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Abstract

We propose a Bayesian infinite hidden Markov model to estimate time-

varying parameters in a vector autoregressive model. The Markov structure

allows for heterogeneity over time while accounting for state-persistence. By

modelling the transition distribution as a Dirichlet process mixture model,

parameters can vary over potentially an infinite number of regimes. The

Dirichlet process however favours a parsimonious model without imposing

restrictions on the parameter space. An empirical application demonstrates

the ability of the model to capture both smooth and abrupt parameter

changes over time, and a real-time forecasting exercise shows excellent pre-

dictive performance even in large dimensional VARs.
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1 Introduction

Many researchers study estimation methods for time-varying parameters in vector

autoregressive (VAR) models. The large sets of variables and hence parameters

considered in these models compared to the number of available observations,

increase the complexity of estimating time-varying parameters. Therefore, feasible

estimation methods rely invariably on a set of model restrictions. To manage the

number of time-varying parameter estimates, Cogley and Sargent (2005) impose

the instantaneous relations among the VAR variables to be time-invariant. Chib

et al. (2006) assume a factor structure for the covariance matrix. Primiceri (2005)

imposes parameters to evolve smoothly over time, by modelling the evolution of

the parameters in the coefficient and covariance matrices as random walks. Koop

and Korobilis (2013) make use of forgetting factors to model time-variation in the

parameters.

Parameter breaks in the models proposed by abovementioned papers are drawn

from the same distribution, implying that regime changes are always the same.

However, there is a wide variety in shapes and magnitudes of shocks to the econ-

omy, from abrupt shocks following rapid shifts in policy to smoother changes due

to learning of economic agents. The model of Primiceri (2005), as a well-known

example, imposes a break in each time period by modelling the law of motion

by random walks. This approach does not allow for the presence of occasional

jumps in parameter values, and the continuous changes imply a linear increase in

parameter uncertainty over time. Alternatively, Sims and Zha (2006) (among oth-

ers) capture time variation with a finite number of regimes in a Markov switching

framework. These discrete break models are able to model shifts in policy but

cannot account for smoother changes. Moreover, the number of regimes needs to

be arbitrarily fixed before parameter estimation, ignoring the uncertainty in the

number of breaks. Univariate models that do account for different types of breaks,

such as Pesaran et al. (2006) and Giordani et al. (2007), do not account for state-

persistence, and cannot easily be scaled up to (large dimensional) multivariate

models.

In this paper we contribute to the literature of time-varying parameter vec-

tor autoregressive models by proposing a semi-parametric Bayesian model which

accounts for heterogeneous parameters. Both the autoregressive parameters and
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the covariances of the innovations in the model are allowed to change over time

without imposing any restrictions on the parameter space to make estimation fea-

sible. We employ a hidden Markov chain in combination with a Dirichlet process

to allow for time-varying parameters. The Dirichlet process mixture encourages

parameters to cluster in regimes with similar values. This feature favours a parsi-

monious model, which is a huge advantage in modelling parameter heterogeneity

in structural time series models which, due to large sets of variables, already suffer

from the curse of dimensionality. Moreover, the Dirichlet process mixture allows

parameters to be drawn from different distributions over time by a potentially in-

finite number of regimes, which makes it possible to model abrupt breaks together

with smoother changes. In contrast to parameter estimation in models with a

fixed finite number of switching regimes, we can estimate parameter values, state

values, and the number of regimes along with their uncertainty, together in one

round. Furthermore, the hidden Markov structure accounts for state-persistence,

as is often encountered in macroeconomic data.

The contribution of our approach is threefold. First, we generalize the infinite

hidden Markov model to a multivariate setting, and construct a novel alternative

to existing restrictive time-varying parameter VARs. The infinite hidden Markov

VAR model builds upon work of Jochmann (2015), Song (2014), and Bauwens

et al. (2015). They bring a semi-parametric Bayesian model, developed by Fox

et al. (2011) for speaker diarization, to the univariate time series literature. This

results in autoregressive models with an infinite number of regimes. Bauwens

et al. (2015) show the superiority in forecast performance on macroeconomic time

series relative to univariate models with fixed parameters. We extend the result of

Bauwens et al. (2015) to analyse not only the predictive performance compared to

multivariate fixed parameter models, but also to often used time-varying parameter

VAR models.

Second, we contribute to the growing literature on estimating large time-

varying parameter VARs. Recent studies show that increasing the dimensions

of the VAR model improves forecasting and structural analysis (Carriero et al.,

2015b). Bańbura et al. (2010), Koop (2013), Carriero et al. (2015a), and Giannone

et al. (2015) estimate large VARs but do not account for parameter change, while

Cogley and Sargent (2005), Primiceri (2005), Chib et al. (2006), Clark (2012), and

Clark and Ravazzolo (2015) find convincing evidence for time-varying parameters
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in small VAR models. Only a few papers try to bridge the gap between large

and time-varying systems. Koop and Korobilis (2013) use a semi-Bayesian ap-

proach which imposes restrictions on the parameter space and is unsuitable for

policy analysis as parameters are not estimated. Carriero et al. (2015b) model

time-varying volatility by only a single common unobserved factor, and for high-

dimensional models they have to rely on a misspecified model. Since the infinite

hidden Markov model estimates time-variation relatively parsimoniously, it can

handle high-dimensional VAR systems without restricting the parameter space.

Third, the infinite hidden Markov model accounts for uncertainty in the un-

derlying break processes but reduces the parameter uncertainty relative to other

time-varying parameter models (Song, 2014). Traditional regime-switching mod-

els capture time-variation by a fixed finite number of regimes (Hamilton, 1989),

which ignores the uncertainty around the number of regimes. Chopin and Pelgrin

(2004) take this uncertainty into account by jointly estimating the parameters and

the number of in-sample regimes. Moreover, traditional Markov switching mod-

els assume that future states are always equal to one of the estimated in-sample

regimes, which results in inaccurate forecasts in case of new out-of-sample regimes.

The infinite hidden Markov model estimates the number of regimes and allows for

new regimes out-of-sample. Other researchers model heterogeneity over time by

change-point models (Chib, 1998) or impose parameters to change each time pe-

riod, for example Primiceri (2005). In these models, different states cannot reoccur

over time, which inevitable results in a loss of estimation efficiency. The infinite

hidden Markov model reduces the parameter uncertainty by estimating parame-

ters on data over all similar states, also when observations are separated from each

other by break points.

We illustrate the contributions of the model in an extensive empirical appli-

cation on a monetary VAR. We show the ability of the model to capture het-

erogeneity over time together with both abrupt shocks and smooth changes in a

structural analysis. We especially find posterior evidence for time-varying volatil-

ity. In a real-time forecasting exercise we compare the forecast performance of a

small VAR (3 variables) and a large VAR (10 variables) infinite hidden Markov

model to time-varying parameter VAR benchmarks.

The outline of the remainder of this paper is as follows. Section 2 discusses

the model specification and explains parameter inference by Bayesian methods.

3



Section 3 explains the empirical application of the methods on a monetary VAR. It

introduces the data, discusses how we use the model for monetary policy analysis,

and performs a forecasting exercise. We conclude with a discussion in Section 4.

2 Methods

This section discusses the specification and parameter estimation of the infinite

hidden Markov VAR model. Section 2.1 introduces the baseline specification of

the reduced form of a time-varying parameter VAR. From here, we explain how

we capture the parameter heterogeneity over time by constructing regimes with

homogeneous parameter values. The regimes and parameter values are estimated

by Bayesian methods. In Section 2.2, we specify the prior distributions and set up

a Markov Chain Monte Carlo (MCMC) sampler. Moreover, we show how we can

sample from the predictive density.

2.1 Model Specification

Consider the reduced form of a time-varying vector autoregressive model of order l

yt = Btxt + εt, εt ∼ N (0,Σt), t = 1, . . . , T, (1)

where yt is a p × 1 vector of observed endogenous time series, Bt is a p × (k =

1+pl) matrix with time-varying coefficients, and εt are heteroskedastic independent

disturbances with covariance matrix Σt. The k × 1 vector xt = [1, y′t−1, . . . , y
′
t−l]
′

includes an intercept and the endogenous variables up to lag l as explanatory

variables.

