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Abstract

We present a novel experimental design to study social learning in the
laboratory. Subjects have to predict the value of a good in a sequential
order. We elicit each subject’s belief twice: …rst (“prior belief”), after
he observes his predecessors’ action; second (“posterior belief”), after he
observes a private signal on the value of the good. We are therefore
able to disentangle social learning from learning from a private signal.
Our main result is that subjects update on their private signal in an
asymmetric way. They weigh the private signal as a Bayesian agent would
do when the signal con…rms their prior belief; they overweight the signal
when it contradicts their prior belief. We show that this way of updating,
incompatible with Bayesianism, can be explained by ambiguous beliefs
(multiple priors on the predecessor’s rationality) and a generalization of
the Maximum Likelihood Updating rule.

1 Introduction

The theory of social learning has been extensively tested through laboratory
experiments. After the seminal work of Banerjee (1992) and Bikhchandani et
al. (1992), Anderson and Holt (1997) provided the …rst experimental test of
informational cascades. Since then, many studies have investigated the forma-
tion of cascades, the propensity of human subjects to herd, their use of private
and public information. Weiszsäcker (2010) analyzed a meta dataset containing
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13 social learning experiments. The dataset was then enlarged to 14 studies
by Ziegelmeier et al. (2013). The main message coming from this meta ana-
lysis is that “participants are moderately successful in learning from others [...]”
(Ziegelmeier et al., 2013).

One of the reasons participants are only moderately successful in learning
from others is that, according to an observation common to many studies, they
tend to put more weight on their private information than on the public inform-
ation contained in the choices of other participants. Ziegelmeier et al. (2013)
show that subjects decide to go against their own signal at least 50% of the time
only when the empirical payo¤ from going against their signal (and following
the predecessors’ majority action) is at least 15 times higher than that from
following it (whereas optimally they should do so whenever the payo¤ is just
higher, obviously).

While the studies of Weiszsäcker (2010) and Ziegelmeier et al. (2013) use
a very large dataset to look at the empirical optimal actions, other works use
the power of experimental design or of theoretical models to shed more light
on human subjects’ behavior. Nöth and Weber (2003) use an ingenious design
in which subjects observe signals of di¤erent precision. They conclude that
“participants put too much weight on their private signal compared to the public
information which clearly indicate the existence of overcon…dence.” Goeree et
al. (2007) revisit the original Anderson and Holt (1997) experimental design,
using long sequences of decision makers. They analyze the data through the
lenses of the Quantal Response Equilibrium (QRE). They …nd that QRE well
explains the data when extended so to incorporate base rate neglect: from this
they draw the conclusion “[We] …nd strong evidence of overweighting of the
private information.”

These experiments had the main purpose of studying whether informational
cascades occur and human subjects herd for informational reasons. Subjects
relying more on their private information is an observation that came as a
result of this interest in herding and cascades. In this paper we investigate
how subjects weigh their private and public information in a novel experimental
design. Our purpose is to study how well human subjects’ behavior conforms
to Bayesian updating when they have to make inferences from a private signal
and from the decision of another human subject. Our work is not aimed at
studying cascades and, as it turns out, cascades theoretically cannot occur in
our continuous action space set up. Indeed, as is well known in the social
learning literature, informational cascades rely on the discreteness of the action
space, whereas they do not arise in a continuous action space (Lee, 1993).

In our experiment we ask subjects to predict whether a good is worth 0 or
100 units, two events that are, a priori, equally likely. A …rst subject receives a
noisy symmetric binary signal about the true value realization: either a “good
signal”, which is more likely if the value is 100; or a “bad signal”, which is more
likely if the value is 0. After receiving his signal, the subject is asked to state
his belief on the value being 100.1 To elicit his belief we use a quadratic scoring

1 Speci…cally, subjects are asked to choose a number between 0 and 100. The number is
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rule. We then ask a second subject to make the same type of prediction based
on the observation of the …rst subject’s decision only. Finally, we provide the
second subject with another, conditionally independent, signal about the value
of the good and ask him to make a new prediction.

Whereas in previous experiments, subjects’ beliefs are hidden under a binary
decision, in our experiment we elicit them. The belief of the …rst subject tells
us how he updates from the observation of a private signal. The …rst action of
the subject at time 2 gives us the “prior belief” that he forms upon observing
the predecessor’s action. His second decision gives us the “posterior belief” that
he forms by observing his private signal. Asking subjects to make decisions in
a continuous action space and eliciting a subject’s beliefs both before and after
receiving the private signal are novel features in the experimental social learning
literature.

The main result of our investigation is that there is an asymmetry in the way
of updating. When a subject at time 2 receives a signal in agreement with his
prior belief (e.g., when he …rst states a belief higher than 50% and then receives
a signal indicating that the more likely value is 100), he weighs the signal as a
Bayesian agent would do. When, instead, he receives a signal contradicting his
prior belief, he puts considerably more weight on it.

In previous experiments on social learning, this asymmetry could not be ob-
served. When subjects had a signal in agreement with the previous history of
actions, they typically followed it. This decision is essentially uninformative for
the experimenter on how subjects update their private information. In fact, on
the basis of previous experimental results, one could have thought that over-
weighing private information is a general feature of human subjects’ updating
in this type of experiments. Our work shows that this is not the case, since it
only happens when the private information contradicts the prior belief.

This asymmetric updating, not known in the existing literature, is, of course,
incompatible with standard Bayesianism. The subject’s “prior belief” (i.e., his
belief after observing the predecessor but before receiving the private signal) may
di¤er from the theoretical (Perfect Bayesian Equilibrium) one if the subject at
time 2 conceives the possibility that his predecessor’s action may not perfectly
reveal the private information he received, e.g., because of mistakes or irrational
behavior. Whatever this “prior belief”, however, the subject should simply
update it on the basis of the new information, giving the same weight to the
signal, independently of its realization. To explain the data we use a di¤erent
way of updating, which we label “Likelihood Ratio Test Updating” rule, since
the likelihood ratio statistics plays a key role. This updating rule can be thought
of as a generalization of the Maximum Likelihood Updating, as axiomatized by
Gilboa and Schmeidler (1993). In our context, this means that, contrary to
standard Bayesianism, a subject may be unsure about how well the predecessor’s
action re‡ects the signal, that is, he can have multiple priors on the predecessor
being a “rational” type (who always updates up after observing a good signal
and down after observing a bad signal) or a “noise” type (who picks a belief in a

the probability (expressed as a percentage) that the value is 100.
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random way, independently of the signal he receives). Among this set of priors,
the subject selects the prior that maximizes the likelihood of the event he has
observed. Then, using this prior, he updates in a standard Bayesian fashion.

Intuitively, this explains the asymmetry we observe for the following reason.
Imagine a subject observing the predecessor taking an action greater than 50
(i.e., an action that presumably comes from a good signal, indicating the value
is 100). Suppose he considers that the event is most likely under the prior that
the predecessor is rational and, therefore, chooses his own action (his “prior be-
lief”) accordingly. After he observes a private signal con…rming his prior belief
(that the value is more likely to be 100), the subject remains con…dent that the
predecessor was rational, that is, sticks to the same prior on the predecessor’s ra-
tionality. He updates on that prior belief and so the weight he puts on the signal
seems identical to that of a Bayesian agent. Consider now the case in which he
receives a signal contradicting his prior belief (i.e., a bad signal, indicating that
the more likely value is 0). In such a case he now deems it an unlikely event that
the predecessor was rational. In other words, he selects another prior belief on
the predecessor’s rationality, giving a much higher probability to his predecessor
being noise. Once he has selected this new prior on the predecessor’s rationality,
he updates on the basis of the signal realization. This time it will look like he
puts much more weight on the signal, since the signal …rst has made him change
the prior on the rationality of the predecessor (becoming more pessimistic) and
then update on the basis of that prior.

While motivated by an interest in social learning, our experiment shows that
multiple priors can be an appealing explanation of human subjects’ behavior in
a classical model of learning. It directly speaks to the debate in decision theory
on how to update multiple priors. There are two main models of updating that
have been proposed and axiomatized (see Gilboa and Marinacci, 2013 for a sur-
vey). One is the already mentioned Maximum Likelihood Updating (MLU) rule.
The other is the Full Bayesian Updating (FBU) model, in which agents have
multiple priors and update prior by prior. Typically, after updating all priors,
an agent makes his decision by using Maxmin Expected Utility (see Pires, 2002
for an axiomatization). In our structural econometric analysis, we compare the
Bayesian Updating (BU) model to the Likelihood Ratio Test Updating (LRTU)
model (a generalization of MLU) and to the FBU model. Our econometric
analysis shows that the LRTU model is the one that …ts our data best. From
a decision theory viewpoint, it is important to remark that our LRTU model
di¤ers from the MLU model axiomatized by Gilboa and Schmeidler (1993) in
a crucial aspect. Whereas in Gilboa and Schmeidler (1993) it is assumed that,
once the prior is selected, the agent sticks to it (as if ambiguity were totally
eliminated after the agent receives a …rst piece of information), in our model we
let the agent change the prior after receiving extra information (as a statistician
would do, using new data to select the most likely prior — in the statistics
literature this dates back, among others, to Good, 1965). The possibility that
the set of priors does not collapse to a single prior is contemplated in Epstein
and Schneider (2007)’s model of dynamic updating. We believe the results of
our experiment should inform future work on the updating of multiple priors
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and belief dynamics. We also …nd it interesting that our work shows an ex-
perimental application of the ambiguous beliefs literature beyond the classical
Ellsberg experiment.2

The paper is organized as follows. Section 2 describes the theoretical model
of social learning and its (Perfect Bayesian) equilibrium predictions. Section 3
presents the experiment. Section 4 contains the results. Section 5 illustrates
how multiple priors can, theoretically, lead to asymmetric updating. Section 6
illustrates the econometric analysis. Section 7 o¤ers further discussion of our
…ndings. Section 8 concludes. An Appendix contains additional material.

2 The Theoretical Model

The focus of this paper is on the decisions of subjects after observing a prede-
cessor’s choice and after receiving some private information. Our experiment
was designed to tackle this and other research issues; for this reason it was con-
ducted with multiple, rather than with just two periods of decision making. We
now describe the theoretical social learning model on which the experiment was
based and then we illustrate the experimental procedures.

In our economy there are  agents who make a decision in sequence. Time
is discrete and indexed by  = 1 2   . The sequential order in which agents
act is exogenously, randomly determined. Each agent, indexed by , is chosen
to take an action only at time  (in other words agents are numbered according
to their position).3

There is a good that can take two values,  2 f0 100g. The two values
are equally likely. Agent  takes an action  in the action space [0 100]. The
agent’s payo¤, depends on his choice and on the value of the good. The payo¤ is
quadratic and, in particular, equal to ¡( ¡)

2. Each agent  receives a private
signal  2 f0 1g correlated with the true value  . Speci…cally, he receives a

2 We cannot compare our results to other work, since the experimental literature on up-
dating in a context of ambiguity is still to be developed. To our knowledge, there are only
two related experiments, (Cohen et al., 2000 and Dominiak et al., 2012), but they are very
di¤erent from ours and a comparison is di¢cult. Both studies consider Ellsberg’s original urn
experiment in which the proportion of yellow balls is known but only the aggregate propor-
tion of blue and green balls is known. Cohen et al. (2000) ask subjects to choose between
acts (specifying rewards as a function of the drawn ball color) conditional on learning that
the drawn ball is not green. Dominiak et al. (2012) conduct a similar experiment, although
their focus is on whether subjects violate dynamic consistency and/or consequentialism (con-
sequentialism is assumed in Cohen et al., 2000). Both experiments …nd that the proportion of
subjects whose behavior is compatible with FBU is higher than that compatible with to MLU.
Our …ndings derived in social learning environments do not support FBU. In our experiment,
two pieces of information (predecessor’s action, then private signal) arrive over time, and this
is a crucial ingredient of our design which has no counterpart in these other two experiments
(in which the …rst choice does not require any inference). Since the action space is rich in our
experiment, we can observe beliefs, which is impossible in the other experiments.

