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ABSTRACT: 

Expert elicitations are frequently used to characterize future technology outcomes. However their 

usefulness is limited, in part because: estimates across studies are not easily comparable; choices in 

survey design and expert selection may bias results; and over-confidence is a persistent problem. We 

provide quantitative evidence of how these choices affect experts’ estimates of the costs of future energy 

technologies. We harmonize data from 19 elicitations, involving 215 experts, on the 2030 costs of 5 

energy technologies: nuclear, biofuels, bioelectricity, solar, and carbon capture. We control for expert 

characteristics, survey design, and public R&D investment levels on which the elicited values are 

conditional.  We find that, on average, when experts respond to elicitations in person, they ascribe lower 

confidence (larger uncertainty) to their estimates than when responding via mail or online.  In-person 

interviews also produce more optimistic assessments of best-case (10
th
 percentile) outcomes.  The impacts 

of expert affiliation—government, private sector, or academic—and geography—US or EU—are also 

significant; academics and US experts have lower confidence than other types of experts.  Higher R&D 

investment levels have no effect on the confidence of experts’ judgments.  R&D reduces both the median 

and breakthrough (10
th
 percentile) cost estimates, although the size of the effect varies across 

technologies. These results indicate the source, direction, and size of bias in energy technology 

elicitations.  They also point to the technology specificity of some of the effects.  These biases should be 

seriously considered, both in interpreting the results of existing elicitations and in designing new ones. 

http://olabout.wiley.com/WileyCDA/Section/id-828039.html#terms
http://olabout.wiley.com/WileyCDA/Section/id-828039.html#terms
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1 INTRODUCTION 

1.1 Technology elicitations in science and energy policy 

Policy makers addressing science and innovation issues frequently confront the challenge of making 

decisions that affect the development of technologies when both technology outcomes and consequent 

social impacts are difficult to predict. Expert elicitations allow analysts to gather information from 

experienced professionals about the future of specific technologies that may not be available from other 

data sources. Protocols for data collection are designed to reduce biases and encourage considered 

judgments
(1-3)

; they generate a collection of experts’ best estimates of future costs of a particular 

technology, which can be conditional on different levels of public R&D investment. Importantly, expert 

elicitations also provide measures of uncertainty associated with the central estimates.  

 

Analyzing these judgments provides a rich resource with which to inform policy decisions.  Indeed, 

expert elicitations are increasingly used in policy making, starting in the 1970s with the U.S. 

Environmental Protection Agency (EPA), and at least five other federal agencies and international 

organizations
(4)

.  Policy analysis of energy system decisions typically requires explicit
(5)

 or implicit
(6)

 

characterizations of the anticipated cost and performance of specific technologies. However, energy 

technologies change over time, often in ways that diverge from historical trends
(7)

. While there is 

significant uncertainty about future technological change in energy, there is now a large set of results 

from studies eliciting judgments about future technology performance and cost from technical experts.  

 

Over the past eight years several research groups have conducted expert elicitations on the impact of 

public R&D on the future of important energy technologies. The perceived central role of governments in 

funding new energy technologies combined with the potential of expert elicitations to characterize 

uncertainty have driven this burst of more than twenty studies.  In the U.S, for instance, the National 

Research Council published a strong recommendation that the U.S. Department of Energy (DOE) use 
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expert elicitations to inform for their R&D allocation decisions to probabilistically characterize the 

expected outcomes of R&D investments
(8)

. 

 

1.2 Challenges in using elicitations for policy design 

Despite the increasing use of expert elicitations in science policy contexts, the analyst or policy maker has 

few tools with which to interpret the various studies. This issue of how to utilize and learn from the 

existing expert elicitations for future elicitations extends beyond the debate that recently took place in this 

journal regarding how, or whether, to derive consensus from them 
(9-13)

. Difficulty in interpretation is 

exacerbated by differences in protocol design (metrics, assumptions, timeframes, methods for 

administering the surveys) and in the backgrounds (institutional affiliation and nationality) of experts 

selected. Currently, we know little about whether such differences affect the elicitation results themselves, 

both in terms of the distribution and central estimates.  

 

Morgan provided a comprehensive review of how to think about selecting experts, in part to reduce 

bias
(14)

, but the literature has not yet provided a framework with which to compare elicitations across 

different technologies, nor has it produced a comprehensive set of empirical estimates of the impact and 

size and direction of these differences
(15-21)

.  Two recent articles provide first steps in this direction in 

assessing the roles of expert and survey characteristics in elicitations of nuclear and solar costs, with a 

focus on central estimates 
(22, 23)

. In this paper, we expand the analysis to five key energy technologies--

nuclear fission, biofuels, bioelectricity, solar, and carbon capture and storage in coal power plans—and 

focus on the experts’ uncertainty range and breakthrough estimates. The results we present in this paper 

thus provide a much clearer sense of how much variation exists in anticipated outcomes both within and 

across energy technologies. They also serve as a basis for improving policy making in government 

agencies—such as the U.S. Dept. of Energy, multiple Congressional committees and the European 

Commission —in facilitating their interpretation of existing energy technology elicitations.  They can 
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certainly help to improve the design of future elicitations.  Decisions related to science and innovation 

policy, especially the consideration of technology portfolios, need characterization of the reliability of the 

future cost estimates and of the uncertainty surrounding them.  

