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Abstract

The paper develops a novel realized matrix-exponential stochastic volatility model of multi-
variate returns and realized covariances that incorporates asymmetry and long memory (here-
after the RMESV-ALM model). The matrix exponential transformation guarantees the positive-
definiteness of the dynamic covariance matrix. The contribution of the paper ties in with Robert
Basmann’s seminal work in terms of the estimation of highly non-linear model specifications
(“Causality tests and observationally equivalent representations of econometric models”, Journal
of Econometrics, 1988, 39(1-2), 69–104), especially for developing tests for leverage and spillover
effects in the covariance dynamics. Efficient importance sampling is used to maximize the likeli-
hood function of RMESV-ALM, and the finite sample properties of the quasi-maximum likelihood
estimator of the parameters are analysed. Using high frequency data for three US financial assets,
the new model is estimated and evaluated. The forecasting performance of the new model is
compared with a novel dynamic realized matrix-exponential conditional covariance model. The
volatility and co-volatility spillovers are examined via the news impact curves and the impulse
response functions from returns to volatility and co-volatility.

Keywords: Matrix-exponential transformation, Realized stochastic covariances, Realized con-
ditional covariances, Asymmetry, Long memory, Spillovers, Dynamic covariance matrix, Finite
sample properties, Forecasting performance.

JEL classifications: C22, C32, C58, G32.



1 Introduction

Recent empirical analyses for estimating and forecasting volatility emphasizes realized measures

such as the realized kernel of Barndorff-Nielsen et al. (2008). Even though we can obtain a

consistent estimator of true volatility, there are non-negligible differences referred to as the ‘realized

volatility error’ (see Barndorff-Nielsen and Shephard (2002)). For removing the estimation bias

caused by the realized volatility error in estimating stochastic volatility (SV) models, Barndorff-

Nielsen and Shephard (2002), Bollerslev and Zhou (2002), Takahashi, Omori and Watanabe (2009),

and Asai, McAleer and Medeiros (2012a,b) showed that it is useful to use an ad hoc approach

that accommodates an error term with constant variance.

As the information of returns and realized volatility measures are available simultaneously, En-

gle and Gallo (2006), Shephard and Sheppard (2010), and Hansen, Huang and Shek (2012), among

others, extended the class of generalized autoregressive conditional heteroskedasiticy (GARCH)

models using information such as the range, squared returns, and realized measure of volatility.

Hansen, Huang and Shek (2012) developed the ‘realized GARCH’ model, which is based on the

traditional returns equation and an additional equation of a realized measure. From this view-

point, we may call the specification of Takahashi, Omori and Watanabe (2009) as the ‘realized

SV’ model, since they use daily returns and a realized volatility measure simultaneously. Recently,

Hansen and Huang (2016) extend the work of Hansen, Huang and Shek (2012) to develop realized

exponential GARCH (EGARCH) models (see Martinet and McAleer (2016) and McAleer and

Hafner (2014) for theoretical problems associated with EGARCH models).
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In the univariate case, it is popular to specify that the log-volatility follows an autoregres-

sive and moving average (ARMA) process. By considering a model of log-volatility rather than

volatility itself, the specified model has no need to impose additional restrictions, apart from

stationary and invertibility. In the multivariate framework, there are several approaches to guar-

antee the positive definiteness of time-varying covariance matrices, including the BEKK model

of Engle and Kroner (1995) and the dynamic conditional correlation model of Engle (2002). In

multivariate SV models with or without realized covariance, several specifications including the

Cholesky decomposition models of Chiriac and Voev (2011) and Loddo, Ni and Sun (2011), the

matrix-exponential models of Bauer and Vorkink (2011) and Ishihara, Omori, and Asai (2016),

the Wishart autoregressive model of Gourieroux et al. (2009), and the dynamic correlation model

of Asai and McAleer (2009a), among others, guarantee the covariance matrix to be positive def-

inite. Among them, the matrix-exponential transformation enables us to have the advantages of

specifying log-volatility and positive definiteness simultaneously.

The seminal work of Chiu, Leonard, and Tsui (1996) suggested using the matrix-exponential

transformation to guarantee the positive definiteness of the covariance matrix. While Kawakatsu

(2006) developed matrix-exponential GARCH models, Asai, McAleer and Yu (2006) and Ishihara,

Omori and Asai (2016) proposed matrix-exponential SV models. For modeling realized covari-

ances, Bauer and Vorkink (2011) applied the matrix-exponential transformation, and Asai and

McAleer (2015) accommodate a factor structure, asymmetric effects and long-range dependence

in order to develop a matrix-exponential factor MSV model.

The first purpose of the paper is to develop realized matrix-exponential SV models with asym-
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metry and long memory (RMESV-ALM), by extending the specifications of Bauer and Vorkink

(2011) and Asai and McAleer (2015). The new model includes the realized SV model with asym-

metric effect, developed by Takahashi, Omori and Watanabe (2009), and the matrix-exponential

SV model of Ishihara, Omori and Asai (2016), as special cases. For the RMESV-ALM model, we

accommodate the RV error as a realized measure of covariances, instead of a direct specification

of realized covariance. As the specification assumes that the covariance matrix of a return vector

is latent, we use the Monte Carlo likelihood approach of Durbin and Koopman (1997) for esti-

mating the new model. For this purpose, we use the simulation smoother for long memory with

an additive noise process developed by Asai and So (2016), which is an extension of simulation

smoothers of de Jong and Shephard (1995) and So (1999).

Using the new RMESV-ALM model, we examine the leverage and spillover effects from a

return to the own and other future volatilities, respectively. We also compare the forecasting

performance with a novel realized matrix-exponential GARCH model, which has not previously

been estimated.