Both the coefficient matrix Bt and the covariance matrix Σt in (1) contain

time-varying parameters. Equivalently, we can say that the parameters in Bt and

Σt vary over an infinite number of regimes, where the number of regimes equals

the number of time periods T when each time period has a different parameter

value. Within the regimes the parameters are assumed to be time-invariant but

across regimes the parameters are allowed to be different. We can write (1) as

yt = Bstxt + εt, εt ∼ N (0,Σst), (2)
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where s1:T = {s1, . . . , sT} takes integer values indicating the regime at time t.

While there is strong evidence that the behavior of macroeconomic variables

changes over time, it is implausible that the economy changes in each time period

with probability one. Therefore, we can specify a potentially more parsimonious

model by modelling the transition probability of moving from one state to another

(Hamilton, 1989).

We let the regime indicators s1:T follow a first-order Markov chain, where πij

denotes the transition probability of moving from state i to state j under the

constraint that
∑J

j=1 πij = 1 for all i, where J goes to infinity. So each state

i has a state-specific transition distribution πi over J states; st ∼ πst−1 , where

πi = (πi1, . . . , πiJ) . When the number of states is possibly infinite, we potentially

have infinitely many parameters in the state transition matrix. Since estimating

all these parameters is infeasible, we follow the framework of Teh et al. (2012),

and implicitly integrate out the transition parameters by specifying the transition

distributions πi as a Dirichlet process mixture model,

πi|a,H ∼ DP (a,Hi),

where DP denotes a Dirichlet process distribution (Ferguson, 1973), the scalar

a = α + κ is the concentration parameter, Hi = αβ+κδi
α+κ

the base distribution, δi

denotes a unit-mass measure concentrated at i, and α captures dispersion. The

base distribution is constructed by the global transition distribution β and scaled

by the persistence parameter κ to account for state-dependence (Fox et al., 2011).

When κ = 0, a standard Dirichlet process mixture model is recovered, that does

not take state-persistence into account.

The Dirichlet process can be seen as a mixture over the transition probability

distributions of J current states, where the state-specific transition probability

distribution runs over J states in the next period, and J goes to infinity (Escobar

and West, 1995). So, not only the global transition distribution runs over an infi-

nite number of states, the Dirichlet process is also an infinite discrete distribution

over state-specific transition distributions. Since the expectation of the Dirichlet

process equals the base distribution, states tend to have similar transition distri-

butions; E[πij] =
αβj+κ1(i=j)

α+κ
, where 1(A) denotes an indicator variable that equals

one if event A occurs and zero otherwise. An amount κ > 0 is added to the ith

component of αβ, such that the expected probability of self-transition is increased
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by an amount proportional to κ. Moreover, element j of Hi, that is Hij, can be

interpreted as prior mean for the transition probabilities into state j. The vari-

ance of the Dirichlet process equals Hi(1−Hi)/(a+1), from which we infer that α

indeed controls the dispersion around the prior mean across rows of the transition

matrix.

Conditional on the regimes in the previous time periods, the regime indicator

st can be equal to the current regime of time period t − 1, an existing regime

realized more than one period back in time, or switch to a new regime. In the

latter case, new parameters values in the added row and column to the transition

matrix are generated by a base distribution. The base distribution of the transition

parameters is the scaled global transition distribution β, defined as

βj = νj

j−1∏
l=1

(1− νl), νj|γ ∼ Beta(1, γ), j = 1, 2, . . . ,

where β = {βj}∞j=1 is defined as a probability mass function on a countably infinite

set. This is known as a stick-breaking construction, which can also be written as

β ∼ Stick(γ). The expected number of represented hidden states is governed by

γ, by controlling how concentrated the probability mass will be across the columns

of the transition matrix. Switching to a new regime also implies that new values of

the model parameters θst = {Bst ,Σst} have to be generated. The base distribution

of the model parameters is denoted by

{Bst ,Σst} ∼ Hθ(Θ),

where Θ is a set of hyperparameters in the base distribution.
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We can summarize the complete model specification by the following equations,

yt = Bstxt + εt, (3)

εt ∼ N (0,Σst), (4)

st|st−1, {πi}∞i=1 ∼ πst−1 , (5)

πi|α, κ, β ∼ DP

(
α + κ,

αβ + κδi
α + κ

)
, (6)

βj = νj

j−1∏
l=1

(1− νl), (7)

νj|γ ∼ Beta(1, γ), j = 1, 2, . . . , (8)

{Bst ,Σst} ∼ Hθ(Θ). (9)

Equations (3) and (4) specify the reduced form of the time-varying vector autore-

gressive model, where the parameters θst = {Bst ,Σst} vary over an infinite number

of regimes. To retrieve the different regimes we use a hidden Markov chain in com-

bination with a Dirichlet process mixture model. Equation (5) specifies the hidden

Markov model by introducing a first-order Markov chain with transition probabil-

ity matrix π. The transition probability distribution of πi is specified as a Dirichlet

process mixture in (6)-(8). The κ parameter captures the persistence in macroeco-

nomic data by controlling the probability that parameters remain constant between

time periods. Equation (9) concludes, and provides the base distribution of the

model parameters, Hθ, parameterized by the hyperparameters Θ.

For ease of notation we follow the Markov-switching literature and specify one

regime switching process for all model parameters. To obtain a potential efficiency

gain we can easily extend to a model with different regime-switching processes for

the parameters in the coefficient matrix and the parameters in the covariance

matrix, within the infinite hidden Markov framework. However, a regime switch

in this model does not necessarily mean that all parameters change. For example,

a regime switch can either be the result of a change in the parameters in the

covariance (coefficient) matrix while the coefficient (covariance) parameters remain

constant, or a change in all parameter values.
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2.2 Bayesian Inference

To estimate the parameters θst = {Bst ,Σst} we rely on the Markov Chain Monte

Carlo (MCMC) algorithm for the infinite hidden Markov model derived by Fox

et al. (2011). Bauwens et al. (2015) apply a variant of this sampler in a univariate

econometric time series context.

Although there are sampling algorithms that can deal with an infinite number

of regimes (which are also derived and discussed by Fox et al. (2011)), these algo-

rithms suffer in general from slow mixing rates. Therefore, we opt for a sampler

which truncates the number of possible states to a fixed degree L, the so called

degree L weak limit approximation (Ishwaran and Zarepour, 2002). When L is

large enough, the error is negligible. The degree L weak limit approximation fos-

ters models with less than L regimes while allowing for new regimes, bounded by

L, when new data are observed.

2.2.1 Prior Distributions

The degree L weak limit approximation induces finite Dirichlet distribution priors

on β and πi,

β|γ ∼ Dir(γ/L, . . . , γ/L),

πi|α, β, κ ∼ Dir(αβ1, . . . , αβi + κ, . . . , αβL),

where Dir denotes the finite Dirichlet distribution. We let the data determine the

number of states and the degree of state-persistence, by treating the hyperparame-

ters of the transition distributions {γ, α, κ} as unknown. We place priors on these

hyperparameters,

α + κ ∼ Gamma(aα, bα), γ ∼ Gamma(aγ, bγ), ρ =
κ

α + κ
∼ Beta(cρ, dρ).

The parameters in the prior distributions of the concentration parameters, denoted

by {aα, bα, aγ, bγ}, control the dispersion with respect to their base distributions.

The prior beliefs about the number of regime-switches are captured by {cρ, dρ}. A

relatively low value for cρ corresponds to rapid switches from one state to another.

Increasing cρ leads to higher state-persistence.