 

2 APPROACH 

We collect and harmonize data from 19 expert elicitation studies that include judgments on future 

technology outcomes in 5 energy technology areas (nuclear fission, biofuels, and bioelectricity, solar, and 

carbon capture and storage (CCS) in coal power plans). These five energy technologies are widely 

believed to be essential for achieving cost-effective climate change mitigation and central to many 

countries’ energy planning
(24, 25)

. The diversity of data from these elicitations provides a unique 

opportunity to study whether selection and survey design affect (i.e. “bias”) experts’ estimates and 

confidence. We do so by using a meta-analytic approach to extract robust conclusions about how 

differences in the technologies considered, as well as in expert and survey characteristics, impact 

expected energy costs ($/energy) and the uncertainty surrounding them. This approach is similar to 

previous work using regression techniques and a randomized control trial to estimate the influence of 

elicitation question format on expert overconfidence in the domains of infectious disease and marine 

ecology
(21)

. In this paper, we focus on five key energy technologies and we enlarge the investigation to 

other study characteristics than question format as well as to experts’ background.  

 

Table S1 in the online Supporting Information (SI) provides details on the studies included in the analysis 

(4 elicitations on nuclear, 5 on solar, 3 on bioelectricity, 3 on biofuels, and 4 on CCS) and on the data 

handling process
1
. Data on 2030 costs were obtained from the original authors, underwent a rigorous 

cleaning process, and were converted into units of cost per energy (2010$/kWh): levelized costs of 

                                                 

 
1
 Three studies were ultimately dropped from the analyses due to lack of specification of policy conditions. 
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electricity (solar), non-fuel levelized electricity costs (in the case of bioelectricity), non-fuel levelized 

energy costs (in the case of biofuels), levelized capital costs for nuclear, and levelized additional capital 

costs for CCS. Data on technology sub-type, study characteristics, and R&D scenarios on which the 

estimates are conditional, were also made consistent as documented in the SI.   

 

 

Figure 1. 2030 technology cost estimates from experts considered in the study under the “low” 

public R&D budget scenario. The white diamonds, black squares, and grey triangles represent, 

respectively, the 10
th

, 50
th

, and 90
th

 percentile estimates. Expert estimates are ordered by increasing 

50
th

 percentile estimates (All in $/MWh).  

 

These expert elicitations collect information on point estimates of future costs, (in this case, of 10
th
, 50

th
 

and 90
th
 percentiles, with the exception of the Baker et al. studies, which asked experts about probabilities 

of particular goals being met and then converted the answers to percentiles), where the 50
th
 percentile is 
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the most likely future technology costs based on experts’ judgments, and the 10
th
 percentile gives some 

sense on future costs estimates under a breakthrough technology development. Figure 1 shows the elicited 

point estimates (50
th
, 10

th
 and 90

th
 percentiles) for the five energy technologies under the “low” R&D 

scenario. These data account for about one third of the observations, with the “medium” and “high” R&D 

scenarios accounting for the rest (see Table S4 in the SI for definitions of R&D scenarios). Table I shows 

the descriptive statistics of the individual participant data of the 16 expert elicitations, indicating the 

fraction of the observations representing various technologies, types of experts, R&D levels, etc. 

 

Given the growing interest in consideration of uncertainty in science policy decisions
(8)

, and the vast 

literature on the cognitive biases in the subjective assessment of probabilities
(26)

, we focus here primarily 

on experts’ confidence around central estimates. The uncertainty range (“Urange”, henceforth) is defined 

as the difference between the 90
th
 and 10

th
 percentile divided by the 50

th
 ([90

th
-percentile – 10

th
 

percentile]/50
th
 percentile). It measures the percentage variation from each expert’s median estimate 

within each of the R&D scenarios. Note that since Urange is a normalized metric, it can be pooled for all 

technologies, even if the standardized costs measure different parts of the technology. Hence, for this 

metric we present both pooled results and technology specific to show the robustness of our results to 

different assumptions. Conversely, elicited percentile metrics can be meaningfully compared only within 

technology due to the differences in what is included in the standardized costs. Figure 2 shows probability 

density functions of the Uranges for all data in our sample, both overall and for each technology. We also 

present results on the relationship between R&D investments, elicitation design, and expert selection 

variables on the breakthrough estimates (10
th
 percentiles), given the interest in understanding the lower 

tail of future costs in various technologies separately. 
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Figure 2. Distributions of uncertainty range (Urange) for all elicitations and R&D levels: pooling all 

five technologies and for each technology individually.  

 

We are primarily interested in the extent to which the following four aspects may systematically affect the 

uncertainty range: (a) expert elicitation survey design, (b) technology characteristics, (c) expert 

characteristics, and (d) R&D investment levels on which the elicited values are conditional. We also 

evaluate the relationship between those variables and the 10
th
 percentile for each of the five technology 

areas separately. 
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The literature on elicitation has looked at the differences in the design of elicitation protocols, 

highlighting in particular the importance of the expert selection phase and of the method by which the 

survey is administered (in person, via mail, or internet)
(15-20, 27)

. For instance, it devotes significant 

attention to issues such as the optimal number experts and the careful sampling for expert selection. It 

also points to the advantages of in-person elicitations
(2, 17)

. During in person interviews the researcher can 

devote more time to “debiasing” and can provide opportunities for interviewers to ask follow-up 

questions that prompt experts to consider a wider range of possible outcomes. However, in-person 

elicitations are far more costly and time-consuming, for both subjects and investigators. Researchers 

address this trade-off by carefully designing mail or online elicitation protocols. To date, there is no 

empirical quantitative evidence indicating whether this is a relevant consideration and what bias these 

different elicitation designs may have on confidence.  

