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Abstract

Can the risk of losses upon premature liquidation produce bank runs? We show how a unique
run equilibrium driven by asset liquidity risk arises even under minimal fundamental risk. To
study the role of illiquidity we introduce realistic norms on bank default, such that mandatory
stay is triggered before all illiquid assets are sold. Since illiquid assets are not available in
a run, asset liquidity risk has a concave effect on run incentives, quite unlike fundamental
risk. Runs are rare when asset liquidity is abundant, become more frequent as it falls and
decrease again under very low asset liquidity. The socially optimal demandable debt contract
limits inessential runs by targeting a high rollover yield. However, the private choice minimizes
funding costs, tolerating more frequent runs when illiquid states are sufficiently rare.
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1 Introduction

The 2002–2007 credit boom was largely driven by real estate lending funded by very short term

debt. The growing maturity mismatch was supported by the belief that loan securitization

via asset backed securities (ABS) had made bank assets more liquid. Yet once some credit

risk became apparent, ABS assets rapidly became illiquid, creating solvency concerns and

ultimately propagating runs across intermediaries (Brunnermeier (2009)). Thus asset illiquidity

played a critical role in propagating distress.

With hindsight, ABS prices at the peak of the crisis fell way too low relative to their ultimate

performance. This is illustrated in Figure 1, which shows that market prices of tranches of high

rated mortgage-backed securities first crashed then rebounded to levels close to the pre-crisis

period. Only a decisive intervention by central banks avoided a large scale of fire sales that

would have devastated bank balance sheets.

Figure 1: Markit CMBX Index Value of MBS Tranches with AAA Rating

This experience has led to sharper scrutiny of the degree of bank liquidity mismatch. The

previous literature shows that, while maturity transformation is at heart of bank intermedia-

tion, it also creates the possibility of multiple equilibria and self-fulfilling runs (Diamond and
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Dybvig (1983)). Inefficient runs may also occur in an unique equilibrium setting when there

is fundamental asset risk (Goldstein and Pauzner (2005)).

In this paper we study whether there can also be a distinct effect of asset liquidity risk,

defined as nonfundamental price risk (e.g. due to temporary scarsity of cash in the market).

We study a simple context where all agents are risk neutral and demandable debt is efficient

for contingent transaction needs (Stein (2012)) rather than for extreme liquidity demand. We

establish an unique equilibrium where runs are driven by uncertainty over early liquidation

value of bank assets, even if fundamental risk is arbitrarily small. This complements the result

by Goldstein and Pauzner (2005) and relates it to the emerging literature on how market

conditions create nonfundamental liquidity risk. There may be too little cash in the market to

arbitrage mispricing, due to leverage and maturity mismatch choices by financial intermediaries

(Brunnermeier and Petersen (2009) and Gromb and Vayanos (2002)). Duffie and Strulovici

(2012) study how a gradual flow of arbitrage capital in a search context causes temporary

trading opportunities. Finally, market participants may suddenly have limited resources due

to increased adverse selection or counterparty risk (Krishnamurthy (2010) and Gorton and

Ordoñez (2014)). Whatever its causes, market-wide liquidity risk may be infrequent but still

cause sharp losses in a context of short term funding.

Understanding the nature of liquidity runs requires a precise characterization of how asset

liquidity affects run incentives and thus an accurate process of bank default. Traditional bank

run models assume that in a run all assets are sold immediately to satisfy withdrawals, so upon

default all those who did not run receive nothing. In reality, a bank is declared insolvent as soon

as its liquid reserves are depleted and can no longer immediately meet on-demand withdrawals.

At that point a mandatory stay is triggered, interrupting asset sales and initiating an orderly

liquidation process.1 As a result of this legal provision, illiquid assets are shared also with

those who did not run.

This feature contributes to a surprising concave effect of liquidity risk on run frequency,

1Bankruptcy law was introduced precisely to solve the externality created when creditors grab and liquidate
assets in an uncoordinated fashion, destroying value.
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quite unlike fundamental risk. Abundant liquid assets encourages rollover, as it supports

confidence that the bank will be able to repay withdrawals. As asset liquidity falls and default

risk rises, the appeal of running increases, as runners are paid out of liquid assets ahead of

default. However, because of mandatory stay, the relative payoff to rollover also rises once

liquid assets become very scarce, since an insolvent bank’s illiquid assets are not paid out

before orderly resolution. Thus, in equilibrium there is a concave, inverted U-shaped relation

between asset liquidity and run frequency.

The results suggest a role for prudential regulation to limit liquidity mismatch, while current

rules tend to focus on reserves. As welfare is here served by minimizing the chance of inessential

runs, the model has implications on the effect of yields. A social planner would choose to offer

large rents to those who do not withdraw to reduce run incentives.2 In this setup demandable

debt improves social welfare relative to autarky whenever asset are sufficiently liquid, just as

in Goldstein and Pauzner (2005) banks are welfare improving when fundamental risk is low. In

contrast, a profit-maximizing bank may offer a lower rollover yield in order to reduce funding

costs, thus inducing more frequent runs than socially optimal.

The model adopts the framing for analysing unique run equilibria based on Goldstein and

Pauzner (2005) and relies on their solution concept. Intuitively, adding interim asset liquidity

risk (e.g. driven by limited cash in the market) increases the chance that depositors coordinate

on a self protective run even when solvency risk is small. Some amount of fundamental risk

is essential to establish an unique equilibrium result, as it defines a lower dominance region

where runs are justified. Yet liquidity risk runs occur even as solvency risk becomes arbitrarily

small, as long as the bank assets are sufficiently illiquid.

In a related paper (Matta and Perotti (2016)) we study how banks choose to allocate asset

liquidity across lenders by their choice of secured (repo) funding. Repo debt may be designed

to be absolutely safe and thus enables to reduce funding costs. However, its use shifts some

2This choice differs from the optimal social choice under liquidity insurance, where boosting the short term
rate benefits agents hit by extreme liquidity needs. In both cases a higher short term rate results in more runs
(Goldstein and Pauzner (2005)).
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nonfundamental risk to unsecured lenders. In the unique equilibrium the private choice of repo

funding tends to increase the chance of unsecured debt runs.

Our setting analyses the trigger point for a run on a single intermediary. Extending the

analysis to more banks would better describe the dynamic of liquidity risk, as asset liquidation

value is affected by each bank run. The propagation effect created by fire sales has received

extensive attention in the recent literature as a major negative externality (Lorenzoni (2008)

and Krishnamurthy (2010)).

2 The Basic Model

The economy lasts for three periods t = 0, 1, 2. It is populated by a bank and a continuum

of risk neutral lenders indexed by i. The intermediary has access to a project that needs one

unit of funding at t = 0. Agents are each endowed with one unit and are risk neutral. Their

required return equals one, reflecting their alternative storage option between t = 0 and t = 2.

As the mass of agents is large, perfect competition prevails.

A fraction α of lenders will face a contingent need of one unit at t = 1 for the purpose

of transacting. If they are unable to obtain cash to transact, their alternative settlement

technology implies a transaction cost τ (e.g. required to liquidate assets invested in storage).

Transaction needs are identically and independently distributed and there is no aggregate

liquidity demand uncertainty.

• Project

For each unit invested, the project generates a return of yt (ω, θ) at t = 1, 2, where ω ∈

{H,L} is aggregate state and θ ∼ U
(
θ(ω), θ

)
. We interpret θ as a measure of available cash-

in-the-market at the interim date. With probability λ the state is high (ω = H) in which case

there is no fundamental risk. With probability 1− λ the state is low in which case there may

be fundamental and asset liquidity risk. Both ω and θ are non-verifiable and realized at t = 1.
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The overall state ω is observable by all. Only the bank observes θ, while all lenders receive an

individual signal on it at t = 1.

If some fraction of the project is liquidated early, its rate of return is y1 (ω, θ) = k + v (θ).

