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Abstract

Climate Engineering, and in particular Solar Radiation Management (SRM) has become a
widely discussed climate policy option to study in recent years. However, its potentially strategic
nature and unforeseen side effects provide major policy and scientific challenges. We study the
role of the SRM implementation and its strategic dimension in a model with two heterogeneous
countries with the notable feature of model misspecification on the impacts from SRM.We find that
deep uncertainty leads to a reduction in SRM deployment both under cooperation and strategic
behavior, which is a more relevant issue if countries act strategically. Furthermore, we demonstrate
that the heterogeneity in impacts from SRM has an asymmetric effect on the optimal policy and
could typically lead to unilateral SRM implementation. We also consider heterogeneous degrees
of ambiguity aversion, in which case the more confident country only will use SRM.
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1 Introduction
Anthropogenic greenhouse gas emissions have increased since the pre-industrial era, driven largely
by economic and population growth, and are now higher than ever. This has led to atmospheric
concentrations of greenhouse gases (GHGs) that are unprecedented in at least the last 800, 000 years.
The atmosphere and oceans have warmed, the amounts of snow and ice have diminished, and the sea
level has risen (IPCC, 2013).

At the same time, slow progress in international climate negotiations has given rise to skepticism
about the prospect of global cooperative action to achieve an ambiguous climate target, such as the
2 or 1.5 degree targets of the Paris agreement. This relatively slow progress has led to the discussion
about alternative policy options in order to avoid significant climate change impacts. In particular,
different climate engineering methods have been proposed as a means to avoid dangerous climate
change. Climate engineering refers to the deliberate intervention in the planetary environment of
a nature and scale intended to counteract anthropogenic climate change and its impacts (Shepherd,
2009). One particular technology of climate engineering is Solar Radiation Management (SRM), which
involves manipulating directly the sun’s incoming radiation. Probably the most popular SRM method
suggests injecting sulfur aerosols into the lower stratosphere and reflecting incoming radiation away
from the planet back into space (Keith, 2000; Ricke et al., 2008; Shepherd, 2009). This method mimics
what occasionally occurs in nature when a volcano erupts. For instance, during the Mount Pinatubo
eruption in 1991 huge volumes of sulfur injected into the stratosphere and the aerosols produced in
subsequent reactions cooled the planet by about 0.5oC over the next two years (Randel et al., 1995;
Robock, 2000).

One common feature of the different climate engineering options is that they tend to be specu-
lative, in the sense that no large scale experiments have been conducted in order to assess their full
potential nor their side-effects and other impacts. Moreover, in particular in the case of SRM , its
potential side-effects are largely unknown (Robock et al., 2008; Barrett, 2008) including its effective-
ness (Moreno-Cruz and Keith, 2012; Emmerling and Tavoni, 2013). This uncertainty could emerge
from sources such as major gaps in knowledge, limited modeling capacity, lack of theories to anticipate
thresholds (Heutel et al. (2015a)) and, finally, emergence of surprises and unexpected consequences.
This uncertainty must moreover be considered as “deep” uncertainty since even defining the full po-
tential state space and assigning probabilities to events is (almost) impossible. Deep (or Knightian)
uncertainty is contrasted to risk (measurable or probabilistic uncertainty) where probabilities can be
assigned to events and are summarized by a subjective probability measure or a single Bayesian prior
(Vardas and Xepapadeas (2009); Roseta-Palma and Xepapadeas (2004)). The concept of deep uncer-
tainty or ambiguity can be modeled through extensions of the non-expected utility paradigm (e.g.,
maxmin utility, smooth ambiguity aversion), or through a manipulation of the model the decision
maker considers, thus allowing for and considering potentially misspecified models, as in the robust
control framework of Hansen and Sargent (2001) and Hansen et al. (2006).

We follow this approach, which seems an appropriate modeling framework for speculative future
technologies such as SRM (Goeschl et al., 2013). That is, we consider a decision maker who cannot
assign probabilities to events. Therefore, he has limited confidence in his conceptual model and wants
to find a good decision over a set or “cloud” of models that surrounds his benchmark model. The cloud
of models is obtained by disturbing a benchmark model and introducing a misspecification error, so
that the admissible disturbances reflect the set of possible probability measures the decision maker is
willing to consider. The more ambiguous the situation is considered by the decision maker, the larger
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is the cloud of approximate models that he will consider. The standard expected utility maximizing
model can be derived as a special case of the robust control model if the decision maker completely
trusts the benchmark model. We apply this methodology to the optimal climate policy based on
mitigation and SRM as policy options.

In this paper we combine deep uncertainty in a robust control framework with heterogeneity and
strategic interaction (Moreno-Cruz (2015); Ricke et al. (2013); Manoussi and Xepapadeas (2015)) be-
tween two regions in a dynamic game of climate change policy in terms of emissions and climate
engineering efforts. We formulate the problem in terms of a linear-quadratic (LQ) differential game by
extending the standard linear-quadratic model of pollution control, studied by Dockner and Van Long
(1993) or in Athanassoglou and Xepapadeas (2012). We analyze the problem in the context of a coop-
erative and non-cooperative game along with heterogeneity and deep uncertainty. In the cooperative
case there is coordination between the two countries for the implementation of climate engineering
and the level of emissions in order to maximize the joint global welfare. In the non-cooperative case,
each government chooses its own amounts of SRM and emissions independently. The non-cooperative
solution is analyzed in terms of Nash equilibrium (NE) strategies.

We first derive the paths for emissions, SRM and global mean temperature change under symmetry
and only with pure risk on SRM impacts, for both cooperative and Nash strategies. Adopting the
Hansen–Sargent framework, we introduce deep uncertainty into the basic model and study the effect
of model misspecification on optimal SRM efforts and mitigation. Specifically, the deep uncertainty is
introduced in the underlying diffusion process of marginal SRM damages, reflecting concerns about
the benchmark model.

We derive the analytical solutions for the optimal policy mix under symmetry, and then proceed to
a numerical simulation of the model in order to explore the effects of heterogeneity and the interaction
with ambiguity in the optimal levels of emissions and SRM. The results suggest that heterogeneity
in impacts strongly affects the strategic interaction across regions. In the region that is worse off
due to the impacts from SRM, we observe no SRM implementation. This leads the other region to
undertake a more aggressive policy in terms of high SRM implementation to compensate for the high
emissions of both regions. We also consider asymmetry in the degree of ambiguity aversion or model
misspecification, in this case SRM will be implemented only by the region with a higher degree of
confidence. Comparing both the cooperative and non-cooperative solution, we show that for a range
of minimum values of the robustness parameter, an optimal policy can be found only at the cooperative
solution whereas it breaks down under strategic SRM.

In the next section we introduce the setup of the model of climate policy with SRM under un-
certainty. In section three, we solve the cooperative and non-cooperative problem and outline both
solution concepts. The results under symmetry are presented in section four and the impact of het-
erogeneity is discussed in section five. Section six concludes.

