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Do extreme weather events generate attention to climate change? 

 

Abstract: We analyzed the effects of 10,748 weather events on attention to climate change between 

December 2011 and November 2014 in local areas across the United States. Attention was gauged by 

quantifying the relative increase in Twitter messages about climate change in the local area around the 

time of each event. Coastal floods, droughts, wildfires, strong wind, hail, excessive heat, extreme cold, 

and heavy snow events all had detectable effects. Attention was reliably higher directly after events 

began, compared to directly before. This suggests that actual experiences with extreme weather events 

are driving the increases in attention to climate change, beyond the purely descriptive information 

provided by the weather forecasts directly beforehand. Financial damage associated with the weather 

events had a positive and significant effect on attention, although the effect was small. The abnormality 

of each weather event’s occurrence compared to local historical activity was also a significant predictor. 

In particular and in line with past research, relative abnormalities in temperature (“local warming”) 

generated attention to climate change. In contrast, wind speed was predictive of attention to climate 

change in absolute levels. These results can be useful to predict short-term attention to climate change 

for strategic climate communications, and to better forecast long-term climate policy support. 

 

Keywords: climate attention; social media; extreme weather 

 

 

1. Introduction 

 Personal experiences with weather events can cause attention to the issue of climate change 

(Konisky et al. 2015). Previous research on this topic has reported that local abnormalities in 

temperature (Joireman et al. 2010; Egan and Mullin 2012; Hamilton and Stampone 2013; Myers et al. 

2013; Zaval et al. 2014; Li et al. 2011; Lang 2014; Kirilenko et al. 2015) as well as severe rains and 

associated flooding (Spence et al. 2011; Weber 2013) can increase people’s concern about climate 

change, at least temporarily. Several studies have looked at the effects of local flooding. Past 

experiences with floods correlated with heightened concern about climate change in data from a 2010 

survey of UK citizens (Spence et al. 2011). Whitmarsh (2016) found that UK citizens who had 

experienced a damaging flood were more likely to report that the issue of climate change had personal 

importance to them, but were not significantly more likely to be more knowledgeable, concerned, or 

active in relation to the issue. 

Few studies have explored the effects of weather phenomena beyond temperature and flooding. 

Konisky et al. (2015) found a modest short-term effect of experiencing extreme weather events in 

general by evaluating data from public opinion polls and historical weather records. In another study, 

New Jersey residents were found to be more likely to support a green politician after experiencing 

Hurricane Sandy and Hurricane Irene compared to before each hurricane occurred (Rudman et al. 2013).  

Lang and Ryder (2016) report that experiences with hurricanes cause interest in climate change 

measurable using Google search activity in local areas up to two months after each event. After a major 

drought in 1988 in Kentucky, USA, residents living in a county with drought-caused water restrictions 

had significantly higher environmental attitudes compared to prior levels (Arcury and Christianson 

1990).  

Our knowledge of how extreme weather experiences affect attention to climate change is 

increasing but still scarce. Few studies have examined the effects of weather events other than 

temperature changes or flooding. Many other extreme weather events such as wildfires, heavy snow, and 

hail storms have not been looked at yet to the best of our knowledge. Moreover, previous studies on the 
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effects of hurricanes, droughts, and floods have almost all measured the impacts of these events weeks 

or months after they occurred. Past research suggests that these time delays may have lessened the 

observed impacts of the weather experiences. Hamilton and Stampone (2013) found that impacts of 

temperature changes on beliefs in anthropogenic climate change were strongest for a two-day period 

following each event. Similarly, Konisky et al. (2015) found that the impact of experiences with extreme 

weather events within the last month were far stronger than those of earlier events. In a macro-level 

study by Brulle et al. (2012), average reported climate concern at the national level was aggregated in 

three-month intervals and no significant effects of abnormalities in temperature, precipitation, or of 

droughts were detected. To establish a more comprehensive understanding of how extreme weather 

experiences affect climate attention and attitudes, we need research on a more comprehensive range of 

relevant weather events and studies that examine their immediate impacts.  