The prior on the parameters θst = {Bst ,Σst} is a Normal-inverse-Wishart,

vec(Bst)|Σst ,Θ ∼ N (vec(bB), VB ⊗ Σst), Σst|Θ ∼ IW(νΣ, SΣ), (10)
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where the vec(A) operator stacks the columns of matrix A and Θ is the collection

of hyperparameters for θ, {bB, VB, νΣ, SΣ}. So the infinite hidden Markov model

allows for an elegant conjugate prior structure in which we can put prior beliefs

about the model parameters in the coefficient and covariance matrices directly in

the prior distribution in (10). For instance, we can control the prior probability

mass at stationary VARs, by shrinking the coefficients to zero with values close to

zero in bB and relatively small in VB.

2.2.2 Posterior Distribution

Fox et al. (2011) derive in detail a sample algorithm applicable for Bayesian param-

eter inference in the infinite hidden Markov model. We extend the sampling steps

to the multivariate econometric time series context of the time-varying parameter

VAR models and present the resulting sampling steps:

Step 1. Set the truncation level L of possible hidden Markov states. Sample

an initial draw for the hyperparameters of the transition distributions from

their priors and do the same for the hyperparameters in the base distribution

Hθ. Initialize the transition distributions β and πi by drawing from their L-

dimensional Dirichlet priors.

Step 2. Sample the regime indicators s1:T using the forward-backward procedure

(Rabiner, 1989).

(a) First, work sequentially backwards in time. For each i = 1, . . . , L,

mT+1,T (i) = 1 and

mt,t−1(i) =
L∑
j=1

πijN (yt;Bjxt,Σj)mt+1,t(j), t = T, . . . , 2,

where N (y;µ,Σ) denotes the probability density function of the multi-

variate Normal distribution with mean µ and covariance matrix Σ.

(b) Second, work sequentially forward in time and initialize the number of

transitions from state i to j observed in the state vector s1:T , nij = 0

with i, j = 1, . . . , L. For each j = 1, . . . , L, compute

fj(yt) = πst−1(j)N (yt;Bjxt,Σj)mt+1,t(j), t = 1, . . . , T,
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sample the regime indicators,

st ∼
L∑
j=1

fj(yt)1(st = j), t = 1, . . . , T,

and increment nst−1,st .

Step 3. Sample auxiliary variables m, w, and m̄.

(a) For i = 1, . . . , L and j = 1, . . . , L set mij = 0. For k = 1, . . . , nij sample

xk ∼ Bernoulli(
αβj+κ1(i=j)

i−1+αβj+κ1(i=j)
) and increment mij if xk = 1.

(b) For i = 1, . . . , L sample wi ∼ Binomial(mii,
ρ

ρ+βi(1−ρ)
). Set m̄ij = mij if

i 6= j and m̄ij = mij − wi if i = j.

Step 4. Sample the global transition distribution

β ∼ Dir(γ/L+
∑
i

m̄i1, . . . , γ/L+
∑
i

m̄iL).

Step 5. Sample the transition distribution π. For i = 1, . . . , L sample

πi ∼ Dir(αβ1 + ni1, . . . , αβi + κ+ nii, . . . , αβL + niL).

Step 6. Sample the regime parameters θ for j = 1, . . . , L. Let xj be the tj × k
matrix with rows xst=j and tj the number of observations in state st. Define

yj as a p× tj matrix. Sample the model parameters

B̄ = (x′jxj + V −1
B ), b̄ = (yjxj + bBV

−1
B )B̄−1,

S̄ = SΣ + (y′j − xj b̄′)′(y′j − xj b̄′) + (b̄− bB)V −1
B (b̄− bB)′,

Σj|yj,Θ ∼ IW(νΣ + tj, S̄), vec(Bj)|yj,Σj,Θ ∼ N (vec(b̄), B̄−1 ⊗ Σj).

Step 7. Sample the hyperparameters of the transition distributions γ, α, and κ.

(a) Sample auxiliary variables ri ∼ Beta(α + κ+ 1,
∑

j nij) and

si ∼ Bernoulli(
∑
j nij∑

j nij+α+κ
) for i = 1, . . . , L.

Sample α + κ ∼ Gamma(aα +
∑

i

∑
jmij −

∑
i si, (

1
bα
−
∑

i log ri)
−1).

(b) Sample ρ = κ
α+κ
∼ Beta(cρ +

∑
iwi, dρ +

∑
i

∑
jmij −

∑
iwi).
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(c) Sample auxiliary variables r ∼ Beta(γ + 1,
∑

i

∑
j m̄ij) and

s ∼ Bernoulli(
∑
i

∑
j m̄ij∑

i

∑
j m̄ij+γ

). Compute K̄ =
∑

k 1(
∑

i m̄ij > 0) and

Sample γ ∼ Gamma(aγ + K̄ − s, ( 1
bγ
− log r)−1).

Step 8. Go to step 2.

2.2.3 Predictive Densities

To construct a predictive density, we again make use of the degree L weak limit

approximation. When L is assumed to be much larger than the number of in-

sample regimes, the infinite hidden Markov model takes out-of-sample parameter

breaks into account by allowing for new regimes out-of-sample. Here we show

how future values are sampled from their predictive densities, together with the

potentially new regimes, and the corresponding future model parameter values.

We simulate the predictive densities of yT+h for different horizons h by iterating

over the auto-regressive equation in (2), in each iteration of the sampler, using the

parameter draws obtained in that sample iteration. In iteration (i) of the sampler

we have,

y
(i)
T+h = B

(i)

s
(i)
T+h

x
(i)
T+h−1 + ε

(i)
T+h, ε

(i)
T+h ∼ N (0,Σ

(i)

s
(i)
T+h

),

s
(i)
T+h ∼ Multinomial(π(i)

sT+h−1,1
, . . . , π(i)

sT+h−1,L
),

where B
(i)

s
(i)
T+h

and Σ
(i)

s
(i)
T+h

are the parameter draws in iteration (i) of the sampler, and

x
(i)
T+h−1 is constructed from y

(i)
T+h−1, . . . , y

(i)
T+h−l, where elements are replaced by in-

sample observations when known. The regime indicators s
(i)
T+h are sampled from a

Multinomial distribution, and L is the number of clusters under the degree L weak

limit approximation. Since the degree L weak limit approximation is assumed to

be much larger than the number of estimated in-sample states, future parameter

values can be drawn from new regimes which are not present in-sample.

3 Empirical Application

We apply the newly proposed model on a monetary VAR of the U.S. economy

consisting of the unemployment rate, inflation rate and federal funds rate, in an
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in-sample and out-of-sample application. Section 3.1 introduces the data. In Sec-

tion 3.2 we use the infinite hidden Markov model to study the effects of monetary

policy shocks in a structural VAR model. Section 3.3 performs a real-time fore-

casting exercise with the a small monetary VAR model to assess the out-of-sample

performance of the infinite hidden Markov model compared to benchmark models.

We also analyse the forecast performance of a large dimensional VAR model.

We follow Primiceri (2005) and consider VAR models with two lags. Posterior

results are based on 20,000 iterations of the MCMC sampler, from which the first

10,000 are discarded. Visual inspection shows that this number of iterations is

enough for convergence. The number of possible states is truncated at 20 in the

degree L weak limit approximation.

3.1 Data

We use three macroeconomic time series of the U.S. economy, the unemployment

rate, inflation rate, and interest rate, to construct a monetary VAR. The unem-

ployment rate is the civilian rate of unemployment, and inflation is calculated as a

function of the GDP deflator Pt to obtain the annualized quarterly growth rate of

prices; 400 times the first difference of the logarithm of Pt. Since the three month

Treasury bill rate is available over a longer period of time than the federal funds

rate, the interest rate is represented by the first.

The real-time data for the unemployment rate and the GDP deflator are col-

lected by the Federal Reserve Bank of Philadelphia. The three month Treasury

bill rate is not subject to revisions and is available from the Federal Reserve Bank

of St. Louis. The GDP deflator is available as quarterly time series and the un-

employment rate and interest rate as monthly time series. We follow Cogley and

Sargent (2002, 2005); Cogley et al. (2010); D’Agostino et al. (2013), by taking the

value at the second month of the quarter for the unemployment and the value at

the first month of the quarter for the interest rate, to obtain quarterly series for

all three variables.