2 A model of SRM under model misspecification
We consider a model of optimal climate policy with two heterogeneous countries or regions1, indexed by
i = 1, 2. We develop our model along the lines of the standard linear quadratic model of international
pollution control as in Dockner and Van Long (1993). The model is framed in continuous time so we
index all variables by t. The relationship between emissions and economic output and consumption
is modeled through a reduced form utility function depending on emissions as in Athanassoglou and

1In the following, we will refer to them as countries for simplicity.
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Xepapadeas (2012).2 Within our linear-quadratic framework, the utility-emission function is given by
the quadratic function

U (Ei (t)) = A1Ei (t)− 1
2A2Ei (t)2

, (1)

where A1, A2 are parameters indicating the intercept and the slope of the private marginal benefits
from emissions. That is, A1 can be regarded as reflecting the level effect on marginal benefits, while
A2 as reflecting the strength of diminishing returns.

The decision maker in each country has two policy options; the reduction of his emissions Ei (t) and
the use of SRM denoted by zi (t). Based on both policy variables, we can describe the state equation
for the evolution of the change in global mean temperature as

·
T (t) = λ

2∑
i=1

Ei (t) + φ

2∑
i=1

zi (t)− δT (t) , (2)

where δ > 0 is the heat transfer parameter capturing the effect that a fraction of the energy stored
as heat in the atmosphere dissipates (2nd thermodynamic law). In this equation, λ > 0 is the sensi-
tivity of temperature to emissions, the function φ

∑2
i=1 zi (t) is the reduction in solar radiation and

consequently in global mean temperature due to aggregate climate engineering and φ is the sensitivity
of incoming radiation to climate engineering in reducing the average global temperature. Following
evidence indicating that there is a fast and a slow response of global warming to external forcing,
with the slow component being relatively small (Held et al., 2010), we assume that the average global
temperature T converges fast to a steady state. This quasi steady state for T can be computed as

·
T (t) = 0 =⇒ T (t) = 1

δ

(
λ

2∑
i=1

Ei (t)− φ
2∑
i=1

zi (t)
)

(3)

As for the costs of implementing SRM, we assume a simple quadratic cost function for the cost of
climate engineering in each country C (zi) (Goes et al. (2011); Bickel and Agrawal (2013); Gramstad
and Tjøtta (2010); Robock et al. (2009)), which is strictly increasing and convex :

C (zi (t)) = 1
2βz

2
i (t) , β > 0 (4)

An important feature of this model are the impacts from temperature increase and SRM imple-
mentation. We assume two types of regional damage functions related to climate change, which affect
welfare. The first one reflects damages from the increase in the average global surface temperature,
represented as usual by a convex, quadratic in our case, function in the degree of global warming since
pre-industrial levels (T0):

DT (T (t)) = τi (T (t)− T0)2
, (5)

where τi represents the marginal damages in country i.
The second damage function represents the impacts or side-effects from the implementation of cli-

mate engineering. These impacts potentially include ozone depletion, distorted precipitation patterns,
negative effects on biodiversity and many others (see Barrett et al. (2014); Robock et al. (2008)).3

2This function can be considered as a utility function of economic output, which itself is a function of emissions
F (Ei), where F (·) is strictly concave with F (0) = 0. Utility, without environmental externalities and policy costs is
then given by U (F (Ei (t))) = U (Ei (t)).

3We do not consider pure CO2 concentration impacts such as ocean acidification, which provide a third category of
impacts, see Heutel et al. (2015b) for a recent contribution.
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We assume that these impacts depend on the total level of SRM implemented and allow for potential
heterogeneity. Moreover, since we consider the deep uncertainty, we model the marginal impacts as a
stochastic process denoted as ui(t). The total impacts in country i are then given by the equation

Dz (z (t) , ui (t)) = ui (t) · ζ ·
2∑
i=1

zi (t) , (6)

where
∑2
i=1 zi (t) represents the aggregate SRM implemented in both regions4. Note that the damage

function is a priori linear in zi, but due to the multiplicative term of ui, marginal impacts are changing
over time. Notably, the environmental impacts from the use of SRM evolve through time according
to the stochastic differential equation:

dui (t) =
[
ηi (1− γ)

2∑
i=1

zi (t)−mui (t)
]
dt+ σdB̂i (7)

Marginal impacts from SRM depend on the amount of SRM implemented at a region-specific marginal
rate ηi (1− γ). Note that therefore total impacts will have a quadratic shape in the absence of un-
certainty and model misspecification. Moreover, we assume that there is an adjustment rate m in
marginal impacts. This term can be interpreted as the adaptation to SRM impacts of the socioe-
conomic or biophysical system.5 If γ = 1 in (7) then the sulfur emitted at t is dispersed, and only
the stochastic stock σdB̂i remains. If 0 < γ < 1, then the remaining stock of sulfur adds a trend to
damages (7) along with stochastic shock. Finally, uncertainty is introduced through B̂i(t), which is a
Brownian motion on an underlying probability space (Ω,z,G).

Without strategic interactions and the possibility of model misspecification, solving the symmetric
problem would be straightforward.6 Now we add the strategic interaction and deep uncertainty through
model misspecification to the model. Model misspecification is represented by a family of stochastic
perturbations to the Brownian motion B̂i(t), such that the probabilistic structure implied by the
stochastic differential equation of marginal impacts from SRM (7) is distorted and the probability
measure G is replaced by another Q. The perturbed model is obtained by performing a change of
measure and replacing B̂i(t) in (7) by

Bi(t) +
ˆ t

0
hi (s) dt (8)

dB̂i = dBi + hi (t) dt (9)

where {Bi(t) : t > 0} is a Brownian motion and {hi (t) : t > 0} a measurable drift distortion such
that hi (t) = hi (u (s) : s ≤ t). Hence, changes to the distribution of

∧
Bi are parameterized as drift

distortions to a Brownian motion. The measurable process hi (t) could correspond to any number
of misspecified or omitted dynamic effects such as a miscalculation of climate engineering damages,
a miscalculation of the decay rate of sulfur in the stratosphere, or an ignorance of more complex
dynamic structures involving irreversibility, feedback or hysteresis effects. The distortion will be zero

4For the value and the interpretation of ζ, see Appendix B
5In the numerical part, we set it to a very low value, but its inclusion is necessary to solve for the steady state in this

model.
6Based on a simplified maximization problem as the one given below in equation (13).
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when hi (t) ≡ 0 and the two measures G and Q coincide.
The dynamics for the environmental impacts from the SRM implementation under model misspec-

ification are given by

dui (t) =
[
ηi (1− γ)