Here k ∈ (α, 1) represents the safe component (which can be securitized and used as cash) while

v (θ) = min {θ, c+ 1− k} is the illiquid asset component which can be sold at a liquidation cost

c > 0. As an alternative to early liquidation, an orderly liquidation process can be initiated at

t = 1, in which case illiquid assets are worth ` > 0 at t = 2. If the project is allowed to mature

it generates y2 (ω, θ) = r > 1 when θ ≥ c or y2 (ω, θ) = 0 when θ < c.

In the high state θ(H) = 1− k + c < θ so that assets are never worth less than the initial

investment. In the low state the value of illiquid assets may be as low as zero (θ(L) = 0) and

there is fundamental risk for θ < c. Note that as long as c is small, the project is almost always

riskless even in the L state, provided it is allowed to mature. In other words, as c goes to zero

the fundamental asset risk (and thus bank solvency risk) vanishes, while asset liquidation risk

remains. The project payoffs are shown in Table 1.

Table 1: Project Payoffs

t = 0 t = 1 t = 2

ω = H
if held to maturity 0 r

if early liquidation 1 0

−1

ω = L

if held to maturity 0

r, if θ ≥ c

0, if θ < c

if early liquidation k + v (θ)− c 0

orderly liquidation k `

• The Bankruptcy Process

In the low state ω = L there is a chance of solvency risk as the project value may be worth

less than the initial investment. To meet any repayments demanded at t = 1 the intermediary
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can use its liquid reserves k. Once these means of immediate payment are exhausted, the

bank is forced to consider a fire sales of the illiquid component of its assets. If repayments are

larger than the realizable liquidation proceeds, the bank is declared in default and triggers a

mandatory stay on unpaid creditors.3 This halts any further payments at t = 1 and enables

an orderly liquidation process at t = 2, avoiding any fire sales and the associated cost c while

ensuring that illiquid assets can be sold at t = 2 for `. Thus an effect of mandatory stay is

that all unpaid creditors are treated equally out of illiquid assets, receiving a pro rata share of

the orderly liquidation value ` at t = 2.

Note that early liquidation is always inefficient since it is dominated by orderly liquidation

for θ < c and by continuation for θ ≥ c. In contrast, orderly liquidation is efficient for θ < c

(although dominated by continuation for θ ≥ c and by early liquidation for θ ≥ c+ `).

We focus on the realistic case when the value produced under orderly liquidation is not

enough to fully repay the principal amount to all lenders (` + k < 1) and is sufficiently low

relative to the asset return r. Specifically we assume:

− k ln k

(1− k) (k − α)
(1− `− k) > r − 1,4

which can be shown to imply that the value k − α is not too large. In economic terms this

implies bank assets are not too liquid. We also assume some bounds on the transaction cost τ :

r − k − `
αk

> τ > r − 1.

The lower bound implies that lenders with transaction needs prefer to receive one unit at t = 1

rather than the full return r at t = 2. The upper bound implies that the discounted return r

being greater than the discounted asset value under orderly resolution, i.e., r
1+ατ

> k + `
1+ατ

.5

3Thus no default is triggered if early liquidation net of c enables to repay all requested repayments at t = 1.
4In the appendix we show that it implies a set

(
α, k

)
of allowable k, where k is the unique solution to

− k ln k
(1−k)(k−α) (1− `− k) = r − 1 for k > α. Note that it is weaker than k

k−α (1− `− k) > r − 1 as − ln k
1−k > 1

5The discount rate reflects lenders’ indifference as of t = 0 (hence before transaction needs are revealed)
between a payment of 1 at t = 1 and a payment of 1 + ατ at t = 2.
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Finally, we further assume that the illiquid state is not too frequent (i.e., λ is sufficiently

large) to ensure that the project has positive NPV even if always liquidated under orderly

resolution in the low state (assuming all lenders with transaction needs receive one unit at

t = 1 in the high state):

λ [α + (1− α) r] + (1− λ) (k + `− ατ) ≥ 1.

3 The Effect of Liquidity Risk

We follow Diamond and Dybvig (1983) in showing that demandable debt is optimal in our

setting (achieves the second best) under common knowledge about θ. We then follow Goldstein

and Pauzner (2005) to examine the effect of demandable debt under incomplete information.

3.1 Benchmark: Common Knowledge

We consider first the case of common knowledge about θ and examine the outcome under

autarky. Each lender i faces the following maximization problem:

max
fk∈[0,1],fv∈[0,1],fo∈[0,1−fv ]

Ui (fk, fv, fo) ≡ fkk + fv (v (θ)− c)− 1iτ (1)

+ fo`+ [1− fkk − (fv + fo) (1− k)] y2 (ω, θ) ,

where fk and fv are the fractions of k and v (θ) liquidated at t = 1 respectively, fo is the

fraction of v (θ) orderly liquidated at t = 2, and 1i is an indicator function that equals 1 if the

lender i faces transaction needs and fkk + fv (v (θ)− c) < 1 and 0 otherwise.

Proposition 1. Under aurtarky, lenders with transaction needs choose early liquidation at

t = 1 for θ ≥ c + 1 − k, continuation for θ ∈ [c, c+ 1− k) and orderly liquidation for θ < c.

Lenders without transaction needs allow the project to mature for θ ≥ c and initiate orderly

liquidation for θ < c.
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The resulting social welfare is

SA = λ [α + (1− α) r] (2)

+
1− λ
θ

[(
θ − c− 1 + k

)
(α + (1− α) r) + (1− k) (r − ατ) + c (k + `− ατ)

]
.

We next show that relative to the second best, the autarky solution incurs an inefficient

transaction cost τ in states θ < c+ 1− k.

• Second Best

Although the first best is not attainable when transaction needs are private information,6

we show that a demandable debt contract achieves the second best. First we characterize the

class of incentive-compatible contracts that maximize welfare conditional on θ < c. Then we

show that a properly designed demandable debt contract belongs to this class and also achieves

maximum welfare conditional on θ ≥ c.

Lemma 1. An incentive-compatible contract maximizes welfare when θ < c only if bankruptcy

is implemented and all lenders are each paid one unit at t = 1 with probability k and `
1−k at

t = 2 with probability 1− k.

Automatic stay implies the equal treatment of all unpaid lenders (with or without trans-

action needs), who therefore receive the same payoff under orderly resolution. As a result, an

incentive compatible contract must give all lenders the same expected payment out of the re-

serves k (otherwise they will all claim special treatment). According to Lemma 1, this implies

that lenders with transaction needs can receive one unit at t = 1 at most with probability k.

The following proposition shows the existence of a demandable debt contract the imple-

ments the second best. The solution belongs to the class of contracts characterized in Lemma

1 and achieves maximum welfare when θ ≥ c.

6The revelation principle requires that for a contract to achieve the first best all lenders with transaction
needs are paid at least one unit at t = 1 while payments to other lenders must ensure they are not better off
pretending to have transaction needs. However this is not feasible when θ < c since in this case the maximum
payoff left after transaction needs are satisfied is k−α+`

1−α < 1. As a result, all lenders would claim to have
transaction needs.
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Proposition 2 (Optimality of Demandable Debt). The second best is implemented by the fol-

lowing contract: (1) lenders are entitled to demand a payment of 1 at t = 1, with withdrawals

served sequentially until the bank runs out of reserves; (2) in the absence of bankruptcy, lenders

not paid at t = 1 are paid the minimum between d ∈ (1, r] and the pro rata share of the surplus

at t = 2, min {y2 (ω, θ) , d}, where d satisfies lenders’ participation constraints.

The contract described in Proposition 2 implements the following equilibria. For the lower

dominance region θ < c, it is strictly dominant for all lenders to demand payments at t = 1.

As a result default is triggered and mandatory stay ensures efficient liquidation since the

bank becomes insolvent after paying out its liquid reserves k. In the upper dominance region

θ ≥ c + 1 − k no bankruptcy occurs since reserves and illiquid assets are enough to always

pay all lenders. In this case it is strictly dominant for lenders with transaction needs to

withdraw at t = 1 and for lender without transaction needs to be paid at t = 2. Finally

for θ ∈ [c, c+ 1− k) there exists an equilibrium in which only lenders with transaction needs

withdraw and inefficient bankruptcy is avoided. Under this equilibrium the second best is

implemented, yielding a social welfare equal to

SSB = λ [α + (1− α) r] +
1− λ
θ

[(
θ − c

)
(α + (1− α) r) + c (k + `− α (1− k) τ)

]
(3)

= SA +
1− λ
θ

α [(1− k) (τ − r + 1) + ckτ ] > SA.