The remainder of the paper is organized as follows. Section 2 develops the new RMESV-

ALM model, and derives a representation for the asymmetric effects. Section 3 explains the MCL

approach of Durbin and Koopman (1997) and the simulation smoother of Asai and So (2016).

Section 3 also discusses the semi-parametric estimation of long memory parameters in a vector

stochastic process, as suggested by Shimotsu (2007). Section 4 provides an empirical example for

three stocks traded on the New York Stock Exchange. Section 5 gives some concluding remarks.
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2 Realized Matrix-Exponential SV Model with Asymmetry and
Long Memory

2.1 Realized Matrix-Exponential SV Model

In order to model dynamic covariances, we consider the matrix-exponential transformation that

guarantees the positive definiteness of the covariance matrix. Chiu, Leonard, and Tsui (1996) pro-

posed the idea of specifying the time-varying covariance matrix, Kawakatsu (2006) considered the

matrix-exponential GARCH model, while Asai, McAleer and Yu (2006) and Ishihara, Omori, and

Asai (2016) developed the matrix-exponential SV model. Compared with the matrix-exponential

GARCH model, the matrix-exponential SV model has flexibility in the error term of the volatility

equation. Note that Kawakatsu (2006) uses the unstandardized residuals, so that the univari-

ate EGARCH model is not a special case of its purported multivariate counterpart, but we may

develop alternative specifications based on standardized residuals, as in Nelson (1991) and Asai

and McAleer (2015). In the specification developed below, we consider the model such that the

standardized residuals affect future volatility.

For any square matrix A, the matrix-exponential transformation is defined by Exp(A) =

∑∞
i=0(1/i!)Ai, with A0 = I. The same result is obtained by using the spectral decomposition, as

we have Exp(A) by replacing the eigenvalues of A by their respective exponential transformations.

Note that Exp(A) is positive definite, whenever A is symmetric. In the same manner, Log(B)

is defined by its spectral decomposition of a positive definite matrix, B, with replacement of the

logarithmic transformation of the eigenvalues. We also denote log(x) (exp(x)) for the vector x as

the element-by-element logarithmic (exponential) transformation of x.
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Let yt and X t be an m × 1 vector of financial asset returns and an m × m matrix created by

the matrix-logarithmic transformation of a realized covolatility matrix measure, respectively. We

consider the realized matrix-exponential SV (RMESV) model, as follows:

yt = Ω1/2
t εt, εt ∼ i.i.d.N(0, Im), (1)

Ωt = SExp(H t)S, (2)

Xt = K +H t + Ut, ut = vech(Ut) ∼ i.i.d.N(0,Σu), (3)

where H t = {hij,t} is an m × m symmetric matrix of unobserved components, with H t = O,

and S = {sij} is an m × m positive definite matrix, with sii > 0 (i = 1, . . . ,m), and K = {κij}

is an m × m symmetric matrix of parameters. For the error terms, Ut = {uij,t} is an m × m

symmetric matrix of normal variates, and it is assumed that εt = (ε1t, . . . , εmt)′ and Us are

mutually independent for any t, s. The matrix-exponential transformation of H t guarantees the

positive definiteness of Ωt, which is the stochastic covariance matrix of yt. The RMESV model

in equations (1)-(3) is a multivariate extension of Takahashi, Omori and Watanabe (2009). We

examine alternative representations of the RMESV model in this section.

There is strong evidence of long-range dependence in the volatility models of financial returns.

For long-range dependence in financial volatility, Baillie, Bollerslev and Mikkelsen (1996) devel-

oped the fractionally-integrated GARCH model, while Bollerslev and Mikkelsen (1996) suggested

the fractionally-integrated EGARCH model (see Martinet and McAleer (2016) and McAleer and

Hafner (2014) for caveats regarding EGARCH). In addition to GARCH specifications, Breidt,

Crato and de Lima (1998), Harvey (1998), Pérez and Ruiz (2001), So (2002) and So and Kwok
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(2006) examined long-memory stochastic volatility models. For the unobserved components, we

assume that each element of H t follows an autoregressive fractionally-integrated moving average

(ARFIMA) process. In matrix form, we can write:

Φ(B) ◦ D(B) ◦H t+1 = Θ(B) ◦ Vt, (4)

with

Φ(B) = ιmι′m − Φ1B − · · · − ΦpB
p,

Θ(B) = ιmι′m + Θ1B + · · · + ΘqB
q,

D(B) =

⎛
⎜⎝

(1 − B)d11 · · · (1 − B)d1m

...
. . .

...
(1 − B)dm1 · · · (1 − B)dmm

⎞
⎟⎠ ,

where ιm is a vector of ones, Φl = {φij,l} and Θl = {θij,l} are m × m symmetric matrices of

parameters, and Vt = {vii,t} is an m × m symmetric matrix of error terms, as defined below. As

the ARFIMA(1,d,0) model is typically used in the literature, we follow the simple specification in

our empirical analysis.

2.2 Asymmetric Effects

For incorporating asymmetric effects in SV models, Wiggins (1987), Chesney and Scott (1989),

Harvey and Shephard (1996), and Asai and McAleer (2006) incorporate a negative correlation

between the disturbances of return and future log-volatility. In the specification, a negative

return leads to an increase in future volatility, which is called the leverage effect. We will consider

not only leverage effects, but also the asymmetric effects for other volatilities. For this purpose,
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we consider the specification:

⎛
⎝ εt

ut

vt

⎞
⎠ ∼ N

⎛
⎝
⎡
⎣ 0

0
0

⎤
⎦ ,

⎡
⎣ Im O Λ′

O Σu O
Λ O Σv

⎤
⎦
⎞
⎠ , (5)

where vt = vech(Vt), and Λ is an m∗ ×m matrix of parameters, with m∗ = m(m + 1)/2. In order

to guarantee the positive definiteness of the covariance matrix of (ε′t,u′
t,v

′
t)′, we need to assume

that Σv − ΛΛ′ is positive definite.