2∑
i=1

zi (t)−mui (t) + σhi (t)
]
dt+ σdBi, (10)

where {hi (t) : t > 0} is a measurable drift distortion, which can be interpreted as a misspecification
error about the future marginal impacts from SRM implementation. The benchmark case of pure risk
is defined for hi (t) = 0. As in Hansen and Sargent (2001), the discrepancy between the two measures
G and Q can be measured through the discounted relative entropy defined as

R (Q) =
ˆ ∞

0
e−ρt

1
2EQ (hi (t))2

dt, (11)

where E denotes the expectation operator and ρ the discount rate. To allow for the notion that
even when the model is misspecified the benchmark model remains a “good” approximation, the
misspecification error is constrained so that we only consider distorted probability measures Q, such
that the relative entropy is bounded by a value ξ:

R (Q) =
ˆ ∞

0
e−ρt

1
2EQ (hi (t))2

dt ≤ ξ <∞ (12)

By modifying the value of ξ in (12), the decision maker can control the degree of model misspecification
(ξ) he is willing to consider. In particular, if the decision maker can use physical principles or statistical
analysis to formulate bounds on the relative entropy of plausible probabilistic deviations from his
benchmark model, these bounds can be used to calibrate the parameter ξ.7

Now we turn to the optimization problem under uncertainty. It is based on a linear-quadratic
framework of maximizing expected discounted utility minus costs and impacts in an continuous, infinite
time horizon model. In the context of model misspecification, one can derive two robust control
problems, which represent equivalent ways of defining the problem. Following Hansen et al. (2006),
we define a constraint robust control problem and a multiplier robust control problem.

The constraint robust control problem is given by

max
Ei(t),zi(t)

min
hi(t)

E0

ˆ ∞
0

e−ρt [U (Ei (t))− C (zi (t))−DT (T (t)) +Dz (zi (t) , ui (t))] dt , i = 1, 2 (13)

subject to

dui (t) =
[
ηi (1− γ)

2∑
i=1

zi (t)−mui (t) + σhi (t)
]
dt+ σdBi (14)

ˆ +∞

0
e−ρt

1
2EQ (hi (t))2

dt ≤ ξ , u0 = u (0)

The multiplier robust control problem on the other hand is given by
7See section 4.3.
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max
Ei,zi

min
hi

E0

ˆ ∞
0

e−ρt
[
U (Ei (t))− C (zi (t))−DT (T (t)) +Dz (zi (t) , ui (t)) + 1

2θhi (t)2
]
dt , i = 1, 2

(15)
subject to

dui (t) =
[
ηi (1− γ)

2∑
i=1

zi (t)−mui (t) + σhi (t)
]
dt+ σdBi , u0 = u (0) .

To take into account model misspecification, maximization of welfare is subject to the minimizing
agent, often referred as malevolent agent or nature, which chooses hi (t). The parameter θ ∈ Θ =
{θ : 0 ≤ θ < θ ≤ +∞} constrains the minimizing choice of the hi(t) function, and therefore it can be
regarded as the level of deep uncertainty in the model. The lower bound of θ is a so-called breakdown
point beyond which it is fruitless to seek more robustness. When θ →∞ there are no concerns about
model misspecification and the deep uncertainty disappears.

As shown in Hansen et al. (2006), if we assume that there exists a solution (E∗, z∗, h∗) to the
robust multiplier problem, then (E∗, z∗) also solves the constraint robust control problem with ξ =
ξ∗ = R (Q∗) and there exists a θ∗ such that the robust multiplier and constraint problems have the
same solution.

The multiplier robust control problem, with the non-negativity constraint for the SRM implementa-
tion, emerging when the decision maker is concerned about model misspecification for each individual
county i and now takes the form

Vi (t) = max
Ei(t),zi(t)

min
hi(t)

ˆ ∞
0

e−ρt
[
U (Ei (t))− C (zi (t))−DT (T (t)) +Dz (zi (t) , ui (t)) + 1

2θhi(t)
2
]
dt

(16)
subject to

(3) , (10) , i = 1, 2

and the non-negativity constraint for SRM

zi (t) ≥ 0 (17)

Since this is a constrained optimization problem, we can form the Lagrangian associated with the
dynamic programming equation as

Li =U (Ei (t))− C (zi (t))− (DT (T (t)) +Dz (zi (t) , ui (t))) + 1
2θhi(t)

2

+ Vui (t)
[
ηi (1− γ)

2∑
i=1

zi (t)−mui (t) + σhi (t)
]

+ 1
2σ

2Vuui (t) + ωi (t) zi (t) (18)

where ωi (t) denotes the Lagrange multiplier for each country i of the non-negativity constraint of the
amount of SRM. The complementary slackness conditions are given by

ωi (t) zi (t) ≥ 0 =⇒ωi(t)=0, if zi(t)>0
ωi(t)>0, if zi(t)=0

We solve the constrained problem both in the cooperative and in the Nash framework in order to avoid
negative values of SRM. This condition is particular important in the case of asymmetry, where the
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best response for the country which is worse off (due to the asymmetry) could be to undertake no
SRM. Based on this general model setup, we now define both a cooperative and a non-cooperative
solution to the optimal climate policy mix under model-misspecification of the impacts from SRM.

3 Cooperative and Non-cooperative Solutions

3.1 The cooperative solution
First we solve the model of the previous section for the case where a global social planner chooses
jointly the optimal policy in both countries. In this case, we can write the Hamilton-Jacobi-Bellman
equation (HJB) for the social planner based on (15) as8

ρV C (ui) = max
Ei,zi

min
h

{ 2∑
i=1

[
A1Ei −

1
2A2E

2
i −

1
2βz

2
i −

(
τi (T − T0)2 + ui (t) ζ

2∑
i=1

zi (t)
)

+ 1
2θih

2

]
+

+V Cui

[
ηi (1− γ)

2∑
i=1

zi −mui + σh

]
+ 1

2σ
2V Cuui

}
. (19)

In order to solve this problem subject to the non negativity constraints and given the LQ structure of
the problem, we start from the quadratic value function

V C (ui) = ε0i + µ1iui + µ2iu
2
i (20)

with derivatives
V Cui

= µ1i + 2µ2iui, V
C
uui

= 2µ2i.