The first quarter of 1948 is the first time period for which all data is available.

We consider data through 2015Q4. When we date a vintage as the last quarter

for which all data are available, we have vintages from 1965Q4 to 2015Q4. We

use all data in the most recent vintage for in-sample analysis. Figure 1 shows the
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standardized data series as included in the model.

[Figure 1 about here.]

Table 1 shows the prior parameter values of the model. We follow Fox et al.

(2011) in the parameter values in the prior distributions on the hyperparameters

of the transition distribution. We opt for a non-informative prior by choosing

large scale parameters {bα, bγ} in the Gamma distributions. A relatively low value

for cρ, that is cρ = 10, corresponds to rapid switches from one state to another.

Setting cρ = 1000 leads to higher state-persistence.

Since the data is standardized, we can choose non-informative priors for the

model parameters. The inverse-Wishart distribution of the covariance parameters

has degrees of freedom equal to the number of variables in the model plus two and

a scaled identity matrix as scale matrix. By scaling the prior variance of coefficient

parameters by the lag order of the corresponding variable, we shrink coefficients

estimates of higher lag order variables to zero, similar to the Minnesota prior

(Doan et al., 1984). For out-of-sample purposes discussed later, we try to avoid

sampling explosive VARs by choosing a more tighter parametrization of the prior

distribution of the coefficients. That is, for in-sample analysis we set λ = 1 and

λ = 0.1 in our forecasting exercise.

[Table 1 about here.]

3.2 Structural VAR model

Since a time varying parameter VAR consists of a large amount of parameters,

even in a small model with only three variables and two lags, it takes too much

space to present estimation diagnostics of all parameters. Moreover, it is diffi-

cult to give an economic interpretation to each posterior distribution. Therefore,

we discuss the stability of the VAR model over time, we show the posterior re-

sults for the variances of the structural shocks, and we report impulse response

functions which summarize the economic implications of the estimated structural

coefficients. To identify the structural parameters, we opt for a Cholesky decom-

position in our application on a small monetary VAR in which the variables are
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ordered as {unemployment, inflation, interest rate} (Sims, 1980). However, alter-

native identification schemes, for instance, long-run restrictions or sign restrictions,

can also be applied to the infinite hidden Markov VAR model.

3.2.1 Stability Diagnostics

We find compelling evidence of instability in the parameter estimates over time.

The posterior probability for four different regimes equals 70%, for five regimes

28%, and the remaining probability mass is concentrated at six regimes. Figure 2

shows the posterior probability of a regime switch for each time period. Most of the

breaks are detected before 1990. Thereafter, there is a more stable period which

is followed by higher break probabilities corresponding to the Dot-com bubble in

2000 and the global financial crisis starting in 2007.

[Figure 2 about here.]

The instability is also reflected by the time variation in the posterior probability

of an explosive system. When the largest absolute eigenvalue of the companion

form of the reduced form VAR is larger than one in a specific time period, the

system is in an explosive regime at that point in time. Figure 3 shows the time-

varying posterior mean of the largest absolute eigenvalue, together with the 68%

and 90% confidence bands. Most of the probability mass is located below one.

However, before the mid eighties we observe temporary increases in the probability

of an explosive system.

[Figure 3 about here.]

3.2.2 Structural Variance

We define monetary policy shocks as interest rate responses to variables other than

unemployment and inflation. The changes in relative importance of these shocks

over time are displayed by the time-varying variance of the monetary policy shock.

Figure 4 shows the time-varying variance of monetary policy shocks, together with

shocks to the unemployment and inflation equation.

[Figure 4 about here.]
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The confidence bands around the time-varying variance of monetary policy

shocks provide evidence that there is variation over time. The first thing to note

beside some peaks in variance in the early sixties and mid seventies, is the long

period of high variance running from 1979 to 1983. This feature is well-known and

can be attributed to a period with deviant monetary policy. After this high vari-

ance regime, the changes in variance are quite modest with only small exceptions.

The first panel of Figure 4 shows that the variance of unemployment shocks

follows a pattern similar to the variance of monetary policy shocks. The confidence

bounds also clearly support modelling time variation. The variance of the shocks

to inflation, as showed in the second panel of Figure 4, seems to be less volatile

over time. Apart from high variance regimes in the seventies, it behaves more

stable in the rest of the sample period.

3.2.3 Impulse Response Functions

Figure 5 shows the posterior mean of the impulse response functions of the SVAR to

a unit monetary policy shock, conditional on the estimated regimes. The functions

trace out the effect of the structural shocks over a time path of four years for

each variable, conditional on the estimated states. Because of the time-varying

parameters in the model, the time paths are different for each date the shock hits

the system. So for each quarter in the estimation sample, we have the time path

of the policy shock effect over the sixteen following quarters.

[Figure 5 about here.]

According to the posterior mean, the impulse responses differ in strength over

time. In general, the effects in the period around 1970 and 1980 and the period

after 2007 seem to be more severe. The initial reaction of unemployment can be

both positive or negative, but the result of the shock after four years seems always

to be positive. The impulse response of inflation differs also in strength over time,

but in general it reacts positive to an interest shock and converges back to zero.

The interest rate also seems to converge to zero, after a sharp decline following

the impulse of magnitude one.

The impulse response functions in Figure 5 suggest some variation over time.

However, Figure 5 shows only the mean of the posterior distribution of the impulse
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responses. To get an idea about the uncertainty around the time variation we

choose four different moments at which a monetary policy shock hits the system,

and plot the posterior means together with the 68% and 90% of the posterior

distributions. Figure 6 shows the impulse response functions to a monetary policy

shock for the different shock dates; the second quarter of 1965, 1980, 1995, and

2010. When taking the whole posterior distribution of the impulse responses into

account, we can hardly conclude that the responses are time-varying. Figure 6

shows that, apart from the impulse response of the interest rate in 1980, we can

hardly find any differences in the shape of the response functions per variable, but

the magnitude of the effect differs over time. However, due to the high uncertainty

about the shape and magnitude of the impulse responses, we find no convincing

posterior evidence for time-variation in impulse responses functions.

[Figure 6 about here.]

According to the confidence bounds there is little posterior evidence that the

impulse responses of unemployment and inflation differ from zero. However, Table

2 shows that after some shock dates the probability mass clearly indicates a positive

effect. With a posterior probability of approximately 80 percent, a monetary policy

shocks results in a positive effect on unemployment after four years, for all different

shock dates. For inflation, there seem to be only a short-term positive effect, also

with probabilities close to 80 percent.

[Table 2 about here.]

The impulse response functions are constructed from a large number of coef-

ficients which are allowed to be different over time. To decrease parameter un-

certainty, we can impose all coefficients to be constant over time. However, this

results also in time-invariant impulse response functions. Alternatively, we restrict

only the long term impact to be constant over time and account for variation in

short term effects

yt = cst + Πstyt−1 +D∆yt−1 + εt, εt ∼ N (0,Σst). (11)

Appendix C shows the impulse response functions following from this more par-

simonious model. However, despite of the decrease in parameter uncertainty, we

still do not find posterior support for time-varying impulse response functions.
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3.3 Forecasting Exercise

To asses the out-of-sample performance of the infinite hidden Markov VAR model,

we perform a forecasting exercise in which we compare the predictive performance

of the infinite hidden Markov model against benchmark models. We adopt a

similar real-time forecasting framework as D’Agostino et al. (2013), who iteratively

produce forecasts with the time-varying parameter VAR model of Primiceri (2005).