Therefore, although the first best is not attainable with unobservable transaction needs,

in the efficient equilibrium intermediaries can implement the second best through demandable

debt contracts. The improvement in welfare relative to the autarkic regime arises because

banks satisfy transaction needs with probability one for θ ∈ [c, c+ 1− k) and with probability

k for θ < c.

Moreover, Proposition 2 rationalizes bankruptcy rules as mandatory stay with order liqui-

dation is efficient on the equilibrium path. Orderly liquidation is dominated by continuation

for θ ≥ c and by early liquidation for θ ≥ c + `, but in the equilibrium that implements the
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second best it is triggered if and only if θ < c, that is, exactly when it is efficient.

While lenders with transaction needs always withdraw at t = 1, other lenders face a coor-

dination problem when θ ∈ [c, c+ 1− k). There is a second equilibrium in which all lenders

withdraw, resulting in inefficient bankruptcy. In this case, early liquidation is preferable to

bankruptcy for θ − c > `, although still inefficient relative to continuation. Under this second

equilibrium the social welfare is given by

S = λ [α + (1− α) r] (4)

+
1− λ
θ

[(
θ − c− 1 + k

)
(α + (1− α) r) + (c+ 1− k) (k + `− α (1− k) τ)

]
= SA −

1− λ
θ

[(1− k) (r − k − `− αkτ)− cαkτ ] ,

The terms inside the brackets represent the performance of demandable debt relative to the

autarkic regime. The first term reflects the loss due to efficient continuation in autarky when

θ ∈ [c, c+ 1− k).7 The second represents the efficiency gain conditional on bankruptcy, as

lenders with transaction needs are paid 1 with probability k. In this case, it is clear that

demandable debt does not improve upon altarky (S < SA) if insolvency states are sufficiently

infrequent (i.e., c small enough).

In summary, the preferred action of lenders without transaction needs depends on whether

or not the bank is declared bankrupt. Bankruptcy occurs if and only if α + (1− φ)(1− α) >

k + q (v (θ)− c), where q = 1 for θ ≥ c and q = 0 for θ < c. Table 2 summarizes their payoffs.

Table 2: Payoffs of Lenders without Transaction Needs Conditional on ω = L

α + (1− φ)(1− α) ≤ k + q (v (θ)− c) α + (1− φ)(1− α) > k + q (v (θ)− c)

roll over qd `
1−k

withdraw 1 k
α+(1−φ)(1−α) +

(
1− k

α+(1−φ)(1−α)

)
`

1−k

We next adopt the global game approach to obtain a unique equilibrium. Following Gold-

7It is positive as per our assumption that r−k−`
αk > τ .
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stein and Pauzner (2005), we assume the bank finances the project with demandable debt and

solve for the determinants of runs. In particular, this enables to pin down how the terms of

demandable debt affect the probability of bankruptcy. We then solve for the optimal demand-

able debt contract and characterize the conditions under which it improves welfare relative to

the autarkic regime.

3.2 The Unique Equilibrium under Incomplete Information

Adopting the global game approach by removing the assumption of common knowledge estab-

lishes an unique equilibrium and enables to endogenize the probability of bankruptcy (in the

limit, as incomplete information goes to zero).

We now assume that while the bank observes θ, lenders receive individual noisy signals on

the value of θ. Let this signal be given by

xi = θ + σηi, (5)

where σ > 0 is an arbitrarily small scale parameter and ηi are i.i.d. across players and uniformly

distributed over
[
−1

2
, 1
2

]
.

Once lenders receive their signal they face a complex coordination problem. Their decision

to roll over now depends on both their beliefs about liquidity risk θ and on the fraction φ of

lenders who roll over (strategic uncertainty). We will show that the unique equilibrium is in

switching strategies around a common cutoff θ∗: for signals below the threshold all lenders

choose to run and otherwise all choose to roll over. Uniqueness of equilibrium is established

along the lines of the solution offered by Goldstein and Pauzner (2005) and Morris and Shin

(2003) for global games that violate global strategic complementarity,8 but satisfy a single

crossing property. Specifically, the lenders’ net rollover payoff is positive if the fraction of

8This arises because lenders’ incentive to roll over is not monotonically increasing in the fraction of lenders
who roll over.
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lenders who roll over is above a certain threshold and negative otherwise.9

3.2.1 Equilibrium Runs

Let Π (φ, θ) be the net rollover payoff relative to running. We have

Π (φ, θ) =


qd− 1, if α + (1− φ)(1− α) ≤ k + q (v (θ)− c)

− k
α+(1−φ)(1−α)

(
1− `

1−k

)
, if α + (1− φ)(1− α) > k + q (v (θ)− c)

. (6)

Suppose lenders follow a monotone strategy with a cutoff κ, rolling over if their signal is

above κ and withdrawing if otherwise. Lender i’s expectation about the fraction of rollover

lenders conditional on θ is simply the probability 1 − κ−θ
σ

that any lender observes a signal

above κ. This proportion is less than z if θ ≤ κ − σ (1− z), assessed by each lender i under

the conditional distribution of θ given his signal xi.

As established in the literature (Morris and Shin (2003)), when σ → 0 strategic uncertainty

dominates over uncertainty about θ this probability equals z for xi = κ. That is, the threshold

type believes that the proportion of lenders that roll over follows the uniform distribution on

the unit interval. The equilibrium cutoff can then be computed by the threshold type who

must be indifferent between rolling over and withdrawing given his beliefs about φ. Formally,

it is the unique θ∗ such that
∫ 1

0
Π (φ, θ∗) dφ = 0.

Proposition 3 (Run Cutoff). In the limit σ → 0, the unique equilibrium at t = 1 has lenders

following monotone strategies with threshold θ∗ given by

θ∗ = e
α d−1

k(1− `
1−k )

−W

 d−1

k(1− `
1−k)

e

α d−1

k(1− `
1−k )


+ c− k, (7)

where all lenders roll over if θ > θ∗ and do not roll over if θ < θ∗.10

9While the results of Goldstein and Pauzner (2005) rely on the assumption that the noise terms are uniformly
distributed, in our setup any noise distribution satisfying the monotone likelihood ratio property ensures an
unique equilibrium among monotonic strategies (Morris and Shin (2003)).

10W (·) is known as the Lambert W function and is the inverse function of y = xex for x ≥ −1.
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Figure 2: Run Cutoff

(a) Rollover Reward (b) Liquid Assets

This result enables to endogenize the probability of bankruptcy.

Corollary 1 (Yield and Collateral Effects on Stability). The run threshold θ∗ satisfies:

(i) It is strictly decreasing and strictly convex in the roll over premium d; it is strictly concave

in k, strictly decreasing or first strictly increasing then strictly decreasing.

(ii) If transaction needs are not too frequent (α not too large), there exists k∗ ∈
(
α, k

)
such

that it is strictly decreasing in k for k ≥ k∗ and strictly increasing in k for k < k∗.

The comparative statics offer some intuitive insight (see Figure 2). A higher rollover pre-

mium d improves the payoff of rolling over for a given chance of default and unambiguously

reduces the probability of runs.11 However, a large rollover reward reduces the bank’s payoff

in all solvent states. This observation is essential to understand a bank’s pricing incentives.

• Asset Liquidity and the Frequency of Runs

An increase in asset liquidity k has a more complex effect on the frequency of runs. There

is an unambiguous negative and linear “probability” effect. Higher asset liquidity reduces the

11This is the specular effect of a higher short term rate in Diamond and Dybvig (1983), where it provides
more liquidity insurance.
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chance that the bank runs out of reserves in a run, which leads to a lower θ∗. This effect is

intuitive and equivalent to having better fundamentals. But there is also a “relative payoff”

effect, as less liquidity here decreases the expected payoff of both rollover and run strategies.