Since it is a constrained optimization problem, we can form the Lagrangian

LC =
2∑
i=1

[
A1Ei −

1
2A2E

2
i −

1
2βz

2
i −

(
τi (T − T0)2 + ui (t) ζ

2∑
i=1

zi (t)
)

+ 1
2θih

2

]
+

+ V Cui

[
ηi (1− γ)

2∑
i=1

zi −mui + σh

]
+ 1

2σ
2V Cuiui

+
2∑
i=1

ωizi. (21)

Minimizing this function first with respect to h9 (as the malevolent agent), we obtain

∂LC

∂h
= 0 =⇒ h∗ = −

σV Cui

θi
= −σ (µ1i (θi) + 2µ2i (θi))

θi
(22)

so that equation (21) can be written as

LC =
2∑
i=1

[
A1Ei −

1
2A2E

2
i −

1
2βz

2
i −

(
τi (T − T0)2 + ui (t) ζ

2∑
i=1

zi (t)
)
· y + 1

2θih
∗2

]

+ V Cu

[
ηi (1− γ)

2∑
i=1

zi −mui + σh∗

]
+ 1

2σ
2V Cuui

+
2∑
i=1

ωizi (23)

8In the following, we drop the time index to avoid notation clutter.
9In the cooperative solution, the policy maker could have different θ′s for each country, but he considers only one

distortion of the SRM dynamics and therefore he decides about one h.
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Solving the symmetric case where both regions are identical10, we obtain the optimal emission level
E∗i as

E∗i =
4τλ

(
βδT0 + 2φ

(
2ζu− η (1− γ)V Cu − ω

))
+A1

(
βδ2 + 8τφ2)

A2βδ2 + 8τ (βλ2 +A2φ2) (24)

and from the Kuhn-Tucker conditions the optimal level of SRM implementation z∗i

z∗i =
4τφ (A2T0δ − 2A1λ) +

(
η (1− γ)V Cu − 2ζu+ ω

) (
A2δ

2 + 8τλ2)
A2βδ2 + 8τ (βλ2 +A2φ2) (25)

and due to the non-negativity constraints

ωz∗i ≥ 0 =⇒ω=0, if z∗
i >0

ω>0, if z∗
i

=0

This solution provides our benchmark scenario for the remainder of this paper to compare the results
with. Note that given the simple utility function of this model, the global level of both emissions and
SRM is invariant to heterogeneity across regions, since only the total sum of welfare is considered.
Next, we turn to the solution where both countries act strategically in their climate policy decisions.

3.2 The strategic Nash solution
In the non-cooperative strategic solution, we solve the game assuming that each country follows feed-
back strategies in the level of emissions and climate engineering. Feedback strategies are associated
with the concept of Nash equilibrium of the differential game, which provides a time-consistent non-
cooperative equilibrium. The feedback Nash equilibrium for the linear quadratic climate change game
can be obtained as the solution of the dynamic programming representation of the non-cooperative
dynamic game11. The Bellman equation for the infinite horizon problem of each country (i = 1, 2) is
based on (15) and is given by

ρVi (ui) = max
Ei,zi

min
hi

{
A1Ei −

1
2A2E

2
i −

1
2βz

2
i −

(
τi (T − T0)2 + uiζ

2∑
i=1

zi

)
+ 1

2θih
2
i (26)

+ Vui

[
ηi (1− γ)

2∑
i=1

zi −mui + σhi

]
+ 1

2σ
2Vuui

}

Each country will take as given the emissions and the SRM level of the other country and will solve
its own optimal climate policy problem. Given the LQ structure of the problem, we can consider two
quadratic value functions for both regions denoted as Vi (ui) , so that for each region we have

Vi (ui) = ε0i + µ1iui + µ2iu
2
i , i = 1, 2 (27)

with derivatives
Vui = µ1i + 2µ2iui, Vuui = 2µ2i.

10 In symmetry is implied that τ1 = τ2 = τ, η1 = η2 = η, θ1 = θ2 = θ, ω1 = ω2 = ω.
11From now on we will refer to Feedback Nash Equilibrium or solution simply as Nash Equilibrium (NE).
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The constrained optimization problem for country i is therefore given by

Li = A1Ei −
1
2A2E

2
i −

1
2βz

2
i −

(
τi (T − T0)2 + uiζ

2∑
i=1

zi

)
+ 1

2θih
2
i (28)

+ Vui

[
ηi (1− γ)

2∑
i=1

zi −mui + σhi

]
+ 1

2σ
2Vuui + ωizi. (29)

From the min-max problem we obtain the Kuhn-Tucker conditions. The optimization with respect to
Ei and zi yields the following reaction functions in emissions and SRM implementation

E∗i =
−2τiλ

(
−βδT0 + βλE∗j + φ

(
ηi (1− γ)Vui + βz∗j − ζui + ωi

))
+A1

(
βδ2 + 2τiφ2)

A2βδ2 + 2τi (βλ2 +A2φ2) (30)

for SRM and for interior solutions

z∗i =
(ηi (1− γ)Vui − ζui + ωi)

(
A2δ

2 + 2τiλ2)− 2τiφ
(
A1λ+A2

(
λE∗j − T0δ + φz∗j

))
A2βδ2 + 2τi (βλ2 +A2φ2) (31)

the complementary slackness conditions

ωizi ≥ 0 =⇒ωi=0, if zi>0
ωi>0, if zi=0,

and moreover for the minimization problem for hi

∂Li
∂hi

= 0 =⇒ h∗i = −σVui
θi

Based on the definition of the parameters it is easy to show that ∂z∗
i

∂z∗
j
< 0 and ∂E∗

i

∂E∗
j
< 0, or that

both climate policy options are strategic substitutes between countries. Thus the more mitigation or
SRM country 1 does, the less incentive for country 2 to adopt them. Moreover, mitigation and SRM
are strategic complements since ∂E∗

i

∂z∗
j
> 0. That is, the country with the lower emissions will adopt the

SRM in order to compensate for the other country’s increased emissions. 12

The HJB equation (26) implies that the parameters of the value function and the optimal Nash
strategy for each country depend on the parameter θi. Thus (26) can be used to determine a symmetric
Nash equilibrium under deep uncertainty as specified above. Moreover, for θ → ∞ the robust NE
tends to the NE under the situation of pure risk.

4 Optimal Climate policy under Symmetry
Now we turn to the results about the optimal policy mix of the model including model misspecifica-
tion (deep uncertainty) and explicitly compute the optimal mitigation and SRM policies when both
countries are identical.

12Note that mitigation is interpreted as a reduction of emissions E∗i
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4.1 The evolution of the uncertain impacts from SRM
We solve analytically the stochastic process of marginal SRM impacts ui, by replacing the misspecifi-
cation error h∗i (θ) in equation (10). The value function satisfying (27) under symmetry has a simple
quadratic form and respects the usual properties13 (µ1i (θ) < 0, µ2i (θ) < 0) regarding the curvature of
the max-min value function. The marginal damages from SRM under the model misspecification are

dui (t) =
{[

(η (1− γ))
2∑
i=1

z∗i (t)−mui (t)
]
−
[
σ2

θ
µ1i (θ) + 2σ2

θ
µ2i (θ)ui (t)

]}
dt+ σdBi (t) (32)

Consider equation (32), which describes the perceived worst case evolution of the SRM costs, then
we can define two different effects of model misspecification for the dynamics of the marginal damages
from SRM. The first effect

(
−σ

2

θ µ1i (θ)
)
> 0 suggests a reduction in the environment’s ability of

self-adjustment to the exogenous SRM damages. The second effect
(

2σ2

θ µ2i (θ)
)
< 0 constitutes a

reduction in the rate of adaptation to the SRM impacts.
If additionally we substitute the optimal values for emissions and SRM in the process of ui (t)