Several studies have shown that individual differences such as gender, political affiliation, and 

environmental values moderate the effect of extreme weather experiences on climate change concern 

and attention (for more details see Brody and Zahran 2008; Hamilton and Stampone 2013). Howe and 

Leiserowitz (2013) found that prior beliefs about climate change substantially biased perceptions of 

local temperature, and to a lesser degree biased perceptions of precipitation, replicating similar results 

observed with Illinois farmers by Weber and Sonka (1994). Similarly, Goebbert et al. (2012) showed 

that perceptions of temperature changes were substantially more biased contingent on participants’ 

political ideologies than those of floods and droughts. These findings further highlight the importance of 

expanding our knowledge of the effects of extreme weather experiences beyond temperature changes. 

Experiences with other weather events may be more influential because they may be less politicized, 

i.e., people may have fewer preconceived conceptions about them. 

The aspects of weather events that predict changes in people’s attention and attitudes to climate 

change also warrant examination. Brody and Zahran (2008) showed that the amount of financial damage 

and human fatalities caused by weather events in local areas are marginally predictive of people’s 

perceived risk of climate change. More studies examining these variables and other event characteristics 

are needed. To our knowledge no research to date has analyzed the effect of the degree of abnormality 

of weather events other than temperature changes. In this context, it is useful to ascertain whether 

attention is guided by the absolute or relative degree of abnormality.  A well-known psychophysical law 

(Weber 1834) predicts that people’s sensitivity to differences in weather variables will be relative, i.e., 

proportional to normal levels (Weber 2004), but it is also possible that, at least for some events, absolute 

levels of extremeness could drive attention to the event and its connections to climate change.  

Better understanding the effects extreme weather can have on climate attention will help with 

short- and long-term predictions about climate concern. Accurate short-term predictions can allow 

policy makers and grassroots organizations to implement climate communications more strategically by 

capitalizing on time periods when people have heightened attention to climate change after recent 

extreme weather experiences. Long-term predictions can be used by policy makers to forecast the future 

favorability of climate policies. Such predictions are already being formulated based on statistical 

models of when changes in weather will be detectable in different locations (Ricke and Caldeira 2014). 

In addition, Egan and Mullin (2016) estimated weather preferences using migration patterns and suggest 

that 88% of Americans will experience less preferable weather by the turn of the century if emissions 

are not abated. A more detailed empirical understanding of when and how extreme weather events cause 

attention to climate change can improve long-term predictions. 

 In the current study we examine the immediate impacts of ten different types of extreme weather 

events on attention to climate change: Flash Flood, Excessive Heat, Wildfire, Heavy Snow, Tornado, 

Hail, Strong Wind, Extreme Cold, Coastal Flood, and Drought events. Each of these event types are 
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linked to projected effects of climate change. According to the Intergovernmental Panel on Climate 

Change (IPCC) Fifth Report, instances of extreme heat are expected to increase over time due to 

anthropogenic climate change (Collins 2013, section 12.4.3.3). Precipitation overall is projected to 

increase due to increasing temperatures, and the regional and temporal distributions of precipitation 

events are expected to change substantially (Collins 2013, 12.4.1.1 and 12.4.5.5). Climate change is 

projected to result in more intense downpours leading to more floods, but also longer dry periods 

between rain events resulting in more droughts and in some areas more risk of wildfires (Collins 2013, 

12.2 FAQ). The contrast between wet and dry seasons is expected to increase, resulting in more severe 

droughts and risks of wildfires (IPCC 2014) during dry seasons and more flooding during wet seasons 

(Collins 2013, 12.4.5.2 and 12.5.5.6.1). Increased droughts are projected in many regions in the 

Southern Hemisphere while decreases in droughts are projected in some high northern latitudes (Collins 

2013, 12.4.5.5). At high latitudes of the Northern Hemisphere, increased precipitation could result in 

increased snowfall in colder regions and decreased snowfall in warmer ones (Collins 2013, 12.4.6.2). 

Occurrences of severe storms are expected to increase (Collins 2013, 12.4.4.3 and 12.4.5.5). In coastal 

regions increased severe storms combined with rising sea levels may result in more intense coastal 

floods (IPCC 2013, D.3). Severe storms involving large hail, strong winds, and tornadoes may increase 

as the result of alterations in the water cycle due to climate change (Collins 2013, 12.4.5.5). Beyond the 

projected effects of climate change, the IPCC states that it is extremely likely that anthropogenic climate 

change has caused increases in global surface temperature since 1951 and it is likely that it has already 

affected the global water cycle and precipitation patterns (IPCC 2013, D.3). 