The probability effect is dominant as assets are very liquid, so runs are less frequent. As asset

liquidity declines, run incentives rise. However, because runners under mandatory stay can

only be paid out of liquid assets, the relative payoff to run drops once asset liquidity becomes

very scarce. This produces a hump-shaped relationship.12

A direct implication of Proposition 3 is:

Corollary 2. In the limit c→ 0 the probability of runs is bounded away from zero (θ∗ > 0).

Recall that runs are inefficient whenever θ ≥ c. Thus Corollary 2 shows that inefficient

runs arise under asset liquidity risk even as fundamental risk becomes arbitrarily small.

3.2.2 Comparison to Pure Fundamental Risk

Our setup introduces some novel (and realistic) elements in the standard bank-run model.

First we introduced asset liquidity risk as a correlated but distinct factor from fundamental

risk. Next we introduced the mandatory stay provisions of the bankruptcy process, such that

in default illiquid assets are also available to those that did not run.

We now compare the specific effect of both assumptions with the classic approach by

Goldstein and Pauzner (2005).13 Consider a formulation of their model with fundamental risk

but no asset liquidity risk. Liquidating illiquid assets at t = 1 involves no fixed cost (c = 0) and

the liquidation value equals our value under orderly resolution (`). Formally, if the project is

liquidated at t = 1 it yields y1 (ω, θ) = k+v (θ), where v (θ) = 1−k for θ ≥ 1−k and v (θ) = `

for θ < 1− k. If allowed to mature, the project generates y2 (ω, θ) = r with probability θ and

y2 (ω, θ) = 0 with probability 1 − θ, where θ is now uniformly distributed over [0, 1]. Second,

bank assets are paid out subject to strict sequential service with no mandatory stay. The

12This effect would be even stronger if more k implied lower proceeds ` in the orderly liquidation process.
13While in Goldstein and Pauzner (2005) demandable debt improves liquidity risk sharing, in our model it

reduce contingent transaction costs.
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Table 3: Payoffs of Lenders Conditional on ω = L with Sequential Service

1− φ ≤ `+ k 1− φ > `+ k

sequential service
roll over θd 0

withdraw 1 `+k
1−φ

mandatory stay
roll over θd `

1−k

withdraw 1 k
1−φ +

(
1− k

1−φ

)
`

1−k

bank pays 1 to withdrawal tenders until both liquid (k) and illiquid (`) assets are exhausted.

Without loss of generality our analysis here sets α = 0, such that lenders face no transaction

needs.

After solving for the unique equilibrium result in this benchmark model we re-introduce

mandatory stay. The payoffs are shown in Table 3. In the next step we compare the new

outcome with our results under asset liquidity risk.

Proposition 4. The unique run equilibrium under the proposed reformulation has the following

features in terms of liquid assets k:

(i) the run cutoff with sequential service θ∗S is strictly convex and strictly decreasing in k;

(ii) the run cutoff with mandatory stay θ∗M < θ∗S is strictly quasi-concave, first strictly in-

creasing then strictly decreasing in k.

Figure 3 shows the run cutoff as a function of asset liquidity under pure fundamental risk.

Figure 3a maps the run threshold under sequential service as in Goldstein and Pauzner (2005),

while Figure 3b depicts the run threshold under mandatory stay.

Several conclusions can be draw from Figure 3. First, without mandatory stay the incidence

of runs is monotonic and always decreasing in asset liquidity k. This reflects the direct effect of

greater asset liquidity, namely a lower asset risk. Second, introducing mandatory stay produces

a first increasing, then decreasing quasiconcave run threshold in terms of asset liquidity k.14

14In this case we can establish that the threshold is neither concave nor convex.
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Figure 3: Run Cutoff

(a) Sequential Service (b) Mandatory Stay

Third, runs are less frequent under mandatory stay. Note that the last result validates the

efficiency of the mandatory stay provision. Intuitively the bankruptcy provisions subtracts

asset from early withdrawals and reinforces the incentive to roll over.

In summary, we can show that the concavity of the run threshold arise from the combination

of asset liquidity risk and the associated bankruptcy procedure.

We next endogenize the private and social planner choice of funding.

3.3 Pricing Demandable Debt

This section examines the bank’s initial choice of the yield d promised to demandable debt

when rolled over till t = 2. To focus on runs driven by asset liquidity risk, we henceforth take

c → 0. Because the project has positive NPV for any funding choice we can focus on the

stability tradeoff, excluding other effects of its financing structure.

The ex ante expected payoff of lenders as a function of its face value d is

VL (d) = λ [(1− α) d+ α] + (1− λ)

{
θ − θ∗ (d)

θ
[(1− α) d+ α] +

θ∗ (d)

θ
[k + `− α (1− k) τ ]

}
.

The bank’s expected payoff can be written as the return of the project of a solvent bank α+
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(1− α) r minus financing costs VL (d) and the expected deadweight loss in bankruptcy DW (d),

VB (d) = λ [(1− α) r − (1− α) d] + (1− λ)

(
θ − θ∗ (d)

θ

)
[(1− α) r − (1− α) d] (8)

= α + (1− α) r − VL (d)−DW (d) ,

where

DW (d) = (1− λ)
θ∗ (d)

θ
{α + (1− α) r − [k + `− α (1− k) τ ]} . (9)

3.3.1 Socially Optimal Pricing

Next we characterize the socially optimal pricing of the demandable debt contract. The social

planner chooses the face value d to maximizes the aggregate payoff subject to the participation

constraint of the bank and its lenders:

max
d

r −DW (d) (10)

subject to

VB (d) ≥ 0, VL (d) ≥ 1.

In other words, the optimal financing policy minimizes the chance of runs (a pure dead-

weight loss) subject to agents’ participation constraints. It is immediately intuitive that since

−DW (d) is increasing in d, the social planner would increase d as much as possible.

Increasing d above lenders’ breakeven level implies lenders receive a “rollover rent”above

their participation threshold. The maximum rollover rent is reached when the bank’s partici-

pation constraint is binding at d = r, as all asset value is promised to depositors rolling over.

Proposition 5 characterizes the socially optimal financing policy.

Proposition 5 (Optimal Funding). Let do be the optimal solution to (10). The socially optimal

financing contract requires the bank to offer the maximum possible rollover rent (do = r).

We can now compare the welfare achieved by the social planner under equilibrium unique-
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ness, So, relative to that obtained under the second best, SSB, when c→ 0:

So = λ [α + (1− α) r] +
1− λ
θ

[(
θ − θ? (do)

)
(α + (1− α) r) + θ? (do) (k + `− α (1− k) τ)

]
= SSB −DW (do) .

The welfare loss resulting from the socially optimal demandable debt contract is due to inef-

ficient bankruptcy when θ ∈ [0, θ?). Proposition 6 characterizes the conditions under which it

improves welfare relative to autarky.

Proposition 6 (When Can Banks Create Value?). The deadweight loss DW (do) associated

with the socially optimal demandable debt is strictly quasi-concave in asset liquidity k, either

strictly decreasing, or first strictly increasing then strictly decreasing. Thus banks offering the

socially optimal demandable debt contract are more likely to improve welfare at either high or

low levels of asset liquidity. Banks improve welfare if their asset liquidity is sufficiently large.

Recall that autarky creates unnecessary liquidation losses for agents with transaction needs,

while banks create losses from miscoordination in some solvent states. Thus banks outperform

the autarkic regime when the probability of liquidity runs is lowest, namely when asset liquidity

k is either high or low. Banks need to hold enough liquid assets to meet the minimum expected

withdrawal α. Thus a sufficient condition for banks to improve welfare upon autarky is that

their asset liquidity is large enough.

3.3.2 Private Pricing

Having solved for the social optimal choice of demandable debt, we turn to examine the private

choice. The bank’s problem is to choose the rollover reward d that maximizes its payoff subject
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to the participation constraint:

max
d

VB (d) (11)

subject to

VL (d) ≥ 1.

In making this choice the bank trades off the cost of financing d against the expected

deadweight loss from runs.