(for either the cooperative or strategic Nash solution), we obtain an analytical solution which is an
Ornstein–Uhlenbeck diffusion process and satisfies the differential equation

dui (t) = π (θ) (ϕ (θ)− u∗i (t)) dt+ σdBi (33)

The parameter ϕ (θ) represents the equilibrium or mean value, while π (θ) represents the rate by
which the shocks dissipate how ”strongly” the SRM impacts react to perturbations. Note that both
parameters depend crucially on the robustness parameter θ.14 The marginal SRM impacts u∗i (t) are
therefore normally distributed over time.15

13For the analytical solution see the Appendix A.1-A.3.
14For the analytical solutions of ϕ (θ) and π (θ) see Appendix 6.
15u∗i (t) is distributed normally with mean E

[
u∗i (t)

]
= ϕ (θ) + (u0 − ϕ (θ)) e−π(θ)t and variance var

[
u∗i (t)

]
=

σ2

2π(θ)

(
1− e−2π(θ)t

)
.
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Figure 1: Sample paths of the evolution of the marginal SRM impacts

Figure 1 shows realizations of the marginal impacts from SRM based on both solution concepts for
different values of θ.16 It shows the relation between the evolution of the marginal impacts from SRM
and the degree of ambiguity. For higher ambiguity levels (smaller values of θ), the SRM impacts are
higher and more volatile.

4.2 Optimal policies at the steady state
We solve the symmetric cooperative and non-cooperative problems under risk based on calibrated
values of the model parameters. Values for the parameters A1, A2 have been taken from Karp and
Zhang (2006) and the default calibration of τi yields a standard damage estimate of 5.4% of GDP for
a 4.5 0C temperature increase. The values of the parameters used in the calibration of the symmetric
cooperative problem are used as the central values for the sensitivity analysis. The parameter φ is
calibrated such that the SRM implementation will give the regional amount of SO2 injected (measured
in TgS) and the effective forcing per TgS will yield a negative forcing of 2.1W/m2. This estimate is
based on a best guess estimate Gramstad and Tjøtta (2010) and relates to a range from−0.5 Crutzen
(2006) to −2.5 Rasch et al. (2008). We assume a quadratic cost function at a private cost of 10
billion$/TgS within the range considered in the literature, between 5 Crutzen (2006) and 25 billion
USD/TgS. For the calibration of γ, we approximate impacts such that 3% of GDP are lost for a SRM
implementation that leads to the offset of an expected global warming of 2.5oC, i.e., of −3.5W/m2.17

Using these numerical calibration, we can define the steady-state level of emissions, climate engi-
neering and average global temperature in the symmetric-cooperative and non-cooperative game under
standard risk. The values obtained are presented in the following table:18

16Since we focus on the steady state solution, we show the path starting at t = 100.
17Appendix 6 provides the numerical values of all model parameters.
18The GHG emissions are measured in gigatons of CO2 equivalents, the level of SRM in teragrams (or megatons) of

sulfur, and the temperature as global annual average temperature in degrees centigrade.

12



Figure 3: Optimal climate policies (Emissions and SRM) for different values of θ.

Cooperation E∗i = 18.6GtC z∗i = 0.23TgS T ∗ = 15.10C

Nash E∗i = 23.9GtC z∗i = 0.45TgS T ∗ = 16.10C

First we note that in the strategic Nash solution, global temperature, emissions, and the level of
SRM are higher than in cooperation. This is to be expected, since in the non-cooperative case, neither
the externality of emissions nor the externality of SRM impacts is taken into account.
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Figure 2: Expected optimal climate policies over time for different values of θ

Figure 2 shows the expected optimal levels of emissions and SRM across time for different levels
of the robustness parameter. We find that all variables converge fast to their steady state levels. The
difference in optimal policies concerning cooperation and Nash is evident. Note that for different level
of θ, and as it is decreasing from 1000 to 10 and then to 0.5 (i.e ambiguity increases), both emissions
and SRM effort are decreasing.

To investigate more closely the impact of the model misspecification, Figure 3 shows the impact of
changing ambiguity intensity, as reflected in changing θ, on the optimal steady states for emissions and
SRM for cooperative and the non-cooperative solution. As expected, emissions and climate engineering
are higher under the Nash equilibrium relative to cooperation. It is interesting to note however that
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as ambiguity increases (or θ decreases), the deviation between cooperative SRM and SRM in Nash
equilibrium (see the third panel, which depicts the relative differences) is reduced. For mitigation and
thus emissions, on the other hand, the relative difference is approximately constant. This is shown
in the third panel of figure 3, which depicts the ratio of the optimal level of emissions and SRM in
Cooperation over Nash. Ambiguity aversion thus seems to have a higher impact in the strategic Nash
equilibrium case, where SRM in general is used more. The result can be attributed to the fact that
here the ambiguity of SRM impacts is related directly to SRM, through its damages, but not directly
to emissions.

A way of better understanding the implications from SRM use is through the resulting total im-
pacts from SRM implementation. Figure 4 shows the total SRM damages as the expected percentage
reduction of global Gross Domestic Product (GDP)19 in the symmetric case, both in cooperation and
the non-cooperative solution. In both cases we have that as θ −→∞, the damages converge to the case
of a pure risk (no model misspecification). In the Nash solution, the damages from SRM are always
higher than under cooperation–about 12% of GDP in Nash compared to less than 2% in coopera-
tion. Moreover, as θ decreases, the total impacts from SRM decrease to zero, since SRM is drastically
reduced.

Cooperation Ambiguity

Cooperation pure Risk

Nash Ambiguity

Nash pure Risk

0 2 4 6 8 10
Θ0%

2%

4%

6%

8%

10%

12%

SRM Damages

Figure 4: Total impacts from SRM Dz (z (t) , ui (t))in percent of World GDP.

4.3 Quantifying the ambiguity effect
In order to measure and quantify the effect of the model misspecification, we consider the relative
entropy in the model. Relative entropy can be regarded as a measurement of the misspecification
error. By the integration of the optimal distortion h∗i , we determine an entropy measure and we can
quantify the degree of the model misspecification that the decision maker is willing to consider. To do
so, we compute the solution of the stochastic differential equation (33), which has a unique solution as

u∗i (t) = u (0) e−π(θ)t + ϕ (θ)
(

1− e−π(θ)t
)

+ σ

tˆ

0

e−π(θ)(t−s)dBs.

