Proof of Theorem 2.

√
Tcᵀ(θ̂T − θ)√

ĜT

=

√
Tcᵀ(EᵀE)−1EᵀD+

nH(D−1/2 ⊗D−1/2)vec(Σ̃− Σ)√
ĜT

+

√
Tcᵀ(EᵀE)−1EᵀD+

n vecOp(‖MT −Θ‖2
`2

)√
ĜT

=: t1 + t3.

Define

t′1 :=

√
Tcᵀ(EᵀE)−1EᵀD+

nH(D−1/2 ⊗D−1/2)vec(Σ̃− Σ)√
G

.

To prove Theorem 2, it suffices to show t′1
d−→ N(0, 1), t′1 − t1 = op(1), and t3 = op(1).

9.5.1 t′1
d−→ N(0, 1)

We now prove that t′1 is asymptotically distributed as a standard normal.

t′1 =

√
Tcᵀ(EᵀE)−1EᵀD+

nH(D−1/2 ⊗D−1/2)vec
(

1
T

∑T
t=1

[
(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

])
√
G

=
T∑
t=1

T−1/2cᵀ(EᵀE)−1EᵀD+
nH(D−1/2 ⊗D−1/2)vec

[
(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]
√
G

=:
T∑
t=1

UT,n,t.

Trivially E[UT,n,t] = 0 and
∑T

t=1 E[U2
T,n,t] = 1. Then we just need to verify the following

Lindeberg condition for a double indexed process (Phillips and Moon (1999) Theorem 2
p1070): for all ε > 0,

lim
n,T→∞

T∑
t=1

∫
{|UT,n,t|≥ε}

U2
T,n,tdP = 0.

For any γ > 2,∫
{|UT,n,t|≥ε}

U2
T,n,tdP =

∫
{|UT,n,t|≥ε}

U2
T,n,t|UT,n,t|−γ|UT,n,t|γdP ≤ ε2−γ

∫
{|UT,n,t|≥ε}

|UT,n,t|γdP

≤ ε2−γE|UT,n,t|γ.
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We first investigate that at what rate the denominator
√
G goes to zero:

G = 2cᵀ(EᵀE)−1EᵀD+
nH(Θ⊗Θ)HD+ᵀ

n E(EᵀE)−1c

≥ 2mineval(Θ⊗Θ)mineval(H2)mineval(D+
nD

+ᵀ
n )mineval((EᵀE)−1)

≥ 2mineval(Θ⊗Θ)mineval(H2)mineval(D+
nD

+ᵀ
n )

1

n

where the first inequality is true by repeatedly invoking Rayleigh-Ritz theorem. Since
the minimum eigenvalue of Θ is bounded away from zero by an absolute constant by
Assumption 3(iii)-(iv), and the minimum eigenvalue ofH is bounded away from zero by an
absolute constant by Assumption 3(i)-(ii), and mineval(D+

nD
+ᵀ
n ) = mineval[(Dᵀ

nDn)−1] >
C > 0 for some absolute constant C, we have

1√
G

= O(
√
n). (9.13)

Then a sufficient condition for the Lindeberg condition is:

T 1− γ
2nγ/2E

∣∣∣cᵀ(EᵀE)−1EᵀD+
nH(D−1/2 ⊗D−1/2)vec

[
(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]∣∣∣γ
= o(1), (9.14)

for some γ > 2. We now verify (9.14).

E
∣∣∣cᵀ(EᵀE)−1EᵀD+

nH(D−1/2 ⊗D−1/2)vec
[
xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]∣∣∣γ
≤ ‖cᵀ(EᵀE)−1EᵀD+

nH(D−1/2 ⊗D−1/2)‖γ2E
∥∥vec

[
xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]∥∥γ
2

= O(n−γ/2)E
∥∥xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

∥∥γ
F

≤ O(n−γ/2)E
(
‖xt − µ)(xt − µ)ᵀ‖F + ‖E(xt − µ)(xt − µ)ᵀ‖F

)γ
≤ O(n−γ/2)E2γ−1

(
‖xt − µ)(xt − µ)ᵀ‖γF + ‖E(xt − µ)(xt − µ)ᵀ‖γF

)
≤ O(n−γ/2)2γ−1

(
E‖xt − µ)(xt − µ)ᵀ‖γF + E‖(xt − µ)(xt − µ)ᵀ‖γF

)
= O(n−γ/2)2γE‖xt − µ)(xt − µ)ᵀ‖γF ≤ O(n−γ/2)2γE

(
n max

1≤i,j≤n

∣∣(xt − µ)i(xt − µ)j
∣∣)γ

= O(nγ/2)E
(

max
1≤i,j≤n

∣∣(xt − µ)i(xt − µ)j
∣∣γ) = O(nγ/2)

∥∥∥ max
1≤i,j≤n

∣∣(xt − µ)i(xt − µ)j
∣∣∥∥∥γ
Lγ

where the first equality is because of (9.10), (9.12), and Proposition 6(ii), the third
inequality is due to the decoupling inequality |f + g|p ≤ 2p−1(|f |p + |g|p) for p ≥ 1, the
fourth inequality is due to Jensen’s inequality, the fourth equality is due to the definition
of Lp norm. By Assumption 1, for any i, j = 1, . . . , n,

P(|xt,ixt,j| ≥ ε) ≤ P(|xt,i| ≥
√
ε) + P(|xt,j| ≥

√
ε) ≤ 2Ke−Cε.

It follows from Lemma 2.2.1 in van der Vaart and Wellner (1996) that ‖xt,ixt,j‖ψ1 ≤
(1 + 2K)/C. Similarly we have P(|xt,i| ≥ ε) ≤ Ke−Cε

2
, so ‖xt,i‖ψ1 ≤ ‖xt,i‖ψ2(log 2)−1/2 ≤[

1+K
C

]1/2
(log 2)−1/2. Recalling from Proposition 6(iv) that max1≤i≤n |µi| = O(1), we have

‖(xt − µ)i(xt − µ)j‖ψ1 ≤ ‖xt,ixt,j‖ψ1 + µj‖xt,i‖ψ1 + µi‖xt,j‖ψ1 + µiµj ≤ C

for some constant C. Then invoke Lemma 2.2.2 in van der Vaart and Wellner (1996)∥∥∥ max
1≤i,j≤n

(xt − µ)i(xt − µ)j

∥∥∥
ψ1

. log(1 + n2)C = O(log n).
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Since ‖X‖Lr ≤ r!‖X‖ψ1 for any random variable X (van der Vaart and Wellner (1996),
p95), we have∥∥∥ max

1≤i,j≤n
(xt − µ)i(xt − µ)j

∥∥∥γ
Lγ

≤ (γ!)γ
∥∥∥ max

1≤i,j≤n
(xt − µ)i(xt − µ)j

∥∥∥γ
ψ1

= O(logγ n). (9.15)

Summing up the rates, we have

T 1− γ
2nγ/2E

∣∣∣cᵀ(EᵀE)−1EᵀD+
nH(D−1/2 ⊗D−1/2)vec

[
xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]∣∣∣γ
= T 1− γ

2nγ/2O(nγ/2)O(logγ n) = O

(
n log n

T
1
2
− 1
γ

)γ
= o(1)

by Assumption 2(ii). Thus, we have verified (9.14).

