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Abstract

This paper considers identification of treatment effects on conditional transition proba-
bilities. We show that even under random assignment only the instantaneous average
treatment effect is point identified. Because treated and control units drop out at differ-
ent rates, randomization only ensures the comparability of treatment and controls at the
time of randomization, so that long run average treatment effects are not point identified.
Instead we derive informative bounds on these average treatment effects. Our bounds do
not impose (semi)parametric restrictions, as e.g. proportional hazards. We also explore
various assumptions such as monotone treatment response, common shocks and positively
correlated outcomes that tighten the bounds.
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1 Introduction

We consider the effect of an intervention if the outcome is a transition from an initial to a
destination state. The population of interest is a cohort of units that are in the initial state
at the time zero. Treatment is assigned to a subset of the population either at the time zero
or at some later time. Initially we assume that the treatment assignment is random. One
main point of this paper is that even if the treatment assignment is random, only certain
average effects of the treatment are point identified. This is because the random assignment
of treatment only ensures comparability of the treatment and control groups at the time of
randomization. At later points in time treated units with characteristics that interact with
the treatment to increase/decrease the transition probability relative to similar control units
leave the initial state sooner/later than comparable control units, so that these characteristics
are under/over represented among the remaining treated relative to the remaining controls
and this confounds the effect of the treatment.

The confounding of the treatment effect by selective dropout is usually referred to as
dynamic selection. Existing strategies that deal with dynamic selection rely heavily on para-
metric and semi-parametric models. An example is the approach of Abbring and Van den
Berg (2003) who use the Mixed Proportional Hazard (MPH) model (their analysis is gener-
alized to a multistate model in Abbring, 2008). In this model the instantaneous transition
or hazard rate is written as the product of a time effect, the effect of the intervention and
an unobservable individual effect. As shown by Elbers and Ridder (1982) the MPH model
is nonparametrically identified, so that if the multiplicative structure is maintained, iden-
tification does not rely on arbitrary functional form or distributional assumptions beyond
the assumed multiplicative specification. A second example is the approach of Heckman and
Navarro (2007) who start from a threshold crossing model for transition probabilities. Again
they establish semi-parametric identification, although their model requires the presence of
additional covariates besides the treatment indicator that are independent of unobservable
errors and have large support.

In this paper we ask what can be identified if the identifying assumptions of the semi-
parametric models do not hold. We show that, because of dynamic selection, even under
random assignment we cannot point identify most average treatment effects of interest. How-
ever, we derive sharp bounds on non-point-identified treatment effects, and show under what
conditions they are informative. Our bounds are general, since beyond random assignment,
we make no assumptions on functional form and additional covariates, and we allow for ar-
bitrary heterogenous treatment effects as well as arbitrary unobserved heterogeneity. The
bounds can also be applied if the treatment assignment is unconfounded by creating bounds
conditional on the covariates (or the propensity score) that are averaged over the distribution
of these covariates (or propensity score).

Besides these general bounds we derive bounds under additional (weak) assumptions
like monotone treatment response and positively correlated outcomes. We relate these as-
sumptions to the assumptions made in the MPH model and to assumptions often made in
discrete duration models and structural models. The additional assumptions often tighten
the bounds considerably. We also discuss how to apply our various identification results to
construct asymptotically valid confidence intervals for the respective treatment effects.

There are many applications in which we are interested in the effect of an intervention on
transition probabilities/rates. The Cox (1972) partial likelihood estimator is routinely used
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to estimate the effect of an intervention on the survival rate of subjects. Transition models are
used in several fields. Van den Berg (2001) surveys the models used and their applications.
These models also have been used to study the effect of interventions on transitions. Examples
are Ridder (1986), Card and Sullivan (1988), Bonnal et al. (2007), Gritz (1993), Ham and
LaLonde (1996), Abbring and Van den Berg (2003), and Heckman and Navarro (2007). A
survey of models for dynamic treatment effects can be found in Abbring and Heckman (2007).

An alternative to the effect of a treatment on the transition rate is its effect on the cdf of
the time to transition or its inverse, the quantile function. This avoids the problem of dynamic
selection. From the effect on the cdf we can recover the effect on the average duration, but we
cannot obtain the effect on the conditional transition probabilities, so that the effect on the
cdf is not informative on the evolution of the treatment effect over time. This is a limitation
since there are good reasons why we should be interested in the effect of an intervention on
the conditional transition probability or the transition/hazard rate. One important reason is
the close link between the hazard rate and economic theory (Van den Berg (2001)). Economic
theory often predicts how the hazard rate changes over time. For example, in the application
to a job bonus experiment considered in this paper, labor supply and search models predict
that being eligible for a bonus if a job is found, increases the hazard rate from unemployment
to employment. According to these models there is a positive effect only during the eligibility
period, and the effect increases shortly before the end of the eligibility period. The timing
of this increase depends on the arrival rate of job offers and is an indication of the control
that the unemployed has over his/her re-employment time. Any such control has important
policy implications. This can only be analyzed by considering how the effect on the hazard
rate changes over time.

The evolution of the treatment effect over time is of key interest in different fields. For
instance, consider two medical treatments that have the same effect on the average survival
time. However, for one treatment the effect does not change over time while for the other the
survival rate is initially low, e.g., due to side effects of the treatment, while after that initial
period the survival rate is much higher. As another example, research on the effects of active
labor market policies often documents a large negative lock-in effect and a later positive effect
once the program has been completed, see e.g. the survey by Kluve et al. (2007).

We apply our bounds and confidence intervals to data from a job bonus experiment
previously analyzed by Meyer (1996) among others. As discussed above economic theory has
specific predictions for the dynamic effect of a re-employment bonus with a finite eligibility
period. Meyer (1996) estimates these dynamic effects using an MPH model. We study
what can be identified if we rely solely on random assignment and some additional (weak)
assumptions.

In section 2 we define the treatment effects that are relevant if the outcome is a transition.
Section 3 discusses their point or set identification in the case that the treatment is randomly
assigned. This requires us to be precise on what we mean by random assignment in this
setting. In section 4 we explore additional assumptions that tighten the bounds. In section
5 we derive the confidence intervals. Section 6 illustrates the bounds for the job bonus
experiment. Section 7 concludes.
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2 Setup

2.1 Motivating example

In this paper we consider identification of the effect of a treatment on the conditional tran-
sition probability, usually referred to as the transition rate or the hazard rate. Effects on
transition rates are important in many applications. The job-bonus experiment considered in
the application in this paper is one example. The experiment paid re-employment bonuses to
unemployed individuals in the randomized treatment group who found employment within
the first 11 weeks of unemployment. The fact that the bonus is only paid during the first 11
weeks has several interesting implications. Standard labor supply and search models predict
that being eligible for the bonus should increase the transition rate from unemployment to
employment during the 11 week eligibility period, but should have no effect after the end of
the eligibility period. Another prediction is that the transition rate should increase shortly
before the end of the eligibility period, as the unemployed run out of time to collect the
bonus. These theoretical predictions can only be studied by examining how the effect of the
job-bonus varies with time in unemployment, that is by studying the effect on the transition
rate during the eligibility period, shortly before the end of the eligibility period and after the
end of the eligibility period. Effects on the transition rate are also relevant in many other
applications, including evaluations of medical treatments and active labor market policies.

The job-bonus experiment includes random treatment assignment, which ensures com-
parability of the treatment group and the control group at the time of randomization. At
later time points some unemployed individuals have found a job, and this creates dynamic
selection, that even under the initial random assignment might confound the comparability
of the treatment and control groups. This is most easily seen if the fraction that has found a
job differs between the two groups, and if those who have found a job have more favourable
characteristics than those who remain unemployed. Under these conditions the remaining
individuals in the treatment group will be negatively (positively) selected if the fraction re-
maining in unemployment is lower (higher) in the treatment group than in the control group.
Moreover, even if the fraction still unemployed is the same in the treatment group and the
control group we might still face a selection problem. In the job-bonus experiment, it could,
for instance, be the case that individuals that respond to the bonus come from different parts
of the ability distribution compared to those who find a job without the bonus. The impli-
cation of this is that the ability distribution differs between the treatment and the control
groups, even if the fraction that has found a job is the same in the two groups. All this
constitutes the dynamic selection problem that is addressed in this paper.

Previous studies that deal with the dynamic selection problem have mostly used para-
metric and semi-parametric models. For instance, Meyer (1996) uses a proportional hazard
(PH) model to study how the effect of the job-bonus experiment considered in this paper
varies before and after the 11 week eligibility period. A more general alternative to the PH
model is to use a Mixed Proportional Hazard (MPH) model. In this model the instantaneous
transition or hazard rate is written as the product of a time effect, the effect of the interven-
tion and an unobservable individual effect. This model, however, imposes a multiplicative
structure, a homogeneous treatment effect as well as other restrictions. In this paper we
instead consider what can be identified if we rely solely on random assignment and do not
impose the parametric restrictions that are implicit in the MPH model and other parametric
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and semi-parametric models.

2.2 Average treatment effect on transitions

We discuss the definition and identification of treatment effects on transition rates in discrete
time with transitions occurring at times t = 1, 2, . . ..1 We assume that treatment is assigned
at the beginning of the first period and that each unit is either always treated or always
non-treated. In section 3.1 we generalize these results by allowing the treatment to start in
any time period. Let the potential outcome Y 1

t be the indicator of a transition in period t if
treated and similarly Y 0

t is the potential outcome if non-treated.
In any definition of the causal effect of a treatment on the transition rate we must account

for the dynamic selection that was discussed in the previous subsection. If we do not specify
a model for the transition rate we need to find another way to maintain the comparability
of the treatment and control groups over time. The approach that we take in this paper is
to consider average transition rates where the average is taken over the same population for
both treated and controls (or in general for different treatment arms). We initially propose to
average over the subpopulation of individuals who would have survived until time t if treated.
This is the analogue of the average effect on the treated considered in the static treatment
effect literature. This leads to the following definition

Definition 1 The causal effect on the transition probability of the treated survivors in t is
the Average Treatment Effect on Treated Survivors (ATETS) defined by

ATETSt = E
(
Y 1
t |Y 1

t−1 = 0, . . . , Y 1
1 = 0

)
− E

(
Y 0
t |Y 1

t−1 = 0, . . . , Y 1
1 = 0

)
.

The differential selection only starts after the first period and the ATETSt controls for
that by comparing the transition rates for individuals with a common survival experience.2

Note that we are only concerned with the comparability of the treatment and control
groups over the spell, i.e. with the different levels of dynamic selection in the two groups. If
we keep the treatment and control groups comparable over time, there is still the question of
how to interpret the time path of the average treatment effect over the spell. In this paper
we do not try to decompose this path into the average treatment effect for a population
of unchanging composition and a selection effect relative to this population. We do not
define the treatment effect for this population of unchanging composition, but rather for a
population with a composition that changes over time due to dynamic selection. The dynamic
selection is made equal in the treatment and control groups, so that the treatment effect is
not confounded by dynamic selection. Again this is analogous to the difference between the
Average Treatment Effect and the Average Treatment Effect on the Treated in the case of a
static treatment effect where the latter is defined for the population selected for treatment
and the treatment effect is for this selective population.

1The definition of causal effects in continuous time adds technical problems (see e.g. Gill and Robins
(2001)) that would distract from the conceptual issues.

2In Appendix C we also consider the average effect for the subpopulation of individuals who would have
survived until t under both treatment and no treatment.

5



3 Bounds on average treatment effects on transitions

We now consider identification of the ATETSt under random treatment assignment. Let D
be the indicator of treatment status. In our setting we have the following random assignment
assumption

Assumption 1 Random assignment of treatment D⊥
{
Y 1
t , Y

0
t , t = 1, 2, . . .

}
For illustrative purposes we first consider the two period case where the transition

occurs in period 1, period 2 or after period 2. The main results of this paper can be easily
understood in this setting. For every member of the population we have a vector of potential
outcomes Y 1

1 , Y
0
1 , Y

1
2 , Y

0
2 , and the treatment indicator D. Let Yt be the observed indicator of

a transition in period t. The observed outcome is related to the potential outcomes by the
observation rule

Yt = DY 1
t + (1−D)Y 0

t . (1)

Under this assumption we can relate the observed and potential transition probabilities:

E(Y1|D = d) = E(Y d
1 ), (2)

E(Y2|Y1 = 0, D = d) = E(Y d
2 |Y d

1 = 0). (3)

We distinguish between instantaneous or short-run effects and dynamic or long-run effects.
The instantaneous effect is the ATETS in the first period of treatment:

ATETS1 = E(Y 1
1 )− E(Y 0

1 ).

Under Assumption 1 it follows from equation (2) that we can point identify the instantaneous
treatment effect, namely

ATETS1 = E(Y 1
1 )− E(Y 0

1 ) = E(Y1|D = 1)− E(Y1|D = 0).

With two periods the dynamic treatment effect is:

ATETS2 = E(Y 1
2 |Y 1

1 = 0)− E(Y 0
2 |Y 1

1 = 0).

This is the average treatment effect in the second period of treatment for those who survive
under treatment in the first period. Because all that can be deduced from the data is in
equations (2) and (3), which hold under Assumption 1, ATETS2 is, in general, not point
identified. However, the observed transition probabilities place restrictions on the potential
ones, and these are used to derive sharp bounds on ATETS2. The bounds are sharp in
the sense that there exist feasible joint distributions of the potential outcomes which are
consistent with the upper bound and the lower bound.

Let us consider the intuition behind the derivation of the bounds. Note that the average
effect of interest, ATETS2, is a function of the distribution of the potential outcomes Y 1

2

and Y 0
2 for the subpopulation with Y 1

1 = 0. We have argued that we cannot point identify
ATETS2 using the observed data, but (2) and (3) provide partial information about the
distribution of the potential outcomes Y 1

2 and Y 0
2 . It is this partial information that we

use to derive sharp bounds. Essentially, we obtain bounds on ATETS2 by finding average
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values of Y 1
2 and Y 0

2 for the subpopulation with Y 1
1 = 0 that give the maximum and the

minimum value of ATETS2 under the restrictions given by the partial information in (2) and
(3). Intuitively, one can think about this as a maximization and a minimization problem
under a set of restrictions. Our derivations show that these maximization and minimization
problems have closed-form solutions, and this gives our bounds.

For the case of arbitrary t we need to introduce some additional notation. We use the
notation Y t−1 = (Y1, . . . , Yt−1) and write 0 for the vector of zeros.

Our main result is presented in Theorem 1, which provides closed form expressions for the
sharp bounds on ATETSt.

3 Note that these bounds require no assumptions beyond random
assignment. They allow, for instance, for arbitrary heterogeneity in treatment response. We
explicitly show that the bounds are sharp. The bounds exist if Pr

(
Y t−1 = 0 |D = 1

)
>

0, because if this probability is 0 the subpopulation for which ATETSt is defined has no
members.