 

Uncertainty ranges across studies also vary due to the diversity in the technologies considered. Figure 1, 

for instance, highlights the wide diversity of expert opinion on the 50
th
 percentile 2030 estimates of solar 

technologies under the low funding scenario. Possible explanations for such differences include the 

maturity of a given technology, the extent to which learning-by-doing has improved costs in the past, the 

number of technological paths which have already been explored, and the specific efficiency of each 

technological path. Some technologies appear to have rather firm lower bounds, e.g. due to 

thermodynamics, while others may not. 

 

Similarly, expert background (e.g., institutional affiliation and country of residence) is likely to affect cost 

estimates
(27, 28)

, but no study has systematically evaluated this claim. Moreover, elicited data is likely to be 

subject to availability and anchoring heuristics associated with experts’ environment and experiences
(26)

.  
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Finally, the suggested public R&D investment levels included in the elicitation can have an impact on 

uncertainty. The direction of this effect is largely an empirical question. In fact, it is possible that experts 

may make estimates with wider uncertainty ranges (lower confidence) under higher R&D investment 

assumptions if they have difficulties imagining outcomes that are far away from the actual state of the 

world. However, experts could also have narrower uncertainty ranges, if they expect higher R&D to solve 

technical issues that are unresolved under scenarios with lower R&D investments.  

 

Understanding whether experts believe R&D will reduce or increase uncertainty will contribute to 

designing more effective public R&D portfolios. For example, the usefulness of public R&D includes not 

only the benefits to the performance of specific technologies but also the ability to make better R&D 

allocation decisions in future periods. The relationship between survey design, expert selection, and R&D 

investments and 10
th
 percentile estimates is also policy-relevant, given the importance of governments 

providing technology options for the future that may not be funded by private actors alone
(29)

, perhaps due 

to risk aversion or because they differ radically from current designs. 

 

To estimate these effects given disparate studies we conduct a meta-analysis: a set of statistical techniques 

used to aggregate the results of multiple studies testing similar hypotheses and to thus enhance the overall 

reliability of findings
(30, 31)

.  This approach accounts for differences across studies and provides results 

that are dependent on a consistent set of conditions across observations. This technique has been used in 

environmental economics since the 1990s
(32, 33)

, with several recent applications in energy
(34-37)

. The use of 

individual primary data, which we rely on for this study, is considered the gold standard for systematic 

reviews because it avoids many of the shortcomings of aggregate meta-analysis: it enables controlling for 

confounding factors at the individual level and for treatment differences between studies
(21, 31, 38-40)

.   
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While uncertainty is the main focus of our study (Urange=Y1), we also investigate the impact of the 

aforementioned variables on the 10
th
 percentile estimate (p10=Y2) as a proxy for the experts’ views on 

what may be the outcome of technology breakthroughs for each of the five technology areas separately.  

In the SI we include results on the relationship between the variables of interest and the 50
th
 percentile 

estimate.  Our basic specification reads as follows:  

 

ln(𝑌𝑖𝑡𝑝𝑟) = 𝛼 + 𝛽 ln(S) + 𝛾 ln(𝑇) + δ ln(𝐸) + θ ln(𝑅) + 𝜗𝑖𝑡𝑝 + 𝜀𝑖𝑝𝑡𝑟 

 

where i indicates expert, t technology, p a given subtechnology, r the specific R&D scenario on which the 

elicited metric is conditional. We regress Urange (or alternatively p10) on the independent variables 

described above and summarized in Table I. Specifically, S is a dummy variable equal to one if the survey 

was conducted in person; 𝑇 are dummy variables indicating the technology focus of the specific 

elicitation, with solar as the reference category; 𝐸 are dummy variables indicating the expert was from 

academia or the public sector, with private sector being the reference category; and 𝑅 are variables 

indicating the R&D scenario with which each estimate is associated. Due to the wide diversity in R&D 

funding levels associated with the expert estimates, we propose two specifications for R. In the first, 

dummy variables indicate medium and high funding (with business-as-usual funding being the reference). 

In a second specification, we use the continuous R&D variable (in dollars) and explore the possibility of 

diminishing marginal returns by including the squared term in the regression. We use random effects 

models in which each observations is a combination of expert and sub-technology, observed over 

different R&D scenarios, to control for expert effects, in addition to the other control variables related to 

survey design, expert selection, and R&D investment level
(23)

. Standard errors are clustered at the level of 

expert.  
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3 RESULTS 

3.1 Estimating Uncertainty 

The results of regressions for uncertainty range are presented in Table II. We first estimate the model by 

pooling data for all technologies (Models 1 and 2), and then for each of the five technologies separately. 

The first set of results has broad implications for the use of scientific expert opinion to integrate in science 

policy decisions, as well as for the design of elicitation protocols. The technology-specific results, 

conversely, are more applicable to decisions or elicitations covering the different five technologies 

considered. We drop results for three studies due to missing data (see SI for study information). 

 

3.2 Relationship between Urange and survey design characteristics 

Models 1 and 2 in Table II, which pool all technologies and include technology and random effects, 

indicate that elicitations conducted in person have uncertainty ranges that are 33% greater than those that 

were conducted online or over the mail, on average and ceteris paribus. This positive and statistically 

significant result (at a 1% level) is robust to conducting technology specific analysis (as shown in Models 

3-7), the only exception being the positive but not statistically significant coefficient for bioelectricity 

(Model 5). 