9.5.2 t′1 − t1 = op(1)

We now show that t′1− t1 = op(1). Since t′1 and t1 have the same numerator, say denoted
A, we have

t′1 − t1 =
A√
G
− A√

ĜT

=
A√
G

(√
nĜT −

√
nG√

nĜT

)
=

A√
G

1√
nĜT

(
nĜT − nG√
nĜT +

√
nG

)
.

Since we have already shown in (9.13) that nG is bounded away from zero by an absolute
constant and A/

√
G = Op(1), if in addition we show that nĜT − nG = op(1), then

the right hand side of the preceding display is op(1) by repeatedly invoking continuous

mapping theorem. Now we show that nĜT − nG = op(1). Define

G̃T := 2cᵀ(EᵀE)−1EᵀD+
n ĤT (Θ⊗Θ)ĤTD

+ᵀ

n E(EᵀE)−1c.

By the triangular inequality: |nĜT − nG| ≤ |nĜT − nG̃T |+ |nG̃T − nG|. First, we prove
|nĜT − nG̃T | = op(1).

n|ĜT − G̃T |
= 2n|cᵀ(EᵀE)−1EᵀD+

n ĤT (MT ⊗MT )ĤTD
+ᵀ

n E(EᵀE)−1c

− cᵀ(EᵀE)−1EᵀD+
n ĤT (Θ⊗Θ)ĤTD

+ᵀ

n E(EᵀE)−1c|
= 2n|cᵀ(EᵀE)−1EᵀD+

n ĤT (MT ⊗MT −Θ⊗Θ)ĤTD
+ᵀ

n E(EᵀE)−1c|
≤ 2n|maxeval(MT ⊗MT −Θ⊗Θ)|‖ĤTD

+ᵀ

n E(EᵀE)−1c‖2
2

= 2n‖MT ⊗MT −Θ⊗Θ‖`2‖ĤTD
+ᵀ

n E(EᵀE)−1c‖2
2 ≤ 2nOp

(√
n

T

)
‖ĤT‖2

`2
‖D+ᵀ

n ‖2
`2
‖(EᵀE)−1‖`2

= Op

(√
n

T

)
= op(1),

where the second inequality is due to Proposition 4, Assumptions 3(i)-(ii) and 4, the
second last equality is due to (9.12), (9.10), and (9.11, and the last equality is due to
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Assumption 2(ii). We now prove n|G̃T −G| = op(1).

n|G̃T −G|
= 2n|cᵀ(EᵀE)−1EᵀD+

n ĤT (Θ⊗Θ)ĤTD
+ᵀ

n E(EᵀE)−1c

− cᵀ(EᵀE)−1EᵀD+
nH(Θ⊗Θ)HD+ᵀ

n E(EᵀE)−1c|
≤ 2n|maxeval(Θ⊗Θ)|‖(ĤT −H)D+ᵀ

n E(EᵀE)−1c‖2
2

+ 2n‖(Θ⊗Θ)HD+ᵀ

n E(EᵀE)−1c‖2‖(ĤT −H)D+ᵀ

n E(EᵀE)−1c‖2 (9.16)

where the inequality is due to Lemma 5 in Appendix B. We consider the first term of
(9.16) first.

2n|maxeval(Θ⊗Θ)|‖(ĤT −H)D+ᵀ

n E(EᵀE)−1c‖2
2 = O(n)‖ĤT −H‖2

`2
‖D+ᵀ

n ‖2
`2
‖(EᵀE)−1‖`2

= Op(n/T ) = op(1),

where the second last equality is due to (9.12), (9.11), and (9.10), and the last equality
is due to Assumption 2(ii). We now consider the second term of (9.16).

2n‖(Θ⊗Θ)HD+ᵀ

n E(EᵀE)−1c‖2‖(ĤT −H)D+ᵀ

n E(EᵀE)−1c‖2

≤ O(n)‖H‖`2‖ĤT −H‖`2‖D+ᵀ
n E(EᵀE)−1c‖2

2 = O(
√
n/T ) = op(1),

where the first equality is due to (9.12), (9.11), and (9.10), and the last equality is due to
Assumption 2(ii). We have proved |nG̃T − nG| = op(1) and hence |nĜT − nG| = op(1).

9.5.3 t3 = op(1)

Last, we prove that t3 = op(1). Write

t3 =

√
T
√
ncᵀ(EᵀE)−1EᵀD+

n vecOp(‖MT −Θ‖2
`2

)√
nĜT

.

Since the denominator of the preceding equation is bounded away from zero by an absolute
constant with probability approaching one by (9.13) and that |nĜT − nG| = op(1), it
suffices to show

√
T
√
ncᵀ(EᵀE)−1EᵀD+

n vecOp(‖MT −Θ‖2
`2

) = op(1).

This is straightforward:

|
√
Tncᵀ(EᵀE)−1EᵀD+

n vecOp(‖MT −Θ‖2
`2

)| ≤
√
Tn‖cᵀ(EᵀE)−1EᵀD+

n ‖2‖vecOp(‖MT −Θ‖2
`2

)‖2

.
√
T‖Op(‖MT −Θ‖2

`2
)‖F ≤

√
T
√
n‖Op(‖MT −Θ‖2

`2
)‖`2

=
√
TnOp(‖MT −Θ‖2

`2
) = Op

(√
Tnn

T

)
= Op

(√
n3

T

)
= op(1),

where the last equality is due to Assumption 2(ii).
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9.6 Proof of Theorem 3

Proof of Theorem 3. At each step, we take the symmetry of Ω(θ) into account.

d`T (θ)

= −T
2
d log

∣∣∣D1/2 exp(Ω0)D1/2
∣∣∣− T

2
dtr

(
1

T

T∑
t=1

(xt − µ)ᵀD−1/2[exp(Ω0)]−1D−1/2(xt − µ)