Theorem 1 (Bounds on ATETS) Suppose that Assumption 1 holds. If Pr
(
Y t−1 = 0 |D = 1

)
=

0 then ATETSt is not defined. If Pr
(
Y t−1 = 0 |D = 1

)
> 0, then we have the following sharp

bounds
LBt ≤ ATETSt ≤ UBt,

where

LBt ≡ Pr(Yt = 1 |Y t−1 = 0, D = 1)

−min

{
1,

1− [1− Pr(Yt = 1 |Y t−1 = 0, D = 0)] Pr
(
Y t−1 = 0 |D = 0

)
Pr(Y t−1 = 0 |D = 1)

}
,

UBt ≡ Pr(Yt = 1 |Y t−1 = 0, D = 1)

−max

{
0,

Pr(Yt = 1 |Y t−1 = 0, D = 0) Pr
(
Y t−1 = 0 |D = 0

)
− 1

Pr(Y t−1 = 0 |D = 1)
+ 1

}
.

Proof See Appendix A.4

Next, consider the intuition behind these bounds using the job-bonus experiment as an
illustration. Both the upper and the lower bound are increasing in the observed transition
probability from unemployment to employment in the treatment group in period t, Pr(Yt =
1 |Y t−1 = 0, D = 1). This follows directly from the fact that we consider the average effect
for treated individuals that remain in unemployment until time t. The bounds also depend
on the observed transition probability in the control group, Pr(Yt = 1 |Y t−1 = 0, D = 0),
but this relationship is more complicated than the relationship between the bounds and
Pr(Yt = 1 |Y t−1 = 0, D = 1). In general we have that both the upper and the lower bound
are decreasing in Pr(Yt = 1 |Y t−1 = 0, D = 0). The reason for this is that a high transition
rate among the unemployed individuals in the control group allows for a larger counterfactual

3The bounds are for the case that the destination state is non-absorbing, as is the case in the bonus
experiment. This implies that treated survivors could have experienced two consecutive transitions if they
had not been treated. This is impossible if the destination state is indeed absorbing, e.g. death. The data
have the treatment status and the time to the first transition, i.e. in the data we do not observe multiple
transitions, but they could occur under the counterfactual treatment regime.

4In the working paper version (Vikström, Ridder, and Weidner (2015)) we provide a simplified proof for
the two period case that was discussed above.
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outcome under no treatment. Another important determinant of the bounds is the fraction
in the treatment group that remains in unemployment until time t, Pr(Y t−1 = 0 |D = 1). If
this survival probability is small, there is more selection in the group of treated that remains
in unemployment, i.e. more pronounced dynamic selection, leading to a larger difference
between the upper and the lower bound.

From Theorem 1 we also have several other implications. Corollary 1 shows that if there
is no dynamic selection, i.e., if Pr(Y t−1 = 0 |D = 0) = 1 and Pr(Y t−1 = 0 |D = 1) = 1,
then the dynamic treatment effect ATETSt is point identified. If everyone survives the first
t − 1 periods we have under random treatment assignment in period 1 two groups of equal
composition even in period t.

Corollary 1 (Point identification) ATETSt is point identified if and only if both Pr(Y t−1 =
0 |D = 0) = 1 and Pr(Y t−1 = 0 |D = 1) = 1.

The information in the bounds depends on the width of the implied interval. The best
case is that none of the zero or one restrictions (imposed by the max and min in LBt and
UBt above) is binding, and in that case the width of the bounds is

UBt − LBt =
2− Pr(Y t−1 = 0 |D = 1)− Pr(Y t−1 = 0 |D = 0)

Pr(Y t−1 = 0 |D = 1)
.

This expression shows that the width of the bound is decreasing in Pr(Y t−1 = 0 |D = 1) and
Pr(Y t−1 = 0 |D = 0). In the job-bonus application this implies that the width of the bound
is directly related to the probability that unemployed individuals in the treatment group and
in the control group remain in unemployment until time t.

3.1 Arbitrary time to treatment

So far we have considered the case with treatment assignment only at the beginning of the
first period. We now consider a more general case in which the treatment could start in any
time period. We assume that any treated unit remains treated in the subsequent periods.
We denote the treatment indicator in period t by dt and the treatment history up to and

including period t by dt. Let the potential outcome Y dt
t be an indicator of a transition in

period t if the treatment history up to and including t is dt.
Let d1t and d0t be two specific treatment histories. We consider the average transition

rate at t for the subpopulation of individuals who would have survived until time t under d1t:

ATETSd1t,d0tt (4)

= E
(
Y d1t
t

∣∣∣Y d1,t−1

t−1 = 0, . . . , Y d11
1 = 0

)
− E

(
Y d0t
t

∣∣∣Y d1,t−1

t−1 = 0, . . . , Y d11
1 = 0

)
.

With treatment assignments in all periods we need a slightly different randomization assump-
tion. Let Dt be the an indicator of treatment in period t.5 Since we assume that any treated
unit remains treated in subsequent periods, Dt = 1 implies that the unit remains treated in
the subsequent periods.

The relevant random assignment assumption is

5Note that under this definition a unit with Dt = 1 could either be treated or non-treated before t.
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Assumption 2 Sequential randomization among survivors For all t and ds, s ≥ t,
with the first t− 1 components equal to 0,

Dt⊥
{
Y ds
s , s = t, t+ 1, . . .

} ∣∣∣Dt−1 = 0, Y 0
t−1 = · · · = Y 0

1 = 0.

This assumption implies that treatment is assigned randomly among survivors that have
not been treated before.

The interpretation of the ATETSd1t,d0tt depends on the treatments d0t, d1t. As before, we
distinguish between instantaneous or short-run effects and dynamic or long-run effects. With
two periods in which the treatment can start, the two instantaneous treatment effects are
ATETS1,0

1 , which was discussed in section 3, and

ATETS01,00
2 = E(Y 01

2 |Y 0
1 = 0)− E(Y 00

2 |Y 0
1 = 0) (5)

= E(Y2 |Y1 = 0, D1 = 0, D2 = 1)− E(Y2 |Y1 = 0, D1 = 0, D2 = 0).

Here, the second equality follows from the sequential randomization assumption. The instan-
taneous treatment effects for t > 2 are identified using similar reasoning.

Regarding the dynamic treatment effects, we consider the effect in period t of a treatment
that starts in period 1 relative to a treatment that starts in a later period before period t or
after period t. We only discuss this case here, but the bounds for the case that treatment starts
between periods 1 and t can be derived in the same way. The relevant Average Treatment
Effect on Survivors is ATETS1,0

t where 1 and 0 stand for t vectors of 1 and 0, i.e. treatment
in all periods and control in all periods, and is defined by

ATETS1,0
t = E

[
Y 1
t

∣∣∣Y 1
t−1 = 0

]
− E

[
Y 0
t

∣∣∣Y 1
t−1 = 0

]
.

Theorem 2 provides closed form expressions for the sharp bounds on ATETS1,0
t under se-

quential random assignment among survivors.

Theorem 2 (Bounds on ATETS with arbitrary time to treatment) Suppose that As-
sumption 2 holds. Pr

(
Y t−1 = 0|Dt−1 = 1

)
= 0 then ATETS1,0

t is not defined.
If Pr

(
Y t−1 = 0|Dt−1 = 1

)
> 0, then we have the following sharp bounds

LB1,0
t ≤ ATETS1,0

t ≤ UB1,0
t ,

where

LB1,0
t ≡ Pr(Yt = 1|Y t−1 = 0, Dt = 1)

−min

{
1,

1− [1− Pr(Yt = 1|Y t−1 = 0, Dt = 0)] Pr
(
Y t−1 = 0|Dt−1 = 0

)
Pr(Y t−1 = 0|Dt−1 = 1)

}
,

UB1,0
t ≡ Pr(Yt = 1|Y t−1 = 0, Dt = 1)

−max

{
0,

Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr
(
Y t−1 = 0|Dt−1 = 0

)
− 1

Pr(Y t−1 = 0|Dt−1 = 1)
+ 1

}
.
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Proof See Appendix A.
Note the similarity to the bounds in Theorem 1 with only treatment assignment at the

beginning of the first period. The only difference is that in the case of two time periods only
units non-treated in both period 1 and 2 are used to identify the counterfactual outcome
under no treatment. Under sequential randomization among survivors the non-treated in
both periods are comparable to the those entering treatment in period 2, and this means
that we can adjust for assignments in period 2 by censoring those that become treated in the
second period. The same argument applies for the treatment effect in t.

4 Bounds on treatment effects on transitions under additional
assumptions

4.1 Monotone Treatment Response, Common Shocks, and Positively Cor-
related Outcomes

The sharp bounds in the previous section did not impose any assumptions beyond random
assignment. In this section, we explore the identifying power of additional assumptions. The
assumptions that we make are implicit in parametric models as the MPH model, and also in
the discrete duration models and structural models presented in this section. Consider the
following discrete duration model for the control and treated outcomes

Y 0
it = I(αt + Vi − εit ≥ 0),

Y 1
it = I(αt + γit + Vi − εit ≥ 0). (6)

This discrete duration model has a composite error that is the sum of unobserved hetero-
geneity Vi and a random shock εit. The model restricts the joint distribution of the potential
outcomes. A less restrictive model has different random shocks εit, ε̃it that are independent,
but even in this case the potential outcomes are positively correlated through their depen-
dence on Vi. In the sequel we consider assumptions on the joint distribution of potential
outcomes in different treatment arms, that are in line with the assumptions implicit in this
model, but do not assume that the potential outcomes are exactly as in this model. These
assumptions will be used in combination with a weaker version of the constant treatment
effect assumption. In the above model the treatment has a positive effect on the survival
time for all individuals and time periods if γit ≤ 0 for all i, t. This is essentially the Mono-
tone Treatment Response (MTR) assumption introduced by Manski (1997) and Manski and
Pepper (2000). Since the assumptions introduced in this section do not rely on a particular
discrete duration model they are consistent with nonproportional structural hazard models
suggested by Van den Berg (2001).

To define MTR we denote the event of survival under both d0(t) and d1(t) by St.

Assumption 3 (Monotone Treatment Response (MTR)) For treatment paths d0t, d1t
we have that for all i either

Pr
(
Y d1t
it = 1

∣∣∣Si,t−1) ≥ Pr
(
Y d0t
it = 1

∣∣∣Si,t−1) ,
for all t, or

Pr
(
Y d1t
it = 1

∣∣∣Si,t−1) ≤ Pr
(
Y d0t
it = 1

∣∣∣Si,t−1) ,
10



for all t.

For t = 1 Assumption 3 implies that for all i

Pr(Y 1
i1 = 1) ≥ Pr(Y 0

i1 = 1),

or
Pr(Y 1

i1 = 1) ≤ Pr(Y 0
i1 = 1).

Note that it is assumed that the effect is either positive or negative for all t. This assumption
can be relaxed at the expense of more complicated bounds.

Assumption 3 refers to the individual transition probability and not to the transition
indicators. These individual transition probabilities are defined with respect to the distribu-
tion of the individual idiosyncratic shocks εit in (6). The population transition probabilities
that appear in the definition of the ATETS and in Theorem 1 are individual transition prob-
abilities averaged over the distribution of the individual heterogeneity among the treated
survivors.

Note that Assumption 3 does not imply a specific direction of the effects, it merely
implies that the effects either are positive or negative for all individuals. For the job-bonus
experiment considered in this paper this assumption rules out that the bonus increases the
transition rate for some unemployed individuals and decreases the transition rate for others.

The next assumption restricts the joint distribution of potential outcomes in the treatment
arms. The assumption essentially imposes that the outcomes in all treatment arms involve the
same random shocks. Consider the discrete duration model in (6). If γit ≤ 0 then the treated
have a larger survival probability in t. Therefore the event that i survives in t if not treated,
i.e. Y 0

it = 0, is equivalent to εit ≥ αt+Vi, so that this event implies that εit ≥ αt+γit+Vi ≥ 0,
i.e. Y 1

it = 0. Note that we assume that the random shock εit is invariant under a change in
treatment status. This is stronger than the assumption that the distribution of the random
shocks is the same whether i is treated or not. The latter assumption allows for independent
random shocks εit, ε̃it in the model above, if we assume that they have the same distribution.
In a structural model the random shocks are often invariant, as is illustrated in a simple job
search model below.

Assumption 4 (Common Shocks (CS)) For all i, t and treatment paths d0(t) and d1(t)

Pr(Y d1t
it = 0|Si,t−1) ≥ Pr(Y d0t

it = 0|Si,t−1) ⇒ Pr(Y d1t
it = 0|Si,t−1, Y d0t

it = 0) = 1, (7)

and

Pr(Y d1t
it = 0|Si,t−1) ≤ Pr(Y d0t

it = 0|Si,t−1) ⇒ Pr(Y d0t
it = 0|Si,t−1, Y d1t

it = 0) = 1. (8)

Because the right-hand side of (7) is equivalent to Pr(Y d1t
it = 1|Si,t−1, Y d0t

it = 0) = 0,

it is also equivalent to Pr(Y d1t
it = 1, Y d0t

it = 0|Si,t−1) = 0, which in turn is equivalent to

Pr(Y d1t
it > Y d0t

it |Si,t−1) = 0.
Assumption 4 is satisfied in structural models. Consider for instance a non-stationary

job search model for an unemployed individual as in Van den Berg (1990) or Meyer (1996).
The treatment is a re-employment bonus as discussed in Section 5 below. In each period

11



a job offer is obtained with probability p(t, Vi). Let Yof,it be the indicator of an offer in
period t and Yof,it = I(εof,it ∈ A(t, Vi)) with A(t, Vi) a set. If the job offer is not under
control of i, the arrival process is the same under treatment and control. The reservation
wage is denoted by ξ1it for the treated and ξ0it for the controls. In general (see Meyer (1996))
ξ1(t, Vi) ≤ ξ0(t, Vi), so that if H is the wage offer c.d.f. we have the acceptance probabilities
1−H(ξ1(t, Vi)) ≥ 1−H(ξ0(t, Vi)). The acceptance indicators are Y 0

ac,it = I(εw,it ≥ ξ0(t, Vi))
and Y 1

ac,it = I(εw,it ≥ ξ1(t, Vi)) with εw,it the wage offer. Because Y 0
it = Yof,itY

0
ac,it and

Y 1
it = Yof,itY

1
ac,it, we see that

Y 1
it = 0 ⇒ Y 0

it = 0.

Note that the dimension of Vi is arbitrary and that we have two random shocks that have a
structural interpretation and are invariant under a change in treatment status.

In the job-bonus application the intuition behind this assumption is that CS implies that
all random events leading to a job offer and employment are the same irrespective if a specific
unemployed individual is randomized to the treatment group or to the control group. This
almost always holds as the examples suggest.