Given the mean and variance of u∗i (t), we can define the closed-form expression for the relative
19We use the calibration based on Karp and Zhang (2006).
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entropy of our model as
R (Q) =

ˆ ∞
0

e−ρt
1
2EQ (h∗ (t))2

dt (34)

where
h∗ (t) = −σVu

θ
= −σ (µ1 (u∗ (θ)) + 2µ2 (u∗ (θ)))

θ
(35)

so we have that

R (Q) = 1
2e
−ρt
ˆ ∞

0
EQ

(
−σ (µ1 (u∗ (θ)) + 2µ2 (u∗ (θ)))

θ

)2
dt. (36)

This measure can be seen as the relative difference between the pure risk and the deep uncertainty
case. Figure 5 shows the evolution of the entropy in non-cooperation for different values of θ. For
low levels of the robustness parameter θ the misspecification error is high and hence the ambiguity
effect on the optimal policy is large. Thus a range of values, in which the ambiguity aversion and the
misspecification error are relevant in our model, is the range until a value of around ten.

Θ
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1000

2000

3000

4000

Nash Entropy

Figure 5: Relative entropy in the symmetric Nash solution

According to Theorem 6.8.1 from Hansen and Sargent (2008), the problems (14) and (15) have the
same solution, which directly associates an entropy bound R (Q, θ) with a given value of the ambiguity
parameter θ.
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Figure 6: Expected global welfare for different values of θ

Figure 6 represents a different metric for the quantification of the ambiguity in terms of welfare20.
This welfare level can be computed as the welfare according to (13) at the optimum. The expected
welfare level in cooperation is higher than in Nash, while welfare in both cases decreases as ambiguity
increases (or θ decreases). It should be noted that the cooperative and the Nash solutions come closer
in terms of welfare as ambiguity increases, as it shown in the second panel of figure 6, which shows
the welfare in cooperation relative to the Nash solution. The result can be explained by the fact that
as ambiguity increases SRM in Nash equilibrium is reduced faster than the cooperative solution from
a relatively higher level (see figure 4) and this leads to a faster reduction of welfare differences.

Another way to quantify the ambiguity is to assign different θ′s to different levels of the marginal
SRM damages by calculating the proportional deviation of the distorted mean u∗ from the benchmark
under pure risk u∗risk.

Figure 7: Relative increase in perceived marginal impacts from SRM u∗

Figure 7 shows this relation between the choice of the maximal deviation of the SRM damages that
20In figure 6 for cooperation and Nash under ambiguity, the welfare is non-monotonic for a very low value of θ. This

is the effect of the “breakdown point” we discuss in the next subsection.
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the regulator will consider implicitly (∆u) and the value of the robustness parameter θ. For instance,
choosing a value of θ = 1 implies that the decision maker considers a perceived increase in marginal
damages from SRM around 40% higher than without ambiguity aversion. Another way of interpreting
this chart is the following: if according to the existing information about SRM mean damages the
regulator is willing to accept a maximum deviation of, say, 40% then he will choose the corresponding
θ, which is θ = 1.

4.4 The “breakdown point”
Hansen and Sargent (2008) define the “breakdown point” as the lower bound of θ beyond which it
is fruitless to seek more robustness. The minimizing agent (Nature) is sufficiently unconstrained and
she can push the criterion function to (−∞) despite the best response of the maximizing agent, the
policy maker. Thus there exists a θ above which the value function is well defined and does not lose its
concavity. We can easily derive this “breakdown point” in the symmetric case for both the cooperative
and the non-cooperative solution.21

For the cooperative solution, we find the “breakdown point” to be

θC >
σ2
(
β + 8τA2φ

2

(A2δ2+8τλ2)

)
2 (η (1− γ))2 w 0.243

while for the non-cooperative Nash solution it equals

θN >
σ2
(
β + 2τA2φ

2

(A2δ2+2τλ2)

)
(η (1− γ))2 w 0.473.

While overall both values cannot be compared unambiguously, we find that for our numerical calibra-
tion22 θC < θN . This means that under cooperation there is a range of robustness parameter values
given by

[
θC , θN

]
in which an optimal policy regulation is possible only in the cooperative case. Within

this range, countries acting non-cooperatively don’t find an optimal robust policy. The differentiated
breakdown point under cooperative and non-cooperative solutions is an interesting and new finding
within the robust control framework, and it becomes even more relevant under asymmetry as we show
in the next section.

5 Results under Heterogeneity
So far we have considered the case of identical countries. However, the model allows us to introduce
heterogeneity, and we will in particular consider three sources of heterogeneity which seem relevant
in this context: differences in the impact from climate change on each country (τi), differences in the
impacts from climate engineering (ηi), and differences in the attitude towards ambiguity or concerns
about model misspecification (θi). Notably the latter provides a new insight into the behavior of
decision makers that have different attitudes towards deep uncertainty in their decision making process.
We saw that under cooperation, heterogeneity does not introduce different results in our model, so we
focus on the strategic policy solution.

21The “breakdown point” can be obtained from the denominator of the coefficient of the value function by preventing
the Vi from losing concavity(µ2i −→ −∞), see Appendix 6.

22See the calibration values in Appendix 6.
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5.1 Heterogeneity in ambiguity aversion
We start by analyzing the third case of heterogeneity in ambiguity aversion (θi) between the two
countries. Without loss of generality, we look at the case θ1 < θ2. We consider the case in which the
fictitious malevolent agent (Nature) in country 1 “pushes” the lower bound of the robust rule to a
level where

(
θ1 < θN

)
, and thus it is fruitless for the policy maker in this country to seek for more

robustness. On the other hand, we assume that in country 2 the policy maker is less ambiguity averse
and the regulation is possible (θ2 > θ).

Proposition 2.
Suppose θ1 6= θ2 in the cooperative and the Nash framework and consider the problems (19) and

(26) respectively. If θ1 < θ and θ1 + θ2 > θ, then the formulation of a robust optimal policy is possible
in cooperation but not feasible in Nash.

Proof
Cooperation
In the cooperative solution, the policy maker could have different θ′s for each country, but he

considers only one distortion of the SRM dynamics (10) and therefore he decides about one h∗. Different
concerns about model misspecification are expressed by different θ′s. From the minimization of the
problem (19), we have that h∗ = − σV C

u

θ1+θ2
. At the cooperative solution θ∗ = θ1 + θ2, so even if θ1 is

below the minimum threshold (θ) the sum of the policy maker’s robustness parameters might be above
the lower bound and regulation in this case is possible at the cooperative solution (θ < θ∗). Thus a
policy maker with high concerns about model misspecification (θ1 < θ) will apply the mix of optimal
policies (emissions and SRM) if he cooperates with another policy maker who trusts his model more
(θ2 > θ). If the countries cooperate there is a higher possibility to have a solution of the problem
(θ1 + θ2 > θ), even if the policy maker of one of the countries has high concerns about his model.