3 As we said, in the experiment each subject  makes two choices. This is not really a
departure from the model, since considering two actions in the model would not alter any
conclusion, as will become clear.
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symmetric binary signal distributed as follows:

Pr( = 1 j  = 100) = Pr( = 0 j  = 0) = .

This means that, conditional on the value of the good, the signals are independ-
ently distributed over time, with precision  2 (05 1]. Since the signal  = 1
increases the probability that the value is 100, we will also refer to it as the
good signal, and to  = 0 as the bad signal.

In addition to observing a private signal, each agent observes the sequence
of actions taken by the predecessors. We denote the history of actions until time
 ¡ 1 by , that is,  = f1 2  ¡1g (and 1 = ?). We denote the set of
such histories by . Agent ’s information is then represented by the couple
( ).

Given the information ( ), in a Perfect Bayesian Equilibrium (PBE) the
agent chooses  to maximize his expected payo¤ [¡( ¡ )

2j ]. There-
fore, his optimal action is ¤

 =  ( j ). Given that the action space is
continuous, each action perfectly reveals the signal realization and its precision.
Therefore, observing the actions is identical to observing the sequence of signals
and the process of learning is perfectly e¢cient. This observation leads to the
following proposition:

Proposition 1 (Lee, 1993) In the PBE, after a sequence of signals f1 2  g,

agent  chooses action ¤
 =  (1 2  ) such that

¤


100¡¤


=
 (12)

100¡ (12)
=

¦
=1

³


1¡

´2¡1

. That is, the agent at time  acts as if he observed the sequence

of all signals until time .

3 The Experiment and the Experimental Design

3.1 The Experiment

As we said, this work is part of a larger experimental project, designed to
answer several research questions. The experiment was conducted with multiple,
rather than with just two periods of decision making. We describe the entire
experiment subjects participated in, even though we will then only focus on
their decisions in the …rst two periods.

We ran the experiment in the ELSE Experimental Laboratory at the De-
partment of Economics at University College London (UCL) in the fall 2009,
winter 2010, fall 2011 and spring 2014. The subject pool mainly consisted of
undergraduate students in all disciplines at UCL. They had no previous exper-
ience with this experiment. In total, we recruited 267 students. Each subject
participated in one session only.

The sessions started with written instructions given to all subjects. We
explained to participants that they were all receiving the same instructions.
Subjects could ask clarifying questions, which we answered privately. The ex-
periment was programmed and conducted with a built-on-purpose software.
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Here we describe the baseline treatment (SL1). In the next section, we will
explain the experimental design. We ran …ve sessions for this treatment. In
each session we used 10 participants. The procedures were the following:

1. Each session consisted of …fteen rounds. At the beginning of each round,
the computer program randomly chose the value of a good. The value was
equal to 0 or 100 with the same probability, independently of previous
realizations.

2. In each round we asked all subjects to make decisions in sequence, one
after the other. For each round, the sequence was randomly chosen by the
computer software. Each subject had an equal probability of being chosen
in any position in the sequence.

3. Participants were not told the value of the good. They knew, however, that
they would receive information about the value, in the form of a symmetric
binary signal. If the value was equal to 100, a participant would receive
a “green ball” with probability 07 and a “red ball” with probability 03;
if the value was equal to 0, the probabilities were inverted. That is, the
green signal corresponded to  = 1 and the red signal to  = 0, the signal
precision  was equal to 07 at any time.

4. As we said, each round consisted of 10 periods. In the …rst period a subject
was randomly chosen to make a decision. He received a signal and chose
a number between 0 and 100, up to two decimal points.

5. The other subjects observed the decision made by the …rst subject on their
screens. The identity of the subject was not revealed.

6. In the second period, a second subject was randomly selected. He was
asked to choose a number between 0 and 100, having observed the …rst
subject’s choice only.

7. After he had made that choice, he received a signal and had to make
a second decision. This time, therefore, the decision was based on the
observation of the predecessor’s action and of the private signal.

8. In the third period, a third subject was randomly selected and asked to
make two decisions, similarly to the second subject: a …rst decision after
observing the choice of the …rst subject and the second choice of the second
subject; a second decision after observing the private signal too. The same
procedure was repeated for all the remaining periods, until all subjects
had acted. Hence, each subject, from the second to the tenth, made two
decisions: one after observing the history of all (second) decisions made
by the predecessors; the other after observing the private signal too.4

4 As we explained above, the experiment was designed to address many research questions.
Here we describe the entire experiment subjects participated in, although we focus our analysis
on periods 1 and 2 only.
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9. At the end of the round, after all 10 subjects had made their decisions,
subjects observed a feedback screen, in which they observed the value of
the good and their own payo¤ for that round. The payo¤s were computed
as 100 ¡ 001( ¡ )

2 of a …ctitious experimental currency called “lira.”
After participants had observed their payo¤s and clicked on an OK button,
the software moved to the next round.

Note that essentially we asked subjects to state their beliefs. To elicit the be-
liefs, we used a quadratic scoring function, a quite standard elicitation method.
In the instructions, we followed Nyarko and Schotter (2002) and explained to
subjects that to maximize the amount of money they could expect to gain, it
was in their interest to state their true belief.5

As should be clear from this description, compared to the existing experi-
mental literature on social learning / informational cascades / herd behavior,
we made two important procedural changes. First, in previous experiments sub-
jects were asked to make a decision in a discrete (typically binary) action space,
whereas we ask subjects to choose actions in a very rich space which practic-
ally replicates the continuum. This allows us to elicit their beliefs, rather than
just observing whether they prefer one action to another.6 Second, in previous
experiments subjects made one decision after observing both the predecessors
and the signal. In our experiment, instead, they made two decisions, one based
on public information only and one based on the private information as well.7

To compute the …nal payment, we randomly chose (with equal chance) one
round among the …rst …ve, one among rounds 6 ¡ 10 and one among the last
…ve rounds. For each of these round we then chose either decision 1 or decision
2 with equal chance (with the exception of subject 1, who was paid according to
the only decision he made in the round). We summed up the payo¤s obtained in
these decisions and, then, converted the sum into pounds at the exchange rate
of 100 liras for 7 GBP. Moreover, we paid a participation fee of $5. Subjects
were paid in cash, in private, at the end of the experiment. On average, in this
treatment subjects earned $21 for a 2 hour experiment.

5 This explanation helps the subjects, since they do not have to solve the maximization
problem by themselves (and to which extent they are able to do so is not the aim of this
paper). For a discussion of methodological issues related to elicitation methods, see the recent
survey by Schotter and Trevino (2014).

6 Within the discrete action space experiments, exceptions to the binary action space are
the …nancial market experiments of Cipriani and Guarino (2005, 2009) and Drehman et al.
(2005) where subjects can choose to buy, to sell or not to trade. In the interesting experimental
design of Celen and Kariv (2004), subjects choose a cut o¤ value in a continuous signal space:
depending on the realization of the signal, one of the two actions is implemented (as in
a Becker, DeGroot and Marschak, 1964, mechanism). That design allows the authors to
distinguish herd behavior from informational cascades.

7 Cipriani and Guarino (2009) use a quasi strategy method, asking subject to make decisions
conditional on either signal they might receive. Still, at each time, a subject never makes a
decision based only on the predecessors’ decisions.
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3.2 Experimental Design

Social Learning. In addition to the social learning treatment (SL1) just de-
scribed, we ran a second treatment (SL2) which only di¤ered from the …rst
because the signal had a precision which was randomly drawn in the interval
[07 071] (instead of having a precision always exactly equal to 07). Of course,
each subject observed not only the ball color but also the exact precision of his
own signal. A third treatment (SL3) was identical to SL2, with the exception
that instead of having sequences of 10 subjects, we had sequences of 4 subjects.
Given the smaller number of subjects, each round lasted less time, obviously; for
this reason, we decided to run 30 rounds per session, rather than 15. The results
we obtained for times 1 and 2 for these three treatments are not statistically
di¤erent (see the next section). For the purposes of this paper, we consider the
three treatments as just one experimental condition. We will refer to it as the
SL treatment. Drawing the precision from the tiny interval [07 071], instead
of having the simpler set up with …xed precision equal to 07, was only due to a
research question motivated by the theory of Guarino and Jehiel (2013), where
the precision is indeed supposed to di¤er agent by agent; this research question,
however, is not the object of this paper. Reducing the length of the sequence
to 4 subjects was instead motivated by the opportuneness to collect more data
for the …rst periods of the sequence.

Individual Decision Making. In the social learning treatments subjects
make decisions after observing private signals and the actions of others. Clearly,
we may expect departures from the PBE even independently of the social learn-
ing aspect if subjects do not update in a Bayesian fashion. To control for this,
we ran a treatment in which subjects observed a sequence of signals and made
more than one decision.8 Speci…cally, a subject received a signal (as subject 1
in the SL treatments) and had to make a choice in the interval [0 100]. Then,
with a 50% probability, he received another signal and had to make a second
decision (similarly to the second decision of subject 2 in the SL treatments).
Note that, at the cost of collecting less data, we decided not to ask subjects to
make a second decision in all rounds. Our purpose was to make the task of the
subject as close possible as possible to that of a subject in the SL treatments.
In other words, we wanted the subject to make his …rst decision not knowing
whether he would be asked to make a second one; this way, his …rst decision was
in a condition very similar to that of subject 1 in the other treatments; once
the subject was given another signal and was asked to make another decision,
he was in a situation comparable to that of subject 2 in the SL treatments.

8 This treatment was programmed and conducted with the software z-Tree (Fischbacher,
2007) in the fall 2014. The payment followed the same rules. The exchange rate was appropri-
ately modi…ed before each treatment so that, in expectation, subjects could receive a similar
amount of money per hour spent in the laboratory.
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Treatments
Signal
Precision

Sequence
Subjects
in a group

Groups
Partici-
pants

Rounds

SL1 0.7 10 10 5 50 15

SL2 [0.7,0.71] 10 10 5 49 15

SL3 [0.7,0.71] 4 4 5 20 30

IDM 0.7 1 or 2 - - 36 30

Table 1: Treatments’ features. SL: Social Learning; IDM: Individual Decision
Making. Note that in SL2 there are 49 subjects since onse session was run with
9 participants rather than 10 due to a last minute unavailability of one subject.

4 Results

Our main interest is in understanding how human subjects weigh private and
public information. To this aim, we will focus on subjects’ second decisions at
time 2, that is, after they have observed both their predecessor’s action and their
private signal. Before doing so, however, we will brie‡y discuss the decisions of
subjects at time 1 (when they have only observed a private signal) and the …rst
decisions of subjects at time 2, based on the observation of their predecessor’s
choice only.

4.1 How do subjects make inference from their own signal
only?

At time 1, a subject makes his decision on the basis of his signal only. His
task—to infer the value of the good from a signal drawn from an urn—is the
same in the SL and in the IDM treatments; for this reason we pool all data
together (for a total of 1380 observations).9

Figure 1 shows the frequency of decisions at time 1, separately for the cases
in which the signal the subject received was good or bad. The top panel refers
to the case of a good signal. A high percentage of decisions (345%) are in
line with Bayesian updating, deviating from it by less than 5 units; 195% of
actions are smaller than the Bayesian one and 433% of actions are larger. Note,
in particular, that in 94% of the cases subjects did not update their belief at
all after seeing the signal, choosing an action exactly equal to 50. On the
other hand, in 13% of the cases, subjects went to the boundary of the support,
choosing the action 100. Finally, there is a small proportion (28%) of actions
in the wrong direction (i.e., updating down rather than up).