In considering the negative correlation between εit and vii,t, we use the following notation. De-

note the duplication and elimination matrices as Dm (m2×m∗) and Lm (m∗×m2), respectively. For

any m×m symmetric matrix A, the duplication matrix is defined such that vec(A) = Dmvech(A),

while the elimination matrix is defined such that vech(A) = Lmvec(A). Defining an m vector of di-

agonal elements of Vt as zt = (v11,t, v22,t, . . . , vmm,t)′, we obtain zt = SmDmvt, where Sm = {sij}

is the m × m2 selection matrix, with sij = 1 if j = m(i − 1) + i (i = 1, 2, . . . ,m), and zero

otherwise. As Dmv� = vec(Vt), Sm selects the diagonal elements of Vt via Smvec(Vt), and we can

specify:

(
εt

zt

)
∼ N

([
0
0

]
,

[
Im PΣ1/2

z

Σ1/2
z P Σz

])
,

where Σz = SmDmΣvD
′
mS′

m, Σz is the diagonal matrix, with the diagonal elements of Σz, P =

diag(ρ1, ρ2, . . . , ρm). Note that Σ1/2
z P is a diagonal matrix. In the specification, we obtain:

corr(εit, vii,t) = ρi, corr(εit, vij,t) = 0 (j �= i),

where ρi is in the range (−1, 0) for purposes of the leverage effect from the ith return to its own

one-step-ahead volatility.
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Returning to the specification of Λ, it is straightforward to consider Λ = LmS′
mΣ1/2

z P for the

simple leverage effects, as it only gives the negative correlation between εit and vii,t. By extending

the specification, we obtain an equivalent representation of Λ based on leverage effects, as:

Λ = QΣ1/2
z P, (6)

where Q = {qij} is an m∗ × m matrix, with qij = 1 if the (i, j) element of LmS′
m is one. Noting

that the numbers of parameters in Q and P are m(m∗ − 1) and m, respectively, it is obvious that

there is no restriction on Λ, except for −1 < ρi < 0. This specification reduces to the model

with simple leverage effects, when Q = LmS′
m. We call equation (6) the ‘concentrated leverage

representation’.

For understanding the structure of the concentrated leverage representation, we consider the

distribution of vt conditional on εt, which is given as vt|εt ∼ N (Λεt,Σv − ΛΛ′). For m = 2, the

conditional mean vector is given by:

Λεt =

⎛
⎝ 1 q12

q21 q22

q31 1

⎞
⎠(

σv,11 0
0 σv,33

)(
ρ1ε1t

ρ2ε2t

)
.

In general, hij,t+1 is affected by the linear combination of {ρ1ε1t, . . . , ρmεmt}. In other words,

we can describe the cross-leverage effects from the ith return to hii,t+1, hij,t+1 and hjj,t+1 (i �= j,

i, j = 1, . . . ,m). We will refer to the REMSV model with asymmetry and long memory, equations

(1)–(6), as ‘REMSV-ALM’.

In order to show how the shocks in returns at time t affect the volatilities at time t + 1,

we describe the news impact curve, following Engle and Ng (1993). Similar ideas for stochastic

volatility models are discussed in Yu (2005) and Asai and McAleer (2009b). Let H t = O and
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Vt = O for their past values, and consider the case where:

Ωt+1 = SExp(H t+1)S, ht+1 = ΛS−1yt, (7)

where ht = vech(Ht), and Λ is defined in equation (6). We examine the news impact curves on

the standard deviations and correlations of yt+1 from yt, using equation (7).

2.3 Observationally Equivalent Representation and Tests for Leverage and
Spillover Effects

Before considering the causality from yt to Ωt+1, we return to the important concept of the

’observationally equivalent representation’ of Basmann (1988) for causality analysis. Basmann

(1988) uses a structural vector autoregression (SVAR) model, which has its reduced form derived

by multiplying a matrix for normalization. Basmann (1988) shows that a causal relationship will

change, depending on the choice of the matrix, which is an example of the problems associated

with observationally equivalent representations. For this problem, estimation of the SVAR model

requires imposing restrictions, as discussed in Waggoner and Zha (2003).

For the RMESV model, the observationally equivalent representation of (2) is given by:

Ωt = Exp(At), E(At) = M, (8)

where At is an unobservable process of the m × m symmetric matrix, and M is an m × m

symmetric matrix of parameters. Compared with S for the specification (2), it has the same

number of parameters. By a property of the matrix-logarithmic transformation, we can obtain

Log(Ωt) = Log (SExp(H t)S) �= 2Log(S) +H t, in general (see Chiu, Leonard, and Tsui (1996)).

The result indicates that At �= 2Log(S) +H t and H t �= At −M , but these two specifications
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have the same Ωt. This is the reason why we can avoid specifying S as a diagonal matrix for the

structure of the RMESV model, (1)-(3). In other words, a parsimonious specification of S causes

a (hidden) restriction on the specification in (8).

As the matrix-exponential transformation is highly nonlinear, it is important to check such

an observationally equivalent representation before estimating the models and testing for non-

causality. One of the merits in specification (2) is that we can identify two sources of spillover

effects separately: (i) S as the constant component in the dynamic covariance structure of Ωt;

and (ii) via H t, which represents the dynamic component.