Our analysis uses records of 10,748 weather events from December 2011 to November 2014. We 

measure attention to climate change using approximately 1.7 million Twitter messages from the areas 

surrounding the weather events. We assess the predictive value of events’ financial damages and 

fatalities, as well as the effect of the abnormality of each event’s occurrence. We separately model and 

compare the effects of key weather features (temperature, wind speed, and precipitation) on absolute vs. 

relative scales. 

 

 

2. Method 

2.1 Data 

Twitter messages. The full Twitter corpus used for this study includes 5,798,376 messages posted 

between December 2011 and November 2014. Only messages (~1.7 million) within 35 miles of each 

event and one month before or three days after were included in the analysis. Each of these messages 

includes the words “climate change” or “global warming” (case-insensitive). The messages were 

collected using the Twitter API and the Topsy Social Data API. Verbal identifications of users’ locations 

from users’ profiles were recoded into geographical coordinates using the Data Science Toolkit 

geocoder (datasciencetoolkit.org).  

 

Weather events. An archive of significant weather events from 2005 through 2014 was obtained from 

the National Climatic Data Center’s (NCDC) Storm Event Database. Records of weather events 

occurring before 2011 were used to quantify the abnormality of each event occurring in the time range 

of our Twitter data. Only events that were deemed by event reporters as causing significant damage or 

inconvenience were included in this database.
1
 For each weather event included there is a detailed record 

                                                           
1
 The instructions for weather event reporters can be found here: 

https://www.ncdc.noaa.gov/stormevents/pd01016005curr.pdf. 

https://www.ncdc.noaa.gov/stormevents/pd01016005curr.pdf
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of its start time, location, event type (e.g., hurricane, tornado, etc.), financial damage caused, deaths 

caused, and other variables. Some weather events recorded are indicated as being part of a larger storm 

system. For cases where there were multiple events of the same type reported within a single larger 

storm system, we only analyzed the first event of each type in each larger system. Further, only weather 

events that had more than 10 messages included in the abovementioned Twitter corpus published within 

35 miles and within 30 days before or 3 days after the event were included in the analysis (n = 10,748). 

The 10 message or more criterion was to ensure that there was a sufficient number of Twitter messages 

to accurately estimate the effect of each event. Events with missing location information were geocoded 

using the centroid of the county or National Weather Forecast Zone that was provided for each event. 

 

Daily weather records. Historical daily temperature, wind speed, and precipitation data were accessed 

through the Weather API maintained by Weather Underground.
2
 The Weather API provided historical 

daily weather records from the National Weather Service ASOS weather station nearest to each event’s 

center coordinates. The ASOS (Automated Surface Observing Systems) system includes approximately 

2,000 weather stations located at airports across the country. The ASOS program is partially coordinated 

by the National Weather Service.
3
 

 

2.2 Measuring attention to climate change 

To estimate the attention to climate change caused by each event we calculated a metric that 

captures the relative increase in climate change messages directly after each event begins. Figure 1 

illustrates that C-10,C-9,…,C-1 are the counts of climate change messages across 10 three-day intervals 

leading up to the time of each event. C1 is the count of messages in the three-day interval directly after 

the event. Our attention measure is the number of messages in the interval directly after the event, 

centered and standardized by the mean and standard deviation of the baseline values from approximately 

one month before the event (excluding the three-day interval directly before the event as counts in this 

interval are often increased by the anticipation of an 

approaching weather event).  
 

 

 

𝜇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  =
1

9
∑ 𝐶𝑡

−2

𝑡 = −10

 

𝜎𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = √
1

9
∑ (𝐶𝑡 − 𝜇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)2 

−2

𝑡 = −10

 

 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 =  
𝐶1  − 𝜇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝜎𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 

 

                                                           
2
 http://www.wunderground.com/weather/api 

3
 http://www.nws.noaa.gov/ost/asostech.html 

Weeks to event 

 
Figure 1. Climate change tweet counts for 10 three-day 

intervals prior to hypothetical extreme weather event and 

for first three-day interval after the event. 
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Figure 2. Comparison of Z-score and attention estimates. 