)
= −T

2
d log

∣∣∣D1/2 exp(Ω0)D1/2
∣∣∣− T

2
dtr
(
D−1/2Σ̃D−1/2[exp(Ω0)]−1

)
= −T

2
tr
([
D1/2 exp(Ω0)D1/2

]−1
D1/2d exp(Ω0)D1/2

)
− T

2
dtr
(
D−1/2Σ̃D−1/2[exp(Ω0)]−1

)
= −T

2
tr
([

exp(Ω0)
]−1

d exp(Ω0)
)
− T

2
tr
(
D−1/2Σ̃D−1/2d[exp(Ω0)]−1

)
= −T

2
tr
([

exp(Ω0)
]−1

d exp(Ω0)
)

+
T

2
tr
(
D−1/2Σ̃D−1/2[exp(Ω0)]−1d exp(Ω0)[exp(Ω0)]−1

)
=
T

2
tr

({
[exp(Ω0)]−1D−1/2Σ̃D−1/2[exp(Ω0)]−1 −

[
exp(Ω0)

]−1
}
d exp(Ω0)

)
=
T

2

[
vec

({
[exp(Ω0)]−1D−1/2Σ̃D−1/2[exp(Ω0)]−1 −

[
exp(Ω0)

]−1
}ᵀ
)]ᵀ

vecd exp(Ω0)

=
T

2

[
vec
(

[exp(Ω0)]−1D−1/2Σ̃D−1/2[exp(Ω0)]−1 −
[
exp(Ω0)

]−1
)]ᵀ

vecd exp(Ω0),

where in the second equality we used the definition of Σ̃ (4.4), the third equality is due
to that d log |X| = tr(X−1dX), the fifth equality is due to that dX−1 = −X−1(dX)X−1,
the seventh equality is due to that tr(AB) = (vec[Aᵀ])ᵀvecB, and the eighth equality
is due to that matrix function preserves symmetry and we can interchange inverse and
transpose operators. The following Frechet derivative of matrix exponential can be found
in Higham (2008) p238:

d exp(Ω0) =

∫ 1

0

e(1−t)Ω0

(dΩ0)etΩ
0

dt.

Therefore,

vecd exp(Ω0) =

∫ 1

0

etΩ
0 ⊗ e(1−t)Ω0

dtvec(dΩ0) =

∫ 1

0

etΩ
0 ⊗ e(1−t)Ω0

dtDnvech(dΩ0)

=

∫ 1

0

etΩ
0 ⊗ e(1−t)Ω0

dtDnEdθ,

where the last equality is due to (4.1). Hence,

d`T (θ)

=
T

2

[
vec
(

[exp(Ω0)]−1D−1/2Σ̃D−1/2[exp(Ω0)]−1 −
[
exp(Ω0)

]−1
)]ᵀ ∫ 1

0

etΩ
0 ⊗ e(1−t)Ω0

dtDnEdθ
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and

y :=
∂`T (θ)

∂θᵀ

=
T

2
EᵀDᵀ

n

∫ 1

0

etΩ
0 ⊗ e(1−t)Ω0

dt
[
vec
(

[exp(Ω0)]−1D−1/2Σ̃D−1/2[exp(Ω0)]−1 −
[
exp(Ω0)

]−1
)]

=:
T

2
EᵀDᵀ

nΨ1Ψ2.

Now we derive the Hessian matrix.

dy =
T

2
EᵀDᵀ

n(dΨ1)Ψ2+
T

2
EᵀDᵀ

nΨ1dΨ2 =
T

2
(Ψᵀ

2⊗EᵀDᵀ
n)vecdΨ1+

T

2
EᵀDᵀ

nΨ1dΨ2. (9.17)

Consider dΨ1 first.

dΨ1 = d

∫ 1

0

etΩ
0 ⊗ e(1−t)Ω0

dt =

∫ 1

0

detΩ
0 ⊗ e(1−t)Ω0

dt+

∫ 1

0

etΩ
0 ⊗ de(1−t)Ω0

dt

=:

∫ 1

0

A⊗ e(1−t)Ω0

dt+

∫ 1

0

etΩ
0 ⊗Bdt,

where

A :=

∫ 1

0

e(1−s)tΩ0

d(tΩ0)estΩ
0

ds, B :=

∫ 1

0

e(1−s)(1−t)Ω0

d((1− t)Ω0)es(1−t)Ω
0

ds.

Therefore,

vecdΨ1 =

∫ 1

0

vec
(
A⊗ e(1−t)Ω0)

dt+

∫ 1

0

vec
(
etΩ

0 ⊗B
)
dt

=

∫ 1

0

P
(
vecA⊗ vece(1−t)Ω0)

dt+

∫ 1

0

P
(
vecetΩ

0 ⊗ vecB
)
dt

=

∫ 1

0

P
(
In2 ⊗ vece(1−t)Ω0)

vecAdt+

∫ 1

0

P
(
vecetΩ

0 ⊗ In2

)
vecBdt

=

∫ 1

0

P
(
In2 ⊗ vece(1−t)Ω0) ∫ 1

0

estΩ
0 ⊗ e(1−s)tΩ0

ds · vecd(tΩ0)dt

+

∫ 1

0

P
(
vecetΩ

0 ⊗ In2

) ∫ 1

0

es(1−t)Ω
0 ⊗ e(1−s)(1−t)Ω0

ds · vecd((1− t)Ω0)dt

=

∫ 1

0

P
(
In2 ⊗ vece(1−t)Ω0) ∫ 1

0

estΩ
0 ⊗ e(1−s)tΩ0

ds · tdtDnEdθ

+

∫ 1

0

P
(
vecetΩ

0 ⊗ In2

) ∫ 1

0

es(1−t)Ω ⊗ e(1−s)(1−t)Ω0

ds · (1− t)dtDnEdθ (9.18)
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where P := In ⊗Kn,n ⊗ In, the second equality is due to Lemma 6 in Appendix B. We
now consider dΨ2.

dΨ2 = dvec
(

[exp(Ω0)]−1D−1/2Σ̃D−1/2[exp(Ω0)]−1 −
[
exp(Ω0)

]−1
)

= vec
(
d[exp(Ω0)]−1D−1/2Σ̃D−1/2[exp(Ω0)]−1

)
+
(

[exp(Ω0)]−1D−1/2Σ̃D−1/2d[exp(Ω0)]−1
)
− vec

(
d
[
exp(Ω0)

]−1
)

= vec
(
−[exp(Ω0)]−1d exp(Ω0)[exp(Ω0)]−1D−1/2Σ̃D−1/2[exp(Ω0)]−1

)
+ vec

(
−[exp(Ω0)]−1D−1/2Σ̃D−1/2[exp(Ω0)]−1d exp(Ω0)[exp(Ω0)]−1

)
+ vec

(
[exp(Ω0)]−1d exp(Ω0)[exp(Ω0)]−1

)
=
(

[exp(Ω0)]−1 ⊗ [exp(Ω0)]−1
)

vecd exp(Ω0)