The bottom panel refers to the bad signal. The picture looks almost like the
mirror image of the previous one, with the mode around 30, masses of 128% in

9 We ran a Mann-Witney U test (Wilcoxon rank-sum test) on the medians of each session
(the most conservative option to guarantee independence of observations) for the SL treatment
and on the medians of each individual’s decisions in the IDM treatment; we cannot reject the
null hypothesis that they come from the same distribution (p-value = 047). Note that we
also ran the same test to compare the three SL treatments and we cannot reject the same
hypothesis (at the 5% signi…cance level) when we compare SL1 with SL2 (p-value = 05), SL1
with SL3 (p-value = 008), or SL2 with SL3 (p-value = 022).
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Figure 1: Distribution of actions at time 1. The top (bottom) panel refers to
actions upon receiving 1 = 1 (1 = 0).

50 and of 124% in 0, and other actions distributed similarly to what explained
above.

One interpretation of these results is that subjects put di¤erent weights
on the signal they receive (which is equivalent to subjects attaching to signals
di¤erent, subjective precisions). A simple model that allows to quantify this
phenomenon is the following:

1 = 100

µ

1
1

1 + (1 ¡ )1
+ (1 ¡ 1)

(1 ¡ )1

1 + (1 ¡ )1

¶

, (1)

where 1 2 R is the weight put on the signal in observation  and the pre-
cision of the signal  is considered to be always 07.10 Note that for 1 = 1
expression (1) gives the Bayesian updating formula, and so 1 = 1 is the weight
that a Bayesian agent would put on the signal. A value higher (lower) than 1
indicates that the subject overweights (underweights) the signal. For instance,
for 1 = 2, the expression is equivalent to Bayesian updating after receiving

10 Recall that a subject made many choices in the same experiment, since he participated in
several rounds; the index  refers to the observation  at time 1, and not to the subject acting at
that time. Of course the same subject could have chosen di¤erent weights in di¤erent decisions.
Moreover, recall that in some sessions the exact precision of the signal was randomly drawn
from [07 071] rather than being identical to 07. By using the exact precision we obtain, of
course, almost identical results, with di¤erences at most at the decimal point. We prefer to
present the results for  = 07 for consistency with our analysis at time 2.
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two conditionally independent signals and can, therefore, be interpreted as the
action of a Bayesian agent acting upon receiving two signals (with the same
realization). A subject that does not put any weight on the signal (1 = 0)
of course does not update at all upon observing it (1 = 50), whereas a sub-
ject who puts an in…nite weight on it chooses an extreme action (1 = 0 or
1 = 100), as if he were convinced that the signal fully reveals the value of the
good. Finally, a negative value of 1 indicates that the subject misreads the
signal, e.g., interpreting a good signal as a bad one.

Table 2 reports the quartiles of the distribution of the computed 1.
11 Note

that the median 1 is 1, indicating that the median subject is actually Bayesian.

1st Quartile Median 3rd Quartile

1 073 100 205

Table 2: Distribution of weights on private signal for actions at time 1.
The table shows the quartiles of the distribution of weights on private signal for actions at

time 1.

In this analysis, we have allowed for heterogeneous weights on the signal
and assumed that subjects did state their beliefs correctly. Of course, another
approach would be to take into account that subjects could have made mistakes
while reporting their beliefs, as in the following model:

1 = 100

µ

1
1

1 + (1 ¡ )
1

+ (1 ¡ 1)
(1 ¡ )1

1 + (1 ¡ )
1

¶

+ 1, (2)

where the weight on the signal is the same for all subjects but each subject
makes a random mistake 1. It is easy to show that, as long as the error term
has zero median, the estimated median 1 in this model coincides with the
median 1 computed above.

Of course, other interpretations are possible. One may, for instance, argue
that the fact that a subject chooses 70, while compatible with Bayesian up-
dating, is not necessarily indication that he is a proper Bayesian: he may be
choosing 70 simply because that is the precision of his signal. The fact that the
median subject is Bayesian for a bad signal too, however, lends some credibility
to the fact that the subjects are doing more than just inputting their signal
precision. Action 50 may also be the result of di¤erent heuristics. A subject
may feel that one signal alone is not enough for him to make any update; or
perhaps he is happy to choose the least risky action. The extreme actions, on
the other hand, may be the expression of a “guessing type” who, despite the
incentives given in the laboratory, simply tries to guess the most likely outcome.
It should be noticed, though, that of all subjects who acted at time 1 more than
once, only one chose an extreme action (0 or 100) every time; similarly, only
57% of them chose the action 50 every time.12

11 When 1 = 0 or 100, we compute 1 by approximating 1 = 0 with  and 1 = 100
with 100¡  (with  = 001). We prefer to report the quantiles rather than the mean or other
statistics whose computations are a¤ected by the approximation of 1.

12 We will comment more on risk preferences in Section 43.
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As we said in the Introduction, in previous social learning experiments, de-
viations from equilibrium have been interpreted sometimes as subjects being
overcon…dent in their own signal. Our analysis shows that there is much hetero-
geneity in the way subjects update their beliefs after receiving a signal. Despite
these subjective beliefs, there is no systematic bias to overweight or underweight
the signal. As a matter of fact, the median belief is perfectly in line with Bayesian
updating.

4.2 How do subjects make inference from their prede-
cessor’s action?

We now turn to the question of whether and how subjects infer the value of
the good from the predecessor’s action. We focus on the …rst decision at time
2 (denoted by 1

2) since it is based on the observation of that action only. Of
course, here we only consider the data from the SL treatment.

A subject at time 2 has to infer which signal his predecessor received on the
basis of the action he took. We know from the previous analysis that only rarely
(in 35% of the cases), subjects at time 1 updated in the “wrong direction” (i.e.,
chose an action greater (lower) than 50 after observing a bad (good) signal).
Therefore, subjects at time 2 could have simply considered an action strictly
greater (or lower) than 50 as a good (or bad) signal.

We have pooled together all cases in which the observed choice at time 1
was greater than 50 and, similarly, all cases in which it was lower than 50 (see
Figure 2). Compared to Figure 1, Figure 2 shows a higher mass for 1

2 = 50 and
a lower one around 70 or 30 (for the case of 1  50 and 1  50, respectively).
When the subject at time 1 had chosen 1 = 50, perhaps not surprisingly, the
distribution has a large mass at 50.

Figure 3 shows the di¤erence between the actions 1
2 and the corresponding

action 1 that a subject has observed (excluding the cases in which 1 = 50).
If subjects simply imitated the predecessor’s decision, all the mass would be
concentrated around zero. While there are approximately 30% of cases in which
this happens, we observe that the distribution has in fact a larger mass below
0, indicating that subjects had the tendency to choose lower values than the
predecessors’.13

We replicated the model discussed in the previous section, by replacing the
case in which the subject observed a good signal with the case in which the
subject observed 1  50, and so chose 1

2 such that

1
2 = 100


1
2


1
2 + (1 ¡ )

1
2

; (3)

analogously, for the case in which he observed 1  50, he chose 1
2 such that

13 In 30% of the observed cases, imitation coincides with the Bayesian action. There is no
speci…c pattern in the remaining cases.
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Figure 2: Distribution of …rst actions at time 2 (the top panel refers to 1  50,
the middle to 1 = 50 and the bottom to 1  50).
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1
2 = 100

(1 ¡ )
1
2


1
2 + (1 ¡ )

1
2

. (4)

Essentially, in this model we are assuming that a subject considers actions higher
(or lower) than 50 as good (bad) signals with the same precision  = 07. By
applying this model, we obtain the results reported in Table 3. The median
weight is (slightly) lower than 1 and the …rst and third quartiles are 013 and
14 (versus 081 and 205 at time 1) re‡ecting the fact that subjects in these
treatments seem to “discount” to some extent the information contained in the
predecessor’s action.14 15

It should be noticed that we could expect to observe the same distribution
at time 1 and at time 2 under two di¤erent models. One model is that subjects
at time 2 perfectly infer the signal from the observed action at time 1 and weigh
the signal in the same heterogenous ways at time 1 and time 2. The other is
that subjects simply imitate the predecessors’ actions. Clearly both models are
rejected by our data. To explain the data we need a model in which a subject
acting at time 2 has subjective beliefs on how trustworthy the predecessor is
(i.e., on how frequently the predecessor decision to update up or down from 50
re‡ects a good or bad signal).

To investigate this issue further, we computed the weights separately for
di¤erent classes of 1, as illustrated in Table 3.

1st Quartile Median 3rd Quartile

12 013 094 14

12 (upon observing 50  1 · 667) 0 048 09

12 (upon observing 667  1 · 834) 0 089 133

12 (upon observing 1  834) 09 131 28

Table 3: Distribution of weights for …rst actions at time 2.
The table shows the quartiles of the distribution of weights for …rst actions at time 2. The

action at time 1 is considered as a signal (of precision 0.7) for the subject at time 2.

As one can see, subjects have the tendency to “discount” the actions close
to 50 (50  1 · 667) and, although less, those in a neighborhood of the
Bayesian one (667  1 · 834). They do not discount, instead, more extreme
actions. This behavior is in line with a model of subjective beliefs in which
subjects expect error rates to be inversely proportional to the cost of the error,

14 We considered the medians of each session for the SL treatment and of each individual’s
decisions in the IDM treatment for 1; and the medians of each session for the SL treatment
for 12; we reject the null hypothesis that they come from the same distribution (p-value =
0014). We repeated the same test considering only the IDM treatment for 1; again, we reject
the null hypothesis (p-value = 0015).

15 Discounting the predecessor’s action is found, in a stronger way, in the experiment by
Çelen and Kariv (2004). They ask subjects at time 2 to report a threshold value that depends
on what they learn from the …rst subject’s choice. Çelen and Kariv (2004, p.493) …nd that
“subjects tend to undervalue sharply the …rst subjects’ decisions.”
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since the expected cost of an action against the signal is of course increasing
in the distance from 50. A well known model in which errors are inversely
related to their costs is the Quantal Response Equilibrium (which also assumes
expectations are rational). Our results are, however, not compatible with such
a theory in that expectations about time 1 error rates are not correct. Indeed,
the error rate at time 1 is very small. With subjects at time 1 choosing an
action against their signal in 35% of the cases only, a Bayesian agent would
have a belief on the value of the good being 100 equal to Pr( = 100j1 

50) = (07)(0965)+(03)(0035)
(07)(0965)+(03)(0035)+(07)(0035)+(03)(0965) = 69, which barely changes

from the case of no mistakes. Essentially, to explain our data, we need a model
of incorrect subjective beliefs. In one such model, a subject at time 1 can be
either rational (always updating in the correct direction) or noise (choosing any
number independently of the signal). If a noise type chooses more frequently
actions close to 50 (e.g., because he chooses actions as in a Normal distribution
centered around 50) and a rational type chooses more frequently more extreme
actions, letting a subject at time 2 having (incorrect) subjective beliefs on the
proportion of these two types can lead to the observed results. We will illustrate
this model in Section 6.

4.3 How do subjects weigh their signal relative to their
predecessor’s action?

As we said in the Introduction, in the experimental social learning literature
there is a long debate about how subjects weigh their own signal with respect
to the public information contained in the predecessors’ actions. Several studies
(e.g., Nöth and Weber, 2003) conclude that subjects are “overcon…dent” in that
they put more weight on their signal than they should (according to Bayes’s
rule). Our previous analysis shows that subjects do not have a systematic bias
in overweighting their signal when it is the only source of information. We now
study how they weigh it at time 2, after having observed their predecessor’s
action. Time 2 o¤ers the possibility of studying this issue in a very neat way. In
the subsequent periods, the analysis becomes inevitably more confounded, since
subjects may take the sequence of previous actions into account in a variety of
ways (since their higher order beliefs on the predecessors’ type matter too). At
time 2, instead, the only source of information for the subject is the predecessor’s
action and the own signal.