Nash
In the non-cooperative Nash solution the policy maker of each country or region decides indepen-

dently and Nature chooses a different misspecification error (h∗i ) for each agent. Thus the different
θ′s for each agent consider different distortions by Nature to the SRM dynamics (10). From the mini-
mization of the problem (26) we have that h∗i = −σV

N
ui

θi
. It is obvious that if θ1 is below the threshold

regulation (θ1 < θ) at the Nash equilibrium, the regulation might not be possible (h∗i : Vi (t) −→ −∞).@
Now we solve the model for a range of different values for the robustness parameter. Note that

even though we consider the non-negativity constraints, as in this case, corner solutions cannot be
excluded. We obtain the following picture of SRM implementation between countries shown in Figure
8, when we consider heterogeneity in the degree of ambiguity aversion or confidence in the model in
both countries. We keep the value of the robustness parameter θ1 unchanged for country 1, and we
vary the value of the robustness parameter of country 2 in both directions.
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Figure 8: SRM Implementation with asymmetry in ambiguity aversion

We observe, as before, that SRM is lower in cooperation in all cases. In the strategic Nash solution,
the country with the lower robustness parameter, which is therefore more ambiguity averse about SRM
impacts, will refrain from using SRM, while the other, less ambiguity averse country will implement
SRM. Note that the only case of both countries applying SRM is the symmetric case where both
countries have the same robustness parameter.

5.2 Heterogeneity of impacts from global warming and SRM
Given the focus of this paper is on the impacts from SRM, we now turn to heterogeneity in this dimen-
sion. Having obtained the optimal solutions of the model, we examine through numerical simulations
the effect of heterogeneity in the SRM impacts and from global warming itself. In the Nash solution,
heterogeneity in pi23 and in τi refer to the cases of heterogeneity in the impacts from the use of SRM
and in the damages from climate change, respectively. In the case of heterogeneity between the two
countries we look at the case where country 1 (i = 1) faces the same level of marginal impacts as in
the symmetric benchmark case. Then we vary the impacts of country 2 (i = 2), which faces different
marginal environmental damages (τ2) from a temperature increase and different impacts from the use
of SRM (p2). We implement the variation by different percentage increases or decreases from the
values of country 1. Based on this setup, we solve the stochastic model either as a joint optimization
problem in the cooperative case, or a feedback solution in the Nash case.

Figure 9 shows the optimal policies and climate response for heterogeneity in impacts from SRM
(left part) and impacts from global warming (right part). The most striking difference in terms of
climate policy is which country implements SRM in both cases. With heterogeneity in SRM impacts,
only the country with lower impacts will implement SRM in the Nash solution, which taken into
account by the other player, leads him to withdraw from the implementation of SRM and allows him
a high emission profile. With heterogeneous climate change impacts the situation is reversed: the
country with higher impacts from an increase in the global mean temperature will implement all SRM
while the other country always does zero SRM. The latter result confirms the “Tuvalu syndrome”
(Millard-Ball, 2012) aspect of climate engineering; in that countries with highest impacts from climate
changes are most likely to unilaterally engage in geoengineering implementation. The former result

23Note that for the numerical simulations, we define the heterogeneity in the impacts from the use of SRM as pi =
ηi (1− γ)
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can also be rationalized, lower impacts or side-effects from the implementation of SRM will lead the
country to use SRM technology under any circumstances, therefore at equilibrium the other country
will refrain from using it.

The global temperature increase is slightly lower if impacts from global warming are increased, but
almost invariant to the impacts from SRM, since the total amount of SRM itself is almost unchanged.
With regard to GHG emissions, a country with higher impacts from either warming or SRM emits less.
That is, the effect on mitigation is symmetric: in the case of higher SRM impacts, the country does
not implement SRM and chooses a lower level of emissions since the other country will use SRM and
complement it with higher emissions. In the case of climate impacts the effect is much less pronounced,
but shows the more easily expected result that a country with higher damages will emit less.
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Figure 9: Heterogeneity of impacts from SRM (left) and global warming ( right)

6 Conclusion
Climate engineering and in particular SRM is a a controversial technology, but a potentially attractive
alternative solution to deal with the consequences of global warming. The discussions about the use
of SRM are often focused on potential damages or side-effects. We created a model that explores
the range of SRM induced damages in a world with asymmetry and ambiguity in a robust control
framework, where countries act cooperatively or strategically.

Our results suggest that deep uncertainty about impacts from SRM can be important, and leads
to a reduction in SRM deployment both under cooperation and strategic behavior. Moreover, we
show that this effect is a more relevant issue if countries act strategically, supporting the view that
the possibility of unilateral climate engineering can be aggravated by the large uncertainty around it.
Moreover, we show that the country which is worse off due to the heterogeneity will do zero SRM and
the other country will make all the SRM effort in order to compensate for the high emissions from
both countries. Our model therefore provides some insights regarding situations where SRM action
could be undertaken unilaterally

The climate policy options of mitigation and SRM are strategic substitutes between the countries.
Thus the more mitigation or SRM one of the countries does, the less incentives there are for the other
to adopt these options.
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The main question is the extent to which ambiguity affects the results so that they diverge signifi-
cantly from the pure risk case. We tried to answer this question by quantifying the ambiguity effect in
three ways, by computing the relative entropy, the welfare gap and the maximal deviation of the SRM
damages. Our results show that in order to have a range of values in which the ambiguity aversion
and the welfare gap between risk aversion and ambiguity aversion are significant and affect the opti-
mal policy in our model, the robustness parameter θ has to be lower than ten, which means that the
regulator’s concerns about model misspecification induce him to consider deviations of marginal SRM
damages from the benchmark estimate which exceed 10%. Using a numerical simulation of the analyt-
ical model, we show that in Nash equilibrium countries will prefer a mix of policies with high emissions
and high levels of SRM to partially compensate global warming damages. This mix of policies will
lead to a higher global temperature and damages from SRM than in global cooperation.

When we consider heterogeneous countries with respect to the environmental damages due to a
temperature increase, we find that the country with the higher impacts from global warming will
implement a higher level of SRM, which when taken into account by the other country, leads the
second country to withdraw from the implementation of SRM. The strategic interactions also drive
both countries to adopt much higher climate engineering levels in Nash equilibrium compared to the
cooperative symmetric solution.

On the contrary, when the source of the heterogeneity is the difference in the impacts from the use
of SRM, we find that the country which suffers more from SRM impacts or side-effects will take no
climate engineering action, whereas the country with lower impacts will unilaterally undertake all the
climate engineering resulting in the same level globally.

When we vary the robustness parameter reflecting the attitude towards ambiguity, a higher degree
of ambiguity aversion (lower θ) leads countries to do less SRM both in the Nash equilibrium and with
full cooperation. Furthermore the numerical results suggest that as ambiguity aversion increases (θ
decreases), the deviation between the cooperative and the Nash equilibrium solutions in terms of level
of SRM, welfare and SRM damages as proportions of GDP are reduced.