The third assumption is on the relation between counterfactual outcomes over time. We
introduce the assumption for the two periods case. If we compare the transition probability
Pr(Y 00

2 = 1|Y 1
1 = 0, Y 0

1 = 0) to Pr(Y 00
2 = 1|Y 1

1 = 1, Y 0
1 = 0), i.e. the probability of a

transition in period 2 if no treatment was received in periods 1 and 2 given survival with or
without treatment in period 1 to the same probability given survival without but not with
treatment in period 1, then it is reasonable to assume that the former probability is not larger
than the latter. Individuals with Y 1

1 = 0, Y 0
1 = 0 have characteristics that make them not

leave the initial state as opposed to individuals with Y 1
1 = 1, Y 0

1 = 0 that have characteristics
that make them leave the initial state if treated in period 1. If the variables that affect the
transition out of the initial state are positively correlated between periods, then

Pr(Y 00
2 = 1|Y 1

1 = 0, Y 0
1 = 0) ≤ Pr(Y 00

2 = 1|Y 1
1 = 1, Y 0

1 = 0). (9)

As before we motivate the assumption in a discrete duration model similar to (6) but
without the CS assumption

Y 0
it = I(αt + Vi − εit ≥ 0),

Y 1
it = I(αt + γit + Vi − ε̃it ≥ 0).

where the superscripts 0, 1 are t vectors.
Let k = 1, . . . , t− 1 be the period of a transition if treated. The conditioning events are

Y 0
is = 0, s = 1, . . . , t− 1 and Y 1

is = 0, s = 1, . . . , t− 1 if no transition, or

Vi − εis < −αs, s = 1, . . . , t− 1,

Vi − ε̃is < −αs − γis, s = 1, . . . , t− 1,

and Y 0
is = 0, for s = 1, . . . , t− 1, Y 1

is = 0, for s = 1, . . . , k− 1, and Y 1
ik = 1 if a transition in k

if treated, or

Vi − εis < −αs, s = 1, . . . , t− 1,

Vi − ε̃is < −αs − γis, s = 1, . . . , k − 1,

Vi − ε̃ik ≥ −αk − γik.

12



For example, for t = 2 and k = 1 the conditioning events are if no transition

Vi − εi1 < −α1, Vi − ε̃i1 < −α1 − γi1,

and if a transition in 1 if treated

Vi − εi1 < −α1, Vi − ε̃i1 ≥ −α1 − γi1.

In the conditioning event the inequality on Vi− ε̃it flips, so that if Vi− ε̃i1 is positively related
with Vi − εi2, then (9) holds.

In the general case we have by the same reasoning

Pr(Y 0
t = 1|Y 1

k = 1, Y 1
k−1 = 0, . . . , Y 1

1 = 0, Y 0
t−1 = 0, . . . , Y 0

1 = 0)

≥ Pr(Y 0
t = 1|Y 1

k = 0, Y 1
k−1 = 0, . . . , Y 1

1 = 0, Y 0
t−1 = 0, . . . , Y 0

1 = 0)

≥ Pr(Y 0
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

t−1 = 0, . . . , Y 0
1 = 0).

An analogous argument can be made for Pr(Y 1
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

k = 1, Y 0
k−1 =

0, . . . , Y 1
0 = 0). These arguments lead to the following assumption

Assumption 5 (Positively Correlated Outcomes (PCO)) For all k = 1, . . . , t − 1 we
have

Pr(Y 0
t = 1|Y 1

k = 1, Y 1
k−1 = 0, . . . , Y 1

1 = 0, Y 0
t−1 = 0, . . . , Y 0

1 = 0)

≥ Pr(Y 0
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

t−1 = 0, . . . , Y 0
1 = 0),

and

Pr(Y 1
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

k = 1, Y 0
k−1 = 0, . . . , Y 1

0 = 0)

≥ Pr(Y 1
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

t−1 = 0, . . . , Y 0
1 = 0),

and

Pr(Y 0
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

k = 1, Y 0
k−1 = 0, . . . , Y 1

0 = 0)

≥ Pr(Y 0
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

t−1 = 0, . . . , Y 0
1 = 0),

and

Pr(Y 1
t = 1|Y 1

k = 1, Y 1
k−1 = 0, . . . , Y 1

1 = 0, Y 0
t−1 = 0, . . . , Y 0

1 = 0)

≥ Pr(Y 0
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

t−1 = 0, . . . , Y 0
1 = 0).

The motivating example shows that PCO does not imply nor is implied by MTR or CS.
The CS assumption is on the contemporaneous correlation of random shocks while PCO
relates to a (positive) relation of the combined random error over time. Since the latter in
general contains an important individual effect, positive correlation is not a strong assump-
tion.

For the job-bonus application PCO has several implications. As an illustration, consider
two groups consisting of unemployed who find and unemployed who do not find employment
in the first period if non-treated. In this case PCO implies that in the second period, the
transition rate under treatment on average is weakly larger in the former group compared to
the latter. This holds if the ranking of the unemployed individuals in terms of the character-
istics that determine job offers, such as ability, experience and job search effort, remains the
same during the entire unemployment spell.
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4.2 Bounds under the additional assumptions

We now obtain bounds on ATETS for arbitrary t when we compare a treatment started in
period 1 to no treatment in all periods. Bounds under MTR and CS are given in Theorem 3
and Theorem 4 provides bounds under PCO. Bounds under all three additional assumptions
are in Theorem 5.

Theorem 3 (Bounds on ATETS under MTR and CS for t periods) Let the Assump-
tions 2, 3, and 4 hold. If Pr

(
Y t−1 = 0|Dt−1 = 1

)
= 0 then ATETS1,0

t is not defined. If
Pr
(
Y t−1 = 0|Dt−1 = 1

)
> 0, then we have the following sharp bounds

LB1,0
t ≤ ATETS1,0

t ≤ UB1,0
t ,

where

LB1,0
t = Pr(Yt = 1|Y t−1 = 0, Dt = 1)

−min

{
1, 1 +

Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr
(
Y t−1 = 0|Dt−1 = 0

)
Pr(Y t−1 = 0|Dt−1 = 1)

−
min

{
Pr(Y t−1 = 0|Dt−1 = 1),Pr(Y t−1 = 0|Dt−1 = 0)

}
Pr(Y t−1 = 0|Dt−1 = 1)

}
,

UB1,0
t = Pr(Yt = 1|Y t−1 = 0, Dt = 1)

−max

{
0 ,

[Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1] Pr
(
Y t−1 = 0|Dt−1 = 0

)
Pr(Y t−1 = 0|Dt−1 = 1)

+
min

{
Pr(Y t−1 = 0|Dt−1 = 1),Pr(Y t−1 = 0|Dt−1 = 0)

}
Pr(Y t−1 = 0|Dt−1 = 1)

}
.

Proof See Appendix A.

Assumption 3 states that the treatment effect is either non-negative or non-positive for
all i. Since in period 1 we can estimate the ATETS directly because there is no dynamic
selection yet, the possibility that MTR holds with a non-positive effect, can be excluded if
the ATETS in period 1 is non-negative. If we make the stronger assumption that the effect
has the same sign for all i and for all t then a non-negative ATETS in period 1 excludes
non-positive MTR in all periods. In that case the ATETS is non-negative in all time periods
and this improves the lower bound on the ATETS, but has no effect on the upper bound that
is between 0 and 1. The lower bound on the ATETS if non-negative MTR holds is6:

LB1,0
t = max

{
0,Pr(Yt = 1|Y t−1 = 0, Dt = 1)

−
Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr

(
Y t−1 = 0|Dt−1 = 0

)
Pr(Y t−1 = 0|Dt−1 = 1)

}
.

6In the same way, if the ATETS in period 1 is non-positive, the possibility that MTR holds with a non-
negative effect can be excluded,affecting the upper bound in an obvious way.
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If MTR can change sign between periods we would require prior knowledge of the sign in
each time period to improve on the bounds in Theorem 3.

Theorem 4 (Bounds on ATETS under PCO for t periods) Let Assumptions 2 and 5
hold. If Pr

(
Y t−1 = 0|Dt−1 = 1

)
= 0 then ATETS1,0

t is not defined. If Pr
(
Y t−1 = 0|Dt−1 = 1

)
>

0 and Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0) − 1 > 0 for all
s = 1, . . . , t− 1, then we have the following sharp bounds

LB1,0
t ≤ ATETS1,0

t ≤ UB1,0
t ,

where

LB1,0
t = Pr(Yt = 1|Dt = 1, Y t−1 = 0)− 1 +

1− Pr(Yt = 1|Y t−1 = 0, Dt = 0)

Pr(Y t−1 = 0|Dt−1 = 1)

×
t−1∏
s=1

[Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1],

UB1,0
t = Pr(Yt = 1|Dt = 1, Y t−1 = 0)

−max

{
0,

(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1) Pr
(
Y t−1 = 0|Dt−1 = 0

)∏t−1
s=1[Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1]

+ 1

}
.

If Pr
(
Y t−1 = 0|Dt−1 = 1

)
> 0 and Pr(Ys = 0|Y s−1 = 0, Ds = 1)+Pr(Ys = 0|Y s−1 = 0, Ds =

0)− 1 ≤ 0 for some s ≤ t, then we have the sharp bounds

Pr(Yt = 1|Y t−1 = 0, Dt = 1)− 1 ≤ ATETS1,0
t ≤ Pr(Yt = 1|Y t−1 = 0, Dt = 1).

Proof See Appendix A.

Theorem 5 (Bounds on ATETS under MTR, CS and PCO for t periods) Let the
Assumptions 2-5 hold. If Pr

(
Y t−1 = 0|Dt−1 = 1

)
= 0 then ATETS1,0

t is not defined. If
Pr
(
Y t−1 = 0|Dt−1 = 1

)
> 0, then we have the following sharp bounds

LB1,0
t ≤ ATETS1,0

t ≤ UB1,0
t ,

where

LB1,0
t = Pr(Yt = 1|Dt = 1, Y t−1 = 0)− 1 +

1− Pr(Yt = 1|Y t−1 = 0, Dt = 0)

Pr(Y t−1 = 0|Dt−1 = 1)

×min
{

Pr(Y t−1 = 0|Dt−1 = 1),Pr(Y t−1 = 0|Dt−1 = 0)
}
,

UB1,0
t = Pr(Yt = 1|Dt = 1, Y t−1 = 0)

−max

{
0,

(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1) Pr
(
Y t−1 = 0|Dt−1 = 0

)
min

{
Pr(Y t−1 = 0|Dt−1 = 1),Pr(Y t−1 = 0|Dt−1 = 0)

} + 1

}
.

Proof See Appendix A.
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5 Inference

Initially, for a given time period t, we consider inference on θ0 = ATETSt based on the
identification result in Theorem 1. We assume that Pr(Y t−1 = 0|D = 1) > 0. The bounds in
the theorem can then be expressed as

max(a1, a2) =: ` ≤ θ0 ≤ u := min(a3, a4), (10)

with

a1 = a3 − 1,

a2 = a3 −
1− [1− Pr(Yt = 1|Y t−1 = 0, D = 0)]Pr(Y t−1 = 0|D = 0)

Pr(Y t−1 = 0|D = 1)
,

a3 = Pr(Yt = 1|Y t−1 = 0, D = 1),

a4 = a3 − 1 +
1− Pr(Yt = 1|Y t−1 = 0, D = 0)Pr(Y t−1 = 0|D = 0)

Pr(Y t−1 = 0|D = 1)
.

If we observe an iid sample {(Yi1, Yi2, . . . , Yit, Di), i ∈ 1, . . . , n}, then the sample analog of
a = (a1, a2, a3, a4)

′ can easily be constructed, for example

â3 =
1
n

∑n
i=1 1(Yit = 1, Yi1 = 0, Yi2 = 0, . . . , Yi,t−1 = 0, Di = 0)
1
n

∑n
i=1 1(Yi1 = 0, Yi2 = 0, . . . , Yi,t−1 = 0, Di = 0)

, â1 = â3 − 1,

and analogously for â2 and â4. It is easy to show that as the sample size n goes to infinity

√
n(â− a)⇒ N (0,Σa), (11)

and we can construct a consistent estimator Σ̂a of the 4× 4 matrix Σa (for example, we use
bootstrapping to calculate Σ̂a in our application in Section 6). In the following we assume
that Σa,kk > 0 for all k = 1, 2, 3, 4.7

The identification results in Theorem 2 on θ0 = ATETS1,0
t can also be expressed in

the form (10) for suitable a = (a1, a2, a3, a4)
′ that can be estimated such that (11) holds

asymptotically. The identified set for θ0 = ATETS1,0
t in Theorem 3 can similarly be expressed

as max(a1,min(a2, a3)) ≤ θ0 ≤ min(a4,max(a5, a6)), with appropriate definition of a =
(a1, a2, a3, a4, a5, a6)

′, whose estimator is again jointly normally distributed asymptotically,
and the inference discussion below can be easily generalized to this case. Similarly with
Theorem 4 and 5.

5.1 Connection to the Moment Inequality Literature

The inference problem for θ0 that is summarized by (10) and (11) is asymptotically equivalent
to an inference problem on a finite number of moment inequalities that is well-studied in the
literature, for example in Chernozhukov, Hong, and Tamer (2007), Romano and Shaikh
(2008), Rosen (2008), Andrews and Guggenberger (2009), Andrews and Soares (2010), and
Andrews and Barwick (2012). To make this connection explicit we define

7Since â1 and â3 are perfectly correlated we have Σav = 0 for the vector v = (1,−1, 0, 0)′, implying that
rank(Σa) ≤ 3, but this rank deficiency turns out not to be important for our purposes.
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m(θ) :=


Σ
−1/2
a,11 (a1 − θ)

Σ
−1/2
a,22 (a2 − θ)

Σ
−1/2
a,33 (θ − a3)

Σ
−1/2
a,44 (θ − a4)

 , m̂(θ) :=


Σ̂
−1/2
a,11 (â1 − θ)

Σ̂
−1/2
a,22 (â2 − θ)

Σ̂
−1/2
a,33 (θ − â3)

Σ̂
−1/2
a,44 (θ − â4)

 .

The bounds (10) can then equivalently be expressed as m(θ0) ≤ 0, which is analogous to
imposing four moment inequalities.8 For convenience we have normalized m(θ) such that each
component of

√
n [m̂(θ)−m(θ)] has asymptotic variance equal to one. Using (11) we obtain

√
n [m̂(θ)−m(θ)]⇒ N (0,Σm), where Σm = AΣaA, withA = diag(Σ

−1/2
a,11 ,Σ

−1/2
a,22 ,−Σ

−1/2
a,33 ,−Σ

−1/2
a,44 ).

An estimator Σ̂m can be constructed analogously.
All the papers on moment inequalities cited above start from choosing an objective func-

tion (or criterion function, or test statistics), whose sample version we denote by Q̂(θ), and
then construct a confidence set for θ0 as

Θ̂(C1−α) = {θ ∈ R : nQ̂(θ) ≤ C1−α}, (12)

where C1−α ≥ 0 is a critical value that is chosen such that confidence 1 − α is achieved
asymptotically, i.e. limn→∞ Pr(θ0 ∈ Θ̂(C1−α)) ≥ 1 − α.9 Various objective functions have
been considered in the literature. For example, the objective function considered in Cher-
nozhukov, Hong, and Tamer (2007) reads in our notation Q̂(θ) = ‖[m̂(θ)]+‖2, where ‖.‖ refers
to the Euclidian norm, and [m̂(θ)]+ := max(0, m̂(θ)), applied componentwise to the vector
m̂(θ).

5.2 Construction of Confidence Intervals

Our specific inference problem is easier than the general inference problem for moment in-
equalities, because in our case the parameter θ0 is just a scalar, and the total number of
inequalities is relatively small. Our goal in the following is therefore to outline a concrete
method of how to construct a confidence interval in that special case.