Proposition 7 (Private Inefficiency). Let d∗ be the optimal solution to (11). The probability of

bankruptcy under the socially optimal funding structure is always lower than under the private

funding choice: θ∗ (do) < θ∗ (d∗).

While the social planner minimizes the probability of runs by choosing the maximum fea-

sible rollover value do = r, the private choice of d∗ is lower than the social optimum value,

leading to a higher threshold θ∗ (d∗) > θ∗ (do) and thus more frequent runs. As a result, the

private choice of demandable debt is less likely to improve welfare relative to autarky.

Proposition 8 characterizes the optimal private funding choice.

Proposition 8 (Private Pricing). The bank’s financing policy is characterized as follows:

(i) The privately optimal choice of d∗ either holds lenders to their participation constraint,

or leads to a positive rollover rent characterized by −∂DW (d∗)
∂d

= ∂VL(d
∗)

∂d
.

(ii) There exists a cutoff λ1 ∈ [0, 1) such that, if λ > λ1, the bank offers no rollover rents to

its lenders.

In other words, the private choice of the rollover yield d balances lower funding costs against

a higher deadweight loss. When illiquidity is not too frequent, runs are rare so the private

choice of demandable debt chooses a rollover rate that leaves no rents to depositors. This
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results reflects the critical tension in financial regulation. Relying on inexpensive short term

debt maximizes bank profits in solvent states, but increases the chance of nonfundamental

bank insolvency and costly early liquidation.

4 Conclusion

While the bank run literature has naturally focused on fundamental asset risk, the recent crisis

has highlighted how asset illiquidity plays a critical role in triggering as well as propagating

distress. Next to excessive credit risk, intermediaries had built an extreme imbalance in liq-

uidity transformation that massively amplified the effect of shocks. This insight motivates a

careful examination of run incentives about asset liquidity risk, under a precise description of

a bank default process.

We are able to establish the existence of an unique run threshold equilibrium even when

the fundamental value of bank assets are almost certainly safe. Our contribution relates to

recent advances in our understanding of how funding decisions and market conditions affect

intermediaries’ access to liquidity and contribute to risk creation even when unrelated to sol-

vency issues. Following the Diamond and Dybvig (1983) and Goldstein and Pauzver (2005)

approach, we offer a simple rationale for demandable debt and study the unique equilibrium

under incomplete information. To focus on asset liquidity, demandable debt is here justified by

contingent payment needs rather than extreme liquidity insurance. We also carefully describe

the allocation of liquidity risk inherent in run incentives by a precise characterization of the

process of bank default. While existing models assume that withdrawals are met by asset sales

until no assets are left, in reality less liquid assets cannot be sold immediately without huge

losses. To avoid a hasty and inefficient termination of real projects, bankruptcy law forces an

automatic stay on all lenders once the borrower runs out of liquid assets. Remaining assets

are then sold under orderly resolution, limiting fire sales of very illiquid assets. We are able

to show that this arrangement is indeed efficient. In addition, it matches the reality of bank
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bankruptcy. Many billions in assets were left in the Lehman bankruptcy process after its de-

fault. Our approach distinguishes among the fire sale price of assets, their orderly liquidation

value and their present value upon continuation, a distinction issue that has become quite

topical since the crisis.

This precise allocation of liquidity risk produces a most surprising result. Unlike the case

of pure fundamental risk, the chance of a bank run is not monotonic in asset liquidity risk,

quite unlike the monotonic effect of fundamental asset risk. Future research needs to establish

the implications of this result and its implications for the study of liquidity regulation, a theme

long neglected and only recently restored in banking legislation.

In a related paper (Matta and Perotti (2016)) we study how banks may choose to ex ante

allocate asset liquidity across lenders by their choice of secured (repo) funding. Repo debt may

be designed to be absolutely safe and thus enables to reduce funding costs, but its use shifts

some nonfundamental risk to unsecured lenders. In the unique run equilibrium, the private

choice of repo funding tends to increase the chance of inefficient runs.

Finally, there may be more applications to our realistic description of interim asset values

whenever market resources available for arbitraging mispricing are scarce.
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Appendix

Proof of Proposition 1. Using the Principle of Iterated Suprema, (2) can be rewritten as:

max
fk∈[0,1]

max
fv∈[0,1]

max
fo∈[0,1−fv ]

Ui (fk, fv, fo) = fkk (1− y2 (ω, θ)) + fv [v (θ)− c− (1− k) y2 (ω, θ)]− 1iτ

+ fo [`− (1− k) y2 (ω, θ)] + y2 (ω, θ) .

If θ < c, then y2 (ω, θ) = 0 and Ui (·, ·, fo) is strictly increasing in fo, which implies fo =

1− fv. Since k+ v (θ)− c < 1, for all fk and fv it holds that 1i = 1 if i faces transaction needs

and 1i = 0 if otherwise. Thus, Ui (·, fv, 1− fv) is strictly decreasing in fv for all i such that

fv = 0. Finally, Ui (fk, 0, 1) is strictly increasing in k for all i, implying fk = 1.

If θ ∈ [c, c+ 1− k), then y2 (ω, θ) = r and Ui (·, ·, fo) is strictly decreasing in fo, which

implies fo = 0. Since k + v (θ) − c < 1, for all fk and fv it holds that 1i = 1 if i faces

transaction needs and 1i = 0 if otherwise. Thus, Ui (·, fv, 0) is strictly decreasing in fv for all

i such that fv = 0. Finally, Ui (fk, 0, 0) is strictly decreasing in k, resulting in fk = 0.

If θ ≥ c+ 1− k, then y2 (ω, θ) = r and Ui (·, ·, fo) is strictly decreasing in fo, which implies

fo = 0. If i does not face transaction needs, 1i = 0 for all fk and fv such that Ui (·, fv, 0) is

strictly decreasing in fv, implying fv = 0. In this case, Ui (fk, 0, 0) is strictly decreasing in k,

which results in fk = 0. If i faces transaction needs, 1i = 1 for fk < 1 or fv < 1; for fk = fv = 1,

1i = 0. Therefore, we have the following: (i) for fk < 1 it follows that Ui (·, fv, 0) is strictly

decreasing in fv, implying fv = 0; (ii) for fk = 1 we have Ui (1, fv, 0) strictly decreasing in fv for

fv < 1, which implies fv = 1 since Ui (1, 1, 0)− max
fv∈[0,1)

Ui (1, fv, 0) = Ui (1, 1, 0)− Ui (1, 0, 0) =

τ − (1− k) (r − 1) > 0. Lastly, for fk < 1 we have Ui (fk, 0, 0) strictly decreasing in fk, such

that Ui (1, 1, 0) = 1 > max
fk∈[0,1)

Ui (fk, 0, 0) = Ui (0, 0, 0) = r − τ , which implies fk = 1.

Proof of Lemma 1. We search for incentive-compatible contracts that maximize welfare condi-

tional on both bankruptcy and θ < c. The optimal incentive-compatible contracts that induce

continuation conditional on θ < c are characterized by setting ` = 0, from which it trivially

follows that they implement a strictly lower level of welfare. Let (wtτ , w
t) for t = 1, 2 be the

contractual repayments to lenders with and without transaction needs, respectively. Denote

πτ and π the probabilities that lenders with and without transaction needs receive w1
τ and w1
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out of k. The optimal contract maximizes the aggregate payoff when θ < c if it solves

max
w1
τ ,w

1≥0,πτ ,π∈[0,1]
k + `− α

[
πτ1{w1

τ<1} + (1− πτ ) τ
]

(A.1)

subject to

απτw
1
τ + (1− α) πw1 = k,

πw1 + (1− π) `
1−απτ−(1−α)π ≥ πτw

1
τ + (1− πτ ) `

1−απτ−(1−α)π ,

πτ
(
w1
τ − 1{w1

τ<1}τ
)

+ (1− πτ )
(

`
1−απτ−(1−α)π − τ

)
≥ π

(
w1 − 1{w1<1}τ

)
+ (1− π)

(
`

1−απτ−(1−α)π − τ
)

,

where the equality is the resource constraint and the two inequalities are the incentive com-

patibility constraints.