 

3.3 Relationship between Urange and technology categories 

Pooled Models 1 and 2 in Table II show that, on average, Urange in solar is statistically different from 

those in the other four technology categories. Urange is on average roughly 17%, 19%, 18% and 63% 

higher in the case of nuclear, bioelectricity, biofuels, and CCS experts, respectively. That different 

technologies are associated with different perceptions of uncertainty is not surprising, but to the best of 

our knowledge this is the first empirical assessment of the extent to which experts’ confidence is greater 
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in some technologies versus others. In the specific case of the technologies considered here, the small 

number of new constructions in both nuclear and CCS is a likely source of their higher uncertainty. 

 

3.4 Relationship between Urange and expert characteristics 

In Model 1 (Table I), the coefficient associated with experts in academia suggests that, on average and 

across technologies, their Uranges are roughly 12% greater than those in the private sector.  Public 

experts are associated with higher Uranges that those in the private sector, but the estimate is statistically 

significant at acceptable levels only when using a continuous R&D variable (Model 2). Finally, EU 

experts are, on average, more confident, with an uncertainty range that is 12% lower than that of US 

experts. These coefficients are also significant when the continuous variable for R&D investment is used 

(Model 2). Looking at the technology specific regressions, however, it is evident that the significance of 

the result is mostly attributable to experts in biofuel technologies (Model 5). European experts in all other 

technologies are associated with lower Uranges, but this result is not statistically significant.  

 

3.5 Relationship between Urange and R&D variables 

As shown in Table II, the different R&D scenarios upon which the cost estimates are conditional do not 

have a significant impact on experts’ confidence. However,  the higher R&D scenarios are associated 

with more uncertain estimates (lower confidence) around future costs for solar, and less uncertain 

estimates (higher confidence) for biofuels. These effects may be due to increasing R&D investments 

pushing researchers to expand the range of technological possibilities for solar, whereas in biofuels 

experts are more certain about the possibilities due to a focus on particular technical bottlenecks to 

overcome. In this respect, note that solar is the technology for which R&D has the largest effect on 

median (p50) future costs (see Table S8 in the SI). Conversely, for biofuels the medium and high R&D 

scenarios are associated with the lowest uncertainty ranges. 
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We acknowledge that the range of observed characteristics we control for in our regression is unlikely to 

account for all variation beyond the core technical judgments we are attempting to elicit. For example, in 

the SI we discuss our attempt to evaluate the impact of two additional elicitation variables of interest to 

the meta-analysis literature: the year in which the study was conducted and whether or not the results 

were published in the peer-reviewed literature. We were however unable to determine their impact in a 

robust manner. First, all elicitations were carried out only a few years apart, providing very little 

variation. Second, in a few cases the year of elicitation was different between different studies, resulting 

in collinearity issues with other variables. The same is true for the “published” variable vis-a-vis the E.U. 

and in-person variables for some technologies.  

 

3.6 Estimating breakthrough outcomes 

We regress the 10
th
 percentile cost estimate—which approximates the best outcome that the experts could 

imagine—on the independent variables separately by technology, and include results in Table III.  As 

expected, the R&D variables are negative (higher R&D scenarios are associated with lower p10 values) 

and statistically significant, with the exception of CCS, which has only 18 observations.  It is also notable 

that the size of the coefficient is quite different for all technologies in Models 1-5.  The difference 

between the size of the coefficients can be due to the fact that the R&D bins relate to different R&D 

investments for different technologies as well as to different beliefs regarding the impact that R&D 

investments will have on future outcomes.  In particular, the coefficient of the impact of the mid and high 

R&D scenarios on p10 is largest in the case of solar power.  

 

Similarly to Urange, the effect of the in-person variable on p10 is also relatively robust across the 

different technologies: it is negative and significant in the solar, nuclear and biofuel regressions (those 

with the largest number of observations), positive but not significant for bioelectricity, and negative but 

not significant for CCS.   Overall, these results suggest that in-person elicitations are likely to result in 
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more optimistic p10 estimates compared to mail or internet elicitations.  Lower p10 values is one of the 

reasons why in-person is associated with greater uncertainty ranges (lower confidence), as discussed in 

Section 3.5. 

 

Unlike the results for Urange, the results for expert selection variables differ by technology area. 

Academic experts provided more optimistic p10 estimates for nuclear and CCS, and more pessimistic 

estimates for biofuels than their industry counterparts (see Models 2, 3, and 4, respectively, in Table III).  

And public sector experts provided more optimistic p10 estimates for nuclear and bioelectricity, and more 

pessimistic estimates for biofuels than their industry counterparts. EU experts are more pessimistic about 

p10 than their US counterparts in bioenergy and biofuels. This suggests that previous experiences are 

more conducive to differences in the sign of perceptions of breakthroughs than on the uncertainty range in 

the technology areas evaluated in this study. 

 

 

4 DISCUSSION 

These results show that decisions made in elicitation design and in the selection of experts can bias study 

results. If what we are really interested in is the effects of public R&D investment, as the NRC study 

suggests
(8)

, we need to be wary of choices that have the potential to bias findings. Consequently, this 

analysis of multiple elicitation studies provide a basis with which to increase the reliability of elicited 

technology performance values by controlling for design choices, expanding the number of observations 

to include, and considering experts from varied geographical areas and backgrounds. Most importantly, 

we have quantified the relationship between expert and survey characteristics and experts’ confidence in 

future energy technology outcomes. 