We choose the objective function Q̂(θ) = ‖[m̂(θ)]+‖2∞, where ‖.‖∞ is the infinity norm,10

i.e. we have Q̂(θ) = max{0, m̂1(θ), m̂2(θ), m̂3(θ), m̂4(θ)}2. This objective function is con-
venient for our purposes, because the confidence set defined above then takes the intuitive

8m(θ) is not actually a moment function, but has a slightly more complicated structure (e.g. a3 is a
conditional probability that can be expressed as the ratio between two moments). This, however, does not
matter for the asymptotic analysis since the estimator m̂(θ) has the same first order asymptotic properties
as it would have in the moment inequality case. We can therefore fully draw on the insights of the existing
literature.

9As discussed in e.g. Andrews and Soares (2010), it is important that the coverage probability is asymp-
totically bounded by 1 − α uniformly over θ0 and over the distribution of the observables. We have only
formulated the pointwise condition here to keep the presentation simple.

10This is special case of the “test function” S3(m,Σ) introduced in equation (3.6) of Andrews and Soares
(2010), with p1 = 1 and v = 0 in their notation.

17



form

Θ̂(C1−α)

=

[
max

(
â1 −

c1−αΣ̂
1/2
a,11√
n

, â2 −
c1−αΣ̂

1/2
a,22√
n

)
,min

(
â3 +

c1−αΣ̂
1/2
a,33√
n

, â4 +
c1−αΣ̂

1/2
a,44√
n

)]
,

(13)

where c1−α :=
√
C1−α. This confidence interval can be constructed very easily.

Most Robust Critical Value

The critical value c1−α still needs to be chosen. The problem with choosing the critical value
in moment inequality problems is that this choice depends on the unknown slackness vector
m(θ0), which indicates whether each inequality mk(θ0) ≤ 0 is binding, close to binding, or
far from binding. It is known, however, that the largest (“worst case”) critical value needs
to be chosen if m(θ0) = 0, i.e. if all moment inequalities are binding at the true parameter.
To find this critical value one can use the fact that in this worst case nQ̂(θ) is asymptotically
distributed as ‖[Z]+‖2∞, where Z ∼ N (0,Σm) is a random four vector. Using the estimator

Σ̂m one can simulate this distribution. However, it can easily be shown that the 1−α quantile
of ‖[Z]+‖∞ is always smaller or equal to the following conservative critical value

c1−α = Φ−1
(

1− α

4

)
, (14)

where Φ−1 is the quantile function (the inverse cdf) of the standard normal distribution.
The factor 1/4 that appears here reflects the fact that we have four moment inequalities.
Combining equations (13) and (14) provides a confidence interval that is uniformly valid,
i.e. whose asymptotic size is bounded by α, independent of what the true values of a1, a2, a3
and a4 are.

Critical Value for the Case `� u

The critical values based on the “worst case” where all inequalities are binding (m(θ0) = 0)
can be very conservative if one or multiple inequalities are far from binding (mk(θ0)� 0).11

Furthermore, for the inference on θ0 = ATETSt based on Theorem 1, with a’s as given above,
it can easily be shown that if Pr(Y t−1 = 0|D = 1) > 0 and Pr(Y t−1 = 0|D = 0) < 1, then we
have max(a1, a2) =: ` < u := min(a3, a4), implying that m(θ0) = 0 is impossible. However,
what matters for the coverage rate of the confidence interval for a finite sample is not whether

` < u, but whether the difference u − ` is large relative to the standard deviations Σ
1/2
a,kk of

the âk, k = 1, 2, 3, 4. This is what we mean by `� u in the subsection title above.
To formalize this one can consider a pretest of the hypothesis H0 : ` = u, against the

alternative Ha : ` < u, with pretest size αpre
n chosen to be very small, e.g. αpre

n = 0.001� α.12

11In addition, the formula (14) only provides an upper bound for the optimal critical value at m(θ0) = 0,
but this second issue is often not very severe. For example, for α = 0.05 and Σm = I4 one finds by simulation
that the 0.95 quantile of ‖[Z]+‖∞, with Z ∼ N (0,Σm), is c0.95 = 2.234, while the much easier to computer
conservative critical value in (14) is Φ−1 (0.9875) = 2.241.

12Theoretically one can assume αpre
n → 0 as n→∞ to avoid asymptotic size distortions due to the pretest.
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If the pretest is not rejected, then the critical value (14) should be chosen. If the pretest
is rejected, then the two problems of choosing a suitable lower and upper bound for the
confidence interval Θ̂ completely decouple, because with high confidence we know that for
any θ only one of those bounds can be binding at the same time, implying that at most two
of the moment inequalities m(θ0) ≤ 0 can be binding. In this latter case we can therefore
choose the less conservative critical value

c1−α = Φ−1
(

1− α

2

)
, (15)

when computing the confidence interval (13).

Critical Value for the Case a1 � a2 � u

Analogous to the discussion of (14), the critical value (15) is again potentially conservative
because it is based on the case where two of the inequalities m(θ0) ≤ 0 (for either the lower or
the upper bound, respectively) are jointly binding.13 For example, if we find that a1 � a2 � u
(by which we again mean that the null hypotheses H0 : a1 = a2, vs. Ha : a1 < a2, and
H0 : a2 = u, vs. Ha : a2 < u, are rejected with very high confidence), then a natural
confidence interval to report is

Θ̂ =

[
â2 −

Φ−1 (1− α) Σ̂
1/2
a,22√

n
,min

(
â3 +

Φ−1
(
1− α

2

)
Σ̂
1/2
a,33√

n
, â4 +

Φ−1
(
1− α

2

)
Σ̂
1/2
a,44√

n

)]
.

Note that the lower bound of Θ̂ now corresponds to inverting a standard one-sided t-test.
Analogous confidence intervals can obviously be constructed in other cases, e.g. `� a3 � a4
or a2 � a1 � a4 � a3, etc.

The different critical values and corresponding confidence intervals discussed above cor-
respond to cases where different subsets of the inequalities m(θ0) ≤ 0 can be simultaneously
binding, i.e. to a moment selection problem. A much more general discussion of moment
selection is given e.g. in Andrews and Soares (2010). Different confidence intervals than
those discussed here, e.g. based on different objective functions Q̂(θ), can of course also be
considered.

It should be noted that pretesting is not required if we use the approach in Hahn and
Ridder (2014) who obtain a confidence interval by inverting the Likelihood Ratio test for the
composite null and composite alternative test. Their current results do not cover the case
considered here and we did not attempt the non-trivial extension to the case considered here.

6 Application to the Illinois bonus experiment

6.1 The re-employment bonus experiment

Between mid-1984 and mid-1985, the Illinois Department of Employment Security conducted
a randomized social experiment.14 The goal of the experiment was to explore, whether re-

13It is also conservative, because the information in the correlation matrix Σm is not used to construct (15).
It corresponds to the the most extreme case where both lower bound estimators â1 and â2 (or both upper
bound estimators â3 and â4) are perfectly negatively correlated.

14A complete description of the experiment and a summary of its results can be found in Woodbury and
Spiegelman (1987).
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employment bonuses paid to Unemployment Insurance (UI) beneficiaries (treatment 1) or
their employers (treatment 2) reduced the length of unemployment spells.

Both treatments consisted of a $500 re-employment bonus, which was about four times
the average weekly unemployment insurance benefit. In the experiment, newly unemployed
UI claimants were randomly divided into three groups:
1. The Claimant Bonus Group. The members of this group were instructed that they would
qualify for a cash bonus of $500 if they found a job (of at least 30 hours) within 11 weeks
and, if they held that job for at least 4 months. A total of 4186 individuals were selected for
this group, and 3527 (84%) agreed to participate.
2. The Employer Bonus Group. The members of this group were told that their next employer
would qualify for a cash bonus of $500 if they, the claimants, found a job (of at least 30 hours)
within 11 weeks and, if they held that job for at least four months. A total of 3963 were
selected for this group and 2586 (65%) agreed to participate.
3. The Control Group, i.e. all claimants not assigned to one of the treatment groups.
This group consisted of 3952 individuals. The individuals assigned to the control group were
excluded from participation in the experiment. In fact, they did not know that the experiment
took place.

The descriptive statistics in Table 2 in Woodbury and Spiegelman (1987) confirm that
the randomization resulted in three similar groups.

6.2 Results of previous studies

Woodbury and Spiegelman (1987) concluded from a direct comparison of the control group
and the two treatment groups that the claimant bonus group had a significantly shorter av-
erage unemployment duration. The average unemployment duration was also shorter for the
employer bonus group, but the difference was not significantly different from zero. In Illinois
UI benefits end after 26 weeks and since administrative data were used, all unemployment
durations are censored at 26 weeks. Woodbury and Spiegelman ignore the censoring and take
as outcome variable the number of weeks of insured unemployment.

Meyer (1996) analyzed the same data but focused on the treatment effects on conditional
transition probabilities which allows him to properly account for censoring. Meyer focuses on
the conditional transitions rates because both labor supply and search theory imply specific
dynamic treatment effects. The bonus is only given to an unemployed individual if (s)he
finds a job within 11 weeks and retains it for four months. The cash bonus is the same for all
unemployed. Theory predicts that (i) the transition rate during the eligibility period (first 11
weeks) will be higher in the two treatment groups compared with the control group, and (ii)
that the transition rate in the treatment groups will rise just before the end of the eligibility
period, as the unemployed run out of time to collect the bonus.

To test these predictions, Meyer (1996) estimates a proportional hazard (PH) model
with a flexible specification of the baseline hazard. He uses the treatment indicator as an
explanatory variable. Since there was partial compliance with treatment his estimator can
be interpreted as a intention to treat (ITT) estimator.15 In his analysis Meyer controls for

15The partial compliance is addressed in detail by Bijwaard and Ridder (2005). They introduce a new
method to handle the selective compliance in the treatment group. If there is full compliance in the control
group, their two-stage linear rank estimator is able to handle the selective compliance in the treatment group
even for censored durations. In order to achieve this they assume a MPH structure for the transition rate.
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age, the logarithm of base period earnings, ethnicity , gender and the logarithm of the size of
the UI benefits. He finds a significantly positive effect of the claimant bonus and a positive
but insignificant effect of the employer bonus. A more detailed analysis of the effects for
the claimant group reveals a positive effect on the transition rate during the first 11 weeks
in unemployment, an increased effect during week 9 and 10, and no significant effect on the
transition rate after week 11 as predicted by labor supply and search theory.

6.3 Estimates of bounds

In his study Meyer (1996) relies on the proportionality of the hazard rate to investigate
his hypotheses. We now ask what can be said if the assumptions of the MPH model do
not hold, that is what can be identified if we rely solely on random assignment and the
additional assumptions. As Meyer we consider the ITT effect, i.e. we do not correct for
partial compliance. We divide the 24 month observation period into 12 subperiods: week 1-2,
week 3-4, ... , week 23-24. The reason for this is that there is a pronounced even-odd week
effect in the data, with higher transition rate during odd weeks. With these subperiods the
predictions we wish to test are: (i) a positive treatment effect during periods 1-5, i.e.

ATETS1,0
t > 0 , t = 1, . . . , 5,

(ii) no effect after the bonus offer has expired in periods 6-12, i.e.

ATETS1,0
t = 0 , t = 6, . . . , 12,

and (iii) a larger effect of the bonus offer at the end of the eligibility period in period 5, i.e.

ATETS1,0
5 > ATETS1,0

4 .

Note that in this experiment the treatment assignment is in period 1, so that in ATETS1,0
t

the superscripts 1 and 0 are t vectors with components equal to 1 and 0.
We report both the bounds that are obtained by simply replacing the population moments

with their sample analogs, as well as the confidence intervals based on the approach described
in section 5.16 Table 1 presents the upper and the lower bound and the confidence interval
on ATETS1,0

t for the claimant group assuming only random assignment. We find that the
instantaneous treatment effect on the transition probability (week 1-2) is point identified
and indicates a positive effect of the re-employment bonus. The transition probability is
about 2 percentage points higher in the treatment group compared to the control group.
This estimate is statistically significant. From week 3-4 and onwards the bounds are quite
wide. In fact, without further assumptions we cannot rule out that the bonus actually has a
negative impact on the conditional transition probability after week 3. However, the bounds
are nevertheless informative on the average treatment effect in all time periods.

Table 1 also shows that the confidence intervals are marginally wider than the actual
bounds. That is the uncertainty arising from the dynamic selection is far greater than the
uncertainty due to sampling variation.

Their estimates indicate that the ITT estimates by Meyer (1996) underestimate the true treatment effect.
16The covariance matrix Σa is estimated using the bootstrap with 399 replications. Constructing confidence

intervals furthermore requires moment selection, e.g. for the bounds under just random assignment we find
that with very high confidence only one inequality is binding for the lower as well as the upper bound. Details
are available from the authors upon request.
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Next, Table 1 presents bounds under the additional assumptions in Section 4. As ex-
pected, if we impose additional assumptions the bounds are considerably narrower. Under
MTR and CS we can rule out very large negative and very large positive dynamic treatment
effects. Imposing MTR, CS as well as PCO further tightens the bounds. If these assump-
tions hold simultaneously we can, if we disregard sampling variation, rule out that the bonus
offer has a negative effect on the transition rate out of unemployment up to week 20. This
conclusions changes slightly when sampling variation is taken into account.

Let us return to the three hypotheses suggested by labor supply and search theory, and
consider our most restrictive bounds under MTR, CS and PCO. We find that there is a
positive effect of the bonus offer on the conditional transition rate up to week 11. This
confirms the first hypothesis. The upper bound increases in time period 5 (weeks 9-10), but
the lower bound does not increase enough, so that both an increase and no change (and even
a small decrease) in the transition probability out of unemployment are consistent with the
data. Now consider the third hypothesis that there is no effect on the transition rate after
week 11. Again the bounds do not rule out that there is a positive effect on the conditional
transition probability after week 11. These results illustrate that the evidence for the second
and third hypotheses presented by a number of authors rely on the imposed structure, e.g.
proportionality of the hazard or the restrictions implied by a particular discrete-time duration
model.

We next examine heterogenous effects. To this end we split our sample by gender, race
and pre-unemployment income and estimate our bounds for each subgroup. We provide
results for bounds without additional assumptions and bounds under MTR, CS and PCO.
The other bounds are available upon request. If we focus on the bounds under MTR, CS
and PCO, Table 2 indicates several interesting differences between males and females. For
males we find significant effects in the beginning of the unemployment spell (weeks 1-2) and
shortly before the bonus expires (weeks 7-10). For females on the other hand we only find
significant effects in weeks 1-4, but no effects before week 11. This indicates that females
quickly responds to the bonus offer, whereas a large part of the effects for males occur shortly
before the end of the subsidy. Table 3 in Appendix B also reveals some differences between
blacks and non-blacks. For both groups we find significant effects during the first 11 weeks of
unemployment, but for non-blacks the bonus offer also increases the transition rates after the
bonus offers has expired (e.g. during weeks 15-16). Finally, Tables 4 in Appendix B reveals
no significant differences between how workers with low and high income react to the bonus
offer.