−
(

[exp(Ω0)]−1 ⊗ [exp(Ω0)]−1D−1/2Σ̃D−1/2[exp(Ω0)]−1
)

vecd exp(Ω0)

−
(

[exp(Ω0)]−1D−1/2Σ̃D−1/2[exp(Ω0)]−1 ⊗ [exp(Ω0)]−1
)

vecd exp(Ω0) (9.19)

Substituting (9.18) and (9.19) into (9.17) yields the result:

∂2`T (θ)

∂θ∂θᵀ
=

− T

2
EᵀDᵀ

nΨ1

(
[exp Ω0]−1D−1/2Σ̃D−1/2 ⊗ In + In ⊗ [exp Ω0]−1D−1/2Σ̃D−1/2 − In2

)
·(

[exp Ω0]−1 ⊗ [exp Ω0]−1
)

Ψ1DnE

+
T

2
(Ψᵀ

2 ⊗ EᵀDᵀ
n)

∫ 1

0

P
(
In2 ⊗ vece(1−t)Ω0) ∫ 1

0

estΩ
0 ⊗ e(1−s)tΩ0

ds · tdtDnE

+
T

2
(Ψᵀ

2 ⊗ EᵀDᵀ
n)

∫ 1

0

P
(
vecetΩ

0 ⊗ In2

) ∫ 1

0

es(1−t)Ω
0 ⊗ e(1−s)(1−t)Ω0

ds · (1− t)dtDnE.

9.7 Proof of Theorem 4

Under Assumptions 3 - 4 and Proposition 4(i), Θ−1 ⊗Θ−1 and M−1
T ⊗M

−1
T are positive

definite for all n with minimum eigenvalues bounded away from zero by absolute con-
stants and maximum eigenvalues bounded from the above by absolute constants (with
probability approaching 1 for M−1

T ⊗M
−1
T ) , so their unique positive definite square roots

Θ−1/2⊗Θ−1/2 and M
−1/2
T ⊗M−1/2

T exist, whose minimum eigenvalues also bounded away
from zero by absolute constants and maximum eigenvalues bounded from the above by
absolute constants. Define

X := (Θ−1/2 ⊗Θ−1/2)Ψ1DnE, X̂T := (M
−1/2
T ⊗M−1/2

T )Ψ̂1,TDnE.

Therefore

Υ = −1

2
X ᵀX , Υ̂T = −1

2
X̂ ᵀ
T X̂T .
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Proposition 8. Suppose Assumptions 1, 2(i), 3 and 4 hold. Then Ψ1 is positive definite
for all n with its minimum eigenvalue bounded away from zero by an absolute constant and
maximum eigenvalue bounded from the above by an absolute constant. Ψ̂1,T is positive
definite for all n with its minimum eigenvalue bounded away from zero by an absolute
constant and maximum eigenvalue bounded from the above by an absolute constant with
probability approaching 1.

Proof. For part (i), since the proofs for the sample analogue and population are exactly
the same, we only give a proof for the sample analogue. The idea is to re-express Ψ̂1,T

into the diagonalised form, as in Linton and McCrorie (1995):

Ψ̂1,T =

∫ 1

0

et logMT ⊗ e(1−t) logMT dt =

∫ 1

0

( ∞∑
k=0

1

k!
tk logkMT

)
⊗
( ∞∑
l=0

1

l!
(1− t)l loglMT

)
dt

=

∫ 1

0

∞∑
k=0

∞∑
l=0

tk(1− t)l

k!l!
(logkMT ⊗ loglMT )dt =

∞∑
k=0

∞∑
l=0

(logkMT ⊗ loglMT )
1

k!l!

∫ 1

0

tk(1− t)ldt

=
∞∑
k=0

∞∑
l=0

1

(k + l + 1)!
(logkMT ⊗ loglMT ) =

∞∑
n=0

1

(n+ 1)!

n∑
l=0

logn−lMT ⊗ loglMT ,

where the fourth equality is true because the infinite series is absolutely convergent (in-
finite radius of convergence) so we can interchange

∑
and

∫
, the fifth equality is due

to Lemma 7 in Appendix B. Suppose that MT has eigenvalues λ1, . . . , λn, then logMT

has eigenvalues log λ1, . . . , log λn (Higham (2008) p10). Suppose that logMT = QᵀΞQ
(orthogonal diagonalization). Then

logn−lMT ⊗ loglMT = (QᵀΞn−lQ)⊗ (QᵀΞlQ) = (Qᵀ ⊗Qᵀ)(Ξn−l ⊗ Ξl)(Q⊗Q).

The matrix
∑n

l=0 Ξn−l ⊗ Ξl is a n2 × n2 diagonal matrix with the [(i − 1)n + j]th entry
equal to 

∑n
l=0(log λi)

n−l(log λj)
l =

(log λi)
n+1−(log λj)

n+1

log λi−log λj
if i 6= j, λi 6= λj

(n+ 1)(log λi)
n if i 6= j, λi = λj

(n+ 1)(log λi)
n if i = j

for i, j = 1, . . . , n. Therefore Ψ̂1,T = (Qᵀ ⊗ Qᵀ)[
∑∞

n=0
1

(n+1)!

∑n
l=0(Ξn−l ⊗ Ξl)](Q ⊗ Q)

whose [(i− 1)n+ j]th eigenvalue equal to
exp(log λi)−exp(log λj)

log λi−log λj
=

λi−λj
log λi−log λj

if i 6= j, λi 6= λj
exp log λi = λi if i 6= j, λi = λj
exp log λi = λi if i = j

The proposition then follows from the assumptions of the proposition.

Proposition 9. For any (v + 1)× 1 non-zero vector b, with ‖b‖2 = 1,

‖bᵀ(X ᵀX )−1X ᵀ‖2 = O

(
1√
n

)
.
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Proof. Note that

‖bᵀ(X ᵀX )−1X ᵀ‖2
2 = bᵀ(X ᵀX )−1b ≤ maxeval(X ᵀX )−1 =

1

mineval(X ᵀX )
.

Note that for any (v + 1)× 1 a with ‖a‖ = 1

aᵀX ᵀXa = aᵀEᵀDᵀ
nΨ1

(
Θ−1 ⊗Θ−1

)
Ψ1DnEa

≥ mineval(Θ−1 ⊗Θ−1)mineval(Ψ2
1)mineval(Dᵀ

nDn)mineval(EᵀE) ≥ Cn,

for some positive constant C.