As we already mentioned in the Introduction, we will refer to the …rst action
that subjects take at time 2 as their “prior belief” and to the second as their
“posterior belief.” Figure 4 shows the frequency of posterior beliefs conditional
on whether the subject received a signal con…rming his prior belief (i.e., 2 = 1
after an action 1

2  50 or 2 = 0 after an action 1
2  50) or contradicting it

(i.e., 2 = 1 after an action 1
2  50 or 2 = 0 after an action 1

2  50).16 The

16 In this analysis we exclude the cases in which the action at time 1 was uninformative
(1 = 50). We do study the case in which a subject at time 2 observed an informative action
at time 1 and chose 12 = 50; in this case we distinguish whether the action observed at time 1
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Figure 4: Distribution of 2
2 given 1

2  50 and a con…rming (top panel) or
contradicting (bottom panel) 2.

…gure is obtained after transforming an action 1
2  50 into 100 ¡ 1

2 and the
corresponding signal 1 into 1 ¡ 1.

If subjects acted as in the PBE, in the case of con…rming signal we would
observe the entire distribution concentrated on 84. The empirical distribution
shows much more heterogeneity, of course. Nevertheless, the median action as
well as the mode are indeed close to the PBE. For the contradicting signal, the
picture is rather di¤erent. Whereas in the PBE we would observe the entire
distribution concentrated on 50, the empirical distribution looks very asymmet-
ric around 50, with more than 70% of the mass below 50. To understand these
results, we compute the weight that the subject puts on his signal by using our
usual model of updating:

2
2 = 100


2
2
1
2

100


2
2
1
2

100 + (1 ¡ )
2

2

³
1 ¡

1
2

100

´ , (5)

when he observed 2 = 1 and, analogously,

2
2 = 100

(1 ¡ )
2

2 1
2

100

(1 ¡ )
2

2
1
2

100 + 
2
2

³
1 ¡

1
2

100

´ , (6)

con…rmed or contradicted the realization of the signal 2. Note that an alternative de…nition
of con…rming and contradicting signal would be in reference to 1 rather than to 12 This
would not a¤ect our results, since the di¤erence is in one observation only (in which 12  50
and 1  50).

17



when he observed 2 = 0.
Table 4 reports the results.17 While in the case of a con…rming signal the

median subject puts only a slightly lower weight on the signal than a Bayesian
agent would do, in the case of a contradicting signal, the weight is considerably
higher, 170.18 The di¤erent weight is observed also for the …rst and third
quartiles. Essentially, subjects update in an asymmetric way, depending on
whether the signal con…rms or not their prior beliefs: contradicting signals are
overweighted with respect to Bayesian updating.19

1st Quartile Median 3rd Quartile

22 068 116 204

22 (upon observing con…rming signal) 054 096 135

22 (upon observing contradicting signal) 100 170 273

Table 4: Distribution of weights on the own signal in the SL treatment.
The table shows the quartiles of the distribution of the weight on the own signal for the

second action at time 2 in the SL treatment. The data refer to all cases in which the …rst

action at time 2 was di¤erent from 50.

1st Quartile Median 3rd Quartile

22 064 108 207

22 (upon observing con…rming signal) 064 130 248

22 (upon observing contradicting signal) 093 100 176

Table 5: Distribution of weights on the own signal in the IDM treatment.
The table shows the quartiles of the distribution of the weight on the own signal for the

action at time 2 in the IDM treatment. The data refer to all cases in which the action at

time 1 was di¤erent from 50.

Of course, one may wonder whether this result is due to the social learning
aspect of our experiment or, instead, is just the way human subjects update upon
receiving two consecutive signals. To tackle this issue, we consider subjects’
behavior in the IDM treatment, as reported in Table 5. As one can see, the
asymmetry and the overweight of the contradicting signal disappear in this case:
the median weight is equal to 1 for the contradicting signal and a bit higher for
the con…rming signal (it should be observed, though, that the order for the
…rst quartile is reversed). We can conclude that the asymmetric updating we

17 The value of 22 is undetermined when 12 = 100, therefore we exclude these cases. When
22 = 100 we use the same approximation as previously discussed.

18 We ran a Mann-Witney U test (Wilcoxon rank-sum test) on the median weight for the
con…rming and contradicting signal; we can reject the null hypothesis that their distribution
is the same (p-value =0000003).

19 As we said, our results do not change if we de…ne the signal as contradicting or con…rming
with respect to the action 1 rather than with respect to the prior belief 12, since the di¤erence
is for one observation only.
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observe in the SL treatment does not just come from the way subjects update
on a signal after having observed a …rst piece of information.

1st Quartile Median 3rd Quartile

22 000 102 238

22 (upon observing con…rming signal) 025 106 241

22 (upon observing contradicting signal) 000 098 206

Table 6: Distribution of weights on the own signal in the SL treatment.
The table shows the quartiles of the distribution of the weight on the own signal for the

second action at time 2 in the SL treatment. The data refer to all cases in which the …rst

action at time 2 was equal to 50.

1st Quartile Median 3rd Quartile

22 000 000 122

22 (upon observing con…rming signal) 000 100 184

22 (upon observing contradicting signal) 000 000 000

Table 7: Distribution of weights on the own signal in the IDM treatment.
The table shows the quartiles of the distribution of the weight on the own signal for the

action at time 2 in the IDM treatment. The data refer to all cases in which the action at

time 1 was equal to 50.

It is also interesting to see the di¤erence in behavior when subjects have …rst
stated a prior belief of 50 (after observing an informative action or signal). In
the SL experiment (Table 6), the median subject puts approximately the same
weight on the signal, independently of whether it is con…rming or contradicting.
In the IDM treatment (Table 7), instead, he updates as a Bayesian agent would
do (after receiving just one signal) if the signal is con…rming and puts no weight
at all on it if it is contradicting. The latter result has a simple interpretation.
A subject choosing 1 = 50 in the IDM treatment is not con…dent in one piece
of information (e.g., ball color) only, he needs two to update. When the second
ball color is in disagreement with the …rst, the subject states again a belief of 50,
which is quite natural, since he has received contradictory information; when
instead, the second ball has the same color, he updates as if it were the …rst
signal he has received.

To understand the behavior in the SL treatment, we now look at how the
weight on the signal changes with the prior belief. Table 8 reports the quartiles
for 2

2 for three di¤erent classes of 1
2. As one can immediately observe, the

asymmetry occurs for the last two classes, but not for the …rst.20

As we know from the previous analysis, the median subject chose an action
1
2  67 mainly when he observed an action at time 1 greater than the the-

oretical Bayesian decision. These are cases in which the subject “trusted” the

20 The 3rd quartile of 487 when 12  83 and the signal is con…rming is of course in‡uenced
by subjects choosing 100 after having already chosen a number greater than 83.
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1st Quartile Median 3rd Quartile

22 (upon observing con…rming signal)

Conditional on 50 · 12 · 667 057 104 135

Conditional on 667  12 · 834 018 091 157

Conditional on 12  83 043 210 487

22 (upon observing contradicting signal)

Conditional on 50 · 12 · 667 007 098 197

Conditional on 667  12 · 834 102 168 211

Conditional on 12  834 253 334 426

Table 8: Distribution of weights for second actions at time 2 in the SL treatment.
The table shows the quartiles of the distribution of weights for second actions at time 2,

conditional on di¤erent values of the prior belief.

predecessor. These are also the cases in which subjects update in an asymmetric
way. Table 9 reports the same analysis, but based on classes of predecessor’s
action, 1. Again, there is no asymmetry for the class 50 · 1 · 067, whereas
there is for the extreme class. The middle class o¤ers a less clear interpretation.

1st Quartile Median 3rd Quartile

22 (upon observing con…rming signal)

Conditional on 50  1 · 667 070 097 128

Conditional on 667  1 · 834 043 106 137

Conditional on 1  834 050 101 236

22 (upon observing contradicting signal)

Conditional on 50  1 · 67 096 106 272

Conditional on 667  1 · 834 049 120 211

Conditional on 1  834 118 200 388

Table 9: Distribution of weights for second actions at time 2 in the SL treatment.
The table shows the quartiles of the distribution of weights for second actions at time 2,

conditional on di¤erent values of the action at time 1.

In the next section we will o¤er an explanation for this phenomenon. We will
show that introducing subjective beliefs (i.e., allowing for the possibility that a
subject has incorrect beliefs) on the predecessor’s rationality is not enough. We
will need an extra ingredient.

Before we do so, let us make some observations.
First, our result cannot be explained in terms of risk preferences. As a matter

of fact, risk aversion would push subjects receiving two contradicting pieces of
information towards choosing 50, which makes our result even more striking.
Moreover, the IDM treatment serves to control for risk preferences too, and we
do see a striking di¤erence of behavior between SL and IDM. Finally, a model
in which subjects choose actions according to their risk preferences would not
be able to predict asymmetric updating, unless risk preferences were correlated

20



with the signal subjects receive, which is of course implausible.21

Second, if one thinks that the only inference subjects had to make from
the predecessor’s action was the predecessor’s signal realization (and not the
precision, since it was known), it is even more surprising that subjects simply did
not choose 50 after a contradicting signal, since the fact that a good and a bad
piece of information “cancel out” does not require sophisticated understanding
of Bayes’s rule.22

Third, our result cannot be explained by and does not fall into categories
of psychological biases sometimes invoked in decision making under uncertainty
such as the base rate neglect or the con…rmatory bias. Base rate neglect in
our experiment would mean neglecting the prior belief once the new piece of
information (the private signal) is received. With such a bias, we should expect
that the median choice of subjects …rst observing an action 1  50 and then a
signal 2 = 1 should be equal to that at time 1 after observing a signal 1 = 1,
which is not the case (this would be equivalent to 2

2 lower than or equal to 0,
whereas it is slightly greater than 1). Moreover, such a bias should appear in
the IDM treatment too, since it is not related to how the base rate is formed
in the …rst place. As for the con…rmatory bias, if subjects had the tendency
to discard new information in disagreement with their original view, and only
accept information con…rming their original opinion, they should ignore (i.e.,
not update upon receiving) a contradicting signal, in sharp contrast with our
results. Note that had we inverted the order in which information is presented
(i.e., …rst the private signal and then the predecessor’s action) we would have
not been able to rule out this possibility.

5 Explaining asymmetric updating

5.1 No asymmetry in Bayesian Updating

The asymmetric updating we observe in the laboratory is incompatible with
Bayesianism. Whatever theory subject 2 has about subject 1’s behavior, once
he has stated his prior belief, he should simply put the same weight on the
signal, independently of his realization.