7 Conclusions

In this paper, we have derived bounds on treatment effects on conditional transition prob-
abilities under (sequential) randomization. The partial identification problem arises since
random assignment only ensures comparability of the treatment and control groups at the
time of randomization. In the literature this problem is often refereed to as the dynamic
selection problem. For that reason only instantaneous or short-run effects are point identi-
fied, whereas dynamic or long-run effects in general are not point identified. Our weakest
bounds impose no assumptions beyond (sequential) random assignment, so that they are
not sensitive to arbitrary functional form assumptions, require no additional covariates and
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allow arbitrary heterogenous treatment effects as well as arbitrary unobserved heterogeneity.
These non-parametric bounds offer an alternative to semi-parametric methods. They tend
to be wide and therefore we have also derived more informative bounds under additional
assumptions that often hold in semi-parametric reduced form and structural models.

An analysis of data from the Illinois re-employment bonus experiment shows that our
bounds are informative about average treatment effects. It also demonstrates that previ-
ous results on the evolution of the average treatment effect require that assumptions as
the proportionality of the hazard rate or those embodied in a particular (semi-)parametric
discrete-time hazard model hold.
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Tables

Table 1: Bounds on ATETS1,0 for the Illinois job bonus experiment

No assumption bounds [A] MTR+CS [B]

Lower-
CI

LB UB Upper-
CI

Lower-
CI

LB UB Upper-
CI

(1) (2) (3) (4) (5) (6) (7) (8)
Week
1-2 0.012 0.023 0.023 0.034 0.012 0.023 0.023 0.034
3-4 -0.145 -0.137 0.094 0.102 0.000 0.011 0.038 0.050
5-6 -0.259 -0.251 0.074 0.082 -0.007 0.004 0.046 0.056
7-8 -0.346 -0.339 0.078 0.086 0.004 0.013 0.063 0.073
9-10 -0.452 -0.444 0.069 0.077 0.000 0.008 0.069 0.079
11-12 -0.552 -0.544 0.062 0.070 0.000 0.008 0.062 0.072
13-14 -0.655 -0.648 0.056 0.064 -0.010 -0.002 0.056 0.064
15-16 -0.750 -0.743 0.051 0.058 -0.004 0.003 0.051 0.058
17-18 -0.844 -0.836 0.049 0.057 -0.007 0.000 0.049 0.057
19-20 -0.943 -0.936 0.049 0.057 -0.011 -0.004 0.049 0.056
21-22 -0.994 -0.953 0.047 0.056 -0.028 -0.021 0.047 0.055
23-24 -0.989 -0.944 0.056 0.064 -0.011 -0.002 0.056 0.064

PCO [C] MTR+CS+PCO [D]

Lower-
CI

LB UB Upper-
CI

Lower-
CI

LB UB Upper-
CI

(1) (2) (3) (4) (5) (6) (7) (8)
Week
1-2 0.012 0.023 0.023 0.034 0.012 0.023 0.023 0.034
3-4 -0.131 -0.123 0.094 0.102 0.002 0.014 0.038 0.049
5-6 -0.209 -0.202 0.074 0.082 -0.004 0.007 0.046 0.055
7-8 -0.256 -0.247 0.078 0.087 0.008 0.016 0.063 0.072
9-10 -0.306 -0.299 0.069 0.077 0.004 0.012 0.069 0.078
11-12 -0.348 -0.340 0.062 0.070 0.004 0.012 0.062 0.071
13-14 -0.388 -0.379 0.056 0.064 -0.004 0.003 0.056 0.064
15-16 -0.419 -0.411 0.051 0.058 0.000 0.007 0.051 0.059
17-18 -0.445 -0.438 0.049 0.057 -0.003 0.005 0.049 0.058
19-20 -0.472 -0.464 0.049 0.057 -0.006 0.001 0.049 0.057
21-22 -0.504 -0.496 0.047 0.063 -0.022 -0.014 0.047 0.055
23-24 -0.523 -0.513 0.056 0.073 -0.006 0.003 0.056 0.065

Notes: CI is 95% confidence intervals. Variances and covariances used to obtain the CI are estimated using
bootstrap (399 replications).
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Table 2: Bounds on ATETS1,0 for the Illinois job bonus experiment. Heterogenous effects
for males and females

Panel A: Males
No assumption bounds MTR+CS+PCO

Lower-
CI

LB UB Upper-
CI

Lower-
CI

LB UB Upper-
CI

(1) (2) (3) (4) (1) (2) (3) (4)
Week
1-2 -0.004 0.016 0.016 0.037 0.002 0.016 0.016 0.030
3-4 -0.152 -0.141 0.094 0.105 -0.004 0.009 0.026 0.039
5-6 -0.269 -0.259 0.075 0.084 -0.010 0.003 0.030 0.043
7-8 -0.349 -0.338 0.085 0.096 0.009 0.024 0.054 0.069
9-10 -0.464 -0.453 0.076 0.087 0.000 0.014 0.070 0.084
11-12 -0.573 -0.562 0.069 0.080 0.005 0.015 0.069 0.081
13-14 -0.688 -0.676 0.065 0.076 -0.004 0.006 0.065 0.077
15-16 -0.793 -0.782 0.054 0.064 0.004 0.014 0.054 0.064
17-18 -0.899 -0.887 0.056 0.067 -0.008 0.003 0.056 0.066
19-20 -0.994 -0.941 0.059 0.071 -0.004 0.008 0.059 0.071
21-22 -1.006 -0.948 0.052 0.063 -0.028 -0.017 0.052 0.066
23-24 -1.006 -0.941 0.059 0.071 -0.010 0.002 0.059 0.074

PCO [C] MTR+CS+PCO [D]

Panel B: Females
No assumption bounds MTR+CS+PCO

(1) (2) (3) (4) (1) (2) (3) (4)
Week
1-2 0.008 0.031 0.031 0.054 0.014 0.031 0.031 0.047
3-4 -0.143 -0.131 0.093 0.105 0.003 0.019 0.053 0.069
5-6 -0.251 -0.239 0.074 0.085 0.000 0.012 0.066 0.080
7-8 -0.348 -0.337 0.068 0.079 -0.006 0.005 0.068 0.082
9-10 -0.441 -0.430 0.060 0.071 -0.003 0.009 0.060 0.073
11-12 -0.528 -0.517 0.053 0.064 -0.002 0.008 0.053 0.066
13-14 -0.616 -0.606 0.045 0.055 -0.011 0.000 0.045 0.055
15-16 -0.698 -0.686 0.046 0.057 -0.012 0.000 0.046 0.059
17-18 -0.775 -0.764 0.041 0.052 -0.008 0.007 0.041 0.055
19-20 -0.861 -0.851 0.036 0.047 -0.016 -0.006 0.036 0.047
21-22 -0.949 -0.936 0.041 0.054 -0.022 -0.011 0.041 0.055
23-24 -1.020 -0.948 0.052 0.066 -0.009 0.004 0.052 0.068

Notes: CI is 95% confidence intervals. Variances and covariances used to obtain the CI are estimated using
bootstrap (399 replications).
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Appendix A: Proofs

Proof of Theorem 1

We use the following notation for the distribution of the potential outcomes. For d = 0, 1

pdt (1|0, 0) =: Pr(Y d
t = 1|Y 1

t−1 = 0, Y
0
t−1 = 0),

pdt (1|0, 6= 0) =: Pr(Y d
t = 1|Y 1

t−1 = 0, Y
0
t−1 6= 0),

pdt (1| 6= 0, 0) =: Pr(Y d
t = 1|Y 1

t−1 6= 0, Y
0
t−1 = 0),

and for the joint distribution of Y
1
t−1, Y

0
t−1

pt−1(0, 0) =: Pr(Y
1
t−1 = 0, Y

0
t−1 = 0),

pt−1(0, 6= 0) =: Pr(Y
1
t−1 = 0, Y

0
t−1 6= 0),

pt−1(6= 0, 0) =: Pr(Y
1
t−1 6= 0, Y

0
t−1 = 0),

We derive bounds on ATETS1,0
t defined by

E
[
Y 1
t |Y

1
t−1 = 0

]
− E

[
Y 0
t |Y

1
t−1 = 0

]
(A.1)

with the data providing the observed transition probabilities Pr(Yt = yt|Y t−1 = 0, D = 1)
and Pr(Yt = yt|Y t−1 = 0, D = 0).

Under Assumption 1

E[Y 1
t |Y

1
t−1 = 0] = Pr(Yt = 1|Y t−1 = 0, D = 1),

so that if Pr(Y
1
t−1 = 0|D = 1) = Pr(Y t−1 = 0|D = 1) > 0 then E[Y 1

t |Y
1
t−1 = 0] is point-

identified, and if Pr(Y
1
t−1 = 0|D = 1) = Pr(Y t−1 = 0|D = 1) = 0 then E[Y 1

t |Y
1
t−1 =

0],E[Y 0
t |Y

1
t−1 = 0] and ATETS1,0

t are not defined. Note that the point identification of this
mean is similar to the point identification of the treated mean in the ATET in static settings.

Next, we have for the counterfactual transition probability

E
[
Y 0
t |Y

1
t−1 = 0

]
=
p0t (1|0, 0)pt−1(0, 0) + p0t (1|0, 6= 0)pt−1(0, 6= 0)

pt−1(0, 0) + pt−1(0, 6= 0)
. (A.2)

By Assumption 1

Pr(Yt = 1, Y t−1 = 0|D = 0) = Pr(Y 0
t = 1, Y

0
t−1 = 0|D = 0) = Pr(Y 0

t = 1, Y
0
t−1 = 0).

By the law of total probability

Pr(Y 0
t = 1, Y

0
t−1 = 0) = Pr(Y

1
t−1 = 0, Y 0

t = 1, Y
0
t−1 = 0) + Pr(Y

1
t−1 6= 0, Y 0

t = 1, Y
0
t−1 = 0) =

p0t (1|0, 0)pt−1(0, 0) + p0t (1| 6= 0, 0)pt−1( 6= 0, 0).

Therefore,

Pr(Yt = 1, Y t−1 = 0|D = 0) = p0t (1|0, 0)pt−1(0, 0) + p0t (1| 6= 0, 0)pt−1(6= 0, 0)
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Solving for p0t (1|0, 0) gives

p0t (1|0, 0) =
Pr(Yt = 1, Y t−1 = 0|D = 0)− p0t (1| 6= 0, 0)pt−1(6= 0, 0)

pt−1(0, 0)
.

and upon substitution

E
[
Y 0
t |Y

1
t−1 = 0

]
=

Pr(Yt = 1, Y t−1 = 0|D = 0)

pt−1(0, 0) + pt−1(0, 6= 0)
−p

0
t (1| 6= 0, 0)pt−1( 6= 0, 0)− p0t (1|0, 6= 0)pt−1(0, 6= 0)

pt−1(0, 0) + pt−1(0, 6= 0)
.

The expression on the right-hand side is decreasing in p0t (1| 6= 0, 0) and increasing in
p0t (1|0, 6= 0). The lower bound is obtained by setting p0t (1| 6= 0, 0) at 1 and p0t (1|0, 6= 0) at 0
and the upper bound by setting p0t (1| 6= 0, 0) at 0 and p0t (1|0, 6= 0) at 1 so that

Pr(Yt = 1|Y t−1 = 0, D = 0) Pr(Y t−1 = 0|D = 0)− pt−1(6= 0, 0)

pt−1(0, 0) + pt−1(0, 6= 0)

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤

Pr(Yt = 1|Y t−1 = 0, D = 0) Pr(Y t−1 = 0|D = 0) + pt−1(0, 6= 0)

pt−1(0, 0) + pt−1(0, 6= 0)
.

where we note that

Pr(Yt = 1|Y t−1 = 0, D = 0) Pr(Y t−1 = 0|D = 0) = Pr(Yt = 1, Y t−1 = 0|D = 0) = 0

if Pr(Y t−1 = 0|D = 0) = 0.
Because

Pr(Y t−1 = 0|D = 1) = pt−1(0, 0) + pt−1(0, 6= 0)

and
Pr(Y t−1 = 0|D = 0) = pt−1(0, 0) + pt−1(6= 0, 0)

we have
[Pr(Yt = 1|Y t−1 = 0, D = 0)− 1] Pr

(
Y t−1 = 0|D = 0

)
+ pt−1(0, 0)

Pr(Y t−1 = 0|D = 1)
(A.3)

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤

Pr(Yt = 1|Y t−1 = 0, D = 0) Pr
(
Y t−1 = 0|D = 0

)
− pt−1(0, 0)

Pr(Y t−1 = 0|D = 1)
+ 1.

The upper bound is decreasing and the lower bound is increasing in pt−1(0, 0). By the
Bonferroni inequality

pt−1(0, 0) ≥ max
{

Pr(Y
1
t−1 = 0) + Pr(Y

0
t−1 = 0)− 1, 0

}
=

max
{

Pr
(
Y t−1 = 0|D = 1

)
+ Pr

(
Y t−1 = 0|D = 0

)
− 1, 0

}
.

If
Pr
(
Y t−1 = 0|D = 1

)
+ Pr

(
Y t−1 = 0|D = 0

)
− 1 ≤ 0
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the lower bound on pt−1(0, 0) is 0. In that case the lower bound in (A.3) is non-positive and
the upper bound is greater than or equal to 1 so that

0 ≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤ 1.

If Pr
(
Y t−1 = 0|D = 1

)
+Pr

(
Y t−1 = 0|D = 0

)
−1 > 0 we have upon substitution of the lower

bound on pt−1(0, 0) into (A.3) and because the probability E
[
Y 0
t |Y

1
t−1 = 0

]
is bounded by

zero and one

max

{
0,

Pr(Yt = 1|Y t−1 = 0, D = 0) Pr
(
Y t−1 = 0|D = 0

)
− 1

Pr(Y t−1 = 0|D = 1)
+ 1

}

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤ (A.4)

min

{
1,

1− [1− Pr(Yt = 1|Y t−1 = 0, D = 0)] Pr
(
Y t−1 = 0|D = 0

)
Pr(Y t−1 = 0|D = 1)

}
.