We start the forecasting exercise with an estimation sample running from

1948Q1 up to 1969Q4 of the vintage 1969Q4. We standardize the variables and

estimate the model parameters on this sample. We compute with each model

forecasts up to five quarters ahead outside the estimation window, from 1970Q1

to 1971Q1. After we have produced the forecasts based on the first estimation

sample, we move one quarter ahead and re-estimate the model parameters using

the standardized variables based on all the data in vintage 1970Q1. That means

that we use an expanding window to estimate the model parameters. Again, we

use each model to compute forecasts up to five quarters ahead. We repeat this

procedure up to vintage 2014Q1 (as we need later vintages to evaluate forecasts

up to five quarters ahead, as we discuss in Section 3.3.2). This exercise results in

time series of 178 one-period-ahead forecasts from 1970Q1 to 2014Q2 and a time

series of the same length containing five-periods-ahead predictions from 1971Q1

to 2015Q2, since we compare the forecasts to data after 2 revisions.

Since there is evidence that large VAR models can improve in forecast per-

formance upon small models, we also extend the small model to ten variables to

construct forecasts of the unemployment rate, inflation rate, and interest rate.

We add five variables from the real-time database of the Federal Reserve Bank of

Philadelphia; M1 money stock, real gross domestic product, personal consumption

expenditures, industrial production index, and imports of goods and services, and

we add the S&P 500 index and the total borrowings of depository institutions from

the Federal Reserve which are unrevised data from the Federal Reserve Bank of St.

Louis. In case of monthly data we take the value of the third month and all data

is included in the model as growth rates by taking 400 times the first difference of

the logarithm.
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3.3.1 Forecasting Models

We compare the predictive performance of variants of the infinite hidden Markov

model against the predictive performance of a time-invariant Bayesian VAR, the

time-varying parameter VAR model of Primiceri (2005), and the time-varying

parameter VAR model of Koop and Korobilis (2013). The model of Primiceri

(2005) is designed for the specific type of small monetary VAR studied in this

forecast exercise. Since due to the danger of over-fitting a more parsimonious

model could potentially lead to a more efficient model, and therefore an increase in

predictive performance, we not only forecast with the unrestricted infinite hidden

Markov VAR model, but also with models in which we restrict coefficients or the

covariance matrix to be time-invariant. The model in which we restrict both boils

down to a linear Bayesian VAR without any time-variation included.

The linear Bayesian VAR model is identical to the model in (1), but now the

parameters are fixed over time;

yt = Bxt + εt, εt ∼ N (0,Σ), t = 1, . . . , T, (12)

and the prior on the parameters θ = {B,Σ} is a Normal-inverse-Wishart as in

(10) with values for the hyperparameters given in Table 1. We simulate from the

predictive densities of yT+h for different horizons h as described for the infinite

hidden Markov model in Section 2.2.3.

We specify and estimate the Primiceri model as outlined in (Primiceri, 2005).

However, for a fair comparison with the other models, we follow Koop and Ko-

robilis (2013) in not using a training sample prior. We generate forecast from

the Primiceri model (denoted as P05) in the same way as Koop and Korobilis

(2013) and D’Agostino et al. (2013). That means that we use iterated forecasts

in the same way as discussed for the linear BVAR, and we allow for out-of-sample

parameter change in the VAR.

Note that due to computational constraints and the fact that the estimation

algorithm involves taking the inverse of large matrices, the model of Primiceri

(2005) cannot be estimated in a stable way for a large VAR model. That is why

Koop and Korobilis (2013) propose an alternative model that can handle large

dimensional time-varying parameter VAR models by using forgetting factors to

model time-variation. We implement this model, which we denote as KK13, as

final benchmark. We take for the forgetting factors λ = 0.99, κ = 0.96, and
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γ = 0.1. This specification does not involve dynamic model averaging. Comparing

averaged forecasts over different model dimensions and prior specifications against

the forecasts of the other models, would also require the implementation of the

dynamic model averaging technique for the competing models, which is beyond the

scope of this paper. Moreover, we set Σ̂0 = Ip instead of using a training sample.

3.3.2 Forecast Evaluation

Following the framework of D’Agostino et al. (2013), we compare the forecasts for

a particular time period with the third release of the figures for that time period.

So, we evaluate predictions against numbers which may have been revised two

times. This means that we evaluate the last one-year-ahead prediction against the

numbers in vintage 2015Q4.

We evaluate point forecasts using the root mean squared prediction error

(RMSPE) and the mean absolute prediction error (MAPE). For the first (sec-

ond) metric we set the point forecast equal to the mean (median) of the predictive

density. We evaluate the forecast performance of the whole predictive density with

the average predictive densities (APD). Beside assessing predictions with the tra-

ditional Bayesian forecast performance measures, like the RMSPE and the APD,

we follow Groen et al. (2013) in evaluating density forecasts based on alternative

measures such as the continuous ranked probability score (CRPS) and the quantile

scores.

Where point forecasts emphasis the median or mean of the predictive density,

there are often applications in which the tails of the predictive density are of special

interest. For instance, in case VAR models are used for constructing impulse

response functions to perform policy analysis. The outcomes of policy analysis are

heavily affected by the tail behavior of predicted future outcomes. To also evaluate

the performance of the tails of the predictive density we employ integrated weighted

versions of Gneiting and Raftery (2007) average quantile scores (avQS). With the

avQS-C, avQS-R, and avQS-L we evaluate the center, the right tail, and the left

tail of the predictive density, respectively. The exact formulas of all evaluation

measures are given in Appendix B.
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3.3.3 Forecast Performance

The real-time forecasting exercise results in forecasts of five different models1, for

all three variables included in the monetary VAR, over five horizons, for both a

small monetary VAR and a large dimensional VAR. Tables 3, 4 and 5 show the

values of the predictive performance measures for these forecasts. Underscores

indicate the best performing model for a specific horizon and variable, according

to a particular evaluation criterion. Except for the average predictive density, the

best performing model is the one that produces forecasts with small values for the

forecast performance statistics.

[Table 3 about here.]

We find that in general, the infinite hidden Markov model with a time-varying

covariance matrix shows the best performance, where the unrestricted infinite hid-

den Markov model is too flexible and the homogeneous linear VAR too restrictive.

Table 3 shows that the unrestricted infinite hidden Markov model outperforms the

other models in only one case and the linear BVAR results only once in the lowest

RMSPE. Also on the predictive density evaluation measures in Tables 4 and 5,

the unrestricted model shows in a few cases the best performance, but the linear

BVAR is systematically outperformed.

The restricted infinite hidden Markov model results in all cases in the lowest

RMSPE for unemployment. The results for inflation and interest rate vary per

horizon and model dimension. The P05 model improves upon forecast accuracy

in predicting inflation in the small VAR. Since the estimation procedure of this

model cannot be scaled up to high dimensional models, this model is absent in

the forecast comparison for the large VAR. The KK13 model replaces the P05

model as best performer for inflation here. The KK13 model and the restricted

infinite hidden Markov model are close competitors on accurate point forecasts

for interest rate. Table D1 shows the MAPE, another point forecast evaluation

criterium, which is more friendly against outliers. This metric shows results similar

1Although we only present results for the unrestricted infinite hidden Markov model and a

variant in which the coefficients are restricted to be time-invariant, Appendix A shows that we

can also restrict the covariance matrix, the long term impact matrix, or both. Forecast results

for these models do not alter the main findings of our analysis and are available upon request.
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to the RMSPE, with the restricted infinite hidden Markov model being superior in

forecasting unemployment, P05 consistently better in forecasting inflation in the

small model, and in some cases KK13 shows the best performance on inflation and

interest rate in the large VAR.

When we take the whole predictive density into account, we find impressive

results in favor of the restricted infinite hidden Markov model. Table 4 shows that

this model beats all benchmark models for all horizons and model dimensions.

The only competing model on the predictive density is the unrestricted infinite

hidden Markov model. In the small VAR model, the linear BVAR shows the

worst predictive performance of the benchmark models, followed by the KK13 and

P05 models. However, unless for the one-period-ahead forecasts, the KK13 model

cannot increase in the value of the predictive density relative to the linear BVAR

in the large dimensional model.

[Table 4 about here.]