The proof consists of a series of claims. Our first claim is that a solution must have w1
τ ≥ 1.

Suppose not, i.e., w1
τ < 1 such that the overall payoff equals k + ` − τ . Then a choice of

w1′
τ = w1′ = 1 and π′τ = π′ = k satisfy all the constraints and gives a higher aggregate payoff:

k + `− α (1− k) τ > k + `− τ . This contradicts w1
τ < 1 being optimal.

Our second claim is that a solution must also have either w1 ≥ 1 or πw1 ≥ πτw
1
τ . Suppose

not, i.e., w1 < 1 and πw1 < πτw
1
τ . The former inequality along with the result in the previous

paragraph implies w1 < 1 ≤ w1
τ . The latter inequality along with the first incentive constraint

implies π < πτ . Moreover, we must have `
1−απτ−(1−α)π < 1; otherwise the first and second

incentive constraints imply that the expected payoffs of lenders without and with transaction

needs are greater than 1 and 1− (1− πτ ) τ respectively, resulting in an aggregate payoff that

exceeds its maximum of k + `− α (1− πτ ) τ . The combination of these results yields

πw1 + (1− π)
`

1− απτ − (1− α) π
< πw1

τ + (1− π)
`

1− απτ − (1− α) π

< πτw
1
τ + (1− πτ )

`

1− απτ − (1− α) π
,

which contradicts the first incentive constraint.

Our third claim is that, when πw1 ≥ πτw
1
τ , welfare is maximized for w1

τ = w1 = 1 and

πτ = π = k. If πw1 ≥ πτw
1
τ , then we must have πτw

1
τ ≤ k; otherwise απτw

1
τ + (1− α) πw1 >

αk + (1− α) k = k, which contradicts the resource constraint. Since w1
τ ≥ 1, the maximum

welfare is achieved for w1
τ = 1 and πτ = k, which yields the result.

Our fourth claim is that, when w1 ≥ 1, welfare is also maximized for w1
τ = w1 = 1 and

πτ = π = k. The first order necessary conditions for minimizing −πτ subject to the constraints
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in (A.1) — after solving the equality constraint for w1 so as to eliminate it from the incentive

compatibility constraints — are given by the constraints in (A.1) in addition to

πτ : −1− γαw1
τ − µ1

[
` (1− π)

(1− απτ − (1− α) π)2
− w1

τ

1− α

]
− µ2

[
τ − ` (1− π)

(1− απτ − (1− α) π)2
+

w1
τ

1− α

]
− µ5 + µ6 = 0, (A.2)

π : −γ (1− α)w1 − µ1

[
− ` (1− πτ )

(1− απτ − (1− α) π)2

]
− µ2

[
−τ +

` (1− πτ )
(1− απτ − (1− α)π)2

]
− µ7 + µ8 = 0, (A.3)

w1
τ : −γαπτ − µ1

[
− πτ

1− α

]
− µ2

[
πτ

1− α

]
− µ3 = 0, (A.4)

w1 : −γ (1− α) π − µ4 = 0, (A.5)

µ1

[
` (πτ − π)

1− απτ − (1− α) π
− πτw

1
τ − k

1− α

]
= 0, µ1 ≥ 0, (A.6)

µ2

[
τ (πτ − π)− ` (πτ − π)

1− απτ − (1− α) π
+
πτw

1
τ − k

1− α

]
= 0, µ2 ≥ 0, (A.7)

µ3

[
w1
τ − 1

]
= 0, µ3 ≥ 0, (A.8)

µ4

[
w1 − 1

]
= 0, µ4 ≥ 0 (A.9)

µ5πτ = 0, µ5 ≥ 0 (A.10)

µ6 [−πτ + 1] = 0, µ6 ≥ 0 (A.11)

µ7π = 0, µ7 ≥ 0 (A.12)

µ8 [−π + 1] = 0, µ8 ≥ 0, (A.13)

where γ and µj for j = 1, ..., 8 are the multipliers for the equality and inequality constraints,

respectively. Note that π > 0, which implies µ7 = 0; otherwise the equality constraint in (A.1)

implies πτw
1
τ = k

α
> 1, which in turn implies the first incentive compatibility constraint in

(A.1) is violated (i.e., the term inside the brackets in (A.6) is negative). As a result, (A.5)

implies γ = µ4 = 0. Next, note that πτ < 1; otherwise the term inside the brackets in (A.6)

equals `+k−w1
τ

1−α < 0, violating the first incentive compatibility constraint in (A.1). This implies

µ6 = 0. By (A.3), it must be that µ2 > 0; otherwise µ1 = µ8 = 0, such that by (A.2) we have

−1−µ5 = 0, which is a contradiction. Finally, if πτ > 0, we must have µ1 > 0, since otherwise

the left-hand side of by (A.4) is negative, yielding a contradiction. In this case, both µ1 and µ2
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are positive, such that (A.6) and (A.7) imply πτ = π = k
w1
τ
. In addition, we must have µ3 > 0,

which implies w1
τ = 1 and πτ = π = k; otherwise (A.4) implies µ1 = µ2, which by (A.3) implies

µ2τ = 0, a contradiction. The resource constraint in (A.1) then implies w1 = 1.

Proof of Proposition 2. For θ < c, it is strictly dominant for all lenders to demand payments

at t = 1, in which case bankruptcy results. To see this note that, in the event of bankruptcy,

lenders without transaction needs that withdraw receive an expected payment of at least

k+(1− k) `
1−k , while those that do not receive `

1−k with certainty. In the absence of bankruptcy,

those that demand payments at t = 1 are paid one unit, while the others receive 0 at t = 2.

Demanding payments at t = 1 is even more attractive for lenders with transaction needs as it

allows them to avoid the transaction cost τ with certainty in the absence of bankruptcy and

at least with probability k in the event of bankruptcy.

For θ ≥ c + 1 − k, no bankruptcy occurs since the reserves and illiquid assets are enough

to pay all lenders. In this case, it is strictly dominant for lenders without transaction needs

to wait and receive min {r, d} > 1 at t = 2. It is also strictly dominant for lenders with

transaction needs to withdraw at t = 1, since a payment of one unit at t = 1 is greater than

r − τ — this follows from τ > r − 1 — their maximum payoff if they wait until t = 2.

For θ ∈ [c, c+ 1− k), it is strictly dominant for lenders with transaction needs to withdraw

at t = 1. In the event of bankruptcy, lenders with transaction needs that demand payments

at t = 1 receive an expected payment of at least k + (1− k)
(

`
1−k − τ

)
, while those that do

not receive `
1−k − τ with certainty. In the absence of bankruptcy, those that demand payments

at t = 1 are paid one unit, while those that do not receive at most r − τ < 1. For lenders

without transaction needs, however, their preference depends on the actions played by other

lenders. There exists an equilibrium in which only lenders with transaction needs withdraw.

Under these strategies, bankruptcy does not occur. Lenders without transaction needs prefer

their payment of d > 1 at t = 2 to demanding a payment of one unit at t = 1. This establishes

existence. However, there is another equilibrium that results in inefficient bankruptcy. If all

lenders demand payment at t = 1, then bankruptcy results. In this case, lenders without

transaction needs prefer their expected payoff of k+ (1− k) `
1−k than to not demand payment

at t = 1 and receive `
1−k with certainty at t = 2.

Proof of Proposition 3. Goldstein and Pauzner (2000) and Morris and Shin (2003) prove this

result for a general class of global games, including those where θ is drawn from a uniform

distribution on
[
θ, θ
]
, the noise terms ηi are i.i.d. across players and drawn from a uniform

distribution on
[
−1

2
, 1
2

]
and that satisfy the following additional conditions: (i) for each θ,

there exists φ∗ ∈ R∪ {−∞,∞} such that Π (φ, θ) > 0 if φ > φ∗ and Π (φ, θ) < 0 if φ < φ∗; (ii)

Π (φ, θ) is nondecreasing in θ; (iii) there exists a unique θ∗ that satisfies
∫ 1

0
Π (φ, θ∗) dφ = 0;

(iv) there exists D and D with σ < min
{
θ −D,D − θ

}
and ε > 0 such that Π (φ, θ) ≤ −ε

for all φ ∈ [0, 1] and θ ≤ D and Π (φ, θ) > ε for all φ ∈ [0, 1] and θ ≥ D; and (v) continuity
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of
∫ 1

0
w (φ) Π (φ, x) dφ with respect to signal x and density w. Except for (iii), Π (φ, θ) clearly

satisfies (i), (ii), (iv) and (v).