Finally, we combine these bounds with the point-identified E[Y 1
t |Y

1
t−1 = 0] to obtain bounds

on ATETSt.
We now prove that the bounds are sharp. We will show that there is a joint distribution

of the latent potential outcomes such that the counterfactual transition probability in (A.2)
is equal to the upper bound in (A.4). There are two cases. First, consider the upper bound
if

1− [1− Pr(Yt = 1|Y t−1 = 0, Dt = 0)] Pr
(
Y t−1 = 0|D = 0

)
Pr(Y t−1 = 0|D = 1)

≤ 1 (A.5)

Because the denominator of the counterfactual transition probability and this upper bound
are the same we have to choose the joint distribution of the latent potential outcomes such
that

p0t (1|0, 0)pt−1(0, 0)+p0t (1|0, 6= 0)pt−1(0, 6= 0) = 1−Pr(Y t−1 = 0|D = 0)+Pr(Yt = 1, Y t−1 = 0|D = 0)
(A.6)

and the restrictions

pt−1(0, 0) + pt−1(0, 6= 0) = Pr(Y t−1 = 0|D = 1)

pt−1(0, 0) + pt−1(6= 0, 0) = Pr(Y t−1 = 0|D = 0) (A.7)

p0t (1|0, 0)pt−1(0, 0) + p0t (1| 6= 0, 0)pt−1(6= 0, 0) = Pr(Yt = 1, Y t−1 = 0|D = 0),

hold. Now set pt−1(0, 0) at its lower bound. If that bound is 0, then the counterfactual
transition probability in (A.2) is equal to p0t (1|0, 6= 0) that is unrestricted so that the [0, 1]
interval gives sharp bounds. If the lower bound is17 Pr(Y t−1 = 0|D = 1) + Pr(Y t−1 = 0|D =
0) − 1 > 0, then pt−1(0, 6= 0) = 1 − Pr(Y t−1 = 0|D = 0) and pt−1( 6= 0, 0) = 1 − Pr(Y t−1 =
0|D = 1). Therefore to satisfy (A.6) and (A.7) the probabilities p0t (1|0 6=, 0) and p0t (1| 6= 0, 0)
must satisfy

p0t (1|0, 6= 0)pt−1(0, 6= 0)− p0t (1| 6= 0, 0)pt−1( 6= 0, 0) = pt−1(0, 6= 0) (A.8)

17Note that this implies that the probability that Y 1
t−1 = 0 or Y 0

t−1 = 0 is 1.
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with pt−1(0, 6= 0) = 1−Pr(Y t−1 = 0|D = 0) and pt−1( 6= 0, 0) = 1−Pr(Y t−1 = 0|D = 1). The
only values in the unit interval are p0t (1|0, 6= 0) = 1 and p0t (1| 6= 0, 0) = 0. Therefore if the
joint distribution of the potential outcomes is such that pt−1(0, 0) = Pr(Y t−1 = 0|D = 1) +
Pr(Y t−1 = 0|D = 0)− 1, pt−1(0, 6= 0) = 1−Pr(Y t−1|D = 0), pt−1(6= 0, 0) = 1−Pr(Y t−1|D =
1), p0t (1|0, 6= 0) = 1, p0t (1| 6= 0, 0) = 0 and

p0t (1|0, 0) =
Pr(Yt = 1, Y t−1 = 0|D = 0)

Pr(Y t−1 = 0|D = 1) + Pr(Y t−1 = 0|D = 0)− 1
, (A.9)

then the counterfactual transition probability is equal to its upper bound. Note that the
right hand side of (A.9) is not greater than 1 if (A.5) holds.

Second, consider the upper bound if

1− [1− Pr(Yt = 1|Y t−1 = 0, D = 0)] Pr
(
Y t−1 = 0|D = 0

)
Pr(Y t−1 = 0|D = 1)

> 1. (A.10)

Then E
[
Y 0
t |Y

1
t−1 = 0

]
in (A.2) is at its upper bound 1 if the latent distribution satisfies

p0t (1|0, 0)pt−1(0, 0) + p0t (1|0, 6= 0)pt−1(0, 6= 0) = Pr(Y t−1 = 0|D = 1) (A.11)

Now set pt−1(0, 0) at its lower bound. As above, if that bound is 0, then the counterfactual
transition probability is equal to p0t (1|0, 6= 0) that is unrestricted so that the [0, 1] interval gives
sharp bounds. If the lower bound on pt−1(0, 0) is Pr(Y t−1 = 0|D = 1) + Pr(Y t−1 = 0|D =
0)−1, then pt−1(0, 6= 0) = 1−Pr(Y t−1 = 0|D = 0) and pt−1(6= 0, 0) = 1−Pr(Y t−1 = 0|D = 1).
If we consider (A.11) for these values of pt−1(0, 0), pt−1(0, 6= 0), i.e., the equation

p0t (1|0, 0)(Pr(Y t−1 = 0|D = 1)+Pr(Y t−1 = 0|D = 0)−1)+p0t (1|0, 6= 0)(1−Pr(Y t−1 = 0|D = 1)) =

Pr(Y t−1 = 0|D = 0)

then because if p0t (1|0, 0) = 0 then p0t (1|0, 6= 0) > 1 and if p0t (1|0, 6= 0) = 0 then p0t (1|0, 0) > 1
the only values of p0t (1|0, 0), p0t (1|0, 6= 0) in the unit interval that satisfy this equation are
p0t (1|0, 0) = 1 and p0t (1|0, 6= 0) = 1.

The final restriction in (A.7) is satisfied if

p0t (1| 6= 0, 0) = 1− [1− Pr(Yt = 1|Y t−1 = 0, D = 0)] Pr(Y t−1 = 0|D = 0)

1− Pr(Y t−1 = 0|D = 1)
=

1− Pr(Y t−1 = 0|D = 1)− Pr(Y t−1 = 0|D = 1) + Pr(Yt = 1, Y t−1 = 0|D = 0)

1− Pr(Y t−1 = 0|D = 1)

which is non-negative by (A.10) and obviously not greater than 1.
Note that this construction breaks down if Pr(Y t−1 = 0|D = 1) = 1. In that case because

1− Pr
(
Y t−1 = 0|D = 0

)
+ Pr(Yt = 1, Y t−1 = 0|D = 0)] ≤ 1

we have that (A.10) cannot hold, so that no construction is needed.
We conclude that in all cases we can find a distribution of the latent potential outcomes

so that the ATETS attains the upper bound in (A.4). The argument that the lower bound
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is sharp is analogous.

Proof of Theorem 2

We derive bounds on ATETS1,0
t = E

[
Y 1
t |Y

1
t−1 = 0

]
−E

[
Y 0
t |Y

1
t−1 = 0

]
, with the data provid-

ing the observed transition probabilities Pr(Yt = yt|Y t−1 = 0, Dt = 1) and Pr(Yt = yt|Y t−1 =

0, Dt = 0). Under Assumption 2 E[Y 1
t |Y

1
t−1 = 0] = Pr(Yt = 1|Y t−1 = 0, Dt = 1),so

that if Pr(Y
1
t−1 = 0|Dt−1 = 1) = Pr(Y t−1 = 0|Dt−1 = 1) > 0 then E[Y 1

t |Y
1
t−1 = 0]

is point-identified, and if Pr(Y
1
t−1 = 0|Dt−1 = 1) = Pr(Y t−1 = 0|Dt−1 = 1) = 0 then

E[Y 1
t |Y

1
t−1 = 0],E[Y 0

t |Y
1
t−1 = 0] and ATETS1,0

t are not defined.
Next, we have for the counterfactual transition probability

E
[
Y 0
t |Y

1
t−1 = 0

]
=
p0t (1|0, 0)pt−1(0, 0) + p0t (1|0, 6= 0)pt−1(0, 6= 0)

pt−1(0, 0) + pt−1(0, 6= 0)
. (A.12)

By Assumption 2 and using similar reasoning as for the proof of Theorem 1 (see (A.3))

[Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1] Pr
(
Y t−1 = 0|Dt = 0

)
+ pt−1(0, 0)

Pr(Y t−1 = 0|Dt = 1)
(A.13)

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤

Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr
(
Y t−1 = 0|Dt = 0

)
− pt−1(0, 0)

Pr(Y t−1 = 0|Dt = 1)
+ 1.

The upper bound is decreasing and the lower bound is increasing in pt−1(0, 0). Next, by the
Bonferroni inequality

pt−1(0, 0) ≥ max
{

Pr(Y
1
t−1 = 0) + Pr(Y

0
t−1 = 0)− 1, 0

}
.

Also with Y0 ≡ 0

Pr(Y
1
t−1 = 0) =

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1) = Pr(Y t−1|Dt−1 = 1)

and

Pr(Y
0
t−1 = 0) =

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0) = Pr(Y t−1|Dt−1 = 0)

so that

pt−1(0, 0) ≥ max
{

Pr
(
Y t−1 = 0|Dt−1 = 1

)
+ Pr

(
Y t−1 = 0|Dt−1 = 0

)
− 1, 0

}
.

If Pr
(
Y t−1 = 0|Dt−1 = 1

)
+Pr

(
Y t−1 = 0|Dt−1 = 0

)
−1 ≤ 0 the lower bound on pt−1(0, 0)

is 0. In that case the lower bound in (A.13) is non-positive and the upper bound is greater

than or equal to 1 so that 0 ≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤ 1.
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If Pr
(
Y t−1 = 0|Dt−1 = 1

)
+ Pr

(
Y t−1 = 0|Dt−1 = 0

)
− 1 > 0 we have upon substitution

of the lower bound on pt−1(0, 0) into (A.13) and because the probability E
[
Y 0
t |Y

1
t−1 = 0

]
is

bounded by zero and one

max

{
0,

Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr
(
Y t−1 = 0|Dt = 0

)
− 1

Pr(Y t−1 = 0|Dt = 1)
+ 1

}

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤ (A.14)

min

{
1,

1− [1− Pr(Yt = 1|Y t−1 = 0, Dt = 0)] Pr
(
Y t−1 = 0|Dt = 0

)
Pr(Y t−1 = 0|Dt = 1)

}
.

Finally, we combine these bounds with the point-identified E[Y 1
t |Y

1
t−1 = 0] to obtain the

bounds. Sharpness follows using the same reasoning as for Theorem 1 (essentially by replac-
ing D with Dt or Dt−1 in the sharpness proof for Theorem 1).

Proof of Theorem 3

As above, under Assumption 2 E[Y 1
t |Y

1
t−1 = 0] = Pr(Yt = 1|Y t−1 = 0, Dt = 1), so that if

Pr(Y t−1 = 0|Dt = 1) > 0 then E[Y 1
t |Y

1
t−1 = 0] is point-identified, and if Pr(Y t−1 = 0|Dt =

1) = 0 then ATETS1,0
t is not defined. If Pr(Y t−1 = 0|Dt = 1) > 0 we have from (A.13)

[Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1] Pr
(
Y t−1 = 0|Dt = 0

)
+ pt−1(0, 0)

Pr(Y t−1 = 0|Dt = 1)
(A.15)

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤

Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr
(
Y t−1 = 0|Dt = 0

)
− pt−1(0, 0)

Pr(Y t−1 = 0|Dt = 1)
+ 1.

Because the lower bound is increasing in pt−1(0, 0) and the upper bound decreasing in
pt−1(0, 0) we need the lower bound on this probability. We have

pt−1(0, 0) = Pr(Y 1
t−1 = 0, . . . , Y 1

1 = 0, Y 0
t−1 = 0, . . . , Y 0

1 = 0) =

Pr(Y 1
t−1 = 0, Y 0

t−1 = 0|St−2) Pr(Y 1
t−2 = 0, . . . , Y 1

1 = 0, Y 0
t−2 = 0, . . . , Y 0

1 = 0).

By Assumption 3 either

Pr
(
Y 1
i,t−1 = 0|Si,t−2

)
≤ Pr

(
Y 0
i,t−1 = 0|Si,t−2

)
, (A.16)

or
Pr
(
Y 1
i,t−1 = 0|Si,t−2

)
> Pr

(
Y 0
i,t−1 = 0|Si,t−2

)
, (A.17)

for all i. Assume that (A.16) holds. By Assumption 4 this implies that

Pr(Y 1
i,t−1 = 0, Y 0

i,t−1 = 1|Si,t−2) = 0,
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so that

Pr(Y 1
i,t−1 = 0|Si,t−2) = Pr(Y 1

i,t−1 = 0, Y 0
i,t−1 = 0|Si,t−2) + Pr(Y 1

i,t−1 = 0, Y 0
i,t−1 = 1|Si,t−2)

= Pr(Y 1
i,t−1 = 0, Y 0

i,t−1 = 0|Si,t−2).

Because this holds for all members of the population we omit i in the sequel. Because
Assumptions 3 and 4 hold for all t, it follows from this equation by recursion that

Pr(Y 1
t−1 = 0, . . . , Y 1

1 = 0, Y 0
t−1 = 0, . . . , Y 0

1 = 0) =
t−1∏
s=1

Pr(Y 1
s = 0|Y 1

s−1 = 0),

so that

pt−1(0, 0) =
t−1∏
s=1

Pr(Y 1
s = 0|Y 1

s−1 = 0) =
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1).

If Assumption 3 holds with (A.17), then

pt−1(0, 0) =
t−1∏
s=1

Pr(Y 0
s = 0|Y 0

s−1 = 0) =
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0).

We conclude that

pt−1(0, 0) ≥ min

{
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1),

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)

}
=

min
{

Pr(Y t−1 = 0|Dt−1 = 1),Pr(Y t−1 = 0|Dt−1 = 0)
}
.

As noted below Theorem 3 the bounds simplifies in an obvious way if we have prior knowledge
of the direction of the effect of the treatment. The resulting bounds are sharp.

Next, upon substitution of this lower bound on pt−1(0, 0) into (A.3) and because the

probability E
[
Y 0
t |Y

1
t−1 = 0

]
is bounded by zero and one we have

max

{
0 ,

[Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1] Pr
(
Y t−1 = 0|Dt−1 = 0

)
Pr(Y t−1 = 0|Dt−1 = 1)

+
min

{
Pr(Y t−1 = 0|Dt−1 = 1),Pr(Y t−1 = 0|Dt−1 = 0)

}
Pr(Y t−1 = 0|Dt−1 = 1)

}
.

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤ (A.18)

min

{
1, 1 +

Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr
(
Y t−1 = 0|Dt−1 = 0

)
Pr(Y t−1 = 0|Dt−1 = 1)

−
min

{
Pr(Y t−1 = 0|Dt−1 = 1),Pr(Y t−1 = 0|Dt−1 = 0)

}
Pr(Y t−1 = 0|Dt−1 = 1)

}
,
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Finally, we combine these bounds with the point-identified E[Y 1
t |Y

1
t−1 = 0] to obtain bounds

on ATETSt.
We now prove that the bounds are sharp, by showing that there is a joint distribution of

the latent potential outcomes such that the counterfactual transition probability in (A.2) is
equal to the upper bound in (A.18). There are two cases. First, consider the upper bound if

1 +
Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr

(
Y t−1 = 0|Dt−1 = 0

)
Pr(Y t−1 = 0|Dt−1 = 1)

− (A.19)

min
{

Pr(Y t−1 = 0|Dt−1 = 1),Pr(Y t−1 = 0|Dt−1 = 0)
}

Pr(Y t−1 = 0|Dt−1 = 1)
≤ 1

Combining this upper bound and the equation for the counterfactual transition probability
in (A.2) we have to choose the joint distribution of the latent potential outcomes such that

p0t (1|0, 0)pt−1(0, 0) + p0t (1|0, 6= 0)pt−1(0, 6= 0) = Pr(Y t−1 = 0|Dt−1 = 1)+ (A.20)

Pr(Yt = 1, Y t−1 = 0|Dt = 0)−min
{

Pr(Y t−1 = 0|Dt−1 = 1),Pr(Y t−1 = 0|Dt−1 = 0)
}

and the restrictions

pt−1(0, 0) + pt−1(0, 6= 0) = Pr(Y t−1 = 0|Dt−1 = 1) = Pr(Y t−1 = 0|Dt = 1) (A.21)

pt−1(0, 0) + pt−1( 6= 0, 0) = Pr(Y t−1 = 0|Dt−1 = 0) = Pr(Y t−1 = 0|Dt = 0)

p0t (1|0, 0)pt−1(0, 0) + p0t (1| 6= 0, 0)pt−1(6= 0, 0) = Pr(Yt = 1, Y t−1 = 0|Dt = 0),

hold. Now set pt−1(0, 0) at its lower bound. Initially, consider the case that

min
{

Pr(Y t−1 = 0|Dt−1 = 1),Pr(Y t−1 = 0|Dt−1 = 0)
}

= Pr(Y t−1 = 0|Dt−1 = 1),

so that the lower bound on pt−1(0, 0) is Pr(Y t−1 = 0|Dt−1 = 1), then pt−1(0, 6= 0) = 0,
pt−1( 6= 0, 0) = Pr(Y t−1 = 0|Dt−1 = 0) − Pr(Y t−1 = 0|Dt−1 = 1), and the restriction in
(A.20) is

p0t (1|0, 0)pt−1(0, 0) + p0t (1|0, 6= 0)pt−1(0, 6= 0) = Pr(Yt = 1, Y t−1 = 0|Dt−1 = 0). (A.22)

Therefore to satisfy (A.22) and (A.21) the probabilities p0t (1|0 6=, 0) and p0t (1| 6= 0, 0) must
satisfy

p0t (1|0, 6= 0)pt−1(0, 6= 0)− p0t (1| 6= 0, 0)pt−1(6= 0, 0) = 0 (A.23)

with pt−1(0, 6= 0) = 0 and pt−1( 6= 0, 0) = Pr(Y t−1 = 0|Dt−1 = 0) − Pr(Y t−1 = 0|Dt−1 = 1).
Since, pt−1(0, 6= 0) = 0 the equation is satisfied if p0t (1| 6= 0, 0) = 0, in which case p0t (1|0, 6= 0)
is unrestricted and we can set p0t (1|0, 6= 0) = 1. Therefore if the joint distribution of the
potential outcomes is such that pt−1(0, 0) = Pr(Y t−1 = 0|Dt−1 = 1), pt−1(0, 6= 0) = 0,
pt−1( 6= 0, 0) = Pr(Y t−1 = 0|Dt = 0)− Pr(Y t−1 = 0|Dt = 1), p0t (1|0, 6= 0) = 1, p0t (1| 6= 0, 0) =
0 and

p0t (1|0, 0) =
Pr(Yt = 1, Y t−1 = 0|Dt = 0)

Pr(Y t−1 = 0|Dt−1 = 1)
, (A.24)

35



then the counterfactual transition probability is equal to its upper bound. Note that the
right hand side of (A.24) is not greater than 1 if (A.19) holds with

min
{

Pr(Y t−1 = 0|Dt−1 = 1),Pr(Y t−1 = 0|Dt−1 = 0)
}

= Pr(Y t−1 = 0|Dt−1 = 1).