Proposition 10. Let Assumptions 1, 2(i), 3 and 4 be satisfied. Then

(i)

‖M−1
T ⊗M

−1
T −Θ−1 ⊗Θ−1‖`2 = Op

(√
n

T

)
.

(ii)

‖M−1/2
T ⊗M−1/2

T −Θ−1/2 ⊗Θ−1/2‖`2 = Op

(√
n

T

)
.

Proof. For (i)

‖M−1
T ⊗M

−1
T −Θ−1 ⊗Θ−1‖`2

= ‖M−1
T ⊗M

−1
T −M

−1
T ⊗Θ−1 +M−1

T ⊗Θ−1 −Θ−1 ⊗Θ−1‖`2
= ‖M−1

T ⊗ (M−1
T −Θ−1) + (M−1

T −Θ−1)⊗Θ−1‖`2
≤ ‖M−1

T ‖`2‖M
−1
T −Θ−1‖`2 + ‖M−1

T −Θ−1‖`2‖Θ−1‖`2

= (‖M−1
T ‖`2 + ‖Θ−1‖`2)‖M−1

T −Θ−1‖`2 = Op

(√
n

T

)
where the inequality is due to Proposition 14 in Appendix B, and the last equality is due
to Lemma 3 in Appendix B given Proposition 4(i) and Assumption 2(i). For part (ii),
invoke Lemma 4 in Appendix B:

‖M−1/2
T ⊗M−1/2

T −Θ−1/2 ⊗Θ−1/2‖`2 ≤
‖M−1

T ⊗M
−1
T −Θ−1 ⊗Θ−1‖`2

mineval(M
−1/2
T ⊗M−1/2

T ) + mineval(Θ−1/2 ⊗Θ−1/2)
= Op

(√
n

T

)
.

Proposition 11. Let Assumptions 1, 2(i), 3 and 4 be satisfied. Then

‖Ψ̂1,T −Ψ1‖`2 = Op

(√
n

T

)
.
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Proof.

‖Ψ̂1,T −Ψ1‖`2 =

∥∥∥∥∫ 1

0

(M t
T ⊗M1−t

T −Θt ⊗Θ1−t)dt

∥∥∥∥
`2

≤
∫ 1

0

‖M t
T ⊗M1−t

T −Θt ⊗Θ1−t‖`2dt

≤
∫ 1

0

∥∥M t
T ⊗ (M1−t

T −Θ1−t)
∥∥
`2
dt+

∫ 1

0

∥∥(M t
T −Θt)⊗Θ1−t∥∥

`2
dt

≤ max
t∈[0,1]

∥∥M t
T

∥∥
`2

∥∥M1−t
T −Θ1−t∥∥

`2
+ max

t∈[0,1]

∥∥M t
T −Θt

∥∥∥∥Θ1−t∥∥
`2

= max
t∈[0,1]

(
‖M1−t

T ‖`2 + ‖Θ1−t‖`2
)
‖M t

T −Θt‖`2 .

The lemma follows trivially for the boundary cases t = 0 and t = 1, so we only need to
consider the case t ∈ (0, 1). We first show that for any t ∈ (0, 1), ‖M1−t

T ‖`2 and ‖Θ1−t‖`2
are Op(1). This is obvious: diagonalize Θ0, apply the function f(x) = x1−t, and take the
spectral norm. The lemma would then follow if we show that maxt∈(0,1) ‖M t

T − Θt‖`2 =

Op(
√
n/T ).

‖M t
T −Θt‖`2 =

∥∥et logMT − et log Θ
∥∥

≤ ‖t(logMT − log Θ)‖`2 exp[t‖ logMT − log Θ‖`2 ] exp[t‖ log Θ‖`2 ]
= ‖t(logMT − log Θ)‖`2 exp[t‖ logMT − log Θ‖`2 ]O(1),

where the first inequality is due to Theorem 7 in Appendix B, and the second equality is
due to the fact that all the eigenvalues of Θ are bounded away from zero and infinity by
absolute constants. Now use (9.8):

‖ logMT − log Θ‖`2 ≤ max
t∈[0,1]

‖[t(Θ− I) + I]−1‖2
`2
‖MT −Θ‖`2 +Op(‖MT −Θ‖2

`2
)

= Op(‖MT −Θ‖`2) +Op(‖MT −Θ‖2
`2

) = Op

(√
n

T

)
where the first inequality is due to the triangular inequality and the submultiplicative
property of matrix norm, the first equality is due to the minimum eigenvalue of tΘ+(1−t)I
is bounded away from zero by an absolute constant for any t ∈ (0, 1), and the last equality
is due to Proposition 4(i). The result follows after recognising exp(op(1)) = Op(1).

Proposition 12. Let Assumptions 1, 2(i), 3 and 4 be satisfied. Then

(i)
‖X̂T‖`2 = ‖X̂ ᵀ

T‖`2 = Op(
√
n), ‖X‖`2 = ‖X ᵀ‖`2 = O(

√
n).

(ii)

‖X̂T −X‖`2 = Op

(√
n2

T

)
.

(iii) ∥∥∥∥Υ̂T

n
− Υ

n

∥∥∥∥
`2

=

∥∥∥∥X̂ ᵀ
T X̂T
2n

− X
ᵀX

2n

∥∥∥∥
`2

= Op

(√
n

T

)
.
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(iv) ∥∥nΥ̂−1
T − nΥ−1

∥∥
`2

=
∥∥2n(X̂ ᵀ

T X̂T )−1 − 2n(X ᵀX )−1
∥∥
`2

= Op

(√
n

T

)
.

Proof. For part (i), it suffices to give a proof for ‖X̂T‖`2 .

‖X̂T‖`2 = ‖(M−1/2
T ⊗M−1/2

T )Ψ̂1,TDnE‖`2 ≤ ‖M
−1/2
T ⊗M−1/2

T ‖`2‖Ψ̂1,T‖`2‖Dn‖`2‖E‖`2
= Op(

√
n),

where the last equality is due to Propositions 2(iii) and 8 and (9.11). Now

‖X̂T −X‖`2 = ‖(M−1/2
T ⊗M−1/2

T )Ψ̂1,TDnE − (Θ−1/2 ⊗Θ−1/2)Ψ1DnE‖`2
≤ ‖(M−1/2

T ⊗M−1/2
T −Θ−1/2 ⊗Θ−1/2)Ψ̂1,TDnE‖`2

+ ‖(Θ−1/2 ⊗Θ−1/2)(Ψ̂1,T −Ψ1)DnE‖`2
≤ ‖(M−1/2

T ⊗M−1/2
T −Θ−1/2 ⊗Θ−1/2)‖`2‖Ψ̂1,T‖`2‖Dn‖`2‖E‖`2

+ ‖Θ−1/2 ⊗Θ−1/2‖`2‖Ψ̂1,T −Ψ1‖`2‖Dn‖`2‖E‖`2 .