 

Attention 

Metric 

 

Our attention variable is similar to a Z-score, 

except that the counts of messages near the time of each 

event (C-1 and C1) are not included in the calculation of 

the mean and standard deviation used to center and 

standardize the score. This is done to avoid domination 

of the standardizing mean and standard deviation values 

by the C-1 and C1 counts. Figure 2 visualizes the results 

of the attention metric versus calculated Z-score values 

in a simulation where the counts directly before and 

after the event linearly increase as the baseline values 

are held constant. The Z-score does not linearly increase 

with the simulated increase in attention while the 

attention metric linearly estimates it.  

 

2.3 Measuring abnormality 

We calculate a score representing abnormality 

in frequency for each event by first dividing the number of weather events (of the same type) E that 

occurred in the same US state s in the same month m in the same year Y by the average number of events 

that occurred in the same calendar month and state historically since 2005: 

 

𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑡𝑦 𝑟𝑎𝑤 =  
𝐸𝑠𝑚𝑌

1/(𝑌 − 1 − 2005) ∑ 𝐸𝑠𝑚𝑦
𝑌−1
𝑦=2005

  

 

For example, imagine (fictitiously) that 20 hail events occurred in March in the state of New Jersey in 

2014 and the historical average for occurrences of hail events in March in New Jersey is 10. The raw 

abnormality ratio would be 20/10=2. If only 5 hail events occurred in 2014 instead of 20, then the raw 

abnormality ratio would be 5/10=0.5. When the denominator was equal to 0 for any event, we replaced 

that value with 1 to avoid producing an infinite or undefined raw abnormality score. Only 2% of events 

had a zero in the denominator of the raw abnormality ratio. 

We next subtract 1 from the raw abnormality ratio so that 0 means that the number of event 

occurrences in the current month is identical to the historical average (1/1 → 0), i.e. zero abnormality. 

This also makes events that had a fractional raw abnormality score (indicating that the current month 

had abnormally fewer events than the average) now have a negative score (e.g. 5/10 → -0.5 ). The 

negative or positive difference of the raw abnormality score from 1/1 reflects the level of abnormality 

because of a higher or lower frequency compared to the historical average. We then take the absolute 

value so that both types of abnormality, less than and greater than the historical average, have a positive 

score and increase as the raw abnormality score increases or decreases away from 1/1.
4
 This produces an 

abnormality variable with a highly skewed distribution so we log transformed the abnormality score to 

achieve an abnormality variable that is more normally distributed. We added 1 to each value directly 

                                                           
4
 When the events with a raw abnormality score of <1 (indicating negative abnormality) are removed from the analysis the 

effect of abnormality is unchanged. 
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prior to the log transformation to avoid taking the logarithm of zero, and also so that when the value to 

be transformed is zero the transformed version of it is also zero (as log(1)=0).
5
 

 

𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑡𝑦 𝑓𝑖𝑛𝑎𝑙 = log(|𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑡𝑦 𝑟𝑎𝑤 − 1| + 1) 

 

 

3. Results 

3.1 Estimating the null distribution 

The average frequency of messages posted on Twitter has increased continually over the time 

range of this analysis. Therefore the attention 

metric can be expected to be slightly and 

consistently positive even when there is no real 

effect of any target event because it quantifies the 

relative increases in message counts after the 

event compared to the average from one month 

prior. Another reason the attention metric may be 

positive when there is no true effect of a 

measured event is the possibility that by chance 

some other event (such as a film release or 

climate speech) unrelated to the event of interest 

might have caused an increase in attention to 

climate change at the same time and place as the 

target event. Both of these considerations mean 

that the true null value of attention to which the 

effects of weather events should be compared 

should not be assumed to be zero. In order to 

estimate an appropriate distribution of attention 

under the null hypothesis, we calculated attention scores for a set of locations and dates where there 

were no occurrences of any recorded extreme weather event. These ‘null’ events were matched to the 

locations and calendar dates of our target weather events and therefore serve as control observations. For 

each target weather event, we analyzed one control event in the same location but one year before or one 

year after the target weather event and within 30 days of the original calendar date, if a day could be 

found with no extreme weather event occurring within one week before or after.
6
 

 The distribution of the attention scores for the control events is shown in Figure 3. The mean of 

the null distribution of attention is 0.20 and is shown by the dotted vertical grey line. The distributions 

of attention for the 10 weather event types analyzed compared to the null distribution can be seen in 

Appendix B.  