 

We find that, on average, when experts respond to elicitations on the future costs of energy technologies 

in person, they ascribe lower confidence (larger uncertainty) to their estimates than when responding via 
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mail or internet. This result is robust to a variety of specifications.  Our results also indicate that in-person 

elicitations generate more optimistic expectations about how inexpensive the best case, or breakthrough, 

outcomes will be.  These results, taken together, are somewhat surprising in that, in particular, the online 

elicitations included here took many steps to train experts about people’s tendency toward overconfidence 

and to provide interactive tools to help them visualize the distributions generated from their individual 

responses.  That in-person elicitations reduce confidence suggests that on-line techniques are still not yet 

a substitute for a well-trained interviewer who can convey the importance of thinking about extremes, ask 

relevant follow up questions, and prod an expert to move their thinking beyond glib responses and 

immediate gut feeling..  Another hypothesis is that experts who are amenable to investing their time in an 

in-person interview are, for some reason, more likely to consider multiple technology pathways and thus 

have, before the interview, different views on uncertainty.  A longstanding challenge in expert elicitation 

has been to find ways to overcome experts’ biases to think too narrowly about possible outcomes—even 

if many decision makers consider results with high confidence to be more useful than those with low 

confidence
(13)

. These empirical results indicate that in-person interviews are more promising in addressing 

over-confidence, at least until on-line elicitations can incorporate some aspects of in-person interviews 

that at present they do not. We also find that in-person elicitations are associated with more optimistic 

breakthrough estimates p10.  This effect is, to a large extent, what explains the results on the uncertainty 

range, given that an analysis of the relationship between p90 and in-person shows a very inconsistent 

impact of in-person (see Table S-9 in the SI).  Thus, in-person interviews seem to increase the uncertainty 

range mainly by expanding the lower bound, rather than the upper bound.  

 

We also find that US experts were more uncertain about future costs than EU experts and that academics 

are generally more uncertain than their industry counterparts.  Provided that all are experts, interpreting 

this result for designing future elicitations is less straightforward than the in-person.  If we want a broad 

swatch of expertise, it seems unwise to prefer Americans and academics to other types of experts in order 
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to minimize within-expert over-confidence.  Rather, this result demonstrates the need for a broad set of 

experts since their environment may affect their access to disparate information and thus their confidence 

about future technology costs.  The technology-specific regressions indicate that, often, expert 

background is a significant predictor of confidence in specific technologies. This could be related again to 

availability biases—experts not engaged in taking technologies into the market may have more 

uncertainty regarding what may take to achieve commercialization, including uncertainties related to 

technology performance at scale. European experts may have lower uncertainty in general because they 

have had more recent experience with biofuels (a technology for which EU is statistically significant), and 

other technologies (for which the coefficient is also negative but not significant).  

 

We also found that high R&D scenarios do not affect experts’ confidence in the outcomes.  The absence 

of an R&D effect contrasts the results for R&D on p10, where higher R&D investments are consistently 

associated with lower cost estimates. From a social perspective, public R&D investments in energy are 

thought provide multiple public goods: they are expected to improve technology outcomes, and also 

generate information that can, for example, help inform future decisions.  These results, for these five 

technologies, provide a much stronger case that more R&D will improve technologies by 2030 than it 

does that more R&D will clarify expectations about which technologies will be most promising between 

now and then.  The results of this study could be utilized in modeling exercises that aim to inform policy 

design related to energy technologies.  These include the Energy Modeling Forum (EMF) and the 

Intergovernmental Panel on Climate Change (IPCC). The study authors are already interacting with the 

EMF group on a formal basis and expect that this interaction will help transfer the insights from this study 

into a range of integrated assessment models. 

 

The insights here are derived from a relatively large set of existing energy technology expert elicitations, 

which were, like all elicitations, costly and time-consuming.  That in-person interviews seem to address 
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overconfidence better than on-line elicitations suggests that there may be some value of information 

provided by the more expensive in-person format.  Scaling up efforts to perform more elicitations might 

ultimately be helped by comparing the benefits of lower confidence to the costs on in-person interviews, 

as well as to the alternative of improving online elicitations. An important opportunity of future work 

would be to test the results presented here in an experimental setting. Such work could build on recent 

work in which EU experts and US experts responded to the same online elicitation tool
(41)

.  This level of 

control would allow researchers to identify statistically significant differences in the answers of experts in 

both regions and could also be used to assess the effect of question format
(21)

. 

 

We have presented evidence that analyzing multiple expert elicitations on the future of energy 

technologies can provide insights for survey design and expert selection. Despite the dearth of alternative 

means by which to estimate future technology outcomes, expert elicitations remain vulnerable to 

criticisms of being unrepresentative, merely subjective, and based on opinions rather than facts. If 

elicitations are to be considered sufficient evidence on which to stake decisions involving potentially 

billions of dollars of public funds they need to be credible. The results here suggest that an empirically 

based understanding of what drives the range of experts’ responses can increase the credibility and 

effectiveness of expert elicitation in supporting policy decisions involving science and innovation.  
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TABLES 

Table I. Descriptive statistics. 