The proposition result (ii) follows after invoking Propositions 10 and 11. For part (iii),

‖X̂ ᵀ
T X̂T −X

ᵀX‖`2 = ‖X̂ ᵀ
T X̂T − X̂

ᵀ
TX + X̂ ᵀ

TX − X
ᵀX‖`2 ≤ ‖X̂

ᵀ
T (X̂T −X )‖`2 + ‖(X̂T −X )ᵀX‖`2 .

Therefore part (iii) follows from parts (i) and (ii). Part (iv) follows from result (iii) via
Lemma 3 in Appendix B and the fact that ‖2n(X ᵀX )−1‖`2 = O(1).

Proof of Theorem 4. We first show that Υ̂T is invertible with probability approaching 1,

so that our estimator θ̃T := θ̂T + (−Υ̂T )−1 ∂`T (θ̂T )
∂θᵀ

/T is well defined. It suffices to show

that −Υ̂T = 1
2
EᵀDᵀ

nΨ̂1,T

(
M−1

T ⊗M
−1
T

)
Ψ̂1,TDnE has minimum eigenvalue bounded away

from zero by an absolute constant with probability approaching one. For any (v+ 1)× 1
vector a with ‖a‖2 = 1,

aᵀEᵀDᵀ
nΨ̂1,T

(
M−1

T ⊗M
−1
T

)
Ψ̂1,TDnEa/2

≥ mineval(M−1
T ⊗M

−1
T )mineval(Ψ̂2

1,T )mineval(Dᵀ
nDn)mineval(EᵀE)/2 ≥ Cn,

for some absolute constant C with probability approaching one. Hence−Υ̂T has minimum
eigenvalue bounded away from zero by an absolute constant with probability approaching
one. Also as a by-product

‖(−Υ̂T )−1‖`2 =
1

mineval(−Υ̂T )
= Op(n

−1). (9.20)

From the definition of θ̃T , for any b ∈ Rv+1 with ‖b‖2 = 1 we can write

√
Tbᵀ(−Υ̂T )(θ̃T − θ) =

√
Tbᵀ(−Υ̂T )(θ̂T − θ) +

√
Tbᵀ

1

T

∂`T (θ̂T )

∂θᵀ

=
√
Tbᵀ(−Υ̂T )(θ̂T − θ) +

√
Tbᵀ

1

T

∂`T (θ)

∂θᵀ
+
√
TbᵀΥ(θ̂T − θ) + op(1)

=
√
Tbᵀ(Υ− Υ̂T )(θ̂T − θ) + bᵀ

√
T

1

T

∂`T (θ)

∂θᵀ
+ op(1)
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where the second equality is due to Assumption 6 and the fact that θ̂T is
√
T/n-consistent.

Defining aᵀ = bᵀ(−Υ̂T ), we write

√
T

aᵀ

‖a‖2

(θ̃T−θ) =
√
T

aᵀ

‖a‖2

(−Υ̂T )−1(Υ−Υ̂T )(θ̂T−θ)+
aᵀ

‖a‖2

(−Υ̂T )−1
√
T

1

T

∂`T (θ)

∂θᵀ
+
op(1)

‖a‖2

.

By recognising that ‖aᵀ‖2 = ‖bᵀ(−Υ̂T )‖2 ≥ mineval(−Υ̂T ), we have

1

‖a‖2

= Op(n
−1).

Thus without loss of generality, we have

√
Tbᵀ(θ̃T − θ) =

√
Tbᵀ(−Υ̂T )−1(Υ− Υ̂T )(θ̂T − θ) + bᵀ(−Υ̂T )−1

√
T

1

T

∂`T (θ)

∂θᵀ
+ op(n

−1).

We now show that the first term on the right side is op(n
−1/2). This is straightforward

√
T |bᵀ(−Υ̂T )−1(Υ− Υ̂T )(θ̂T − θ)| ≤

√
T‖b‖2‖(−Υ̂T )−1‖`2‖Υ− Υ̂T‖`2‖θ̂T − θ‖2

=
√
TOp(n

−1)nOp(
√
n/T )Op(

√
n/T ) = Op(

√
n3/Tn−1/2) = op(n

−1/2),

where the first equality is due to (9.20), Proposition 12 (iii) and Theorem 1, and the last
equation is due to Assumption 2(ii). Thus

√
Tbᵀ(θ̃T − θ) = −bᵀΥ̂−1

T

√
T

1

T

∂`T (θ)

∂θᵀ
+ op(n

−1/2),

whence, if we divide by

√
bᵀ(−Υ̂T )−1b, we have

√
Tbᵀ(θ̃T − θ)√
bᵀ(−Υ̂T )−1b

=
−bᵀΥ̂−1

T

√
T ∂`T (θ)

∂θᵀ
/T√

bᵀ(−Υ̂T )−1b
+

op(n
−1/2)√

bᵀ(−Υ̂T )−1b

=: t2,1 + t2,2.

Define

t′2,1 :=
−bᵀΥ−1

√
T ∂`T (θ)

∂θᵀ
/T√

bᵀ(−Υ)−1b
.

To prove Theorem 4, it suffices to show t′2,1
d−→ N(0, 1), t′2,1− t2,1 = op(1), and t2,2 = op(1).

9.7.1 t′2,1
d−→ N(0, 1)

We now prove that t′2,1 is asymptotically distributed as a standard normal.

t′2,1 =
−bᵀΥ−1

√
T ∂`T (θ)

∂θᵀ
/T√

bᵀ(−Υ)−1b
=

T∑
t=1

bᵀ(X ᵀX )−1X ᵀ(Θ−1/2 ⊗Θ−1/2)(D−1/2 ⊗D−1/2)T−1/2vec
[
(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]√
bᵀ(−Υ)−1b

=:
T∑
t=1

UT,n,t.
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The proof is very similar to that of t′1
d−→ N(0, 1) in Section 9.5.1. It is not difficult to

show E[UT,n,t] = 0 and
∑T

t=1 E[U2
T,n,t] = 1. Then we just need to verify the following

Lindeberg condition for a double indexed process: for all ε > 0,

lim
n,T→∞

T∑
t=1

∫
{|UT,n,t|≥ε}

U2
T,n,tdP = 0.