 

3.2 Comparing attention before vs. after each event 

 We examine the effects of the control events and 10 different types of extreme weather events 

with varying sample sizes: Control (9769), Flash Flood (2,381), Excessive Heat (304), Wildfire (295), 

                                                           
5
 A visualization of the full transformation from the raw abnormality scores to the final abnormality scores can be see in 

Appendix A. 
6
 The algorithm for this matching procedure is provided in Appendix C. 

Figure 3. Distribution of attention for control cases 
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Heavy Snow (584), Tornado (807), Hail (4,299), Strong Wind (1,177), Extreme Cold (245), Coastal 

Flood (130), and Drought (526).  

Our measure of attention to climate change (described above) quantifies the relative number of 

climate change messages occurring in the local area directly after each weather event. In Figure 4 we 

compare this attention variable to a modified version that quantifies the effect directly before each event 

hits. The dotted grey line in each graph represents the before and after values for all of the null event 

control cases. 

 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑏𝑒𝑓𝑜𝑟𝑒 =  
𝐶−1 −𝜇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝜎𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
          𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑓𝑡𝑒𝑟 =  

𝐶1 −𝜇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝜎𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 

 

Across the 10 event types examined, attention to climate change is usually greater directly after each 

extreme weather event hits compared to directly before.  

 

3.3 Linear mixed-effects models 

In each of the regressions summarized below we used a linear mixed-effects model specified as 

follows. The dependent variable is attention which quantifies the relative increase in climate change 

messages directly after each event occurs as described above. We control for baseline differences in how 

people in different locations regularly respond to weather events by adding a random effect variable 

indicating the county or zone that each event was reported in. To account for the potential dependence 

between some observations originating from the same larger weather event, we added a random effect 

Figure 4. Average attention before vs. after different weather events. Error bars depict one standard error. 
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variable for each week and US state pair. We ‘winsorized’ any outliers above the 99.9
th

 quantile of the 

distribution of attention (Wilcox 2014). The 99.9
th

 quantile of attention across all observations was 

equal to 14.32, so any observations above this value were kept in the analysis but transformed to 14.32.
7
 

All of the following regressions were computed using the ‘lme4’ package for the statistical software R 

(Bates et al. 2015). 

 

Table 1. Mixed-effects regression results
8
 

 
 

Dependent variable: Attentionafter 

    
 

(1) (2) (3) (4) 

 Control (Intercept) 0.218
***

 0.214
***

 0.214
***

 0.211
***

 

 
(0.021) (0.021) (0.021) (0.021) 

     Flash Flood 0.025 0.028 0.028 -0.037 

 
(0.035) (0.036) (0.036) (0.039) 

     Excessive Heat 0.307
***

 0.312
***

 0.295
***

 0.183
*
 

 
(0.087) (0.096) (0.098) (0.102) 

     Wildfire 0.338
***

 0.339
***

 0.339
***

 0.239
**

 

 
(0.089) (0.094) (0.094) (0.097) 

     Heavy Snow 0.504
***

 0.547
***

 0.547
***

 0.474
***

 

 
(0.068) (0.073) (0.073) (0.075) 

     Tornado 0.093
*
 0.066 0.065 -0.006 

 
(0.053) (0.056) (0.056) (0.059) 

     Hail 0.089
***

 0.120
***

 0.120
***

 0.076
**

 

 
(0.030) (0.032) (0.032) (0.034) 

     Strong Wind 0.266
***

 0.262
***

 0.261
***

 0.177
***

 

 
(0.049) (0.050) (0.050) (0.054) 

     Extreme Cold 0.713
***

 0.763
***

 0.753
***

 0.585
***

 

 
(0.107) (0.116) (0.116) (0.124) 

     Coastal Flood 0.392
***

 0.580
***

 0.580
***

 0.459
***

 

 
(0.132) (0.142) (0.142) (0.146) 

     Drought 0.194
***

 0.199
***

 0.198
***

 0.059 

 
(0.069) (0.075) (0.075) (0.083) 

     Damage (in millions) 
 

0.009
***

 0.009
***

 0.009
***

 

                                                           
7
 We also evaluated a model excluding the outliers from the regression instead of winsorizing them, which produced almost 

identical results as the winsorized regression. We chose the winsorized model in order to not exclude any observations. 
8
 An identical regression model using attention-before as the dependent variable is shown in Appendix D. 
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(0.002) (0.002) (0.002) 