The average predictive density is computed over the forecasts for all variables

included in the model. However, out of all variables included in the large VAR

model, we focus on unemployment, inflation, and interest rate. The continuous

ranked probability score separately evaluates the predictive densities of each vari-

able. Table 5 shows that the strong performance in density forecasts of the re-

stricted infinite hidden Markov model is based on the forecasts for unemployment

and interest rates. The P05 model does again a good job in predicting inflation in

the small model. In the large dimensional model, the KK13 model only sometimes

perform better on short-term density forecasts. Tables D2, D3, and D4 show the

quantile scores, which show in which part of the predictive densities which model

performs best. In summary, the restricted infinite hidden Markov model in the

small VAR performs often better than benchmarks model in the important left-tail.

[Table 5 about here.]

Comparing the forecasts in the small VAR against the forecasts in the large

VAR model, we find that in most cases the forecast quality deteriorates with

larger model dimensions. Table 3 shows that only for short horizons there is an

improvement in forecast accuracy after adding variables to the small monetary
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VAR model. In contrast to the average predictive densities, we can compare

the density forecast performance between the small and large models using the

continuous ranked probability score. Table 5 shows that in the short term, the

large model does a better job in density forecasts for unemployment. In general,

there is no clear increase in performance by adding more variables.

In sum, the infinite hidden Markov model with a time-varying covariance ma-

trix shows for most forecast horizons and variables the best performance based on

various evaluation measures, and is always close to the best performing model if

it is not the best one itself. For all considered evaluation measures and forecast

horizons, the infinite hidden Markov model outperforms the benchmark models in

forecasting unemployment. We find that inflation and interest rate are for some

horizons better predicted by the KK13 or P05 models based on point forecast

evaluation metrics. However, based on the predictive densities the infinite hidden

Markov model shows superior forecast performance. Finally, increasing the num-

ber of variables in the VAR does, in general, not lead to an increase in forecast

performance for unemployment, inflation rate, and interest rate.

4 Conclusion

In this paper we propose a new method to estimate time-varying parameters in a

VAR model. To avoid the curse of dimensionality, we opt for a semi-parametric

approach. The infinite hidden Markov model encourages estimation of a parsi-

monious model by clustering parameter values over time, without restricting the

parameter space. To accommodate for persistence in macroeconomic data, we

impose the Dirichlet process mixture on the transition probabilities in a hidden

Markov-switching framework. Parameter values are assigned to a possibly infi-

nite number of states, with a potentially increased probability of self-transition.

Except from the degree L weak limit approximation, which comes with negligible

costs, the estimation algorithm of the model does not impose any restrictions on

or (linear) approximations to the parameters.

The empirical application shows that the semi-parametric Bayesian framework

is a promising alternative for parametric approaches to time-varying parameter

VAR modelling. We identify both abrupt and smooth parameter changes in a

structural analysis and find posterior evidence for time-varying volatility. A real-
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time forecasting exercise shows that over a collection of forecast evaluation criteria

the infinite hidden Markov model often outperforms popular benchmark models,

even in large VAR models consisting of ten variables.
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Figure 1: Time Series Small Monetary VAR U.S. Economy
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This figure shows the standardized quarterly data series as included in the small monetary VAR
of the U.S. economy, with the unemployment rate, inflation rate, and interest rate as variables.
The inflation series represents 400 times the first difference of the logarithm of the consumer
price index for all urban consumers. The interest rate denotes the effective federal funds rate in
percentages. The sample period runs from the first quarter of 1948 to the last quarter of 2015.
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Figure 2: Posterior Break Probabilities
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This figure shows for each time period the posterior probability of switching regime in the current
period compared to the previous period.
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Figure 3: Largest Absolute Eigenvalues Companion Form
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This figure shows the time-varying posterior mean (solid line) of the largest absolute eigenvalue
of the companion form of the reduced form VAR model. The shaded areas represent the 68%
and 90% confidence bands.
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Figure 4: Posterior Means of the Structural Variance Parameters
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This figure shows the time-varying posterior means (solid line) of the structural variance param-
eters together with the 68% and 90% confidence bands. The panels show from top to bottom the
variance of the residuals in the unemployment equation, inflation equation, and interest equation,
respectively.
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Figure 5: Impulse Response Functions
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This figure shows the posterior means of the impulse response functions to a monetary policy
shock. From top to bottom we have the responses in the unemployment equation, inflation
equation, and interest equation. The y-axis runs from 0 to 16 and traces out the effect of the
shock over a period of four years. The x-axis indicates at which date a shock hits the system.
The z-axis shows the magnitude of the response. The monetary policy shock is defined as a one
unit shock to interest rate.
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Figure 6: Impulse Response Functions
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This figure shows the posterior means (solid line) of the impulse response functions together with
the 68% and 90% confidence bands for different moments in time. The monetary policy shock is
defined as a one unit shock to interest rate.
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Table 1: Parameters of Prior Distributions

aα bα aγ bγ cρ dρ νΣ SΣ bB VB[i=j] VB[i 6=j]

1 10 1 10 10 1 p+ 2 1
νΣ
Ip 0p×k

(
λ

lag2

)
0

This table shows the parameters of the priors as discussed in Section 2.2,
where 0p×q represents a zero matrix of size p × q and Iq is the identity
matrix of dimension q. The diagonal elements of VB are scaled by the lag
order of the corresponding variables in xt, where the lag length equals λ
for the intercept.
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Table 2: Posterior Probability of Positive Impulse Response

Unemployment Inflation Interest Rate
1 year 4 year 1 year 4 year 1 year 4 year

1965 Q2 49.4 83.9 71.7 46.4 100.0 93.4
1980 Q2 81.0 79.0 88.8 85.7 79.4 86.2
1995 Q2 49.3 83.9 71.6 44.6 100.0 93.1
2010 Q2 49.2 83.8 71.8 45.1 100.0 93.3

This table shows the posterior probabilities that the impulse response
functions in Figure 6 are larger than zero, one year and four years
after a monetary policy shock.
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Table 3: Forecasting Results RMSPE

small VAR large VAR

IHM KK13 P05 IHM KK13

hor. var. θst Σst θ θt ∼ff θt ∼rw θst Σst θ θt ∼ff

1
UR 0.554 0.386 0.444 0.387 0.407 0.398 0.337 0.357 0.363
Infl. 1.497 1.465 1.516 1.460 1.433 1.486 1.449 1.498 1.375
IR 1.035 0.869 0.899 0.847 0.864 0.924 0.849 0.871 0.811

2
UR 0.834 0.621 0.723 0.624 0.674 0.612 0.526 0.593 0.560
Infl. 1.712 1.650 1.756 1.686 1.597 1.680 1.620 1.688 1.549
IR 1.440 1.225 1.251 1.205 1.242 1.287 1.186 1.242 1.190

3
UR 1.049 0.805 0.939 0.825 0.930 0.847 0.734 0.844 0.763
Infl. 1.893 1.838 1.982 1.859 1.745 1.890 1.895 1.903 1.720
IR 1.730 1.435 1.508 1.474 1.551 1.620 1.499 1.571 1.502

4
UR 1.195 0.964 1.109 0.998 1.228 1.092 0.941 1.068 0.962
Infl. 2.067 2.065 2.222 2.091 2.004 2.269 2.268 2.212 2.036
IR 2.017 1.713 1.788 1.771 1.899 1.859 1.787 1.848 1.786

5
UR 1.301 1.100 1.236 1.150 1.636 3.474 1.120 1.248 1.131
Infl. 2.096 2.247 2.383 2.332 2.374 4.191 2.455 2.343 2.235
IR 2.624 1.961 2.030 2.068 2.313 4.846 2.036 2.054 2.017