Based on the concentrated leverage representation (6) under Ωt in equation (2), we consider

three kinds of tests. The first is a test for the leverage effect:

H0 : ρi = 0 vs H1 : ρi < 0,

for the ith asset return (i = 1, . . . ,m). The second is a test for constant spillover effects:

H0 : sij = 0 (i �= j) vs H1 : sij �= 0,

for the off-diagonal elements of S. The third one is a test for dynamic spillover effects:

H0 : Q = LmSm vs H1 : Q �= LmSm,

as specified in equation (6). We can test the first constraint via the t test, while we use the

likelihood ratio test for the remaining two tests. For the likelihood ratio test, the test statistics are

expected to follow the asymptotic χ2 (m(m − 1)/2) and χ2 (m(m∗ − 1)) distribution, respectively,

under the null hypothesis of no spillover effects.
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We provide a detailed discussion of each test, and consider first the leverage effect. Consider

the case ρi < 0 under Q = LmSm and a diagonal S. By the definition of the matrix-exponential

transformation, a negative shock in the ith element of yt in equation (7) produces a diagonal

matrix, Ωt+1, with ωii,t+1 > 1 and ωjj,t+1 = 1 (j �= i, j = 1, . . . ,m). Hence, the effect is

restricted to the relationship between the ith return and the associated ith volatility. The negative

correlation between εit and Ωii,t remains under the general Q and S, if ρi < 0.

For constant spillover effects, the restriction is straightforward underHt = O, that is, Ωt = S2.

For dynamic spillover effects, we start from the volatility matrix for news impacts in (7). For no

dynamic spillover effects under Q = LmSm, such that at least one of the ρi is not equal to zero, any

shock in yt in equation (7) yields diagonal matrices, Ht+1 and Ωt+1. By the diagonal structure,

no dynamic spillover effects on H t+1 will correspond to those on Ωt+1. When there is a spillover

effect in ht+1 via Q �= LmSm, Ωt+1 is no longer diagonal. As a result, the test of dynamic spillover

effects works for H t = O and Vt = O.

Although H t �= O and Vt �= O in the RMESV model, we can approximate Exp(H t) as:

Exp(H t) � Im +H t,

by a first-order Taylor series expansion. The approximation is accurate when H t � O, and we

can apply the above discussion for the RMESV model to test dynamic spillover effects.

3 Monte Carlo Maximum Likelihood Estimation

This section develops the Monte Carlo likelihood (MCL) method to estimate the new REMSV-

ALM model. We will explain below the general framework of the MCL approach proposed by

11



Durbin and Koopman (1997), and construct the approximating densities, as required by the MCL

approach.

3.1 Likelihood Evaluation via Importance Sampling

For the MCL method, the likelihood function can be approximated arbitrarily by decomposing it

into a Gaussian part, which is constructed by the Kalman filter, and a remainder function, for

which the expectation is evaluated through simulation.

Let Y = (y1, . . . ,yT ), X = (X1, . . . ,XT ), and H = (H1, . . . ,HT ). With the vector of

unknown parameters, ψ, we can express the density of (Y ,X) as:

p(Y ,X ;ψ) =
∫

p(Y ,X,H ;ψ)dH =
∫

p(Y ,X|H;ψ)p(H;ψ)dH. (9)

Durbin and Koopman (1997) considered the likelihood of the approximating Gaussian model as:

Lq(ψ) = q(Y ,X ;ψ) =
q(Y ,X|H;ψ)p(H;ψ)

q(H|Y ,X;ψ)
. (10)

Note that the MCL method uses the same density of (H ;ψ) as the true model to construct the

approximating Gaussian model. Substituting p(H ;ψ) from the above equation into (9) gives:

L(ψ) =
∫

Lg(ψ)
p(Y ,X|H;ψ)
q(Y ,X|H;ψ)

q(H|Y ,X ;ψ)dH = Lq(ψ)Eq

[
p(Y ,X |H;ψ)
q(Y ,X |H;ψ)

]
,

where Eq denotes the expectation with respect to q(H|Y ,X ;ψ). The advantage of the approach

of Durbin and Koopman (1997) is that it requires simulation only to estimate departures of the

likelihood from the Gaussian likelihood, rather than the likelihood itself. Durbin and Koopman

(1997) suggested that q(H|Y ,X ;ψ) be used as the importance density for the simulations.
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The log-likelihood function is given by:

log L(ψ) = log Lq(ψ) + log Eq

[
p(Y ,X |H;ψ)
q(Y ,X |H;ψ)

]
, (11)

and its consistent estimator is given by:

log ˆL(ψ) = log Lq(ψ) + log w̄ +
w̄2

2Ns2
w

, (12)

where N is the number of simulations:

w̄ =
1
N

N∑
i=1

wi, s2
w =

1
N − 1

N∑
i=1

(wi − w̄)2, wi =
p(Y ,X|H(i);ψ)
q(Y ,X|H(i);ψ)

,

and H(i) denotes a draw from the importance density q(H|Y ,X ;ψ) (for further details, see

Durbin and Koopman (1997, 2001)).

3.2 Constructing the Candidate Density

This subsection develops a candidate density for the importance sampling of the likelihood. Defin-

ing xt = vech(Xt) and wt = (yt,xt), we can write the observation equation as:

wt =
(
yt

xt

)
=
(

0
κ+ ht

)
+

(
Ω1/2

t O
O Im∗

)(
εt

ut

)
,

where κ = vech(K) and ht = vech(Ht). Conditional on ht, the contribution of the true log-

likelihood at t is given by:

pt = p1t + p2t,

p1t = −m

2
log(2π) − 1

2
log |Ωt| − 1

2
y′tΩ

−1
t yt,

p2t = −m∗

2
log(2π) − 1

2
log |Σ| − 1

2
(xt − κ− ht)′Σ−1(xt − κ− ht).
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We linearize the observation equation for the part of yt.