For any γ > 2,∫
{|UT,n,t|≥ε}

U2
T,n,tdP =

∫
{|UT,n,t|≥ε}

U2
T,n,t|UT,n,t|−γ|UT,n,t|γdP ≤ ε2−γ

∫
{|UT,n,t|≥ε}

|UT,n,t|γdP

≤ ε2−γE|UT,n,t|γ,

We first investigate that at what rate the denominator
√
bᵀ(−Υ)−1b goes to zero.

bᵀ(−Υ)−1b = 2bᵀ
(
EᵀDᵀ

nΨ1

(
Θ−1 ⊗Θ−1

)
Ψ1DnE

)−1
b

≥ 2mineval
((
EᵀDᵀ

nΨ1

(
Θ−1 ⊗Θ−1

)
Ψ1DnE

)−1
)

=
2

maxeval
(
EᵀDᵀ

nΨ1

(
Θ−1 ⊗Θ−1

)
Ψ1DnE

) .
For an arbitrary (v + 1)× 1 vector a with ‖a‖2 = 1, we have

aᵀEᵀDᵀ
nΨ1

(
Θ−1 ⊗Θ−1

)
Ψ1DnEa

≤ maxeval(Θ−1 ⊗Θ−1)maxeval(Ψ2
1)maxeval(Dᵀ

nDn)maxeval(EᵀE) ≤ Cn,

for some constant C. Thus we have

1√
bᵀ(−Υ)−1b

= O(
√
n). (9.21)

Then a sufficient condition for the Lindeberg condition is:

T 1− γ
2nγ/2·

E
∣∣∣bᵀ(X ᵀX )−1X ᵀ(Θ−1/2 ⊗Θ−1/2)(D−1/2 ⊗D−1/2)vec

[
(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]∣∣∣γ
= o(1), (9.22)

for some γ > 2. We now verify (9.22). We shall be concise as the proof is very similar to
that in Section 9.5.1.

E
∣∣∣bᵀ(X ᵀX )−1X ᵀ(Θ−1/2 ⊗Θ−1/2)(D−1/2 ⊗D−1/2)vec

[
(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]∣∣∣γ
. ‖bᵀ(X ᵀX )−1X ᵀ‖γ2E‖(xt − µ)(xt − µ)ᵀ‖γF = O

(
n−γ/2

)
nγ
∥∥∥ max

1≤i,j≤n

∣∣(xt − µ)i(xt − µ)j
∣∣∥∥∥γ
Lγ

= O
(
n−γ/2

)
nγO(logγ n),

where the second last equality is due to Proposition 9 and the last equality is due to
(9.15). Summing up the rates, we have

T 1− γ
2nγ/2O

(
n−γ/2

)
nγO(logγ n) = o

(
n log n

T
1
2
− 1
γ

)γ
= o(1),

by Assumption 2(ii). Thus, we have verified (9.22).
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9.7.2 t′2,1 − t2,1 = op(1)

Let A and Â denote the numerators of t′2,1 and t2,1, respectively. Let
√
G and

√
Ĝ denote

the denominators of t′2,1 and t2,1, respectively. Write

t′2,1 − t2,1 =

√
nA√
nG
−
√
nÂ√
nG

+

√
nÂ√
nG
−
√
nÂ√
nĜ

=
1√
nG

(
√
nA−

√
nÂ) +

√
nÂ

(
1√
nG
− 1√

nĜ

)
=

1√
nG

(
√
nA−

√
nÂ) +

√
nÂ

1
√
nG
√
nĜ

nĜ− nG√
nĜ+

√
nG

.

Note that we have shown in (9.21) that
√
nG is uniformly (in n) bounded away from

zero, that is, 1/
√
nG = O(1). Also we have shown that t′2,1 = A/

√
G = Op(1). Hence

√
nA =

√
nOp(

√
G) =

√
nOp

(
1√
n

)
= Op(1),

where the second last equality is due to Proposition 9. Then to show that t′2,1−t2,1 = op(1),
it suffices to show

√
nA−

√
nÂ = op(1) (9.23)

nĜ− nG = op(1). (9.24)

9.7.3 Proof of (9.23)

We now show that∣∣∣∣bᵀΥ̂−1
T

√
Tn

∂`T (θ)

∂θᵀ
/T − bᵀΥ−1

√
Tn

∂`T (θ)

∂θᵀ
/T

∣∣∣∣ = op(1).

This is straightforward.∣∣∣∣bᵀΥ̂−1
T

√
Tn

∂`T (θ)

∂θᵀ
/T − bᵀΥ−1

√
Tn

∂`T (θ)

∂θᵀ
/T

∣∣∣∣
=

∣∣∣∣bᵀ(Υ̂−1
T −Υ−1)

√
Tn

2
X ᵀ(Θ−1/2 ⊗Θ−1/2)(D−1/2 ⊗D−1/2)vec(Σ̃− Σ)

∣∣∣∣
≤ O(

√
Tn)‖Υ̂−1

T −Υ−1‖`2‖X ᵀ‖`2
√
n‖Σ̃− Σ‖`2 = Op

(√
n3

T

)
= op(1),

where the second equality is due to Proposition 12(iv) and (9.7), and the last equality is
due to Assumption 2(ii).

9.7.4 Proof of (9.24)

We now show that
n
∣∣bᵀ(−Υ̂T )−1b− bᵀ(−Υ)−1b

∣∣ = op(1).
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This is also straight-forward.

n
∣∣bᵀ(−Υ̂T )−1b− bᵀ(−Υ)−1b

∣∣ = n
∣∣bᵀ(Υ̂−1

T −Υ−1)b
∣∣ ≤ n‖Υ̂−1

T −Υ−1‖`2 = Op

(√
n

T

)
= op(1),

where the second equality is due to Proposition 12(iv) and the last equality is due to
Assumption 2(i).

9.7.5 t2,2 = op(1)

We now prove t2,2 = op(1). It suffices to prove

1√
bᵀ(−Υ̂T )−1b

= Op(n
1/2).

This follows from (9.21) and (9.24).

10 Appendix B

10.1 Minimum Distance Estimator

Proposition 13. Let A,B be n×n complex matrices. Suppose that A is positive definite
for all n and its minimum eigenvalue is uniformly bounded away from zero by an absolute
constant. Assume ‖A−1B‖`2 ≤ C < 1 for some constant C. Then A+B is invertible for
every n and

(A+B)−1 = A−1 − A−1BA−1 +O(‖B‖2
`2

).

Proof. We write A + B = A[I − (−A−1B)]. Since ‖ − A−1B‖`2 ≤ C < 1, I − (−A−1B)
and hence A+B are invertible (Horn and Johnson (1985) p301). We then can expand

(A+B)−1 =
∞∑
k=0

(−A−1B)kA−1 = A−1 − A−1BA−1 +
∞∑
k=2

(−A−1B)kA−1.