This table shows the RMSPE for unemployment (UR), inflation (Infl.), and interest rate
(IR) over five different horizons; from one-quarter ahead till five-quarters ahead. Forecasts
are produced by the infinite hidden Markov model in which all model parameters θst =
{Bst ,Σst} change over regimes, a version with only a time-varying covariance matrix Σst ,
and the linear Bayesian VAR (column θ). The benchmark time-varying parameter VAR
models of Koop and Korobilis (2013), in which time-variation is governed by forgetting
factors (ff), and Primiceri (2005), wherein time-variation is modelled as random walks
(rw), are denoted as KK13 and P05, respectively. The left panel shows results in a small
VAR and the right panel in a large VAR model. Underscores indicate the best performing
model for a specific horizon, variable and model dimension.
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Table 4: Forecasting Results APD

small VAR large VAR

IHM KK13 P05 IHM KK13

hor. θst Σst θ θt ∼ff θt ∼rw θst Σst θ θt ∼ff

1 0.569 1.924 0.469 1.352 1.675 0.171 0.335 0.187 0.323
2 0.266 0.678 0.223 0.470 0.555 0.057 0.153 0.060 0.048
3 0.170 0.387 0.143 0.242 0.289 0.069 0.065 0.031 0.010
4 0.119 0.249 0.106 0.137 0.157 0.018 0.042 0.021 0.002
5 0.090 0.166 0.083 0.084 0.095 0.090 0.022 0.015 0.001

This table shows the APD for five different horizons; from one-quarter ahead till
five-quarters ahead. For additional information, see the note following Table 3.
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Table 5: Forecasting Results avCRPS

small VAR large VAR

IHM KK13 P05 IHM KK13

hor. var. θst Σst θ θt ∼ff θt ∼rw θst Σst θ θt ∼ff

1
UR 0.288 0.199 0.243 0.204 0.215 0.215 0.181 0.199 0.196
Infl. 0.819 0.793 0.842 0.788 0.775 0.814 0.797 0.822 0.755
IR 0.512 0.406 0.468 0.420 0.430 0.492 0.442 0.462 0.428

2
UR 0.435 0.314 0.376 0.326 0.346 0.332 0.284 0.324 0.306
Infl. 0.913 0.869 0.958 0.892 0.846 0.934 0.901 0.937 0.860
IR 0.737 0.615 0.674 0.631 0.672 0.710 0.643 0.682 0.648

3
UR 0.550 0.408 0.480 0.432 0.466 0.461 0.392 0.455 0.428
Infl. 1.017 0.965 1.077 0.988 0.938 1.034 1.039 1.049 0.996
IR 0.922 0.767 0.840 0.817 0.893 0.913 0.846 0.883 0.852

4
UR 0.634 0.498 0.566 0.529 0.591 0.572 0.498 0.572 0.559
Infl. 1.111 1.068 1.188 1.112 1.059 1.177 1.219 1.197 1.213
IR 1.086 0.931 1.001 0.998 1.108 1.066 1.019 1.046 1.046

5
UR 0.699 0.575 0.633 0.619 0.718 0.654 0.588 0.661 0.697
Infl. 1.193 1.168 1.279 1.253 1.216 1.210 1.318 1.276 1.438
IR 1.233 1.100 1.153 1.181 1.323 1.186 1.167 1.176 1.246

This table shows the avCRPS for unemployment (UR), inflation (Infl.), and interest rate
(IR) over five different horizons; from one-quarter ahead till five-quarters ahead. For
additional information, see the note following Table 3.
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Appendix A Parameter Restrictions

This Appendix discusses the sample steps for three different restricted versions of

model (1); a model in which either the coefficient matrix, covariance matrix, or

long-term impact matrix are set to be constant over time. posterior results of the

parameters in these restricted models are obtained with only slight modifications

to the sampler in Subsection 2.2. In practice, we adjust Step 6 of the sampler

and add an extra step to sample the fixed parameters outside the structure of the

mixture model.

The model in (1) can be generalized to

yt = Btxt + Cx̃t + εt, εt ∼ N (0,Σt), t = 1, . . . , T,

from which follows the unrestricted model in (1) by setting the parameters in

C equal to zero. Imposing Σt = Σ results in the model with a time-invariant

covariance matrix. A model with time-invariant macroeconomic relations is defined

by xt = 1, x̃t = [y′t−1, . . . , y
′
t−l]
′, and ỹt = yt − Btxt. Finally, the short-term model

follows from xt = [1, y′t−1]′, x̃t = [∆y′t−1, . . . ,∆y
′
t−l]
′, and ỹt = yt −Btxt.

We sample Bt as in step 6 of the sample algorithm but we take (yt−Cx̃t) for yt.

The same holds for Σt when the covariance parameters are unrestricted. After the

seventh step, when the state assignments in the mixture model are settled down

for the current iteration, we sample the time-invariant parameter matrices.

In models with a restricted covariance matrix we compute ε = (ε′1, . . . , ε
′
T )′

where εt = y′t − xtB′t − x̃tC ′ and add the sampling step

S̄ = SΣ + ε′ε, Σj|y,Θ ∼ IW(νΣ + T, S̄).

For the model with restricted coefficients we compute X̃ = (Σ
− 1

2
1 X̃ ′1, . . . ,Σ

− 1
2

T X̃ ′T )′,

where X̃t = Ip⊗ x̃t, t = 1, . . . , T , and Ip is the identity matrix of dimension p, and

Ỹ = (ỹ′1, . . . , ỹ
′
T ). Now we can perform the sampling steps

B̄ = (X̃ ′X̃ + (Ip ⊗ VB)−1)−1, b̄ = B̄(X̃ ′Ỹ + (Ip ⊗ VB)−1vec(bB)),

vec(B)|ỹ,Σ,Θ ∼ N (vec(b̄), B̄).
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Appendix B Forecast Performance

We evaluate point forecasts using the root mean squared prediction error (RMSPE)

and the mean absolute prediction error (MAPE). The RMSPE of the forecast

produced by model M for variable i at horizon h is

RMSPEM
ih =

√√√√ 1

P

T+P∑
t=T+1

(
ŷ

(i)
t+h(M)− y(i)

t+h

)2

,

where ŷ
(i)
t+h(M) is one of the P point forecast of the ith variable y

(i)
t+h made by

model M . We set the point forecast equal to the mean of the predictive density.

The MAPE is defined by

MAPEM
ih =

1

P

T+P∑
t=T+1

∣∣∣ŷ(i)
t+h(M)− y(i)

t+h

∣∣∣ ,
with the point forecast equal to the median of the predictive density.

We evaluate the forecast performance of the whole predictive density with the

average predictive densities (APD)

fM(yt+h) =
1

P

T+P∑
t=T+1

(
1

S

S∑
s=1

N (B
(i)

s
(i)
T+h

x
(i)
T+h−1,Σ

(i)

s
(i)
T+h

)

)
,

where S denotes the number of simulations.

The continuous ranked probability score (CRPS) is computed as

CRPSt(y
(i)
t+h) = Ef |Y (i)

t+h − y
(i)
t+h| −

1

2
Ef |Y (i)

t+h − Y
′(i)
t+h|,

where f is the predictive density function of model M for prediction y
(i)
t+h, Ef is

the expectation operator over the function f , |.| denotes the absolute value, and

Y
(i)
t+h and Y

′(i)
t+h are independent random variables with sampling density f . The

average CRPS across all forecasts is

avCRPSMih =
1

P

T+P∑
t=T+1

CRPSt(y
(i)
t+h).
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The avQS-C, avQS-R, and avQS-L evaluate the center, the right tail, and the

left tail of the predictive density, respectively.

avQS-CM
ih =

1

P

T+P∑
t=T+1

(
1

99

99∑
j=1

αj(1− αj)QS(αj, y
(i)
t+h,M)

)
,

avQS-RM
ih =

1

P

T+P∑
t=T+1

(
1

99

99∑
j=1

α2
jQS(αj, y

(i)
t+h,M)

)
,

avQS-LMih =
1

P

T+P∑
t=T+1

(
1

99

99∑
j=1

(1− αj)2QS(αj, y
(i)
t+h,M)