Ultimately, we consider the interesting case of different ambiguity attitudes in the two countries.
Here, we find that all SRM will be implemented by the country with the higher confidence in its
model while the other country will not use SRM at all, whereas at the global level the amount of
SRM is unchanged. This result suggests that deep uncertainty becomes a more severe problem with
heterogeneous countries in a strategic setting, suggesting that the precautionary policy induced by
ambiguity aversion can be counteracted, if only one actor is sufficiently confident in his assessment of
the (low) impacts or side-effects from climate engineering.

There are a number of extensions of the present model, which would be interesting and policy-
relevant in this field: a more complete analysis of SRM under ambiguity would extend the basic model
to incorporate non-symmetric games between agents and Nature with heterogeneity in spatial charac-
teristics of agents, such as temperature differences across latitudes or differences in the precipitation
patterns across regions. Another interesting extension would be the optimal climate policy in the
presence of climate tipping points, and the inclusion of adaptation as third policy option.
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Appendix A

A.1 Properties of the value function
The value function of the symmetric Nash problem (τi = τj = τ, ηi = ηj = η, θi = θj = θ) satisfying
(26) has the following simple quadratic form:

Vi (θ, ui) = ε0i (θ) + µ1i (θ)ui + µ2i (θ)u2
i , i = 1, 2 (37)

where the coefficients can be computed as

µ1i (θ) = −
θ (ζ − 2pµ2i)

(
βz∗j

(
A2δ

2 + 2τλ2)+ 2τφ
(
A2T0δ −

(
A1 +A2E

∗
j

)
λ
))

(A2δ2 + 2τλ2) (θ (p (ζ − 2pµ2i) + β (m+ ρ)) + 2βσ2µ2i) + 2τA2φ2 (θ (m+ ρ) + 2σ2µ2i)
≤ 0

µ2i (θ) =
θ
(
A2δ

2 + 2τλ2) (2ζp+ β (2m+ ρ)) + 2τA2φ
2θ (2m+ ρ)−

√
RN

4 (A2δ2 + 2τλ2) (p2θ − βσ2)− 8τA2φ2σ2 ≤ 0

where
RN = θ

(
A2δ

2 + 2τλ2 + 2τA2φ
2)

·
((
A2δ

2 + 2τλ2) θ (2m+ ρ)
(
4ζp+ β (2m+ ρ) + 4ζ2σ2)+ 2τA2φ

2θ (2m+ ρ)2
)

A.2 Evolution of the marginal SRM impacts
The marginal damages from SRM under the model misspecification are

dui (t) =
{[

(η (1− γ))
2∑
i=1

z∗i (t)−mui (t)
]
−
[
σ2

θ
µ1i (θ) + 2σ2

θ
µ2i (θ)ui (t)

]}
dt+ σdBi (t) (38)

where

h∗i (θ) = −σVui
θ

= −σ (µ1i (θ) + µ2i (θ))
θ
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and

z∗i =
(η (1− γ)Vui − ζui + ωi)

(
A2δ

2 + 2τλ2)− 2τφ
(
A1λ+A2

(
λE∗j − T0δ + φz∗j

))
A2βδ2 + 2τ (βλ2 +A2φ2) .

The Ornstein–Uhlenbeck diffusion of (38) is given by

dui (t) = π (θ) (ϕ (θ)− u∗i (t)) dt+ σdBi (39)

where we use the notation
p = pi = pj = η (1− γ) (40)

κ(θ) = 2A2ζpδ
2 + 8τζpλ2

A2βδ2 + 4τ (βλ2 +A2φ2) +m+ 2σ2µ2 (θ)
θ

, π(θ) = 1
κ(θ) (41)

ψ(θ) = 2p(4τλ(pVuλ−A1φ) +A2δ(pVuδ + 2τT0φ))
A2βδ2 + 4τ (βλ2 +A2φ2) − σ2µ1 (θ)

θ
, ϕ(θ) = ψ(θ)

κ(θ) (42)

A.3 The “breakdown point”
The coefficients of the value functions under symmetry for cooperation and Nash respectively are

µC2
(
θC
)

=
θC
(
A2δ

2 + 8τλ2) (8ζη (1− γ) + β (2m+ ρ)) + 8τA2φ
2θC (2m+ ρ)−

√
RC

4 (A2δ2 + 8τλ2)
(

2 (η (1− γ))2
θC − βσ2

)
− 32τA2φ2σ2

and

µN2i
(
θN
)

=
θN
(
A2δ

2 + 2τλ2) (2ζη (1− γ) + β (2m+ ρ)) + 2τA2φ
2θN (2m+ ρ)−

√
RN

4 (A2δ2 + 2τλ2)
(

(η (1− γ))2
θN − βσ2

)
− 8τA2φ2σ2

.

In order to avoid µC2
(
θC
)
, µN2i

(
θN
)
−→∞, we need to ensure that

4
(
A2δ

2 + 8τλ2) (2 (η (1− γ))2
θC − βσ2

)
− 32τA2φ

2σ2 6= 0

and
4
(
A2δ

2 + 8τλ2) (2 (η (1− γ))2
θN − βσ2

)
− 8τA2φ

2σ2 6= 0.

This implies for the two breakdown points that they can be computed as

θC >
σ2
(
β + 8τA2φ

2

(A2δ2+8τλ2)

)
2 (η (1− γ))2 and θN >

σ2
(
β + 2τA2φ

2

(A2δ2+2τλ2)

)
(η (1− γ))2

Appendix B: Numerical values of the parameters
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Parameter Description Value Unit
τ slope of social marginal damage cost from a temperature

increase*
77.92 109$/GtC

A1 intercept of marginal benefit from emissions 224.26 $/tC
A2 slope of marginal benefit from emissions 1.9212 109$/(GtC)2

φ sensitivity of global mean temperature to SRM −2.1 0C/TgS

λ sensitivity of temperature to emissions 0.1 0C/GtC

δ heat transfer parameter 0.18 W/Km2

ρ pure rate of time preference 0.01 scalar

σ standard deviation of ui(t) 0.002 scalar

p = η(1− γ) marginal impacts from SRM** 0.085 1/TgS
m adjustment rate of SRM impacts 1.2 scalar

β slope of marginal cost from SRM*** 40 109$/TgS
ζ marginal SRM damage parameter** 29185 109$/TgS
T0 world average temperature, 2005 14 0C

* The marginal damage is based the DICE model which uses a marginal damage of 0.00267% of GDP and
the gross world product of 2100 of 29185 trillion USD.

** Firstly, p is used to calibrate the steady state of the model, and found to be around 8% of GDP per TgS.
Secondly, ζ converts the relative impacts impacts at the calibration point of 1TgS (see Goes et al. (2011)) into
total USD values using the GDP value used also for the utility function based on Karp and Zhang (2006),

*** This parameter is calibrated such that at 1TgS, the average estimate of 10 billion USD per teragram
of sulfur are obtained, see Bickel and Agrawal (2013); Gramstad and Tjøtta (2010); McClellan et al. (2012);
Robock et al. (2009).
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