We now show that (iii) is also satisfied. Since Π (φ, θ) < 0 for all d and θ < c, then if θ∗

exists it must be that θ∗ ≥ c. Therefore, condition (iii) is satisfied if there exists a unique

θ∗ ≥ c such that
∫ 1

0
Π (φ, θ∗) dφ = 0, that is,

∆ (θ∗; d) ≡ k

(
1− `

1− k

)
ln (θ∗ − c+ k) + (θ∗ − c+ k − α) (d− 1) = 0. (A.14)

Moreover, since ∆ (θ; d) is strictly increasing in θ, we must show that ∆ (c; d) ≤ 0 for all d

(otherwise for some d we have ∆ (θ; d) ≥ ∆ (c; d) > 0 for all θ ≥ c and no θ∗ would satisfy

∆ (θ∗; d) = 0).

We have that (a) ∆ (c; d) is strictly increasing in d, (b) d is bounded by r (in which case

the bank’s participation constraint binds) and

(c) ∆ (c; r) = k

(
1− `

1− k

)
ln

k

e
−
k−α
k

(r−1)

1− `
1−k

≤ (<) 0 if e
−
k−α
k

(r−1)

1− `
1−k ≥ (>) k.

Thus, our assumption that − k ln k
(1−k)(k−α) (1− k − `) > r − 1 implies that ∆ (c; d) ≤ ∆ (c; r) < 0

for all d. Moreover, ∆ (c+ 1− k; d) > 0 for all d such that there exists θ∗ ∈ (c, c+ 1− k)

satisfying ∆ (θ∗; d) = 0. Finally, there is a unique such θ∗ as ∆ (θ; d) is strictly increasing in θ.

For the derivation of the cutoff θ∗, note that (A.14) can be rewritten as

d− 1

k
(
1− `

1−k

)eα d−1

k(1− `
1−k) =

[
α

d− 1

k
(
1− `

1−k

) − ln (θ∗ − c+ k)

]
e
α d−1

k(1− `
1−k)

−ln(θ∗−c+k)
. (A.15)

Let W (·) be the inverse function of y = xex for x ≥ −1 (the Lambert W function), that is,

x = W (y). Along with (A.15) it implies θ∗ = e
α d−1

k(1− `
1−k )

−W

 d−1

k(1− `
1−k)

e

α d−1

k(1− `
1−k )


+ c− k.

Proof of Corollary 1. First, implicitly differentiating y = W (y) eW (y) results in

W ′ =
W

(W + 1) y
=

e−W

1 +W
> 0.

This, along with the definitions x (d, k) ≡ α d−1
k(1− `

1−k )
and z (x (d, k)) ≡ x −W

(
x
α
ex
)
, allow us
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to compute

∂θ∗

∂d
= ez

∂z

∂d

= ez
α

k(1− `
1−k )

[
1−W ′

(
x

α
ex +

ex

α

)]
= ez

α

k(1− `
1−k )

x−W
(W + 1)x

< 0,

where the inequality follows from the fact that x −W < 0, which is implied by (A.15). We

further have that

∂2θ∗

∂d2
= ez

(
∂z

∂d

)2

+ ez
∂2z

∂d2

= ez
(
∂z

∂d

)2

+ ez

[
α

k(1− `
1−k )

]2 [
x−W

(W + 1)2 x2
− (x−W )

W ′x
(
x
α
ex + ex

α

)
+W + 1

(W + 1)2 x2

]

= ez
(
∂z

∂d

)2

+ ez

[
α

k(1− `
1−k )

]2 [
W (W − x) (W + x+ 2)

(W + 1)3 x2

]
> 0.

Finally, let us rewrite θ∗ = αW
x

+ c− k. Differentiating with respect to k gives

∂θ∗

∂k
= − 1

(d− 1)

[
1− `

(1− k)2

]
︸ ︷︷ ︸

A

W (x−W )

W + 1︸ ︷︷ ︸
B

−1,

with

∂A

∂k
= − 2`

(1− k)3
< 0,

∂B

∂k
= −α d− 1

k2(1− `
1−k )2

(W + x+ 2)

(W + 1)2 x
AB.

If (1− k)2 ≤ `, then A ≤ 0 such that B is decreasing, which implies ∂θ∗

∂k
is strictly decreas-

ing. If (1− k)2 > `, then A > 0 such that B is strictly increasing, which implies ∂θ∗

∂k
is strictly

decreasing. Therefore, ∂2θ∗

∂k2
< 0, which implies that θ∗ is strictly increasing, strictly decreasing,

or first strictly increasing then strictly decreasing. The first possibility is ruled out as ∂θ∗

∂k
< 0

for (1− k)2 ≤ `. Moreover, lim
α→0

lim
k→α

∂θ∗

∂k
= +∞. Therefore, if α is not too large, there exists
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k∗ ∈
(
α, 1−

√
`
)

such that ∂θ∗

∂k
= 0, with ∂θ∗

∂k
> 0 for k < k∗ and ∂θ∗

∂k
< 0 for k > k∗.

Proof of Corollary 2. This result is shown in the proof of Proposition 2.

Proof of Proposition 4. It can be easily verified that conditions (i) through (v) in the proof of

Proposition 2 are satisfied, yielding the uniqueness result.

The cutoff θ∗S such that
∫ 1

0
Π (φ, θ∗S) dφ = 0 is given by

θ∗S =
1− ln (`+ k)

d
, (A.16)

with
∂θ∗S
∂k

= − 1
d(`+k)

< 0 and
∂2θ∗S
∂k2

= 1
d(`+k)2

> 0.

The cutoff θ∗M such that
∫ 1

0
Π (φ, θ∗M) dφ = 0 is given by

θ∗M =
1− k

`+k

(
1− `

1−k

)
ln (`+ k)

d
< θ∗S, (A.17)

with

∂θ∗M
∂k

= − 1

d (1− k) (`+ k)2

[
` (1− `− 2k) ln (`+ k)

1− k
+ k (1− `− k)

]
. (A.18)

We now show that −∂θ∗M
∂k

is a strict single crossing function, which is equivalent to −θ∗M
being strictly quasi-convex, which in turn is equivalent to θ∗M being strictly quasi-concave. The

sum of two strict single crossing functions is also a strict single crossing function if and only if

they satisfy strict signed-ratio monotonicity (Quah and Strulovici, 2012). The functions f (k)

and g (k) satisfy strict signed-ratio monotonicity if whenever f (k) > 0 and g (k) < 0, −g(k)
f(k)

is

strictly decreasing and whenever f (k) < 0 and g (k) > 0, −f(k)
g(k)

is strictly decreasing.

Write f (k) = k (1− `− k) and g (k) = (1−`−2k) ln(`+k)
`−1(1−k) . Note that f (k) is a strict single

crossing function since it is always positive. g (k) is also a strict single crossing function as it

is the sum of two single crossing functions h (k) = (1−`) ln(`+k)
`−1(1−k) < 0 and z (k) = −2k ln(`+k)

`−1(1−k) > 0

that satisfy strict signed-ratio monotonicity, since −h(k)
z(k)

= 1−`
2k

is strictly decreasing. Moreover,

− g(k)
f(k)

is strictly decreasing whenever g (k) < 0, which is true if and only if 1− `−2k > 0. This

follows because the numerator is decreasing, −g′ = `+1
`−1(1−k)2 ln (`+ k)− 1−`−2k

`−1(1−k)(`+k) < 0, while

the denominator is increasing, f ′ = 1− `− 2k > 0. Therefore, θ∗M is strictly quasi-concave.