Variable Obs Mean Std. Dev. Min Max 

      Urange 742  0.869   2.186   0.054   57.539  

P10_LEC 742  0.058   0.057   -     0.480  

P50_LEC 742  0.081   0.071   0.001   0.772  

      RD 694  3,563   8,629   13   80,000  

RD_high 742  0.278   0.448  0 1 

RD_mid 742  0.255   0.436  0 1 

RD_low 742  0.381   0.486  0 1 

      Bioelec. 742  0.096   0.294  0 1 

Biofuel 742  0.178   0.383  0 1 

Nuclear 742  0.480   0.500  0 1 

Solar 742  0.218   0.413  0 1 

CCS 742  0.028   0.166  0 1 

      Academia 742  0.330   0.471  0 1 

Private 742  0.395   0.489  0 1 

Public 742  0.275   0.447  0 1 

EU 742  0.380   0.486  0 1 

Inperson 742  0.287   0.453  0 1 
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Table II.  Factors affecting the uncertainty range (Y=ln[Urange]). 

Y = ln(Urange) (1) (2) (3) (4) (5) (6) (7) 

VARIABLES pooled pooled Solar Nuclear Bioelec. Biofuel CCS 

                

Inperson 0.286*** 0.280*** 0.317*** 0.455*** 0.0637 0.333* 0.627*** 

 
[0.000112] [0.00101] [1.99e-06] [0.00326] [0.682] [0.0650] [0.00382] 

academia 0.111** 0.109** 0.0115 0.189** 0.0149 0.0357 0.00387 

 
[0.0285] [0.0390] [0.890] [0.0131] [0.912] [0.816] [0.992] 

public 0.0630 0.0767* -0.0673 0.156*** 0.108 0.00809 -0.173 

 
[0.128] [0.0853] [0.286] [0.00578] [0.384] [0.952] [0.646] 

EU -0.130*** -0.130*** -0.0878 -0.0374 -0.100 -0.404** 
 

 
[0.00162] [0.00463] [0.254] [0.416] [0.386] [0.0280] 

 RD_high 0.00111 
 

0.0705*** -0.00858 0.0354 -0.138** 0.140 

 
[0.947] 

 
[0.00133] [0.641] [0.172] [0.0244] [0.488] 

RD_mid 0.00622 
 

0.0339* 0.000876 0.0320 -0.0931* 0.217 

 
[0.698] 

 
[0.0597] [0.957] [0.346] [0.0946] [0.441] 

ln_RD 
 

-2.818 
     

  
[0.324] 

     ln_RDsq 
 

1.404 
     

  
[0.325] 

     Nuclear 0.155** 0.175*** 
     

 
[0.0342] [0.00994] 

     Bioelec 0.176*** 0.197*** 
     

 
[0.00711] [0.00459] 

     Biofuel 0.164** 0.168** 
     

 
[0.0217] [0.0216] 

     CCS 0.492*** 0.532*** 
     

 
[0.000236] [0.000117] 

     

        Observations 678 694 162 322 66 110 18 
Number of 
experts, by 
subtech 301 276 71 159 23 40 8 

Nr Clusters 160 146 39 66 23 24 8 

R2 overall 0.229 
 

0.319 0.174 0.0382 0.128 0.378 

R2 within 0.000481 0.0287 0.166 0.00362 0.0274 0.154 0.186 

Clustered values in brackets 
      *** p<0.01, ** p<0.05, * <0.1 
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Table III. Factors affecting the “best” outcome (Y=ln[p10]) for individual technologies. 

      Y=ln(p10) (1) (2) (3) (4) (5) 

VARIABLES Solar Nuclear Bioelectricity Biofuel CCS 

            

Inperson -0.0845*** -0.0202*** 0.00709 -0.0163*** -0.00359 

 
[6.09e-07] [4.00e-06] [0.518] [0.000342] [0.617] 

academia 0.000778 -0.0216*** -0.00691 0.00995** -0.0102* 

 
[0.959] [2.83e-07] [0.607] [0.0149] [0.0714] 

public 0.0194 -0.0118** -0.0290** 0.0137** -0.00131 

 
[0.213] [0.0101] [0.0409] [0.0397] [0.871] 

EU -0.0121 0.00349 0.0437*** 0.0128*** 
 

 
[0.209] [0.385] [0.00103] [0.000357] 

 RD_high -0.0316*** -0.00961*** -0.0169*** -0.00465* -0.00265 

 
[1.63e-08] [0] [5.45e-06] [0.0944] [0.151] 

RD_mid -0.0140*** -0.00478*** -0.00808*** -0.00169 -0.00221 

 
[0.000188] [0.000221] [0.000361] [0.508] [0.107] 

      Observations 162 322 66 110 18 
Number of experts, by 
subtech 71 159 23 40 8 

Nr Clusters 39 66 23 24 8 

R2 overall 0.419 0.284 0.477 0.240 0.356 

R2 within 0.371 0.372 0.476 0.119 0.365 

Clustered pvalues in 
brackets 

     *** p<0.01, ** p<0.05, * p<0.1 
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1. Summary of expert elicitations included in this study 

Table S-1. Characteristics of each energy technology expert elicitations study. 

  
Due to missing data studies 25, 53, and 57 were excluded from the analyses included in the main 

text. 
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Table S-2. Observations by technology and source. 

 

Source 

    Technology Harvard UMass FEEM CMU Total 

PV 69 6 39 48 162 

Bioelectricity 21 12 38 0 71 

Biofuel 90 6 36 0 132 

CCS 15 6 0 0 21 

Nuclear Energy 162 12 172 10 356 

Total 357 42 285 58 742 
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Table S-3. Definitions of technologies and sub-technologies included in the elicitations.  