For the structure of the approximating model, consider:

w̃t = Z̃ht +
(
ε̃t

ut

)
,

(
ε̃t

ut

)
∼ N

([
0
0

]
,

[
Ct O
O Σu

])
, (13)

where:

w̃t =
(

ỹt

xt − κ
)

, Z̃ =
(

Z
Im∗

)
,

with Z = SmDm, which selects the diagonal elements of H t via Zht, Ct is a time-varying m-

dimensional positive-definite matrix, ỹt will be defined below, using yt and h̃t, where h̃t is a trial

value of ht. Conditional on ht, the contribution of the approximating log-likelihood at t is given

by:

qt = q1t + p2t,

q1t = −m

2
log(2π) − 1

2
log |Ct| − 1

2
(ỹt − Zht)′C−1

t (ỹt − Zht).

Define ξt = Zht, and consider an approximation of the first derivative of p1t around ξ̃t = Zh̃t, to

obtain:

∂p1t

∂ξt

≈ ṗ1t + p̈1t(ξt − ξ̃t), (14)

where

ṗ1t =
∂p1t

∂ξt

∣∣∣∣
ht=h̃t

=
1
2

[
∇Ωt|ht=h̃t

]′ (
Ω̃−1

t ⊗ Ω̃−1
t

)
vec(yty

′
t − Ω̃t),

p̈1t = E

(
∂2p1t

∂ξt∂ξ
′
t

∣∣∣∣ht = h̃t

)
= −1

2

[
∇Ωt|ht=h̃t

]′ (
Ω̃−1

t ⊗ Ω̃−1
t

) [
∇Ωt|ht=h̃t

]
,

14



with ∇Ωt = ∂vec(Ωt)/∂ξ′t, and Ω̃t and H̃t are Ωt and Ht evaluated at ht = h̃t, respectively.

Noting that ∂vec(Xi)/∂vec(X)′ =
∑i−1

j=0(X
′)i−1−j ⊗ Xj for any m × m matrix X, we obtain:

∇Ωt =
∂vec(Ωt)
∂vec(Ht)′

S′
m = (S ⊗ S)

∞∑
i=0

1
i!

∂vec(Hi
t)

∂vec(Ht)′
S′

m = (S ⊗ S)
∞∑
i=1

1
i!

i−1∑
j=0

(
H i−j−1

t ⊗Hj
t

)
S′

m.

For the approximating density, we specify:

ỹt = ξ̃t + p̈−1
1t ṗ1t, Ct = p̈−1

t , (15)

which, together with equation (14), gives ∂p1t/∂ξt ≈ ∂q1t/∂ξt.

By the transformation (15), we lose the information on the sign of the elements of yt, but

we can recover it by the approach of Harvey and Shephard (1996) and Asai and McAleer (2006).

Define st = (s1t, . . . , smt)′, where sit takes one (minus one) if yit is positive (negative or equal to

zero). Conditional on the signs of each element of yt, we can write equation (4) as:

φ(B) ◦ d(B) ◦ (ht+1 − μ) = θ(B) ◦ ṽt, (16)

where φ(B) = vech(Φ(B)), d(B) = vech(D(B)), θ(B) = vech(Θ(B)), μ = vech(M), and

ṽt ∼ N(μvt,Σvt), μvt =

√
2
π

Λst, Σvt = Σv − ΛΛ′ +
(

1 − 2
π

)
Λsts

′
tΛ

′.

Noting that vt|εt ∼ N(Λεt,Σv − ΛΛ′), and using the properties of the half normal distribution,

we can derive the above results (see Asai and McAleer (2006) for further details).

Corresponding to the asymmetric effects defined in equation (5), we consider the covariance

matrix of ε̃t and ṽt conditional on st. Noting that:

ε̃t =
1
2
C

1/2
t

[
∇Ωt|ht=h̃t

] (
Ω̃−1

t ⊗ Ω̃−1
t

)
(Ωt ⊗ Ωt) vec(εtε

′
t − Im)

− 1
2
C

1/2
t

[
∇Ωt|ht=h̃t

]′
vec(Ω̃t − Ωt) + C

−1/2
t (ξ̃t − ξt),
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we need to consider the covariance of vec(εtε
′
t − Im) and ṽt conditional on st. As vt|εt ∼

N (Λεt,Σv − ΛΛ′), we can derive the covariance matrix, by using the first three moments of

the half normal distribution:

E|εit| =

√
2
π

, E|εit|2 = 1, E|εit|3 = 2

√
2
π

, (i = 1, . . . ,m).

See Elandt (1961) for the moments of the half normal distribution. Then we have:

E[vtvec(εtε
′
t − Im)′|st] = Λ

[
G+ ◦ (stvec(sts

′
t)
′)−

√
2
π
stvec(Im)′

]
,

where G+ = E[ε+
t vec

(
(ε+

t )(ε+
t )
)′] and ε+

t = (|ε1t|, . . . , |εmt|)′. Neglecting the differences in Ω̃t

and Ωt, we can approximate the covariance of ṽt and ε̃t as:

Λt =
1
2
Λ

[
G+ ◦ (stvec(sts

′
t)
′)−

√
2
π
stvec(Im)′

] [
∇Ωt|ht=h̃t

]
C

1/2
t . (17)

As a result, we can obtain (ε̃′t,u′
t, ṽ

′
t)′ ∼ N(μt,Σt), where:

μt =

⎛
⎝ 0

0
μvt

⎞
⎠ , Σt =

⎛
⎝ Ct O Λ′

t

O Σu O
Λt O Σvt

⎞
⎠ .