One could be tempted to think that after observing a signal contradicting the
predecessor’s action, a subject could update down his belief on the rationality
of the predecessor, revise the belief previously stated and, as a result, put more
weight on his own private signal. This is, however, not in agreement with
Bayesian updating. To see this, it su¢ces to notice that the posterior likelihood
ratio on the value of the good is related to the prior likelihood ratio through

21 The proof is simple and available upon request.
22 Relatedly, one could observe that if a subject chose, e.g., 12 = 84 and then, after receiving

a bad signal, 22 = 50, the corresponding 22 would be 2, which is compatible with the
overweight we documented. It must be noticed, though, that if we exclude the cases in which
22 = 50, the asymmetry remains and is actually even stronger (see Table 11 in the Appendix).
In other words, the asymmetry is not driven by subjects choosing 22 = 50.
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this simple expression:

Pr ( = 1j1 2)

Pr ( = 0j1 2)
=

Pr (2j = 1 1)

Pr (2j = 0 1)

Pr ( = 1j1)

Pr ( = 0j1)
. (7)

Given the conditional independence of the signals, the expression simpli…es to

Pr ( = 1j1 2)

Pr ( = 0j1 2)
=

Pr (2j = 1)

Pr (2j = 0)

Pr ( = 1j1)

Pr ( = 0j1)
, (8)

that is, to

Pr ( = 1j1 2)

Pr ( = 0j1 2)
=

µ
2

1 ¡ 2

¶22¡1
Pr ( = 1j1)

Pr ( = 0j1)
. (9)

where 2 is the subjective precision attached to the signal by subject 2 (equi-
valent to a subjective weight 2

2, in the terminology of the previous section).
In the experiment, the subject states his belief Pr ( = 1j1) by making his

…rst decision at time 2, 1
2. Therefore, we have,

Pr ( = 1j1 2)

Pr ( = 0j1 2)
=

µ
2

1 ¡ 2

¶22¡1
1
2100

1 ¡ 1
2100

. (10)

Whatever this prior belief and whatever the model used to form it, if the
subject were Bayesian, he should put the same weight on the signal, independ-
ently of its realization. Note that in this approach we have not imposed that
the subject has correct expectations on the signal precision: indeed, we have
allowed for subjective precisions. Nevertheless, for any precision the subject
attaches to the signal, the weight must be the same for both realizations. The
only requirement for this simple implication of Bayesian updating is that the
signal realization (a draw from an urn) is independent of the rationality of the
previous decision maker, which is logically undisputable.23

5.2 Multiple priors and asymmetric updating

The intuition that observing a signal contradicting the prior belief makes an
agent update down on the predecessor’s rationality and put more weight on his
own signal, while in contradiction with Bayesianism, is, however, compatible
with a model of updating in which an economic agent has multiple priors on the
predecessor’s rationality. In such a model, the own signal serves two purposes:
it makes the agent select the prior on the predecessor’s rationality; and, once
this is done, to update on the prior belief.

Speci…cally, suppose a subject at time 2 believes that the predecessor is of
two types: either “rational” or “noise.” A rational type always chooses an action
greater than 50 after observing a good signal and an action lower than 50 after
observing a bad signal. A noise type, instead, chooses any action between 0

23 Subjects know from the experimental design that signals are conditionally independent.
The results of the IDM treatment are perfectly in line with subjects understanding it.
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and 100 independently of the signal. Let us denote these types by  2 f g
and the probability that the subject is noise by Pr( = ) ´ . Whereas a
Bayesian agent has a unique prior , a subject at time 2 has ambiguous belief
on , that is, multiple priors belonging to the set [¤ 

¤] µ [0 1].
To update his belief upon observing an event , …rst of all the subject selects

one of the priors in the set. If he is su¢ciently con…dent that the event could
occur conditional on the predecessor being rational, he will pick up the lowest
prior ¤, in the complementary case, he will pick up ¤. In other words,

if
Pr(j = )

Pr(j = )
¸ , then  = ¤, and (11)

if
Pr(j = )

Pr(j = )
 , then  = ¤,

where  2 [01).
Note that in our experiment the subject makes this decision twice, …rst after

observing the event  ´ f1g and then after observing the event  ´ f1 2g.24

Note also that after observing f1 2g the subject, of course, also uses the signal
realization 2 to update on the prior belief.

As we said in the Introduction, we refer to this model of updating based on

the likelihood ratio Pr(j=)
Pr(j=) as Likelihood Ratio Test Updating (LRTU) rule.

It can be seen as a simple generalization of the Maximum Likelihood Updating
(MLU) model (axiomatized by Gilboa and Schmeidler, 1993), in which the time
2 subject estimates  to be the value in [¤ 

¤] that maximizes the likelihood
of observing the event . Indeed, since

Pr() = Pr(j = )Pr( = ) + Pr(j = )Pr( = ),

that is,
Pr() = Pr(j = )(1 ¡ ) + Pr(j = ),

according to the MLU rule, the subject chooses either ¤ or ¤, depending on
whether the event is more likely conditional on the predecessor being rational
or noise. That is,

if
Pr(j = )

Pr(j = )
¸ 1, then  = ¤, and (12)

if
Pr(j = )

Pr(j = )
 1, then  = ¤.

The LRTU model generalizes the MLU model to take into account that subjects
may need stronger or weaker evidence in favor of one type in order to select a
speci…c prior. This is equivalent to assuming that the subject acts as if he

24 Since 1 is a continuous variable, Pr(f1gj = ) should be read as a conditional density
function.
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received another signal  about the predecessor’s type (and uncorrelated with
the event). In this case, he would choose the prior to maximize the following
probability:

Pr( ) = Pr( j = )Pr( = ) + Pr( j = )Pr( = ).

That is, he would select  = ¤ (or  = ¤) if the following inequality is (or is
not) satis…ed:

Pr( j = )

Pr( j = )
¸ 1,

that is,
Pr(j = )

Pr(j = )

Pr(j = )

Pr(j = )
¸ 1,

or
Pr(j = )

Pr(j = )
¸

Pr(j = )

Pr(j = )
. (14)

By setting Pr(j=)
Pr(j=)

´ , one obtains the LRTU model.

As we explained in the Introduction, updating by …rst selecting one prior and
then applying Bayes’s rule is one way in which the decision theory literature has
solved the problem of updating beliefs when there are multiple priors. A second
paradigm, referred to as Full Bayesian Updating (FBU) consists in updating all
priors, by using Bayes’s rule for each of them. The choice then depends on the
agent’s preferences. We will consider the most common case, axiomatized by
Pires (2002) in which the agent has maxmin preferences.

Before showing these di¤erent models and their structural estimation in de-
tail (in the next Section) we …rst illustrate them through a simple example. The
example will give the main intuition as to why the LRTU model can generate the
type of asymmetric updating we observe in our data, whereas the FBU model
cannot.

5.3 An example

Suppose that subject 2 has multiple priors [¤ 
¤] = [0 1] on the predecessor’s

type. Suppose that he observes 1 = 70 and then the signal 2 = 0. Let us
consider …rst the LRTU model and suppose the threshold is  = 1, so that the
model is equivalent to the MLU model.

Suppose that subject 2 has expectations on the rational and noise types’

actions at time 1 such that Pr(1=70j=)
Pr(1=70j=) ¸ 1. In this case, the subject selects

the prior ¤ = 0. The subject is con…dent on the predecessor’s rationality,
and, therefore, chooses 1

2 = 70. After receiving the signal 2 = 0, the subject
now reassesses the predecessor’s rationality. The probability of observing an
action greater than 50 and a negative signal conditional on the predecessor

being rational is now lower. If, in particular, Pr(1=702=0j=)
Pr(1=702=0j=)  1, then the

subject chooses ¤ = 1. Being now con…dent that the predecessor was a noise
type, the subject considers 1 = 70 completely uninformative, which would
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imply a belief of 05 on  = 100. On top of this, the subject has observed a
bad signal: by applying Bayes’s rule to a prior of 05, the subject obtains a
posterior belief of 03 on the value being 100 and, as a result, chooses 2

2 = 30.
In terms of our previous analysis, this is equivalent to a subject overweighting

the signal, with 2
2 = 2, since 30 = 100

(1¡)2 70
100

(1¡)2 70
100+2(1¡ 70

100 )
. A similar analysis

applies to the case in which the subject observes a signal 2 = 1. It is easy to see

that if Pr(1=70j=)
Pr(1=70j=) ¸ 1, then a fortiori Pr(1=702=1j=)

Pr(1=702=1j=) ¸ 1. Therefore,

in this case the subject sticks to the prior ¤ = 0. Since the subject is still
con…dent that the predecessor was rational, he does not change his prior belief
on  = 100, which remains 07. Since the subject has observed a good signal,
by applying Bayes’s rule to a prior of 07, he obtains a posterior belief of 084
on the value being 100 and, as a result, chooses 2

2 = 84. This is equivalent to
a subject weighting the signal as a Bayesian agent would do, with 2

2 = 1. This
way of updating, thus, generates the asymmetry we observe in our data.

Let us consider now the FBU model, in which the subject, with maxmin
preferences, updates all priors. After observing 1 = 70, the subject updates his
prior belief on the value of the good using each prior  2 [0 1]. This means that
his posterior beliefs on  = 100 lie in [05 07]. Therefore, he chooses 1

2 = 50,
the action that maximizes the minimum payo¤ he can obtain. After receiving the
signal 2 = 0, the subject updates his set of prior beliefs to [03 05]. Of course,
this implies that again he chooses 2

2 = 50, which is equivalent to 2
2 = 0. After

receiving the signal 2 = 1, instead, the subject updates his set of prior beliefs
to [07 084]. He will then maximize his utility by choosing 2

2 = 70, which is
equivalent to 2

2 = 1. This updating rule, therefore, would imply no updating at
all (rather than overweighting the signal) after receiving a contradicting signal,
and updating as a Bayesian after observing a con…rming signal (an asymmetric
way of updating that sharply di¤ers from that we observe).

6 Econometric analysis

We now build three models of BU, LRTU and FBU that can be estimated with
our data. Our purpose is to understand which model explains the behavior of
subjects at time 2 best. The three models will have two common ingredients:

i) subjective beliefs on the informativeness (precision) of the private signal;
ii) subjective beliefs on the rationality of the subject acting at time 1.
The models will instead di¤er in the way a subject at time 2 updates his

beliefs (and in the way he behaves as a function of the beliefs).
Let us start discussing point i above. We know that there is heterogeneity

in how subjects update their beliefs on the basis of their private signal. To take
this into account, in our analysis we let the subjective precisions 1 = Pr(1 =
1j = 1) = Pr(1 = 0j = 0) and 2 = Pr(2 = 1j = 1) = Pr(2 = 0j = 0)
vary for each observation  (recall that the superscript  stands for subjective).
Recall that in both the SL and the IDM treatments, we observe the distribution
of stated beliefs at time 1, which are based on the observation of one signal
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only. Furthermore, in the IDM treatment, in 50% of the rounds, we observe the
joint distribution of stated beliefs at times 1 and 2. From these stated beliefs,
we can recover 1, and 2, since there is a one-to-one map between beliefs and
precisions (e.g., 1 = 73 after observing 1 = 1 is equivalent to 1 = 073;
in the IDM treatment, 2 = 80 after 1 = 73 and 2 = 1 is equivalent
to 2 = 060). We will use the empirical distribution of 1 so recovered, as
representing the distribution of the subjective precision of a signal at time 1.
When, for estimation, we will need the joint distribution of precisions, we will
use the empirical distribution obtained by considering the sample of observations
’s for which both (1 


2) can be recovered in the IDM treatment.25

Let us move to point ii. In line with the above discussion, we assume that a
subject at time 2 believes that the predecessor is of two types: either “rational”
() or “noise” (), with Pr() ´ . A rational type is de…ned as someone who
always chooses an action strictly greater than 50 after observing a good signal
and an action lower than 50 after observing a bad signal. A noise type, instead,
chooses any action between 0 and 100 independently of the signal.

As we know from Section 4, the empirical distribution of actions at time 1
conditional on a good signal is almost the mirror image (with respect to 50) of
the distribution conditional on a bad signal. For this reason, we now pool all
the observations by transforming 1 into 100 ¡ 1 whenever 1 = 0. We can
then focus our analysis on actions strictly greater than 50. In particular, given
this transformation, a rational subject always chooses an action greater than
50.

In the spirit of the descriptive analysis, we divide the interval (50 100] into
three “bins” 1 = (50 667], 2 = (667 834] and 3 = (834 100]. As high-
lighted by the previous analysis, subjects react di¤erently to a predecessor’s
choice of an action below the Bayesian one, in the neighborhood of the Bayesian
one, or more extreme than it. We want to understand this behavior more in
depth in our econometric analysis. Of course by pooling the data together for
these intervals of actions, we also have enough data to estimate our models.