     Deaths 
  

0.035 0.039 

   
(0.043) (0.043) 

     Abnormality 
   

0.111
***

 

    
(0.028) 

      Observations 20,517 18,919 18,919 18,919 

AIC 73,615 67,900 67,906 67,898 

 Note: SE shown in 

parentheses. 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 

 

3.4 Examining event type and event characteristics  

In the regression displayed in Table 1 we included the null events’ average effect as the intercept 

term and the other ten event types as dummy variables. This allows the coefficient for each event type to 

be interpreted as the increase in attention compared to the null events. We then sequentially add 

financial damage, deaths, and abnormality as predictors. Coastal floods, droughts, wildfires, strong 

wind, hail, excessive heat, extreme cold, and heavy snow events all had detectable effects. Damage is a 

significant predictor but has a relatively small effect size. Abnormality is also a significant predictor. 

Interestingly, adding abnormality in the regression and thereby controlling for it attenuates the 

coefficient of each of the weather event types, which suggests that abnormality plays an important role 

in various types of events. As a robustness check we re-ran the full model removing outliers above the 

99
th

 quantile. The results were nearly identical after the top 1% of all attention scores were excluded 

from the analysis.  

 

3.5 Absolute vs. relative effects of temperature, wind speed, and precipitation 

We also compared the effects of absolute vs. relative levels of the weather variables temperature, 

wind speed, and precipitation on attentionafter, shown in Table 2. The relative scales were generated by 

transforming each raw value (temperature degrees, wind speed miles/hour, and precipitation inches) into 

a Z-score using the mean and standard deviation from ten years of historical observations for each 

variable at the same location and calendar day of each target observation. We compare these relative 

variables to absolute versions of each. The absolute variables are globally (using all observations in the 

data set) Z-scored versions of the raw values to make the scale of their coefficients comparable to the 

relative variable coefficients. We regressed the relative and absolute weather variables on attentionafter 

using all observations in our data set, controlling for the type of weather event, damage, deaths, and 

abnormality as in the regressions above. As a robustness check we exclude all observation for which 

there was an extreme event and we only include control observations where no extreme events were 

reported. The fact that the results are similar is reassuring that the effects are above and beyond those of 

larger extreme weather systems. Indeed, in both sets of results the same pattern is seen: wind speed is 

most predictive of attention in absolute terms and temperature is most predictive in relative terms. 

Precipitation is not strongly predictive of attention in either form. 
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Table 2: Mixed-effects regression results 

 
Dependent variable: Attentionafter 

 
All cases Control Only 

 
Relative Absolute Relative Absolute 

Control (Intercept) 0.179
***

 0.224
***

 0.171
***

 0.204
***

 

 
(0.026) (0.030) (0.027) (0.032) 

Wind speed 0.012 0.026
**

 0.016 0.030
*
 

 
(0.007) (0.013) (0.011) (0.015) 

Temperature 0.048
***

 -0.010 0.037
*
 0.004 

 
(0.015) (0.025) (0.019) (0.030) 

Precipitation 0.001
*
 -0.005 0.0001 -0.022 

 
(0.0003) (0.011) (0.001) (0.015) 

Observations 16,372 18,043 8,455 8,459 

AIC 58,607 64,636 28,604 28,608 

Note: SE shown in parentheses. 
 *

p<0.1; 
**

p<0.05; 
***

p<0.01
 

 

 

4. Discussion 

 We found that the effects of extreme weather experiences are usually larger directly after each 

weather event hits compared to directly before. This suggests that people are not only reacting to 

descriptive information about the occurrences of the events which is usually made available by the 

weather forecasts directly before each event hits. Instead, there appear to be key effects of actually 

experiencing the events. 

Coastal floods, strong winds, extreme cold, excessive heat, drought, wildfires, hail, and heavy 

snow events all had detectable effects on post-event attention to climate change. In considering the 

effects of extreme cold and heavy snow it is important to keep in mind that we did not distinguish 

between messages expressing belief or disbelief in climate change in our counts of climate messages. 