We use the candidate density in equations (13), (15)–(17) for the importance sampling of

the likelihood, as explained in the previous subsection. We may improve the approximation by

considering ∂2p1t/∂ξtξ
′
t rather than its expected value in (15), and by accommodating the effects

of the differences in Ω̃t and Ωt in (17). Rather than considering further approximations, we will

place a priority on computational convenience.

3.3 Implementation Issues

For obtaining a consistent estimate of the log-likelihood function as (12), we draw samples H(i)

(i = 1, . . . ,N) from the approximating density, q(H|Y ,X ;ψ), which is defined in equations
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(13), (15)–(17). For this purpose, we use the simulation smoother of Asai and So (2016) for long

memory processes with additive noise, which is an extension of de Jong and Shephard (1995) and

So (1999).

The simulation smoother of Asai and So (2016) is based on the Choleski decomposition of the

(m + m∗)T × (m + m∗)T matrix, Σw = LML′, in which the (i, j)th block is given by the sample

covariance matrix of wi and wj , where L is a block lower triangular matrix, with the (i, j)th block

given by Lij, and M is a block diagonal matrix, with element Mi (i, j = 1, 2, . . . , T ). Similarly,

define the Choleski decomposition of the m∗T×m∗T matrix Γ = LM L′, where Γ is the covariance

matrix of (h′
1, . . . ,h′

T )′, and ht is generated by equation (4). Given the specification, we have

Γ1/2 = LM1/2. We decompose Σ1/2
t into two matrices, and denote the first (m+m∗)× (2m+m∗)

matrix and the second m× (2m+m∗) of Σ1/2
t matrix as At and Bt, respectively. For ht generated

by equation (16), we can express the covariance matrix between hi and hj, conditional on the

sign of yt−1, as:

Cov(hi,hj) =
min(i,j)∑

k=1

Li,kM
1/2
k Bk−1B

′
k−1M

1/2
k L′

j,k.

In order to implement the simulation smoother of Asai and So (2016), we first obtain the

Choleski quantities, Lt,j , and the prediction errors, vt, from the Choleski decomposition of Σw for

t = 1, . . . , n and j = 1, . . . , t, by the following recursive equations:

at+1|t =
t∑

j=1

Ψt,jet+1−j , et = wt − w̃t|t−1, w̃t|t−1 = Z̃(μ+ μvt) + Z̃at|t−1,

Ft+1 = Z̃Pt+1|tZ̃ ′, (18)

Pt+1|t =
t+1∑
k=1

Lt+1,kM
1/2
k Bk−1B

′
k−1M

1/2
k L′

t+1,k −
t∑

k=1

Ψt,t−k−1FkΨ′
t,t−k−1,
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where

Ψt,j =

[(
t−j+1∑
k=1

Lt+1,kM
1/2
k Bk−1B

′
k−1M

1/2
k L′

t+1,k −
j−1∑
k=0

Ψt,t−kFk+1Ψ′
j,j−k

)
Z̃ ′

+Lt+1,t−j+2M
1/2
t−j+2Bt−j+1A

′
t−j+1

]
F−1

t+1−j .

Then we calculate Nt,s, Υt,s and Ξt, and draw ξt from N(0,Ξt), where:

Nt,t = A′
t, Nt,s = −A′

tL
′
s,t −

s−2∑
j=0

Nt,j+1L
′
s,j+1 (s = t + 1, . . . , n), (19)

Υt,s = −Nt,sF
−1
s AsB

′
s −

n∑
k=s+1

{
Nt,kF

−1
k N ′

s,kB
′
s + Υt,kΞ−1

k Υ′
s,kB

′
s

}
, (20)

Ξt = Bt

(
I − A′

tF
−1
t At −

n∑
k=t+1

{
Nt,kF

−1
k N ′

t,k + Υt,kΞ−1
k Υ′

t,k

})
B′

t. (21)

We evaluate Υt,s and Ξt by iterating between equations (20) and (21) according to the sequence:

Ξn; Υn−1,n,Ξn−1; Υn−2,n,Υn−2,n−1,Ξn−2; Υn−3,n,Υn−3,n−1,Υn−3,n−2,Ξn−3; . . . .

Finally, set:

vt = ξt + Bt

[
A′

tF
−1
t et +

n∑
s=t+1

{
Nt,sF

−1
s es + Υt,sΞ−1

s ξs

}]
,

and generate {ht} via (h′
1, . . . ,h′

T )′ = Γ1/2(v′0, . . . ,v′T−1)
′.

In order to construct the approximating density, we need to choose trial values, {h̃t}, for

equation (15). Following Durbin and Koopman (1997, 2001), we apply the recursive scheme:

(i) Start at, for example, h̃t = 0, or the previous value of h̃t.

(ii) Solve {Ct}, and obtain {ỹt}.

(iii) Use the above smoother without simulations to extract a new h̃t.
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(iv) Return to (ii) until h̃t converges.

Generally, we need a low (such as 5-15) number of iterations. Note that we can obtain smoothed

estimates of {h̃t} by setting ξt = 0 and Υt,s = O in the above simulation smoother. After obtaining

the appropriate values of {h̃t}, we can draw {H(i)} (i = 1, . . . ,N). We set N = 200 in equation

(12) to obtain a consistent estimate of the log-likelihood function.