For the noise type, we assume that (subject 2 believes that) his actions follow
a distribution (1) symmetric around 50. We construct a histogram density in
the following way. Let © () be the probability assigned to an interval  by a
normal distribution with mean 50 and variance 2. Then,

(1) =
1

© ([0 100])

3X

=1

© ()

jj
¢ 1 f1 2 g , for 1  50, (15)

where jj denotes the width of . In words, we construct the histogram
by considering a truncated normal distribution, and computing the resulting
density for the three chosen bins.

To estimate the parameter  we use the cases in which subjects at time
1 updated their beliefs in the wrong direction. Indeed we estimate it by the

25 In our estimations, we assume that the distribution of subjective signal precisions be inde-
pendent of the signal realization. In another speci…cation, we also considered the distribution
conditional on the realization: the results do not change.

26



empirical standard deviation b =
q

1
#f:12£g

P
2£(1 ¡ 50)2, where £ is the

set of actions 1  50 ( 50) taken after the observation of a good (bad)
signal.26 We obtain the estimate b = 0273 (with a standard error —computed
by delta method— of 0006). Given this estimated value of , we re-denote the
distribution (1) by (1). Note that, since (1) is symmetric, the probability
of observing a mistake (i.e., updating in the wrong direction) from the point of
view of subject 2 is given by Pr(1  50j1 = 0) = Pr(1  50j1 = 1) = 

2 .
As for the rational type, we assume that subjects at time 2 have correct ex-

pectations on the distribution of actions at time 1 by rational subjects. Consider
the empirical distribution of time 1 subject’s actions. The histogram density
for the actions greater than 50 is

(1) =
3X

=1

̂1 f1 2 g for 1  50, (16)

where ̂ = 1
jj


 1f12g
 1f150g . This means that ̂1 ̂2 ̂3 are the histogram density

estimates for the three intervals we are considering.27 Note, however, than not
all observed actions greater than 50 can be considered as coming from rational
subjects, since noise type subjects choose correct decisions half of the time. To
correct for the proportion of irrational actions, we consider the distribution of
rational actions to be28

(1) =
(1) ¡ (007)(1)

093
.

Figure 5 shows the estimated histograms.
Given these histograms, a (rational) subject  at time 2, observing an action

1  50, has the following conditional beliefs (density functions):

(1j = 1 ) = (1j1 = 1  = 1 )

1 + (1j1 = 0  = 1 )(1 ¡ 1) = 1(1),

(1j = 0 ) = (1 ¡ 1)(1), (17a)

(1j = 1 ) = (1j = 0 ) = (1).

While subjects are constrained to have correct expectations on the distribu-
tion of rational actions (and on the standard deviation of the noise actions), they
have subjective beliefs on the precisions of signals as well as on the proportion
of the noise type () and of the rational type (1 ¡ ).

Given these common ingredients, we can now describe how a subject forms
his beliefs on the value of the good depending on the updating model.

The BU model
26 Of course, given the above transformation of data, all incorrect actions are below 50.
27 Note that, of course, we exclude 1 = 50. This action is uninformative and, therefore,

has a di¤erent status from any other action.
28 Recall that we observed 35% of incorrect updating at time 1. Given the symmetry of

(1), they must result from a 7% of noise type’s actions.
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Figure 5: Histograms (1) (solid line) and (1) (dotted line) for rational and
noise actions at time 1.

According to the BU model, given a prior belief  on the proportion of noise
type subjects at time 1, a subject applies Bayes’s rule to determine his …rst
action,

1
2

¡
 1

¢
´ 100Pr( = 1j1) = 100

(1 ¡ )1(1) + (1)

(1 ¡ )(1) + 2(1)
(18)

= 100
(1 ¡ )1

(1)
(1)

+ 

(1 ¡ ) (1)
(1)

+ 2
.

To simplify notation, let us denote the log-likelihood ratio by (), that is,
() =: ln 

1¡ . Then, after receiving a con…rming signal (2 = 1), a subject

chooses an action 2
2 such that the following equality holds:



Ã
2
2

¡
 1 


2

¢

100

!

= (
1
2

¡
 1

¢

100
) + (2); (19)

similarly, after a contradicting signal, action 2
2 will satisfy



Ã
2
2

¡
 1 


2

¢

100

!

= (
1
2

¡
 1

¢

100
) + (1 ¡ 2). (20)

Note that 2
2 is fully determined by 1

2 and 2 given that the dependence

on  is summarized in 1
2

¡
 1

¢
.
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The LRTU model

In this model, subject 2 starts with a set of priors [¤ 
¤] on the proportion of

noise type subjects. He selects one prior in [¤ 
¤] on the basis of the likelihood

ratio
(1j = )

(1j = )
=

1
2


1(1) + 1

2(1 ¡ 1)(1)

(1)
=

(1)

2(1)
. (21)

In particular, he selects 1
2 as follows:

1
2 =

(
¤ if (1)

(1)
¸ 2,

¤ if (1)
(1)

 2.
(22)

He then applies Bayes’s rule to determine his …rst action, 1
2

¡
1

2 

1

¢
, which is

identical to expression (18), after substituting 1
2 to . Note that 1

2

¡
1

2 

1

¢

varies from 1001 to 50 as 1
2 varies from 0 to 1. Moreover, note that although

the same 1 was used both in (21) and in (18), (21) does not depend on 1.
Now, consider the second action at time 2 and suppose the subject receives

a con…rming signal (2 = 1). Then,

(1 2 = 1j) =
1

2

£
1


2 + (1 ¡ 1)

¡
1 ¡ 2

¢¤
(1),

(1 2 = 1j) =
1

2
(1).

Therefore,

2
2 =

8
<

:

¤ if (1)
(1)

¸ 
1


2+(1¡1)(1¡2)

,

¤ if (1)
(1)

 
1


2+(1¡1)(1¡2)

.
(23)

Given 2
2 and 2, 

2
2 satis…es



0

@
2
2

³
2

2 

1 


2

´

100

1

A ´ (
1
2

³
2

2 

1

´

100
) + (2), (24)

where 1
2

³
2

2 

1

´
is equal to (18) with the exception that 1

2 is

replaced by 2
2.

Note that the threshold in (23) is lower than that in (22).
For the contradicting signal case, the analysis is analogous; we have

Pr(1 2 = 0j) =
1

2

£
1(1 ¡ 2) + (1 ¡ 1)


2

¤
(1),

Pr(1 2 = 0j) =
1

2
(1),
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and, therefore,

2
2 =

(
¤ if (1)

(1)
¸ 

1(1¡2)+(1¡1)

2

,

¤ if (1)
(1)

 
1(1¡2)+(1¡1)


2

.
(25)

Given 2
2 and 2, 

1
2 satis…es



0

@
1
2

³
2

2 

1 


2

´

100

1

A ´ (
1
2

³
2

2 

1

´

100
) + (1 ¡ 2).

(26)
Note that the threshold in (25) is higher than that in (22): a con…rming signal
lowers the threshold to trust the predecessor’s rationality, whereas a contradict-
ing signal raises it.

The FBU model

In this model too a subject at time 2 starts with a set of priors [¤ 
¤] on

the proportion of noise type subjects at time 1. The subject applies Bayes’s
rule for each prior 1

2 in [¤ 
¤] and obtains a belief

1
2(

1
2 


1) ´ Pr( = 1j1;

1
2 


1) =

(1 ¡ 1
2)


1(1) + (1)

1
2

(1 ¡ 1
2)(1) + 2(1)1

2

. (27)

As a result, he has a range of beliefs on the value of the good being 100:£
1
2(

¤ 1) 
1
2(¤ 


1)

¤
.

After receiving a con…rming signal case, the subject updates his range of
beliefs so that

£
(2

2(
¤ 1 


2)) (

2
2(¤ 


1 


2))

¤
=

£
(1

2(
¤ 1)) (

1
2(¤ 


1))

¤
+ (2),

(28)
where + [ ] means [+  + ]. Similarly, in the contradicting signal case,

£
(2

2(
¤ 1 


2)) (

2
2(¤ 


1 


2))

¤
=

£
(1

2(
¤ 1)) (

1
2(¤ 


1))

¤
+(1¡2).

(29)

Recall that a maxmin expected utility agent with a set of beliefs
h


 ¹

i

chooses the optimal action maxmin such that

max min = arg max


min
2[


¹]



¡
100 ¡ 001( ¡ )2

¢
,

that is,

maxmin =

8
<

:

100

 if 


 1

2 ,

50 if 

· 1

2 and ¹ ¸ 1
2 ,

100¹ if ¹ 
1
2 .
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Therefore, in the FBU model, since 1
2(

¤ 1) ¸ 1
2 , the subject’s …rst action is

based on the most pessimistic prior,  = ¤:

1
2 = 1

2

¡
¤ 1

¢
= 1001

2(
¤ 1).

Similarly, the second action is

2
2 =

8
<

:

1002
2(

¤ 1 

2), if 2

2(
¤ 1 


2) 

1
2 ,

50, if 2
2(

¤ 1) 
1
2 , and 2

2(¤ 

1) 

1
2 ,

1002
2(¤ 


1 


2), if 2

2(¤ 

1 


2) 

1
2 .

6.1 Estimation methodology and results

We estimate the three models by the Generalized Method of Moments (GMM).
In each of our models, the heterogeneity in the subjective precision of signals
induces a distribution of actions at time 2 or any …xed value of the parameters.
The estimation strategy consists in …nding the parameter values such that the
distribution of actions predicted by a model is closest to the actual distribution.
With maximum likelihood, we would need to specify a parametric distribution
for (1 


2). In our experiment, however, we do observe the empirical distribu-

tion of (1 

2). With GMM, we can use it without parametric assumptions.

We have a gain in terms of robustness of the estimates, with a potential sacri…ce
in terms of e¢ciency.

Speci…cally, in the descriptive analysis, we have reported the three quartiles
of the empirical distribution of the weights ’s for a) the …rst action at time 2;
b) the second action at time 2, conditional upon receiving a con…rming signal;
c) the second action at time 2, conditional upon receiving a contradicting signal.
For each model, we now match the value of the cumulative distribution functions
of ’s at each of these quartiles, for all these three cases (for a total of nine
moment conditions). We do so separately for each of the three intervals in
which we have divided (50 100]. In other words, we estimate the parameters
that make a model generate data whose distribution is as close as possible to
the true dataset’s in terms of the three observed quartiles, conditional on a
subject at time 2 having observed 1 belonging to either 1 = (50 667], or
2 = (667 834] or 3 = (834 100]. The estimate will, therefore, result from
27 moment conditions (nine for each type of action).29

Since our models predict the behavior of a rational type, we restrict our
analysis to the dataset consisting of rational actions only. In other words, we
eliminate the (few) cases in which a subject updated in the “wrong direction”
after receiving a piece of information (e.g., updating down after receiving a good
signal). Consistently, we also restrict the sample of 1 and 2 to those that are
weakly greater then 05.

29 For the BU model, as observed above, given 12

 1


, action 22


 1 


2


only

depends on 2. For this reason, the estimate of  is only based on the …rst action at time 2
(i.e., on 9 moment conditions).
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We refer the readers to the Appendix for a detailed illustration of the es-
timation procedure. Here we simply observe that for the BU model we must
estimate one parameter, that is, the proportion of noise type subjects, . For
the LRTU model, we must estimate three parameters: the bounds of the support
for the prior on the proportion of noise type subjects, ¤ and ¤, as well as the
threshold . Finally, for the FBU model, we must only estimate ¤ and ¤.

Table 10 reports the results of the second stage GMM estimation (non-
parametric bootstrapped standard errors in parenthesis).

Model  ¤ ¤ 

BU 030
(0053)

LRTU 0
(0019)

030
(0045)

[165 173]
(0073)

FBU 030
(0070)

030
(0069)

Table 10: Parameter Estimates
The table shows the parameter estimates of the three models. The standard errors in

parenthesis are computed by non-parametric bootstrap with 1000 bootstrap samples. The

standard error for c refers to 1.65.