Major Technology Sub technology Technology Detail 

1. Nuclear 

1. GenIII/III+ 1. LWR/GenIII/III+ 

2. SMR 
(both Gen III/III+ and Gen IV 

configurations) 

3. GenIV 
 

2. Solar 

1. novel PV 1. novel HE 

2. inorganic, organic, 3rd gen 

3. excitonic 

2. thin-film 1. thin-film (2d-2comp) 

2. thin-film(2a-2b) 

3. thin-film(2c-2d)  

3. x-Si 1. Crystalline Silicon PV 

2. other x-Si 

4. CPV  
 

5. all PV  

 

 

6. application 

1. PV mix 

2. PV and CSP 

3. Solar PV 

1. Residential scale 

2. Commercial scale 

3. Utility scale 

3. Bioelectricity 1. all Bioelectricity 
 

4. Biofuel 

1. Diesel substitute 
 

2. Gasoline substitute 
 

3. Jet Fuel substitute 
 

4. all Biofuel 
 

5. CCS 

1. pre-Combustion 
 

2. post-Combustion 1. Amines 

2. Absorption 

3. Adsportion 

4. Chilled ammonia 

5. Membranes 

6. Other PC 

3. Oxyfuel 
 

4. all CCS 
 

 

Note that not all elicitations reported expert estimates at the “Technology Detail” level. 
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Table S-4.  Assignment of study-specific R&D levels to standardized R&D bins. 
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2. Data cleaning 

Here we detail the data cleaning issues that we have addressed in putting together the individual 

participant data in the dataset used in the meta-analysis: 

Missing values. The elicitation datasets contained empty values, zeroes, and values marked as 

‘not available.’ Through conversations with the authors we were able to determine that the 

zeroes were empty values (in some cases experts had decided that they did not want to provide 

an estimate), and that in some cases empty values were caused by a mistake copying data. 

Outliers. In some cases elicited values seemed too low or too high. It was necessary to determine 

whether these values were a result of differences in units, of mistakes copying results, or of the 

true beliefs of the expert. 

Variables not included in published elicitations. Some of the variables we investigate in the 

meta-analysis—e.g., expert affiliation (private sector, public institution, and academia) and 

nationality—were not reported in the individual participant data we obtained from elicitation 

authors. Obtaining this information requires dealing with confidentiality issues and more 

dialogue with the authors. 

Inconsistencies. We corrected for inflation and ensured that costs under lower RD&D scenarios 

stochastically dominate costs under high RD&D scenarios. 

Differences in technological specificity across and within studies. For example, some of the 

studies collected information on all Gen. IV nuclear systems, while others collected information 

on more specific reactor configurations (fast reactors and high temperature reactors). We 

conducted our analysis using the least common denominator for technological specificity, which 

we refer to as the 5 “technologies” in   
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Table S-3.   

Using data from elicitations collecting different values. All nuclear fission elicitations collected 

the same key metric (overnight capital cost), but in other energy technology elicitations groups 

collected different metrics. For example, FEEM collected levelized cost of electricity, while 

Harvard collected data on different cost components, including cell efficiency and cost and 

inverter efficiency and cost. In this case it was necessary to construct a model to make the data 

comparable using common assumptions (e.g., insolation and discount rates).Details in this 

respect are explained below (Section 3) 

Extensive interactions with elicitation authors were essential in the data cleaning process. This 

dialogue was facilitated by the fact that the authors have collaborations with most of the 

elicitation authors listed in Table 1, making it possible to engage in a back and forth to ensure 

that the data are accurately represented.  
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3. Variable definitions and descriptive statistics 

Table S-5 describes the independent variables investigated in this study and the rational for their 

inclusion.    

Table S-5. Definitions of variables used. 

Technology Outcome  

p10, p50, p90 
Levelized energy cost elicited conditional on probabilities of 0.10, 0.50, and 0.90 in 

future, e.g. 2030.  

p50_2010 Median levelized energy cost, current (defined as 2010).  

Norm_p50  Normalized levelized energy cost in 2030 compared to 2010. p50/p50_2010  

Urange  Uncertainty range: (p90-p10)/p50 

Input units  

Metric being elicited. Some studies elicit levelized energy cost ($/kwh) directly while 

others separately elicited components of it.  Section 3 provides information on 

assumptions used for conversion. 

R&D investment characteristics  

RD level  Funding amount per year, converted into millions of constant 2010 dollars.  

RD bins  Level of funding coded as high (RD1), medium (RD2), and low (RD3).  See Table S3.  

Survey design characteristics  

Study  Code of the 19 studies (11-57) used in meta-analysis.   See Table S1. 

Published  Whether study has been published in peer-reviewed journal. 

Technology  
Technology category, including nuclear, solar, bioelectricity, biofuel, and CCS.   See 

Table S2 

Subtech  
Disaggregated technology categories, e.g. multiple types of PV under solar energy.  See 

Table S2. 

Inperson  
Elicitation conducted as an in-person interview.  Otherwise conducted as internet or mail 

survey.  

Year estimate 

applies  
Year for which p50, p10, and p90 values were elicited.  

Year estimate 

made  
Year elicitation was conducted; typically precedes publication year.  

Expert Characteristics  

Expert  
4-digit expert code:  first 2 digits are study code, 3rd and 4th digits are for experts 01-99 

within that study.  Used for expert fixed effects.  