3.4 Estimating and Forecasting Ωt

For estimating Ωt, we extend the approach of Sandmann and Koopman (1998). Consider the

following:

Ω̃t = J̄T ŜExp(H̃ t)ŜJ̄T

where H̃t, is the smoothed estimate, obtained by the algorithm above, and a diagonal matrix J̄T

is defined by the square roots of the diagonal elements of Ω̄T , given by:

Ω̄T =
1
T

T∑
t=1

[
ŜExp

(
H̃t

)
Ŝ
]−1/2

yty
′
t

[
ŜExp

(
H̃t

)
Ŝ
]−1/2

.

If m = 1, the approach reduces to that of Sandmann and Koopman (1998).

Applying the filtering technique in equation (18), we obtain the k-step-ahead forecast and its

error covariance as:

hT+s|T = μvT +
T+s−1∑

j=s

ΨT+s−1,jeT+s−j ,

PT+s|T = PT+s|T+s−1 −
T+s−1∑

j=s

ΨT+s−1,jFT+jΨ′
T+s−1,j .

See Asai and So (2016) for further details. Then we can obtain the forecasts of Ωt as ΩT+s|T =

J̄T ŜExp(HT+s|T )ŜJ̄T .
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3.5 Two-Step Estimation

For efficiency of the estimators, it is often preferred to estimate the long memory parameter

separately using the semiparametric approach, such as local Whittle (LW) estimation. For this

purpose, we may use the following two-step method: (i) estimate dij using X via multivariate

Gaussian semiparametric estimation, as suggested by Shimotsu (2007), which is a multivariate

extension of the local Whittle (LW) estimator of Shimotsu and Phillips (2006); and (ii) estimate the

remaining parameters via the MCL approach, as explained above. We apply two-step estimation

for estimating the RMESV-ALM model.

4 Empirical Examples

4.1 Data

We estimate the RMESV-ALM model using daily returns and realized covariance matrices for three

major stocks traded on the New York Stock Exchange, namely: Bank of America (BAC), General

Electric (GE), and International Business Machines (IBM). Based on the vector of returns for the

m = 3 stocks computed for 1-min intervals of the trading day at t between 9:30a.m. and 4:00

p.m., we calculated the daily multivariate realized kernel (RK) estimates of Barndorff-Nielsen et

al. (2009). Note that the multivariate RK estimator gives a consistent estimator of the integrated

covariance matrix, and is robust to microstructure noise and non-synchronous trading.

We also calculate the corresponding open-close returns for the three assets. Denote the vector

of returns, and the covariance matrix estimator as yt and X̃t, respectively. By definition, Xt =

Log
(
X̃t

)
. The sample period starts at October 14, 2010, and ends on October 4, 2012, giving
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500 observations.

Table 1 presents the descriptive statistics of the returns, volatilities and covolatilities. The

empirical distribution of the returns is highly leptokurtic, and is heavily skewed to the left, except

for GE. The stock price of GE grows rapidly from January 2009, causing the right-skewness of

the empirical distribution of the return series. Regarding volatilities and co-volatilities, they are

skewed to the right, with strong evidence of heavy tails in all the series.

4.2 Benchmark Model and Preliminary Results

As a benchmark model, we use a realized BEKK model with asymmetry and long memory. Instead

of considering a multivariate extension of the fractionally-integrated GARCH model of Baillie,

Bollerslev, and Mikkelsen (1996), we use the heterogeneousness asymmetric BEKK (HABEKK)

model of Asai and McAleer (2016). The HABEKK model captures long-range dependence in

the volatility matrix, as in the heterogeneous autoregressive (HAR) model of Corsi (2009) and

heterogeneous ARCH model of Müller et al. (1997).

For the HABEKK model, consider the mean returns for the past h days as:

(
yt−1

)
h

= h−1(yt−1 + · · · + yt−h),

so that we can obtain the weekly (h = 5) and monthly (h = 22) mean returns of the past yt

as
(
yt−1

)
5

and
(
yt−1

)
22

, respectively. Define a negative part of the ith element of
(
yt−1

)
h

as

(
yi,t−1

)−
h

=
(
yi,t−1

)
h
× 1

((
yi,t−1

)
h

< 0
)
, where 1(x < 0) is one if x < 0, and is zero otherwise.
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Then we can obtain the realized HABEKK model as:

yt = Ω1/2
t yt, yt ∼ i.i.d.N(0, Im),

X̃ t = K̃ + Ωt + Ũt, ũt = vech(Ũt) ∼ i.i.d.N(0,Σũ),

Ωt = W +Adyt−1y
′
t−1A

′
d +Aw

(
yt−1

)
5

(
yt−1

)′
5
A′

w +Am

(
yt−1

)
22

(
yt−1

)′
22
A′

m

+Cdy
−
t−1y

−′
t−1C

′
d +Cw

(
yt−1

)−
5

(
yt−1

)−′
5
C ′

w +Cm

(
yt−1

)−
22

(
yt−1

)−′
22
C ′

m

+BΩt−1B
′,

where K̃ is an m × m square matrix, W is a positive definite matrix, and Ai, Ci (i = d,w,m),

and B are m × m matrices of parameters, with a11,i > 0, c11,i > 0 and b11 > 0. The (1,1)

elements a11,i > 0, c11,i > 0 and b11 > 0 are required for identifiability. In order to reduce

the number of parameters, and to ensure regularity, invertibility and asymptotic properties of the

QML estimator, Ai, Ci, and B are assumed to be diagonal matrices (see Asai and McAleer (2016)

for further details).