The estimated proportion of noise type subjects in the BU model is  =
03. This of course re‡ects the tendency of subjects at time 2 to “discount”
the actions 1, in particular those in bins 1 and 2, when choosing 1

2, as
documented in Section 4. Given the densities (1) and (1) clearly they did
not discount more extreme actions too much.

Of course,  = 03 implies a belief that in 15% of the cases a subject at
time 1 updated in the wrong direction, which is higher than the actual (35%)
proportion of mistakes we observed at time 1, thus showing that subjects at
time 2 did not have rational expectations on the proportion of noise and rational
predecessors.

Let us now move to the FBU model. Such a model can in principle explain
the observed behavior better, given that there is an extra degree of freedom.
It turns out, however, that the FBU model’s estimates coincide with the BU’s,
since the support for the multiple priors is estimated to be just the point 03.
In other words, adding multiple priors in this case does not provide a di¤erent
and better …t of the data, compared to the BU model.

Let us now look at the LRTU model. First of all note that the GMM
objective function does not have a unique minimizer for the parameter :  2
[165 173]. Nevertheless, the other parameters have the same estimate for any
 2 [165 173]. This parameter  co-determines the thresholds to trust or not
the predecessor. It is clear that the inequalities in (22), (24), (26) may be
satis…ed for a set of parameter values. The estimates shows that to “trust” a
predecessor’s action, a subject needs the likelihood ratios to be greater than
a threshold equal to 165, that is, he requires stronger evidence of rationality
than what assumed in the MLU model (in which  = 1). When this threshold
is reached, the subject considers the observed action as fully rational (since
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the estimated lower bound for proportion of a noise type is ¤ = 0). When,
instead, the threshold is not reached, he updates as if the probability of a noise
predecessor were ¤ = 03. Note that this is actually the estimate for the single
prior in the BU model. Essentially, according to our estimates, when the subject
observes an action that he trusts, he fully does so; when, he does not trust it,
he attaches a probability of 030 to it coming from a noise type. It is interesting
to see the implications of these parameter estimates for subjects’s behavior.
Let us consider …rst 1

2. Given the parameter estimates, when choosing 1
2,

subjects do not trust an action 1 2 (50 667] or 1 2 (667 834] (that is,
they pick the prior ¤ = 03); they do trust an action 1 2 (834 100]. Let
us consider now 2

2. The decision to trust or not the predecessor depends
on the subjective precisions of signals, in this case, as one can notice from
(23) and (25). After receiving a con…rming signal, they keep not trusting an
action 1 2 (50 667], whereas in 727% of the cases they become trusting of an
action 1 2 (667 834].30 Of course they keep trusting 1 2 (834 100]. After
receiving a contradicting signal, they keep not trusting an action 1 2 (50 667]
or 1 2 (667 834], of course, and in 689% of the cases they stop trusting an
action 1 2 (834 100].

The …nal question is whether the LRTU model provides a better explanation
for the observed behavior than the BU model (and the FBU model, since they
happen to coincide). A simple comparison of the minimized GMM objective
functions for the two models would not be an appropriate way of measuring their
relative …tness, since one model allows for more degree of freedom (has more
parameters) than the other. There is a large literature on model speci…cation
test that accounts for over-…tting of the models with extra parameters within
the framework of GMM (see Newey and McFadden, 1994). No existing test,
however, can be readily applied to our case, due to the non-standard features
of our moment conditions. In particular, note that (i) the GMM objective
function for the LRTU model is discontinuous and non-di¤erentiable; (ii) one
parameter of the LRTU model can only be set identi…ed; and (iii) the LRTU
nests the BU model at the boundary of the parameter space (e.g., ¤ = ¤).
Instead of developing a new asymptotically valid model selection test that can
overcome all these issues, we consider a model comparison test based on the idea
of resampling -value, which heuristically quanti…es the strength of evidence
against a null model without relying on an asymptotic theory (at the cost of
being computationally intensive). We refer the reader to the Appendix for
the details. Here we note that in the model comparison test, we set up the
null hypothesis “the BU model with parameter value  = 03 is the true data
generating process.” We simulate 1000 datasets from the BU model with  =
03, of course resampling

¡
1 


2

¢
from the empirical distribution, as discussed

above. For each of these data sets, we then estimate the BU and LRTU models
by GMM and let ̂ and ̂ be the resulting minimized values of the

30 This is in fact a feature we did not observed in our descriptive analysis, an instance in
which this model does not …t the data well. Despite this, the model is the best predictor of
the distribution of actual actions, as we will show.
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GMM objective function for sample  = 1 2     1000. Note that ¢̂ = ̂ ¡

̂ is non-negative since the LRTU model nests the BU model, and hence
represents a gain in model …tness solely due to “over-parametrization” of the
LRTU model relative to the BU model. We take the empirical distribution of
¢̂ ( = 1     1000) as the null distribution of the model …tness criterion. We
compute ¢̂ = ̂ ¡ ̂ as the di¤erence between the minimized GMM
objective functions of the BU and LRTU models for our dataset. To measure
how unlikely ¢̂ is in terms of the null distribution, we compute the p-value by

1

1000

1000X

=1

1
n

¢̂ ¸ ¢̂
o


where 1 fg is the indicator function. The p-value, so computed, is 0008, that
is, we can reject the null hypothesis and consider our evidence in support of
the LRTU model. The LRTU model …ts the data signi…cantly better than
the BU model after we have properly taken into account the gain of over-
parametrization. Moreover, in our approach we did not impose any parametric
restriction on the heterogeneity of subjective precisions: the evidence in favor of
the LRTU model is robust to individual heterogeneity (i.e., it does not depend
on a parametric assumption on heterogeneity).

7 Discussion

We now want to discuss some features of our LRTU and FBU models, and
consider some alternative approaches, to highlight how our experimental work
could inform future theoretical developments.

A crucial aspect of our LRTU model is that we let the subject pick a di¤erent
prior from the same set of priors every time he receives new information. This
is in line with the tradition of the statistics literature, and dates back to the
Type-II maximum likelihood of Good (1965), in which new observations are used
to estimate a prior for an unknown parameter (see, e.g., Berger 1985). In this
methodology, the set of priors (from which one prior is estimated) is invariant to
the new arrival of information. This approach is, however, less well established
in the decision theory literature. In their axiomatization of the MLU model,
Gilboa and Schmeidler (1993) do not consider a multi-period problem. In their
MLU framework an agent only updates once, therefore the problem of how to
update once new information arrives is not immediately relevant. Nevertheless,
in their analysis, implicitly the choice of the prior is once and for all. This
would be equivalent, in our experiment, to the subject having to stick to the
prior he has selected after observing the predecessor’s action only. Pires (2002)
observes that in the spirit of ambiguity aversion it is sensible to assume that
the agent keeps all possible priors alive and for this reason she advocates the
FBU model. Gilboa and Marinacci (2013) describe the MLU and FBU models
as two extremes: one in which only one prior is used and one in which all are.
We view our model as somehow in between these two extremes. In the LRTU
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model, the subject does pick one prior, but this does not eliminate ambiguity for
ever, since the subject can pick another prior after new information arrives.31

Of course a model in which the agent picks di¤erent priors every time new
information arrives exhibits a form of time inconsistency.32 In such a model
preferences are not stable, which may be problematic from a normative view
point (similar objections apply to Epstein and Schneider, 2007). Nevertheless,
from a descriptive viewpoint, the model that best …ts the data lets the subjects
choose the prior every time (from a set that we estimate).

We have estimated the FBU model joint with maxmin preferences, the only
one that, to the best of our knowledge, has been axiomatized (by Pires, 2002).
It is sometimes claimed that maxmin preferences imply that agents are very
pessimistic (since they consider the worst outcome), and one may think that
they imply that subjects are too pessimistic in the context of our experiment.
It should be noticed, however, that we did estimate the bounds [¤ 

¤] and in
this sense we did not constrain our subjects to be overly pessimistic (as it would
have been the case had we imposed ¤ = 1). Nonetheless, we also considered a
more general criterion, proposed by Hurwicz (1951), in which an agent considers
the best and worst outcomes of his decision and then makes his choice weighing
the two extreme outcomes on the basis of his preferences. If he put all the
weight, represented by a parameter , on the worst outcome, he would behave
as in our FBU model; if he chose  = 0, he would be extremely optimistic;
intermediate values of  indicate intermediate values of pessimism. Optimism
in this model may help to explain our data. For instance, if ¤ = 0 and ¤ = 1
and  = 0, an agent would choose 70 (the most extreme belief in the support)
as a …rst action, and then 30 (again the most extreme belief) after receiving a
contradicting signal, which is in line with the observed asymmetric updating.
On the other hand, from a behavioral viewpoint, this is not the most appealing
explanation: being optimistic means trusting the predecessor after observing
him (“being optimistic that the predecessor is rational”), and, then distrusting
him after receiving a contradicting signal (“being optimistic that the predecessor
is a noise type”). Nevertheless, we estimated the model and obtained  = 017,
¤ = 02, ¤ = 068, indicating some form of optimism. Using the same test for
model selection explained above, we obtain a p-value of 06: that is, this model
does not …t the data signi…cantly better than the BU model.33

31 Epstein and Schneider (2007) consider an intertemporal economy. They do not impose
that once a prior is chosen, it is chosen forever, letting the agent re-choose the prior in a
neighborhood of the prior previously chosen.

32 For a theoretical investigation of dynamically consistent updating of ambiguous beliefs
see Hanany et al. (2007).

33 Another approach considered in the literature is the so-called minimax regret theory, …rst
proposed by Savage (1954). An agent would compute, for each action, his maximum regret
and then choose the action to minimize it. Intuitively, given that the action set is …xed, the
predictions of this model would not be very di¤erent from the Hurwicz (1951)’s model for
an intermediate value of  (as the resulting behavior would be a good way to minimize the
largest distance to the optimal action when varying the prior belief). It should be noticed
that in the context of our experiment, regret modeled in such a way would represent a purely
subjective construction in subjects’ mind. Subjects never had access to information about the
predecessor’s type, actually not even to the signal the predecessor received. It is, therefore,
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A di¤erent approach to the problem would be to use the principle of indif-
ference or insu¢cient reason. According to this principle, typically attributed
to Jacob Bernoulli or Laplace, in the absence of a convincing reason, the sub-
ject would give the same probability to di¤erent events. In the context of our
experiment, this would mean that a subject at time 2, not having any reason to
attach a speci…c weight to the probability  that the predecessor is noise, would
simply use a uniform as a distribution of . In such a case, however, he would
behave as in the Bayesian model. Clearly, this model cannot perform better
than our BU model, in which we have estimated the parameter .

8 Conclusion

Our experiment is relevant for two di¤erent literatures: that on social learning
and that on belief updating.

A long debate in the social learning literature has concerned how subjects
treat their private information versus the information coming from the choices
of others. This question is indeed at the core of this literature. A phenomenon
frequently documented is that human subjects tend to rely more on their private
information than on the public information, compared to the full rationality
benchmark. Our experimental design let us study this issue in much more
detail. We discovered that subjects tend to put more weight on their own
information when it is in contrast with the public information (revealed by
the choice of another subject), whereas they put approximately the correct
weight when it agrees with it. This behavior could not be observed in previous
experiments. Previous studies were mainly designed to study the occurrence
of informational cascades. They found that when subjects are in a situation
of potential herding (that is, they received a signal at odds with the history of
predecessors’ actions), they require a number of predecessors choosing the same
action larger than the theoretical one in order to go against their signal. On
the other hand, when subjects receive a signal in agreement with the previous
history of actions, they typically follow it. The …rst type of decision is in line
with our result (but gives coarser information on subjects’ updating); the second
is essentially uninformative on how subjects weigh the signal.