Finally, since θ∗M is strictly quasi-concave, it is strictly decreasing, or strictly increasing,

or strictly increasing then strictly decreasing. The first two are ruled out since lim
k→0

∂θ∗M
∂k

=

− (1−`) ln `
`

> 0 and lim
k→ 1−`

2

∂θ∗M
∂k

= −4(1−`)2

d(1+`)3
< 0.
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Proof of Proposition 5. The aggregate payoff r−DW (d) is clearly increasing in d. The bank’s

payoff is strictly concave in d as

θ

1− α
∂2VB (d)

∂d2
= 2 (1− λ)

∂θ∗

∂d
− (1− λ) (r − d)

∂2θ∗

∂d2
< 0,

which in turn implies VB (d) is either (1) decreasing or (2) increasing and then decreasing since

θ

1− α
∂VB (d)

∂d
= −

[
θ − (1− λ) θ∗

]
− (1− λ) (r − d)

∂θ∗

∂d

is negative for d = r. If ∂VB(d)
∂d
≤ 0 for all d, then VB (d) is monotone decreasing. If for some

d′ we have ∂VB(d′)
∂d

> 0, then there exists d′′ ∈ (d′, r) such that ∂VB(d′′)
∂d

= 0. Since VB (d) is

strictly concave in d, ∂VB(d)
∂d

> 0 for d < d′′ and ∂VB(d)
∂d

< 0 for d > d′′. Moreover, the bank’s

participation constraint binds when d = r, which implies VB (d) < 0 for all d > r. Therefore,

the social planner chooses the maximum feasible rollover rent do = r.

Proof of Proposition 6. First, we show that DW (do) is strictly quasi-concave. Differentiating

−DW (do) with respect to k gives

−∂ DW (do)

∂k
=

1− λ
θ

{
−∂θ

∗ (do)

∂k
[α + (1− α) r − k − `+ α (1− k) τ ] + θ∗ (do) (1 + ατ)

}
.

Write f (k) = −∂θ∗(do)
∂k

[α + (1− α) r − k − `+ α (1− k) τ ] and g (k) = θ∗ (do) (1 + ατ). From

Corollary 1 we know that f (k) is a strict single crossing function since it is either strictly

decreasing, or f (k) < 0 for k < k∗, f (k) = 0 for k = k∗ and f (k) > 0 for k > k∗. g (k) is

also a strict single crossing function since as it is always positive. Moreover, −f(k)
g(k)

is strictly

decreasing whenever f (k) < 0, since in this case ∂θ∗(do)
∂k

> 0 which, along with the strict

concavity of θ∗ (do), implies that the numerator is strictly decreasing while the denominator

is strictly increasing. Therefore, f (k) and g (k) satisfy strict signed ratio monotonicity (see

the proof of Proposition 4 for details), which implies f (k) + g (k) is a strict single crossing

function. This, in turn, implies that −DW (do) is strictly quasi-convex, which is equivalent to

DW (do) being strictly quasi-concave. It follows that DW (do) is strictly increasing, strictly

decreasing, or first strictly increasing then strictly decreasing. The first possibility is ruled out

as ∂ DW (do)
∂k

< 0 for k > k∗.

Now we show that DW (do) is close to 0 for k sufficiently large, in which case So is close to

SSB. We do so in two steps. First, we show that our assumption 0 > y (k) ≡ k ln k
(1−k) (1− `− k)+

(k − α) (r − 1) implies that the set of allowable k is given by
(
k, k
)
. Second, we show that

DW (do) approaches 0 as k approaches k.
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Note that y′ =
[
(1−k)2−`
(1−k)2

]
ln k + r(1−k)−`

1−k . Write f (k) =
[
(1−k)2−`
(1−k)2

]
ln k and g (k) = r(1−k)−`

1−k .

f (k) is a strict single crossing function since it negative for k < 1 −
√
`, equal to zero for

k = 1−
√
` and strictly positive for k > 1−

√
`. g (k) is also a strict single crossing function since

it is always positive. Moreover, −f(k)
g(k)

= − ln k
1−k

(1−k)2−`
r(1−k)−` is strictly decreasing whenever f (k) < 0,

since in this case (1− k)2 − ` > 0, the derivative of ln k
1−k with respect to k is 1−k+k ln k

k(1−k)2 > 0 (the

inequality follows from a simple application of the Mean Value Theorem) and the derivative

of (1−k)2−`
r(1−k)−` with respect to k equals − r(1−k)2−2`(1−k)+r`

[r(1−k)−`]2 < − (1−k−`)2+`(r−`)
[r(1−k)−`]2 < 0. Therefore, f (k)

and g (k) satisfy strict signed ratio monotonicity (see the proof of Proposition 4 for details),

which implies y′ is a strict single crossing function. As a result, y is strictly quasi-convex, which

is equivalent to being strictly decreasing, strictly increasing, or first strictly increasing then

strictly decreasing. The first possibility is ruled out since y′ > 0 for k < 1 −
√
`. Moreover,

y < 0 when k is close enough to α and positive when it near 1− `, which implies that y crosses

0 exactly once and from below. Therefore, the set of allowable k is α < k < k, with the

supremum k such that y
(
k
)

= 0.

Next, from (A.14) we have that ∆
(
c; r, k

)
= 0. Write z (k, r) and h (θ∗ (k) ; r, k) as the left-

and right-hand sides of (A.15), respectively. We have that z (r, k) = h (θ∗ (k) ; r, k) < h (c; r, k),

where the inequality results from h (θ∗ (k) ; r, k) being strictly decreasing in θ∗ (k) > c. Since

(A.15) is equivalent to (A.14) and ∆
(
c; r, k

)
= 0, it follows that lim

k→k
h (c; r, k) = lim

k→k
z (r, k).

Thus, from the Squeeze Theorem we have that lim
k→k

θ∗ (k) = c. Since we take c to be arbitrarily

small and SSB > SA, we have So > SA for k sufficiently close to k.

Proof of Proposition 7. Suppose that θo (do) ≥ θ∗ (d∗). Since we assume the project has pos-

itive NPV, the bank’s payoff under (11) is greater than zero. But then a contract with

d marginally greater than d∗ satisfies both participation constraints in (10) and results in

θo (do) ≥ θ∗ (d∗) > θ∗ (d). But this contradicts do being a solution to (10).

Proof of Proposition 8. The first order necessary conditions are

−∂DW (d)

∂d
=
∂VL (d)

∂d
(1− µ) , (A.19)

µ [VL (d)− 1] = 0, (A.20)

VL (d) ≥ 1, (A.21)

µ ≥ 0. (A.22)

Since VB (d) is strictly concave (see Proof of Proposition 2), any d satisfying the first order

conditions is a global maximizer, which shows (i).
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For (ii), note that

∂DW (d)

∂d
=

(1− λ)

θ

∂θ∗ (d)

∂d
[α + (1− α) r − k − `+ α (1− k) τ ] , (A.23)

∂VL (d)

∂d
= 1− α− (1− λ)

θ

{
(1− α) θ∗ (d) +

∂θ∗ (d)

∂d
[α + (1− α) d− k − `+ α (1− k) τ ]

}
.

(A.24)

Consider µ = 0. As λ gets close to 1, the left- and right-hand sides of (A.19) approach 0 ((A.23)

approximates 0) and 1 − α ((A.24) converges to 1 − α), respectively. Since the derivative of

the right-hand side of (A.19) with respect to λ is greater than that of the left-hand side, which

is negative, there are only two possibilities: either the left-hand side of (A.19) is smaller than

the right-hand side for all λ ≥ λ1 = 0, or there exists λ (d) ∈ (0, 1) such that the left-hand side

of (A.19) is smaller than the right-hand side if λ > λ (d) and at least as great if otherwise. If

the former is true for all d, then (A.19) can only be satified if µ > 0. Suppose there exists d

such that the latter is true and denote Y the set of all such d. If λ > λ1 = sup {λ (d) : d ∈ Y },
then (A.19) can only be satified if µ > 0. Combining these two possibilities we deduct that

there exists a cutoff λ1 ∈ [0, 1) such µ > 0 if λ > λ1, which in turn implies that VL (d)− 1 = 0

(from (A.20)).
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