Affiliation  
Whether expert is affiliated with a university (academia), industry (private), or 

government laboratory (public). 

Country  Residence of expert, converted to EU and non-EU.  
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4. Results of additional regressions 

Table S-6.  Estimates for models of Y = ln(p10), with continuous R&D. 

  (1) (3) (5) (7) (9) 

VARIABLES t_pv t_nu t_bioe t_biof t_ccs 

            

Inperson -0.0819*** -0.0230*** -0.00673 -0.0216*** -0.00610 

 

[0.000238] [2.48e-06] [0.597] [8.00e-05] [0.374] 

academia 0.000255 -0.0223*** -0.00440 0.0127** -0.0117** 

 

[0.990] [1.27e-07] [0.748] [0.0126] [0.0231] 

public 0.00961 -0.0115** -0.0275* 0.0160** -0.00165 

 

[0.678] [0.0130] [0.0502] [0.0260] [0.836] 

EU -0.0256 0.00517 0.0517*** 0.0132*** 0 

 

[0.180] [0.190] [0.000171] [0.000620] 

 

ln_RD -0.0135*** 

-

0.00287*** 

-

0.00508*** 

-

0.00221*** 

-

0.000450 

 

[1.55e-05] [0] [0.00408] [0.00771] [0.489] 

ln_RDsq 

     

      Observations 114 356 71 132 21 

Number of identif 46 159 23 40 8 

Nr Clusters 25 66 23 24 8 

R2 overall 0.385 0.292 0.419 0.235 0.309 

R2 within 0.328 0.350 0.169 0.102 0.0676 

Robust pval in brackets 

     *** p<0.01, ** p<0.05, * p<0.1 
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Table S-7.  Estimates of models for Y = ln(p50). 

  (1) (2) (3) (4) (5) (6) 

VARIABLES t_pv t_nu 

t_nu (no 

UMASS) t_bioe t_biof t_ccs 

              

Inperson -0.0935*** 0.0191 -0.00722 0.0194 -0.0150** 0.0173 

 

[0.00155] [0.368] [0.278] [0.231] [0.0448] [0.436] 

academia -0.00433 -0.0124 -0.0221*** -0.0181 0.0123 -0.00442 

 

[0.799] [0.204] [0.000108] [0.316] [0.145] [0.659] 

public 0.0193 -0.00653 -0.00851 -0.0410* 0.0223* -0.00624 

 

[0.312] [0.252] [0.142] [0.0720] [0.0502] [0.553] 

EU 0.0191 0.00682 0.00560 0.0671*** 0.00561 

 

 

[0.572] [0.190] [0.250] [0.000377] [0.185] 

 RD_hi -0.0394*** -0.0130*** -0.0131*** -0.0199*** -0.0118*** -0.0125 

 

[5.96e-10] [0] [0] [1.31e-07] [0.00101] [0.236] 

RD_mid -0.0196*** -0.00679*** -0.00691*** -0.0124*** -0.00802*** -0.00810 

 

[7.59e-08] [7.54e-08] [1.27e-07] [0.000225] [0.00367] [0.206] 

Yearestimatemade -0.0151 

     

 

[0.379] 

     Technology effects 

 

yes yes 

   Observations 162 322 310 66 110 18 

Number of identif 71 159 147 23 40 8 

Nr Clusters 39 66 62 23 24 8 

R2 overall 0.339 0.0973 0.266 0.545 0.216 0.234 

R2 within 0.451 0.477 0.477 0.519 0.399 0.303 

Robust pval in brackets 

      *** p<0.01, ** p<0.05, * p<0.1 

      

Notes: Specification 1 includes Yearestimatemade to mirror the specification present in 

Verdolini et al. (2015). Specifications 2 and 3 include technology dummies to mirror the 

specification presented in Anadon et al. (2013). 
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Table S-8.  Estimates of models for Y = ln(p90). 

       (1) (2) (3) (4) (5) 

VARIABLES t_pv t_nu t_bioe t_biof t_ccs 

            

Inperson -0.0376 0.0687** 0.0302** -0.0117 0.0428 

 

[0.107] [0.0307] [0.0438] [0.547] [0.320] 

academia 0.00596 0.00233 -0.00338 0.0234 -0.00443 

 

[0.808] [0.874] [0.826] [0.206] [0.699] 

public 0.0240 0.00432 -0.0331 0.0320* -0.00757 

 

[0.249] [0.630] [0.111] [0.0951] [0.489] 

EU -0.0530*** 0.00634 0.0793*** -0.00996 

 

 

[0.00178] [0.401] [4.09e-07] [0.505] 

 RD_hi -0.0445*** -0.0178*** -0.0272*** -0.0264*** -0.0248 

 

[4.28e-09] [0] [4.01e-07] [0.000611] [0.240] 

RD_mid -0.0208*** 

-

0.00902*** -0.0142*** -0.0169** -0.0150 

 

[7.34e-08] [5.64e-07] [0.00208] [0.0237] [0.257] 

      Observations 162 322 66 110 18 

Number of experts, by 

subtech 71 159 23 40 8 

Nr Clusters 39 66 23 24 8 

R2 overall 0.239 0.0878 0.659 0.204 0.321 

R2 within 0.445 0.443 0.456 0.394 0.288 

Clustered pval in 

brackets 

     *** p<0.01, ** p<0.05, * p<0.1 
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5. Covariates 

 

Table S-9. Correlation matrix of covariates. 
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