Then∥∥∥∥∥
∞∑
k=2

(−A−1B)kA−1

∥∥∥∥∥
`2

≤

∥∥∥∥∥
∞∑
k=2

(−A−1B)k

∥∥∥∥∥
`2

‖A−1‖`2 ≤
∞∑
k=2

∥∥∥(−A−1B)k
∥∥∥
`2
‖A−1‖`2

≤
∞∑
k=2

∥∥−A−1B
∥∥k
`2
‖A−1‖`2 =

∥∥A−1B
∥∥2

`2
‖A−1‖`2

1− ‖A−1B‖`2
≤
‖A−1‖3

`2
‖B‖2

`2

1− C
,

where the first and third inequalities are due to the submultiplicative property of a
matrix norm, the second inequality is due to the triangular inequality. Since A is positive
definite with the minimum eigenvalue bounded away from zero by an absolute constant,
‖A−1‖`2 = maxeval(A−1) = 1/mineval(A) < D < ∞ for some absolute constant D.
Hence the result follows.
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Theorem 5 (Higham (2008) p269; Dieci et al. (1996)). For A ∈ Cn×n with no eigenvalues
lying on the closed negative real axis (−∞, 0],

logA =

∫ 1

0

(A− I)[t(A− I) + I]−1dt.

Definition 1 (Nets and covering numbers). Let (T, d) be a metric space and fix ε > 0.

(i) A subset Nε of T is called an ε-net of T if every point x ∈ T satisfies d(x, y) ≤ ε
for some y ∈ Nε.

(ii) The minimal cardinality of an ε-net of T is denote N (ε, d) and is called the covering
number of T (at scale ε). Equivalently, N (ε, d) is the minimal number of balls of
radius ε and with centers in T needed to cover T .

Lemma 1. The unit Euclidean sphere {x ∈ Rn : ‖x‖2 = 1} equipped with the Euclidean
metric d satisfies for every ε > 0 that

N (ε, d) ≤
(

1 +
2

ε

)n
.

Proof. See Vershynin (2011) p8.

Recall that for a symmetric n × n matrix A, its `2 spectral norm can be written as:
‖A‖`2 = max‖x‖2=1 |xᵀAx|.

Lemma 2. Let A be a symmetric n×n matrix, and let Nε be an ε-net of the unit sphere
{x ∈ Rn : ‖x‖2 = 1} for some ε ∈ [0, 1). Then

‖A‖`2 ≤
1

1− 2ε
max
x∈Nε
|xᵀAx|.

Proof. See Vershynin (2011) p8.

Theorem 6 (Bernstein’s inequality). We let Z1, . . . , ZT be independent random variables,
satisfying for positive constants A and σ2

0

EZt = 0 ∀t, 1

T

T∑
t=1

E|Zt|m ≤
m!

2
Am−2σ2

0, m = 2, 3, . . . .

Let ε > 0 be arbitrary. Then

P
(∣∣∣∣ 1

T

T∑
t=1

Zt

∣∣∣∣ ≥ σ2
0

[
Aε+

√
2ε
])
≤ 2e−Tσ

2
0ε.

Proof. Slightly adapted from Bühlmann and van de Geer (2011) p487.
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Lemma 3. Let Ω̂n and Ωn be invertible (both possibly stochastic) square matrices whose
dimensions could be growing. Let T be the sample size. For any matrix norm, suppose
that ‖Ω−1

n ‖ = Op(1) and ‖Ω̂n − Ωn‖ = Op(an,T ) for some sequence an,T with an,T → 0 as

n→∞, T →∞ simultaneously (joint asymptotics). Then ‖Ω̂−1
n − Ω−1

n ‖ = Op(an,T ).

Proof. The original proof could be found in Saikkonen and Lutkepohl (1996) Lemma A.2.

‖Ω̂−1
n − Ω−1

n ‖ ≤ ‖Ω̂−1
n ‖‖Ωn − Ω̂n‖‖Ω−1

n ‖ ≤
(
‖Ω−1

n ‖+ ‖Ω̂−1
n − Ω−1

n ‖
)
‖Ωn − Ω̂n‖‖Ω−1

n ‖.

Let vn,T , zn,T and xn,T denote ‖Ω−1
n ‖, ‖Ω̂−1

n − Ω−1
n ‖ and ‖Ωn − Ω̂n‖, respectively. From

the preceding equation, we have

wn,T :=
zn,T

(vn,T + zn,T )vn,T
≤ xn,T = Op(an,T ) = op(1).

We now solve for zn,T :

zn,T =
v2
n,Twn,T

1− vn,Twn,T
= Op(an,T ).

Lemma 4. Let A,B be n×n positive semidefinite matrices and not both singular. Then

‖A−B‖`2 ≤
‖A2 −B2‖`2

mineval(A) + mineval(B)
.

Proof. See Horn and Johnson (1985) p410.

Proposition 14. Consider real matrices A (m× n) and B (p× q). Then

‖A⊗B‖`2 = ‖A‖`2‖B‖`2 .

Proof.

‖A⊗B‖`2 =
√

maxeval[(A⊗B)ᵀ(A⊗B)] =
√

maxeval[(Aᵀ ⊗Bᵀ)(A⊗B)]

=
√

maxeval[AᵀA⊗BᵀB] =
√

maxeval[AᵀA]maxeval[BᵀB] = ‖A‖`2‖B‖`2 ,

where the fourth equality is due to that both AᵀA and BᵀB are positive semidefinite.

Lemma 5. Let A be a p× p symmetric matrix and v̂, v ∈ Rp. Then

|v̂ᵀAv̂ − vᵀAv| ≤ |maxeval(A)|‖v̂ − v‖2
2 + 2(‖Av‖2‖v̂ − v‖2).

Proof. See Lemma 3.1 in the supplementary material of van de Geer et al. (2014).
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10.2 QMLE

Lemma 6. Let A and B be m×n and p× q matrices, respectively. There exists a unique
permutation matrix P := In ⊗ Kq,m ⊗ Ip, where Kq,m is the commutation matrix, such
that

vec(A⊗B) = P (vecA⊗ vecB).

Proof. Magnus and Neudecker (2007) Theorem 3.10 p55.

Lemma 7. For m,n ≥ 0, we have∫ 1

0

(1− s)nsmds =
m!n!

(m+ n+ 1)!
.

Theorem 7. For arbitrary n × n complex matrices A and E, and for any matrix norm
‖ · ‖,

‖eA+E − eA‖ ≤ ‖E‖ exp(‖E‖) exp(‖A‖).

Proof. See Horn and Johnson (1991) p430.
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