We considered developing an automated text analysis algorithm to code for belief and disbelief in 

messages, but expected that such a method would be inherently low in accuracy, largely because of the 

common use of sarcasm in climate messages. We believe that to accurately code messages automatically 

or by hand for expressing belief or disbelief in climate change, it would be necessary to know the 

context of each message such as personal characteristics of the user, other messages the user has written, 

and messages recently written to him or her. The sizable task of developing such an algorithm is beyond 

the scope of this paper, but will be a fruitful direction for future research. 

We feel that it is not essential to differentiate between belief and disbelief for two main reasons. 

Firstly, messaging of both types is likely to be correlated with the other. If climate skeptics increase the 

frequency of their messaging, we would expect climate activists to increase their frequency in response 

and vice versa. As a result of this, if we did distinguish between belief and disbelief climate messages 

we would not expect to see dramatic differences across event types. We would expect a difference in 

which type of messages initiated attention, but not necessarily which type was more ultimately more 

abundant. Secondly, it is easy to logically sort out which weather events likely increase Twitter 

messages because of climate skeptic reactions. The increases in attention caused by extreme cold and 
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heavy snow are most likely initiated by disbelief messages, although positive climate messages probably 

also increase in response.  

The nonsignificant effects of flash floods and tornados are interesting to consider. In the case of 

flash floods, it could be that their immediate physical impacts such as flooded basements and roadways 

need to be physically attended to promptly and therefore climate messaging does not increase because 

affected people are pre-occupied with responding to the events. The nonsignificant effect of tornados 

may be because tornados that are included in the extreme weather events database are not necessarily 

intense or destructive. The definition of a tornado in the instructions for the personnel who submitted the 

weather events to the archive is a ‘violently rotating column of air, extending to or beneath a cumuliform 

cloud and with some visible ground-based effects’ (National Weather Service 2007). Alternatively, it 

could simply be the case that flash floods and/or tornados are not associated with climate change in most 

people’s minds. Future research should investigate the public’s mental associations between different 

types of weather events and climate change. 

Financial damage had a small positive effect, and the effect of fatalities caused by each event 

was also small and positive, but nonsignificant. The abnormality of each event had a significant effect 

on attention to climate change across events. Once abnormality was added to the model the coefficients 

for the effects of the event types all lessened and in some cases became nonsignificant, such as in the 

case of droughts and excessive heat. This suggests that abnormality is generally relevant to the effects of 

weather events on attention to climate change, and in some cases may be essential for an effect to occur. 

The results in Table 2 show a replication of the past finding (Li et al. 2011; Kirilenko et al. 2015) 

that temperature is more predictive in relative terms than in absolute terms. We interestingly found that 

wind speed is more predictive in absolute terms. This pattern was found in the regressions with all cases 

and with control-only cases. This finding is also reflected in the results reported in Table 1. When 

abnormality is added to the regression, the main effect for excessive heat becomes nonsignificant while 

the main effect for strong wind lessens but remains significant. The predictive value of absolute wind 

speed could be due to the damage caused by winds at objectively high levels. We controlled for financial 

damage in our analyses but strong winds can cause damage in natural surroundings that do not have 

financial consequences such as felled trees in forests. The finding that precipitation was not predictive 

could mean that it is more difficult for people to detect short-term abnormalities in precipitation than in 

temperature and wind speed. Longer-term trends in precipitation are evidently more detectable. 

Droughts, for example, had a positive and significant effect. 

One limitation of this research is the fact that some weather events tend to co-occur with others. 

We quantified the tendency of our weather events to co-occur with other types of weather events, and 

feel that the levels of co-occurrences with the event types we analyzed are not high enough for concern 

that this may be a confounding factor.
9
 Nonetheless, this is a fundamental aspect of weather events, 

which should be kept in mind while interpreting the results. Another limitation of these findings is that 

our sample of Twitter users has an unknown demographic distribution in terms of ethnicity, gender, 

political ideology, and age. It is unclear how our representative our sample is of the US population on 

these dimensions. We do not expect that there would be drastic differences in the reported effects if we 

had analyzed a perfectly representative sample. Lastly, it should be noted that our method of measuring 

attention is not equally sensitive to different types of weather events because of differences in how 

quickly different event types normally come to exist. Droughts, for example, can develop gradually over 

several months. This means that our attention measure is less sensitive to the effects of droughts on 

                                                           
9
 The weather event ‘co-occurance’ matrix can be seen in Appendix E. 
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climate attention because our measure uses the month prior to the reported start of each event as the 

baseline to gauge the amount of increased attention caused by the event after.  