Second, consider the upper bound if

1 +
Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr

(
Y t−1 = 0|Dt−1 = 0

)
Pr(Y t−1 = 0|Dt−1 = 1)

− . (A.25)

min
{

Pr(Y t−1 = 0|Dt−1 = 1),Pr(Y t−1 = 0|Dt−1 = 0)
}

Pr(Y t−1 = 0|Dt−1 = 1)
> 1

Then the E
[
Y 0
t |Y

1
t−1 = 0

]
in (A.2) is at its upper bound 1 if the latent distribution satisfies

p0t (1|0, 0)pt−1(0, 0) + p0t (1|0, 6= 0)pt−1(0, 6= 0) = Pr(Y t−1 = 0|Dt−1 = 1) (A.26)

Now set pt−1(0, 0) at its lower bound, so that pt−1(0, 0) = Pr(Y t−1 = 0|Dt−1 = 1). Then,
pt−1(0, 6= 0) = 0 and pt−1(6= 0, 0) = Pr(Y t−1 = 0|Dt−1 = 0)− Pr(Y t−1 = 0|Dt−1 = 1). If we
consider (A.26) for these values of pt−1(0, 0), pt−1(0, 6= 0), i.e the equation

p0t (1|0, 0) Pr(Y t−1 = 0|Dt−1 = 1) = Pr(Y t−1 = 0|Dt−1 = 1)

then p0t (1|0, 0) = 1 and p0t (1|0, 6= 0) is unrestricted so that we can set p0t (1|0, 6= 0) = 1. The
final restriction in (A.21) is satisfied if

p0t (1| 6= 0, 0) =
Pr(Yt = 1, Y t−1 = 0|Dt = 0)− Pr(Y t−1 = 0|Dt−1 = 1)

Pr(Y t−1 = 0|Dt−1 = 0)− Pr(Y t−1 = 0|Dt−1 = 1)

which is non-negative by (A.25) and obviously not greater than 1.
The case that the lower bound on pt−1(0, 0) is Pr(Y t−1 = 0|Dt−1 = 0) can be dealt with

in an analogous way.
We conclude that in all cases we can find a distribution of the latent potential outcomes

so that the ATETS attains the upper bound in Theorem 3. The argument that the lower
bound is sharp is analogous.

Proof of Theorem 4

Using similar reasoning as above, under Assumption 2 E[Y 1
t |Y

1
t−1 = 0] = Pr(Yt = 1|Y t−1 =

0, Dt = 1), so that if Pr(Y
1
t−1 = 0|Dt−1 = 1) = Pr(Y t−1 = 0|Dt−1 = 1) > 0 then E[Y 1

t |Y
1
t−1 =

0] is point-identified, and if Pr(Y t−1 = 0|Dt−1 = 1) = 0 then ATETS1,0
t are not defined.

Next, we have for the counterfactual transition probability

E
[
Y 0
t |Y

1
t−1 = 0

]
=
p0t (1|0, 0)pt−1(0, 0) + p0t (1|0, 6= 0)pt−1(0, 6= 0)

pt−1(0, 0) + pt−1(0, 6= 0)
. (A.27)

The expression on the right-hand side is increasing in p0t (1|0, 6= 0). By Assumption 5 we
have the restriction p0t (1|0, 6= 0) ≥ p0t (1|0, 0). Then the upper bound is obtained by setting
p0t (1|0, 6= 0) = 1 and lower bound by setting p0t (1|0, 6= 0) = p0t (1|0, 0):

p0t (1|0, 0) ≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤ p0t (1|0, 0)pt−1(0, 0) + pt−1(0, 6= 0)

pt−1(0, 0) + pt−1(0, 6= 0)
.
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By Assumption 2 and the law of total probability we have using similar reasoning as for
Theorem 1:

Pr(Yt = 1, Y t−1 = 0|Dt = 0) = p0t (1|0, 0)pt−1(0, 0) + p0t (1| 6= 0, 0)pt−1(6= 0, 0) (A.28)

Solving for p0t (1|0, 0) gives

p0t (1|0, 0) =
Pr(Yt = 1, Y t−1 = 0|Dt = 0)− p0t (1| 6= 0, 0)pt−1(6= 0, 0)

pt−1(0, 0)

and upon substitution

Pr(Yt = 1, Y t−1 = 0|Dt = 0)− p0t (1| 6= 0, 0)pt−1(6= 0, 0)

pt−1(0, 0)
≤ E

[
Y 0
t |Y

1
t−1 = 0

]
≤

Pr(Yt = 1, Y t−1 = 0|Dt = 0)− p0t (1| 6= 0, 0)pt−1(6= 0, 0) + pt−1(0, 6= 0)

pt−1(0, 0) + pt−1(0, 6= 0)

Both the lower and upper bound is decreasing in p0t (1| 6= 0, 0). By Assumption 5 we have
the restriction p0t (1| 6= 0, 0) ≥ p0t (1|0, 0). Therefore the lower bound is obtained by setting
p0t (1| 6= 0, 0) at 1. The upper bound is obtained by setting p0t (1| 6= 0, 0) = p0t (1|0, 0), upon
substitution into (A.28) this implies that

p0t (1| 6= 0, 0) = p0t (1|0, 0) = Pr(Yt = 1|Y t−1 = 0, Dt = 0).

Then
Pr(Yt = 1, Y t−1 = 0|Dt = 0)− pt−1(6= 0, 0)

pt−1(0, 0)
≤ E

[
Y 0
t |Y

1
t−1 = 0

]
≤

Pr(Yt = 1, Y t−1 = 0|Dt = 0)− Pr(Yt = 1|Y t−1 = 0, Dt = 0)pt−1(6= 0, 0) + pt−1(0, 6= 0)

pt−1(0, 0) + pt−1(0, 6= 0)

Because
Pr(Y t−1 = 0|Dt−1 = 1) = pt−1(0, 0) + pt−1(0, 6= 0)

Pr(Y t−1 = 0|Dt−1 = 0) = pt−1(0, 0) + pt−1( 6= 0, 0)

we have

Pr(Yt = 1, Y t−1 = 0|Dt = 0)− Pr(Y t−1 = 0|Dt−1 = 0) + pt−1(0, 0)

pt−1(0, 0)
(A.29)

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤ [Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1]pt−1(0, 0)

Pr(Y t−1 = 0|Dt−1 = 1)
+ 1.

The lower bound is increasing and the upper bound decreasing in pt−1(0, 0). Assumption 5
also improves on the Bonferroni inequality for pt−1(0, 0). We have

pt−1(0, 0) =
t−1∏
s=1

Pr(Y 1
s = 0, Y 0

s = 0|Ss−1).
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By the Bonferroni inequality and the results above

Pr(Y 1
s = 0, Y 0

s = 0|Ss−1) ≥ max{1− Pr(Y 1
s = 1|Ss−1)− Pr(Y 0

s = 1|Ss−1), 0} ≥

max{1− Pr(Ys = 1|Y s−1 = 0, Ds = 1)− Pr(Ys = 1|Y s−1 = 0, Ds = 0), 0} =

max{Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1, 0},

so that

pt−1(0, 0) ≥
t−1∏
s=1

max{Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1, 0}.

(A.30)
We compare this to the lower bound

max

{
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1) +
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1, 0

}

that we obtained in the proof of Theorem 1. First, if there is an 1 ≤ s′ ≤ t− 1 so that

Pr(Ys′ = 0|Y s′−1 = 0, Ds′ = 1) + Pr(Ys′ = 0|Y s′−1 = 0, Ds′ = 0)− 1 < 0,

then
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1) +

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1 =

Pr(Ys′ = 0|Y s′−1 = 0, Ds′ = 1)

t−1∏
s=1,s 6=s′

Pr(Ys = 0|Y s−1 = 0, Ds = 1)+

Pr(Ys′ = 0|Y s′−1 = 0, Ds′ = 1)
t−1∏

s=1,s 6=s′
Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1 < 0

so that if the new lower bound is 0, so is the previous one. Finally, if for all s = 1, . . . , t− 1

Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1 > 0,

then
t−1∏
s=1

[
Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1

]
≥

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1) +
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1.

If Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1 ≤ 0 for some s ≤ t the
lower bound on pt−1(0, 0) is 0. In that case the lower bound in (A.29) is non-positive and

the upper bound is greater than or equal to 1 so that 0 ≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤ 1.
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If Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0) − 1 > 0 for all s =
1, . . . , t− 1 we have upon substitution of the lower bound on pt−1(0, 0) in (A.30) into (A.29)

and because the probability E
[
Y 0
t |Y

1
t−1 = 0

]
is bounded by zero,

max

{
0,

(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1) Pr
(
Y t−1 = 0|Dt−1 = 0

)∏t−1
s=1[Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1]

+ 1

}

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤ 1− 1− Pr(Yt = 1|Y t−1 = 0, Dt = 0)

Pr(Y t−1 = 0|Dt−1 = 1)
· (A.31)

·
t−1∏
s=1

[Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1].

Finally, we combine these bounds with the point-identified E[Y 1
t |Y

1
t−1 = 0] to obtain bounds

on ATETSt.
We now prove that the bounds are sharp. We will show that there is a joint distribution

of the latent potential outcomes such that the counterfactual transition probability in (A.2)
is equal to the lower bound in (A.31). There are two cases. First, consider the lower bound
if

(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1) Pr
(
Y t−1 = 0|Dt−1 = 0

)∏t−1
s=1[Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1]

+ 1 > 0 (A.32)

Combining the counterfactual transition probability in (A.2) and this lower bound we have
to choose the joint distribution of the latent potential outcomes such that

p0t (1|0, 0)pt−1(0, 0) + p0t (1|0, 6= 0)pt−1(0, 6= 0) = Pr
(
Y t−1 = 0|Dt−1 = 1

)
+ (A.33)

(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1) Pr
(
Y t−1 = 0|Dt−1 = 0

)
Pr
(
Y t−1 = 0|Dt−1 = 1

)∏t−1
s=1[Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1]

and the restrictions

pt−1(0, 0) + pt−1(0, 6= 0) = Pr(Y t−1 = 0|Dt−1 = 1) (A.34)

pt−1(0, 0) + pt−1(6= 0, 0) = Pr(Y t−1 = 0|Dt−1 = 0)

p0t (1|0, 0)pt−1(0, 0) + p0t (1| 6= 0, 0)pt−1(6= 0, 0) = Pr(Yt = 1, Y t−1 = 0|Dt−1 = 0),

as well as the restrictions given by Assumption 5

p0t (1|0, 6= 0) ≥ p0t (1|0, 0), p0t (1| 6= 0, 0) ≥ p0t (1|0, 0) (A.35)

hold. Now set pt−1(0, 0) at its lower bound:

pt−1(0, 0) =

t−1∏
s=1

max{Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1, 0}.

If that bound is 0, then the counterfactual transition probability is equal to p0t (1|0, 6= 0) that
is unrestricted so that the [0, 1] interval gives sharp bounds. If the lower bound is larger than
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0, then the lower bound in (A.32) is strictly positive. So we have the find a joint distribution
of the potential outcomes such that p0t (1|0, 6= 0) is equal to the positive lower bound in (A.32)
and not equal to 0. Thus,

pt−1(0, 6= 0) = Pr(Y t−1 = 0|Dt−1 = 1)− (A.36)

t−1∏
s=1

[Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1]

and
pt−1(6= 0, 0) = Pr(Y t−1 = 0|Dt−1 = 0)− (A.37)

t−1∏
s=1

[Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1].

Next, (A.35) is satisfied if we set p0t (1|0, 6= 0) = p0t (1|0, 0) and p0t (1| 6= 0, 0) = 1. Then (A.33)
is also satisfied if

p0t (1|0, 0) = p0t (1|0, 6= 0) = (A.38)

(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1) Pr
(
Y t−1 = 0|Dt−1 = 0

)∏t−1
s=1[Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1]

+ 1.

Note that the right hand side of (A.38) is not greater than 1 if (A.32) holds. This together
with p0t (1| 6= 0, 0) = 1 satisfies (A.34), since by p0t (1| 6= 0, 0) = 1 and (A.38) we have

p0t (1|0, 0)pt−1(0, 0) + p0t (1| 6= 0, 0)pt−1( 6= 0, 0) = Pr(Yt = 1, Y t−1 = 0|Dt−1 = 0).

Therefore if the joint distribution of the potential outcomes is given by (A.36), (A.37),(A.38)
and p0t (1| 6= 0, 0) = 1 then the counterfactual transition probability is equal to its lower
bound.