This result is incompatible with Bayesian updating of beliefs. It is instead
explained by a form of updating of multiple priors known in the decision theory
literature as Maximum Likelihood Updating. This updating rule consists in
using new information for two purposes: …rst to select a prior in the set of
multiple priors; second, to update that prior. There is an important issue in
this updating rule. In our experiment, a subject has to update twice, …rst
after observing a predecessor’s action and, second, after observing a private
signal too. In this multistage updating problem, from a theory viewpoint it is
somehow unclear whether a di¤erent prior can be selected after new information
arrives or whether once the prior is selected, the agent should stick to it (as if
ambiguity were resolved for ever). Our experimental data are explained by a

not very compelling to assume that subjects could feel such mentally constructed regret.
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model in which the prior is selected after each new piece of information. In the
decision theory literature, it is somehow claimed (Gilboa and Marinacci, 2013;
Pires, 2002) that the MLU rule (with the property that a prior is picked once
and for ever) is an extreme form of updating, since it only relies on one prior.
Our model, letting the agent change his prior after receiving new information,
can be seen as an intermediate rule of updating between the standard MLU
and the FBU in which all priors are updated. In our model, only one prior is
selected, but after new information the selection can change. We hope that this
and other future experiments will inform the debate in decision theory on how
to update multiple priors.
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Appendix

8.1 More descriptive statistics

One could observe that if a subject chose, e.g., 1
2 = 84 and then, after receiving

a bad signal, chose 2
2 = 50, the corresponding 2

2 would be 2, which is com-
patible with the overweight we documented. It must be noticed, though, that
if we exclude the cases in which 2

2 = 50, nevertheless the asymmetry remains,
as one can appreciate by looking at the following table.

First Quartile Median Third Quartile

22 072 116 211

22 (upon observing con…rming signal) 055 096 136

22 (upon observing contradicting signal) 130 207 298

Table 11: Distribution of weights on the own signal in the SL treatment.
The table shows the quartiles of the distribution of the weight on the own signal for the

second action at time 2 in the SL treatment. The data refer to all cases in which the …rst

action at time 2 was di¤erent from 50; moreover, cases in which the second action at time 2

was equal to 50 are excluded.

8.2 Estimation and test

Let us illustrate the details of the GMM estimation and of the model speci…ca-
tion test.

8.2.1 GMM estimation

Estimating the LRTU model

Let us consider …rst the estimation of the LRTU model. The parameters
to be estimated are  ´ (¤ 

¤ ), 0 · ¤ · ¤ · 1 and  ¸ 0. To make
the dependence on the parameters explicit, we express the LRTU model ac-

tions obtained in the main text as 1
2

¡
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1; 

¢
, 2

2

³
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2 

1 


2; 

´
,
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and 2
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. For given , 1, and 2 = 1, the heterogen-

eity in subjective signal precisions generates the joint distribution of the time 2
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holds at the true  for every 1, where the inner expectation  [¢] is the ex-
pectation with respect to the joint distribution  of (1 2), which we assume be
independent of (1 2), and the outer expectation is with respect to the actual
sampling distribution of (1

2 
2
2) conditional on 1 and 2 = 1. Speci…cally,

as we said, for  we use the empirical distribution of precisions. Hence,
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where the index  indicates an observation of
¡
1  


2

¢
and  is the num-

ber of observations of
¡
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¢
available in our dataset. Speci…cally, when

 (¢ ¢) involves only 1
2, the marginal distribution of 1 su¢ces to compute



¡
(1

2)
¢
. Therefore, we construct the empirical distribution of 1 by pool-

ing the rational actions at time 1 (1 ¸ 50) in the SL and IDM treatments
( = 1331). When  (¢ ¢) involves both 1

2 and 2
2, we construct the empirical

distribution of
¡
1  


2

¢
using the observations (1 2) in the IDM treatment

only, restricted to 50 · 1  100 and 2 ¸ 50.34 The total number of ob-
servations used to construct the empirical distribution of
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¢
amounts to

 = 440.
Similarly, for the contradicting signal case we have that
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holds for any 1.
These moment conditions imply the following unconditional moment condi-

tions:
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(31)

34 We drop observations 1 = 100 since we cannot impute a unique value of 2 on the basis
of the observed 2.
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When (1
2 

2
2) only depends on 1

2, 2 plays no role and the moment condi-
tions (30) and (31) reduce (with a slight abouse of notation) to
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¢¢¤¤
= 0. (32)

Given a speci…cation for (¢), we estimate  by applying GMM to the uncondi-
tional moment conditions (30) - (32).

Speci…cally, our approach is to match the cumulative distribution functions
(cdfs) of  predicted by the models with the empirical distributions. Recall that¡
1

2 
2
2

¢
can be written in terms of
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¢
as
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To match the cdfs of ’s evaluated at  2 [01), we specify  (¢ ¢) as

(1
2) = 1

½
(1

2100)

(07)
· 

¾

,

when we match the cdf of 1
2, and specify  (¢ ¢) as
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when we match the cdf of 2
2 for the con…rming and contradicting signal case,

respectively.
Since we discretise the action space of 1 into three intervals (“bins”)

1 = (50 667], 2 = (667 834] and 3 = (834 1] and the theoretical predict-
ive distribution of  vary over 1 only across these thee bins, we focus on the
distributions of 1

2 and 2
2 conditional on 1 being in each of these three bins.

We compute the distributions of  for time 21 as well as for time 22, distin-
guishing between the con…rming and the contradicting signal case. Overall, we
obtain nine empirical distributions of  (three for each bin) to be matched with
the corresponding distributions of ’s predicted by the theoretical model.

We match the cdfs of  at the three points of the support corresponding to
the empirical quartiles of  conditional on 1 2 , with  2 f1 2 3g. For
 2 f025 05 075g and  2 f1 23g, we denote the -th quartile of 1

2

conditional on action 1 2  by 12, the -th quartile of 2
2 conditional on

action 1 2  and 2 = 1 by 22, and the -th quartile of 2
2 conditional

on action 1 2  and 2 = 0 by 22.
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Given the underlying parameter vector  and the signal precisions
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The predicted distributions of  given 1 2  (and 2 for the second action at
time 2) is obtained by viewing 1

2

¡
 1

¢
and 1

2

¡
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¢
as random variables

with their probability distributions generated from the empirical distribution of
the heterogeneous signal precisions (1  


2 ) » .

Since we match the 9 distributions of  at three points of the support, we
have in total the following 27 moment conditions:
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and m
2 () and m

2() are 9£1 vectors of moment conditions concern-

ing the cdfs of 2
2 for con…rming and contradicting signal cases, respectively:
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Since the number of moment conditions is greater than the number of un-
known parameters, we obtain a point estimator of  by minimizing the overiden-
ti…ed GMM objective function in two steps. In the …rst step, we solve

̂ = arg min


Ã
X

=1

m
 ()

!0 Ã X

=1

m
 ()

!

,

and, in the second step, we solve

̂ = arg min


Ã
1



X

=1

m
 ()

!0

̂¡1

Ã
1



X

=1

m
 ()

!

,

where

̂ =
1



X

=1

m
 (̂)m

 (̂)0.

The optimization for ̂ and ̂ is carried out by grid search with grid size
001.
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Estimating the BU model

The BU model is a special case of the LRTU model in which ¤ = ¤ = 
In this case  becomes an irrelevant parameter, and the only parameter to
estimate is  =  2 [0 1]. Furthermore, note that the theoretical 2

2 is given
by 2

¡
2

¢
+(1 ¡ 2) (1¡ 2 ) (which is independent of the parameters) when

¤ = ¤ = . Hence, the identifying information for  only comes from the
cdf of 1

2. Nevertheless, in the two-step GMM procedure, we make use of the
full set of moment conditions (27 £ 1), since the …rst-stage estimate does not
necessarily equal to the second-stage estimate due to the non-block-diagonal
weighting matrix. The set of moment conditions is given by

m
 ()

| {z }
27£1

=

0

@
m

1()
m

2

m
2

1

A ,

where these moment conditions are the moment conditions of the LRTU model
constrained to ¤ = ¤ = . Since only the …rst set of moment conditions
m

1() depends on , an initial GMM estimator minimizes

̂ = arg min


Ã
X

=1

m
1 ()

!0 Ã X

=1

m
 ()

!

. (34)

The optimal 2-step GMM estimator then minimizes the variance weighted GMM
objective functions with the full set of moment conditions,

̂ = arg min


Ã
1



X

=1

m
 ()

!0

̂¡1

Ã
1



X
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m
 ()

!

 (35)

̂ =
1



X

=1

m
 (̂)m

 (̂)0 with ̂ = ̂

Again, a grid search with grid size 001 is used to …nd ̂ and ̂ .

Estimating the FBU model

In the FBU model, the unknown parameters are  = (¤ 
¤), 0 · ¤ ·

¤ · 1. Since we only consider the realization of 1 greater than 05, the range
of beliefs for the …rst action at time 2 is a subset of

£
1
2  1

¤
(see expression (??)),

and the maximin action 1
2maxmin is the Bayes’s action with the implied prior

¤. Hence, the moment conditions for the FBU model concerning the cdf of 1
2

are obtained by replacing 1
2

¡
 1

¢
in (33) with

1
2

¡
 1

¢
=


¡
1
2

¡
¤ 1

¢
100

¢

(07)
.

We then denote the resulting 9 moment conditions by m
1().
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As for the moment conditions for the cdfs of 2
2, we cannot …x the im-

plied prior as it depends on the individual’s (1 2). Nevertheless, given¡
 1 


2

¢
, the maxmin action can be pinned down according to the formula

2
2

¡
 1 


2

¢
given in Section 6. Accordingly, we can obtain the moment

conditions concerning the cdfs of 2
2 by
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where

for time 2.2-con…rming :
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for time 2.2-contradicing :
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The estimation of  = (¤ 
¤) then proceeds by forming the moment vector

m
 ()

| {z }
27£1

=

0

@
m

1()
m

2 ()
m

2()

1

A

and running the same estimation procedure as in the LRTU model.

8.2.2 Resampling-based model comparison

We now turn to presenting the details of the implementation of the model com-
parison procedure shown in Section 6.

We consider as the null model the BU model with parameter value ̂

(as reported in Table 10). As usual, we sample
¡
1 


2

¢
randomly and with

replacement from the empirical distribution. We then plug them into the for-
mulae of the theoretical ’s, with (1 2) set at the values observed in the
actual dataset. Having a random draw of

¡
1 


2

¢
for each observation and

computing the 1
2 and 2

2 for each , we obtain a simulated sample from the
null BU model with the same size as the actual data. We generate 1000 such
samples and index them by  = 1 2  1000.

For each simulated dataset, we minimize the GMM objective functions in
the BU model and the LRTU model. The minimized values of the objective
functions are denoted by ̂ and ̂,  = 1     1000, respectively. To keep
the weights on the moment conditions identical in the estimation of the BU
and the LRTU models, we construct the GMM objective functions by choosing
the weighting matrix used to obtain ̂ for the actual data. We keep this
weighting matrix …xed across samples.

We then approximate the null distribution of the di¤erence of the GMM
objective functions by the empirical distribution of ¢̂ = ̂ ¡ ̂, for  =
1     1000. To obtain the p-value for the null model (the BU model) against the
LRTU model, we compute ¢̂, the di¤erence of the GMM objective functions
for our actual data. Of course, we use the same weighting matrix as the one
used to compute ¢̂ ,  = 1     1000. The p-value is then obtained by the
proportion of ¢̂ ’s that are greater than ¢̂. A small p-value (e.g., less than
5%) indicates that the LRTU model …ts the actual data signi…cantly better
than the BU model, even taking into account the …tness gain only due to the
over-parametrization of the LRTU model.
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