 

 

5. Conclusion 

We report several findings that can be incorporated into short-term predictions about climate 

attention for strategic communications and long-term forecasts for policy use. We find that more 

weather events than previously examined can cause immediate, if potentially short-lived attention to 

climate change which could be utilized for strategic climate change messaging. Additionally we found 

that financial damage is less predictive of increased attention than one might intuitively expect but that 

abnormality, or degree of unexpectedness, is consistently predictive. We find that wind speed is most 

predictive in absolute terms, while temperature is most predictive in relative terms.  

One key direction for future research is to explore what other factors predict the effects of 

weather events. For example, do emotions caused by weather events mediate events’ effects on attention 

to climate change? We mentioned above how our knowledge in this domain can enable more strategic 

communications about climate change, but it is important to keep in mind that past research also 

suggests that attention to climate change caused by weather experiences may fade rapidly. More 

research is needed to determine how we can best strategically leverage experiences with extreme 

weather to create long-lasting effects on attention and responses to climate change. 
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Appendix A. Visualization of raw abnormality scores transformed to final abnormality scores. 
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Appendix B. Distributions of attention for each weather event type. 

The means of the attention scores for each weather event are shown as vertical colored dotted lines in 

each graph. The null distribution is overlaid on these plots with a dotted grey curve line for comparison. 

The mean of the null distribution of attention is 0.20 and is shown by the dotted vertical grey line each 

plot. 
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Appendix C. Algorithm for matching ‘null’ events to weather events. 
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Appendix D. Mixed-effects regression results with attentionbefore as dependent variable. 

 
Table 1: Regression Results 

  

 
Dependent variable: attentionbefore 

Control (Intercept) 0.240*** 0.238*** 0.238*** 0.237*** 

 
-0.026 -0.025 -0.025 -0.025 

     
Flash Flood 0.042 0.04 0.04 -0.023 

 
-0.049 -0.047 -0.047 -0.052 

     
Excessive Heat 0.086 0.101 0.115 0.006 

 
-0.123 -0.128 -0.131 -0.137 

     
Wildfire 0.15 0.123 0.123 0.025 

 
-0.124 -0.123 -0.123 -0.128 

     
Heavy Snow 0.035 0.058 0.058 -0.013 

 
-0.091 -0.094 -0.094 -0.097 

     
Tornado 0.214*** 0.12 0.121 0.051 

 
-0.075 -0.075 -0.075 -0.079 

     
Hail 0.012 0.004 0.004 -0.039 

 
-0.041 -0.042 -0.042 -0.045 

     
Strong Wind -0.085 -0.063 -0.062 -0.145** 

 
-0.067 -0.065 -0.065 -0.071 

     
Extreme Cold 0.562*** 0.587*** 0.594*** 0.425*** 

 
-0.143 -0.148 -0.149 -0.16 

     
Coastal Flood 0.06 0.061 0.061 -0.062 

 
-0.184 -0.189 -0.189 -0.193 

     
Drought 0.392*** 0.409*** 0.409*** 0.273** 

 
-0.096 -0.1 -0.1 -0.111 

     
Damage 

 
0.0002 0.0002 0.0001 

  
-0.003 -0.003 -0.003 

     
Deaths 

  
-0.029 -0.025 

   
-0.06 -0.06 

     
Abnormality 

   
0.106*** 
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-0.036 

     
  

Observations 20,517 18,919 18,919 18,919 

AIC 87,113 78,432 78,438 78,436 

  

 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Appendix E. Empirical co-occurrence of weather events  

This matrix indicates how often an event of each type is followed or proceeded (within one week) by 

another event. The number in each cell represents what percentage of the times that a weather event in 

that row occurs with a weather event in that column occurring within one week before or after (within a 

30 mile radius). For example, the light blue coloring in the cell [row = tornado, column = hail] indicates 

that ~60% of the tornado events in our database have a hail event occurring nearby within one week 

before or after. The darkness of each number is determined by the magnitude of it, so the lighter 

numbers are all low in value. What you can see in the dark cells in the where the row event is the same 

as the column event is the tendency for weather events to sometimes be reported separately in multiple 

areas. We control for this in our analysis by including the statexweek random effect as described above. 
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