Second, consider the upper bound if

(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1) Pr
(
Y t−1 = 0|Dt−1 = 0

)∏t−1
s=1[Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1]

+ 1 < 0. (A.39)

Then the E
[
Y 0
t |Y

1
t−1 = 0

]
in (A.2) is at its lower bound 0 if the latent distribution satisfies

p0t (1|0, 0)pt−1(0, 0) + p0t (1|0, 6= 0)pt−1(0, 6= 0) = 0 (A.40)

Now set pt−1(0, 0) at its lower bound. As above, if that bound is 0, then the counterfactual
transition probability is equal to p0t (1|0, 6= 0) that is unrestricted so that the [0, 1] interval
gives sharp bounds. If the lower bound on pt−1(0, 0) is

∏t−1
s=1[Pr(Ys = 0|Y s−1 = 0, Ds =

1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0) − 1], then the lower bound in (A.32) is strictly positive.
So we have the find a joint distribution of the potential outcomes such that p0t (1|0, 6= 0) is
equal to the positive lower bound in (A.32) and not equal to 0. Thus, pt−1(0, 6= 0) is given
by (A.36) and pt−1(6= 0, 0) is given by (A.37). If we consider (A.40) for these values of
pt−1(0, 0), pt−1(0, 6= 0) then this equations is satisfied if p0t (1|0, 0) = p0t (1|0, 6= 0) = 0. The
final restriction in (A.34) is satisfied if

p0t (1| 6= 0, 0) =
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Pr(Yt = 1, Y t−1 = 0|Dt−1 = 0)

Pr(Y t−1 = 0|Dt−1 = 0)−
∏t−1
s=1[Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1]

which is less than 1 by (A.10) and obviously non-negative.
We conclude that in all cases we can find a distribution of the latent potential outcomes

so that the ATETS attains the lower bound in (A.31). The argument that the upper bound
is sharp is analogous.

Proof of Theorem 5

Using similar reasoning as for the proof of Theorem 4 we have under Assumptions 2 and 5:

E[Y 1
t |Y

1
t−1 = 0] = Pr(Yt = 1|Y t−1 = 0, Dt = 1)

and
Pr(Yt = 1, Y t−1 = 0|Dt = 0)− Pr(Y t−1 = 0|Dt−1 = 0) + pt−1(0, 0)

pt−1(0, 0)

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤ [Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1]pt−1(0, 0)

Pr(Y t−1 = 0|Dt−1 = 1)
+ 1.

The lower bound on E
[
Y 0
t |Y

1
t−1 = 0

]
is increasing and the upper bound on E

[
Y 0
t |Y

1
t−1 = 0

]
is decreasing in pt−1(0, 0). By the proof of Theorem 3 we have under Assumptions 3 and 4

pt−1(0, 0) ≥ min
{

Pr(Y t−1 = 0|Dt−1 = 1),Pr(Y t−1 = 0|Dt−1 = 0)
}
,

so that

max

{
0,

(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1) Pr
(
Y t−1 = 0|Dt−1 = 0

)
min

{
Pr(Y t−1 = 0|Dt−1 = 1),Pr(Y t−1 = 0|Dt−1 = 0)

} + 1

}
≤ E

[
Y 0
t |Y

1
t−1 = 0

]
≤

1− Pr(Yt = 1|Y t−1 = 0, Dt = 0)

Pr(Y t−1 = 0|Dt−1 = 1)
×min

{
Pr(Y t−1 = 0|Dt−1 = 1),Pr(Y t−1 = 0|Dt−1 = 0)

}
+1.

Together with the results for E[Y 1
t |Y

1
t−1 = 0] this gives the bounds. Sharpness follows using

the same reasoning as for the proofs of Theorems 3 and 4.
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Appendix B: Heterogenous effects (for online publication only)

Table 3: Bounds on ATETS1,0 for the Illinois job bonus experiment. Heterogenous effects
for blacks and non-blacks

Panel A: Blacks
No assumption bounds MTR+CS+PCO

Lower-
CI

LB UB Upper-
CI

Lower-
CI

LB UB Upper-
CI

(1) (2) (3) (4) (1) (2) (3) (4)
Week
1-2 -0.006 0.021 0.021 0.049 0.000 0.021 0.021 0.043
3-4 -0.124 -0.111 0.059 0.071 -0.012 0.005 0.028 0.044
5-6 -0.180 -0.167 0.058 0.070 -0.004 0.015 0.043 0.062
7-8 -0.243 -0.230 0.044 0.057 -0.007 0.010 0.044 0.061
9-10 -0.290 -0.277 0.048 0.060 -0.005 0.012 0.048 0.064
11-12 -0.352 -0.342 0.030 0.040 -0.013 0.001 0.030 0.044
13-14 -0.395 -0.384 0.032 0.043 -0.012 0.002 0.032 0.045
15-16 -0.449 -0.439 0.025 0.035 -0.020 -0.007 0.025 0.037
17-18 -0.496 -0.485 0.028 0.039 -0.021 -0.007 0.028 0.042
19-20 -0.532 -0.520 0.037 0.049 -0.007 0.010 0.037 0.053
21-22 -0.605 -0.596 0.019 0.029 -0.028 -0.016 0.019 0.031
23-24 -0.635 -0.623 0.039 0.051 -0.011 0.006 0.039 0.055

PCO [C] MTR+CS+PCO [D]

Panel B: Non-blacks
No assumption bounds MTR+CS+PCO

(1) (2) (3) (4) (1) (2) (3) (4)
Week
1-2 0.005 0.022 0.022 0.040 0.009 0.022 0.022 0.035
3-4 -0.158 -0.148 0.106 0.116 0.002 0.016 0.040 0.053
5-6 -0.293 -0.284 0.080 0.090 -0.010 0.003 0.044 0.058
7-8 -0.392 -0.382 0.090 0.100 0.003 0.017 0.062 0.076
9-10 -0.523 -0.513 0.077 0.087 0.001 0.011 0.074 0.086
11-12 -0.639 -0.629 0.075 0.085 0.006 0.015 0.075 0.087
13-14 -0.773 -0.763 0.066 0.076 -0.006 0.004 0.066 0.077
15-16 -0.889 -0.879 0.062 0.071 0.003 0.013 0.062 0.072
17-18 -0.991 -0.942 0.058 0.068 0.000 0.010 0.058 0.069
19-20 -1.002 -0.946 0.054 0.064 -0.013 -0.003 0.054 0.064
21-22 -1.002 -0.940 0.060 0.071 -0.024 -0.013 0.060 0.073
23-24 -1.008 -0.936 0.064 0.076 -0.011 0.001 0.064 0.079

Notes: CI is 95% confidence intervals. Variances and covariances used to obtain the CI are estimated using
bootstrap (399 replications).
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Table 4: Bounds on ATETS1,0 for the Illinois job bonus experiment. Heterogenous effects
for low and high income workers

Panel A: Below median income
No assumption bounds MTR+CS+PCO

Lower-
CI

LB UB Upper-
CI

Lower-
CI

LB UB Upper-
CI

(1) (2) (3) (4) (1) (2) (3) (4)
Week
1-2 -0.006 0.016 0.016 0.038 -0.001 0.016 0.016 0.032
3-4 -0.172 -0.161 0.089 0.100 -0.002 0.013 0.030 0.044
5-6 -0.285 -0.274 0.067 0.078 -0.012 0.002 0.033 0.047
7-8 -0.355 -0.344 0.080 0.091 0.009 0.024 0.057 0.072
9-10 -0.461 -0.450 0.067 0.078 0.003 0.014 0.067 0.080
11-12 -0.568 -0.558 0.050 0.060 -0.010 0.000 0.050 0.062
13-14 -0.644 -0.634 0.047 0.056 -0.001 0.008 0.047 0.058
15-16 -0.727 -0.717 0.041 0.051 -0.009 0.001 0.041 0.052
17-18 -0.802 -0.792 0.040 0.050 -0.008 0.002 0.040 0.051
19-20 -0.883 -0.869 0.049 0.063 -0.008 0.003 0.049 0.062
21-22 -1.021 -0.959 0.041 0.053 -0.024 -0.014 0.041 0.053
23-24 -1.015 -0.958 0.042 0.053 -0.021 -0.010 0.042 0.055

PCO [C] MTR+CS+PCO [D]

Panel B: Above median income
No assumption bounds MTR+CS+PCO

(1) (2) (3) (4) (1) (2) (3) (4)
Week
1-2 0.010 0.028 0.028 0.047 0.014 0.028 0.028 0.043
3-4 -0.125 -0.113 0.099 0.111 0.001 0.015 0.045 0.059
5-6 -0.238 -0.227 0.081 0.092 -0.002 0.012 0.059 0.073
7-8 -0.342 -0.331 0.076 0.087 -0.003 0.008 0.068 0.000
9-10 -0.447 -0.435 0.070 0.082 -0.002 0.010 0.070 0.084
11-12 -0.535 -0.524 0.074 0.086 0.012 0.024 0.074 0.089
13-14 -0.666 -0.653 0.066 0.078 -0.012 0.000 0.066 0.080
15-16 -0.772 -0.760 0.060 0.072 0.003 0.015 0.060 0.072
17-18 -0.881 -0.870 0.058 0.070 -0.003 0.009 0.058 0.070
19-20 -1.008 -0.952 0.048 0.059 -0.010 0.000 0.048 0.058
21-22 -1.010 -0.947 0.053 0.065 -0.024 -0.013 0.053 0.065
23-24 -0.999 -0.929 0.071 0.086 0.004 0.018 0.071 0.086

Notes: CI is 95% confidence intervals. Variances and covariances used to obtain the CI are estimated using
bootstrap (399 replications).
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Appendix C: Average treatment effect on survivors (for online
publication only)

In this appendix we consider the average effect when averaging over the subpopulation of
individuals who would have survived until t under both treatment and no-treatment. We call
this average effect the Average Treatment Effect on Survivors, ATESt:

Definition 2 Average Treatment Effect on Survivors (ATES)

ATESt = E
(
Y 1
t |Y

1
t−1 = 0, Y 0

t−1 = 0
)
− E

(
Y 0
t |Y

1
t−1 = 0, Y 0

t−1 = 0
)

The bounds for ATESt are given in Theorem 6.

Theorem 6 (Bounds on ATES) Suppose that Assumption 1 holds. If Pr
(
Y t−1 = 0|D = 1

)
+

Pr
(
Y t−1 = 0|D = 0

)
− 1 ≤ 0, then ATESt is not defined.

If Pr
(
Y t−1 = 0|D = 1

)
+ Pr

(
Y t−1 = 0|D = 0

)
− 1 > 0, then we have the following sharp

bounds

max

{
0,

Pr(Yt = 1, Y t−1 = 0|D = 1) + Pr
(
Y t−1 = 0|D = 0

)
− 1

Pr
(
Y t−1 = 0|D = 1

)
+ Pr

(
Y t−1 = 0|D = 0

)
− 1

}
−

min

{
1,

Pr(Yt = 1, Y t−1 = 0|D = 0)

Pr
(
Y t−1 = 0|D = 0

)
+ Pr

(
Y t−1 = 0|D = 1

)
− 1

}
≤ ATESt ≤

min

{
1,

Pr(Yt = 1, Y t−1 = 0|D = 1)

Pr
(
Y t−1 = 0|D = 1

)
+ Pr

(
Y t−1 = 0|D = 0

)
− 1

}
−

max

{
0,

Pr(Yt = 1, Y t−1 = 0|D = 0) + Pr
(
Y t−1 = 0|D = 1

)
− 1

PrY t−1 = 0|D = 1) + Pr
(
Y t−1 = 0|D = 1

)
− 1

}
.

Proof: First, consider bounds on E
[
Y 1
t |Y

1
t−1 = 0, Y

0
t−1 = 0

]
= p1t (1|0, 0). By Assumption 2

Pr(Yt = 1, Y t−1 = 0|D = 1) = Pr(Y 1
t = 1, Y

1
t−1 = 0).

By the law of total probability

Pr(Y 1
t = 1, Y

1
t−1 = 0) = p0t (1|0, 0)pt−1(0, 0) + p0t (1|0, 6= 0)pt−1(0, 6= 0)

Therefore,

Pr(Yt = 1, Y t−1 = 0|D = 1) = p0t (1|0, 0)pt−1(0, 0) + p0t (1|0, 6= 0)pt−1(0, 6= 0)

Solving for p1t (1|0, 0) = E
[
Y 1
t |Y

1
t−1 = 0, Y

0
t−1 = 0

]
gives

E
[
Y 1
t |Y

1
t−1 = 0, Y

0
t−1 = 0

]
=

Pr(Yt = 1, Y t−1 = 0|D = 1)− p0t (1|0, 6= 0)pt−1(0, 6= 0)

pt−1(0, 0)
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The expression on the right-hand side is decreasing in p0t (1|0, 6= 0). The lower bound is
obtained by setting p0t (1|0, 6= 0) at 1 and the upper bound by setting p0t (1|0, 6= 0) at 0.

Pr(Yt = 1, Y t−1 = 0|D = 1)− pt−1(0, 6= 0)

pt−1(0, 0)

≤ E
[
Y 1
t |Y

1
t−1 = 0, Y

0
t−1 = 0

]
≤ Pr(Yt = 1, Y t−1 = 0|D = 1)

pt−1(0, 0)
.

Because
Pr(Y t−1 = 0|D = 1) = pt−1(0, 0) + pt−1(0, 6= 0)

we have
Pr(Yt = 1, Y t−1 = 0|D = 1)− Pr(Y t−1 = 0|D = 1) + pt−1(0, 0)

pt−1(0, 0)

≤ E
[
Y 1
t |Y

1
t−1 = 0, Y

0
t−1 = 0

]
≤ Pr(Yt = 1, Y t−1 = 0|D = 1)

pt−1(0, 0)
.

The upper bound is decreasing and the lower bound is increasing in pt−1(0, 0). From the
proof of theorem 1 we have

pt−1(0, 0) ≥ max
{

Pr
(
Y t−1 = 0|D = 1

)
+ Pr

(
Y t−1 = 0|D = 0

)
− 1, 0

}
.

If Pr
(
Y t−1 = 0|D = 1

)
+Pr

(
Y t−1 = 0|D = 0

)
−1 > 0 then we are sure that there are survivors

in both treatment arms. Upon substitution of this lower bound

Pr(Yt = 1, Y t−1 = 0|D = 1) + Pr
(
Y t−1 = 0|D = 0

)
− 1

Pr
(
Y t−1 = 0|D = 1

)
+ Pr

(
Y t−1 = 0|D = 0

)
− 1

≤ E
[
Y 1
t |Y

1
t−1 = 0, Y

0
t−1 = 0

]
≤ Pr(Yt = 1, Y t−1 = 0|D = 1)

Pr
(
Y t−1 = 0|D = 1

)
+ Pr

(
Y t−1 = 0|D = 0

)
− 1

.

By an analogous argument we have

Pr(Yt = 1, Y t−1 = 0|D = 0) + Pr
(
Y t−1 = 0|D = 1

)
− 1

PrY t−1 = 0|D = 1) + Pr
(
Y t−1 = 0|D = 0

)
− 1

≤ E
[
Y 0
t |Y

1
t−1 = 0, Y

0
t−1 = 0

]
≤ Pr(Yt = 1, Y t−1 = 0|D = 0)

Pr
(
Y t−1 = 0|D = 1

)
+ Pr

(
Y t−1 = 0|D = 0

)
− 1

.

Substitution of these results for E
[
Y 1
t |Y

1
t−1 = 0, Y

0
t−1 = 0

]
and E

[
Y 0
t |Y

1
t−1 = 0, Y

0
t−1 = 0

]
and because both probabilites are bounded by zero and one gives the bounds on ATESt.

45


	cemmap WORKING_PAPER_COVER
	cwp171616