)
,

where αj = j/100 and

QS(α, y
(i)
t+h,M) = (I{y(i)

t+h ≤ Qα
f } − α)(Qα

f − y
(i)
t+h),

where Qα
f represents quantile α of the predictive density function f of model M

for prediction y
(i)
t+h.
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Appendix C Impulse Response Functions
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This figure shows impulse response functions constructed from a model with time-invariant long

term impact matrix. For additional information, see the note following Figure 6.
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Appendix D Forecasting Results

Table D1: Forecasting Results MAPE

small VAR large VAR

IHM KK13 P05 IHM KK13

hor. var. θst Σst θ θt ∼ff θt ∼rw θst Σst θ θt ∼ff

1

UR 0.377 0.270 0.312 0.276 0.295 0.291 0.251 0.264 0.271

Infl. 1.159 1.117 1.168 1.115 1.078 1.106 1.083 1.117 1.050

IR 0.670 0.537 0.599 0.537 0.543 0.645 0.590 0.594 0.564

2

UR 0.575 0.416 0.500 0.437 0.462 0.447 0.387 0.437 0.399

Infl. 1.255 1.222 1.307 1.235 1.152 1.317 1.269 1.327 1.181

IR 1.004 0.820 0.924 0.828 0.859 0.992 0.860 0.957 0.855

3

UR 0.728 0.526 0.647 0.567 0.600 0.638 0.527 0.632 0.528

Infl. 1.404 1.352 1.467 1.327 1.243 1.415 1.410 1.435 1.266

IR 1.256 1.046 1.156 1.088 1.138 1.290 1.158 1.256 1.137

4

UR 0.836 0.641 0.772 0.689 0.759 0.793 0.679 0.794 0.681

Infl. 1.544 1.473 1.627 1.476 1.406 1.622 1.663 1.638 1.453

IR 1.476 1.277 1.382 1.337 1.403 1.500 1.405 1.482 1.377

5

UR 0.923 0.742 0.860 0.788 0.923 0.895 0.790 0.893 0.801

Infl. 1.666 1.596 1.757 1.628 1.574 1.760 1.785 1.747 1.606

IR 1.685 1.514 1.598 1.590 1.660 1.695 1.625 1.658 1.592

This table shows the MAPE for unemployment (UR), inflation (Infl.), and interest rate (IR)

over five different horizons; from one-quarter ahead till five-quarters ahead. For additional

information, see the note following Table 3.
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Table D2: Forecasting Results avQS-left

small VAR large VAR

IHM KK13 P05 IHM KK13

hor. var. θst Σst θ θt ∼ff θt ∼rw θst Σst θ θt ∼ff

1

UR 0.041 0.029 0.036 0.030 0.032 0.032 0.027 0.029 0.030

Infl. 0.121 0.117 0.124 0.118 0.115 0.121 0.119 0.121 0.116

IR 0.079 0.064 0.072 0.066 0.069 0.075 0.069 0.070 0.069

2

UR 0.059 0.044 0.053 0.046 0.050 0.049 0.042 0.048 0.047

Infl. 0.131 0.128 0.138 0.132 0.128 0.135 0.132 0.137 0.131

IR 0.109 0.095 0.100 0.098 0.104 0.104 0.101 0.100 0.102

3

UR 0.073 0.056 0.066 0.060 0.067 0.068 0.058 0.067 0.067

Infl. 0.143 0.139 0.152 0.140 0.141 0.151 0.153 0.153 0.151

IR 0.133 0.116 0.121 0.124 0.138 0.131 0.128 0.126 0.132

4

UR 0.084 0.068 0.077 0.074 0.085 0.083 0.074 0.084 0.089

Infl. 0.154 0.154 0.168 0.156 0.158 0.169 0.177 0.171 0.181

IR 0.156 0.138 0.143 0.152 0.171 0.152 0.153 0.148 0.163

5

UR 0.092 0.078 0.085 0.087 0.103 0.095 0.086 0.096 0.113

Infl. 0.164 0.169 0.180 0.176 0.180 0.179 0.189 0.179 0.216

IR 0.176 0.164 0.164 0.180 0.205 0.170 0.175 0.165 0.195

This table shows the avQS-l for unemployment (UR), inflation (Infl.), and interest rate (IR)

over five different horizons; from one-quarter ahead till five-quarters ahead. For additional

information, see the note following Table 3.
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Table D3: Forecasting Results avQS-center

small VAR large VAR

IHM KK13 P05 IHM KK13

hor. var. θst Σst θ θt ∼ff θt ∼rw θst Σst θ θt ∼ff

1

UR 0.028 0.019 0.023 0.020 0.021 0.021 0.018 0.019 0.019

Infl. 0.081 0.078 0.083 0.078 0.076 0.080 0.078 0.080 0.074

IR 0.049 0.039 0.045 0.040 0.041 0.047 0.043 0.044 0.041

2

UR 0.042 0.030 0.036 0.032 0.034 0.032 0.028 0.032 0.030

Infl. 0.089 0.085 0.093 0.087 0.082 0.092 0.089 0.092 0.084

IR 0.071 0.060 0.065 0.061 0.064 0.069 0.062 0.067 0.063

3

UR 0.053 0.039 0.046 0.042 0.045 0.045 0.038 0.044 0.041

Infl. 0.099 0.095 0.105 0.096 0.090 0.102 0.102 0.103 0.096

IR 0.089 0.075 0.082 0.080 0.085 0.090 0.083 0.087 0.083

4

UR 0.061 0.048 0.055 0.051 0.056 0.056 0.049 0.056 0.053

Infl. 0.109 0.104 0.116 0.108 0.101 0.116 0.119 0.117 0.115

IR 0.105 0.091 0.098 0.097 0.105 0.105 0.100 0.103 0.101

5

UR 0.067 0.055 0.061 0.059 0.068 0.064 0.057 0.064 0.065

Infl. 0.117 0.114 0.125 0.121 0.115 0.125 0.129 0.125 0.134

IR 0.120 0.108 0.113 0.115 0.125 0.118 0.114 0.116 0.119

This table shows the avCS-c for unemployment (UR), inflation (Infl.), and interest rate (IR)

over five different horizons; from one-quarter ahead till five-quarters ahead. For additional

information, see the note following Table 3.
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Table D4: Forecasting Results avQS-right

small VAR large VAR

IHM KK13 P05 IHM KK13

hor. var. θst Σst θ θt ∼ff θt ∼rw θst Σst θ θt ∼ff

1

UR 0.049 0.032 0.040 0.034 0.034 0.034 0.029 0.033 0.031

Infl. 0.132 0.127 0.137 0.125 0.125 0.131 0.128 0.133 0.116

IR 0.081 0.063 0.075 0.065 0.067 0.078 0.069 0.074 0.065

2

UR 0.076 0.053 0.064 0.055 0.057 0.054 0.046 0.053 0.048

Infl. 0.151 0.140 0.159 0.144 0.136 0.152 0.146 0.151 0.136

IR 0.121 0.096 0.109 0.099 0.106 0.115 0.099 0.110 0.099

3

UR 0.099 0.071 0.084 0.074 0.079 0.075 0.064 0.073 0.068

Infl. 0.172 0.159 0.182 0.167 0.154 0.168 0.168 0.171 0.160

IR 0.153 0.121 0.139 0.129 0.143 0.150 0.134 0.146 0.132

4

UR 0.115 0.088 0.100 0.091 0.100 0.094 0.081 0.093 0.087

Infl. 0.189 0.177 0.201 0.191 0.175 0.197 0.200 0.199 0.202

IR 0.182 0.150 0.167 0.158 0.177 0.177 0.162 0.174 0.163

5

UR 0.127 0.101 0.112 0.107 0.123 0.111 0.097 0.110 0.108

Infl. 0.205 0.193 0.217 0.215 0.203 0.214 0.219 0.215 0.243

IR 0.208 0.176 0.193 0.187 0.213 0.201 0.185 0.196 0.196

This table shows the avCS-r for unemployment (UR), inflation (Infl.), and interest rate (IR)

over five different horizons; from one-quarter ahead till five-quarters ahead. For additional

information, see the note following Table 3.
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