Table 2 shows the ML estimates of the realized HABEKK model. The estimates of aii,d and

bii (i = 1, 2, 3) are significant at the five percent level, as in the literature of diagonal BEKK

specifications. The estimates of cii,d (i = 1, 2, 3) are significant, indicating that a negative shock

in return increases future volatility. For the parameters of the weekly effects, aii,w and cii,w are

significant, except for the case i = 2. The estimates of aii,m and cii,m for the monthly effects

are insignificant in all cases. For univariate models, Müller et al. (1997) recommend removing

past values of conditional volatility to obtain significant heterogeneous-time effects for the squared

residuals. In our case, the estimates of aii,m and cii,m are significant by setting B = O, but the
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Akaike information criterion (AIC) and the Bayesian information criterion (BIC) prefer the model

with B �= O.

4.3 Estimation Results

Table 3 shows the estimates of the RMESV-ALM model, based on the first T = 250 observations.

Compared with the realized HABEKK model, the RMESV-ALM model has smaller AIC and BIC.

The LW estimates of dij are significant at the five percent level, indicating that all the elements

of Xt and H t follow long memory processes. The estimates of dij are significant, and are located

between 0.26 to 0.41.

All the estimates of φij and κij are positive and significant. For the parameters of the concen-

trated leverage specification (6), the estimates of ρi are negative and significant, indicating the

existence of a leverage effect. For the constant part of the dynamic covariances, the estimates of

sij are significant, except for s32. For the dynamic spillover effects, q61, q62 and qi3 (i = 1, . . . , 6)

are significant.

Table 3 also presents the results of the likelihood ratio tests for constant and dynamic spillover

effects, with the empirical results indicating the existence of the dynamic and constant spillover

effects.

We compare the out-of-sample forecasting performance of the RMESV-ALM model with that

of realized HABEKK, using the last T2 = 250 observations. We use Ω̂T1+h = Exp(XT1+h) as a

proxy for the unobservable ΩT1+h (T1 = 250, h = 1, . . . , T2), and define the forecast error matrix
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as:

ET1+h = Ω̂T1+h − Ω̃T1+h|T1+h−1,

where Ω̃T1+h|T1+h−1 is the one-step-ahead forecast of ΩT1+h. Following Chiriac and Voev (2011),

we compare the out-of-sample forecast root-mean-squared errors (RMSE) of the two models based

on the Frobenius norm of the forecast error, which is defined by:

FN =
1
T2

T2∑
h=1

||ET1+h|| =
1
T2

T2∑
h=1

⎡
⎣∑

i,j

e2
ij,T1+h

⎤
⎦

1/2

. (22)

We also calculate a measure based on the Wishart distribution:

WM =
1
T2

T2∑
h=1

[
tr
(
Ω̂−1

T1+hΩ̃T1+h|T1+h−1

)]1/2
. (23)

Table 4 shows the results of the forecasting performance. Compared with the realized HABEKK

specification, the RMESV-ALM model gives smaller FN and WM values, indicating a better

performance for the latter model.

We examine the news impact curves (NICs) of the standard deviations and correlations of

yt+1 by a shock in yt, using Exp(H t+1) in equation (7). Figure 1 shows the NICs from the ith

return on the one-step-ahead standard deviation of j (i, j =BAC,GE,IBM). The horizontal axis

indicates the values of annualized returns, while the vertical axis gives the values of annualized

one-step-ahead standard deviations. We adjusted the curves so that they take zero at the origin.

As implied by the estimates of ρi, the NICs from the return to its own future volatility indicate

a negative relation between return and future volatility for BAC, GE, and IBM. For the spillover

effects, the effects from the GE returns are greater than those of the GE one-step-ahead standard

deviations. The spillover effects between BAC and GE are negligible.
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Figure 2 also shows the news impact from a return to the one-step-ahead correlation coeffi-

cients. Figure 2 indicates that the impacts on the dynamic correlations change, depending on the

signs and magnitudes of the returns. The range of the change is 0.2, at most. It should be noted

that changes in a return can affect the correlation coefficient between the other two stocks. For

example, a positive return of IBM decreases the correlation between BAC and GE for the period.

Figure 3 illustrates the impulse response functions (IRFs) from returns to future volatilities.

We use −10 percent of the annual return as the impulse at time zero in order to draw responses at

time h (h = 1, . . . , 200). A shock on the ith return (i =BAC,GE,IBM) to its own future standard

deviation decreases slowly toward its corresponding mean, {S2}ii, as a result of the long range

dependence in H t.

Figure 3 also indicates the spillover effects on the IRFs. For example, a negative impulse

in the return of BAC produces an undershooting (overshooting) response in the future standard

deviations of GE (IBM).

5 Concluding Remarks

The paper developed a novel realized matrix-exponential stochastic volatility model of multivariate

returns and realized covariances that incorporated asymmetry and long memory (hereafter the

RMESV-ALM model), as well as new tests for volatility and co-volatility spillovers. The matrix-

exponential transformation guarantees the positive definiteness of the dynamic covariance matrix.

Efficient importance sampling was used to maximize the likelihood function of RMESV-ALM.

Using high frequency data for three major US financial assets, the RMESV-ALM model was
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estimated, and compared with the novel realized HABEKK model via in-sample model-fitness

and out-of-sample forecasting performance. The empirical results suggested the RMESV-ALM

specification to be superior. The news impact curve and impulse response functions were also

estimated, and spillover effects were found from returns to the remaining volatilities and correlation

dynamics.

As shown in the paper, it is useful to consider the matrix-exponential specification using returns

and realized volatility measures simultaneously. The theoretical developments may be extended

by developing a general asymmetric function which accommodates both spillover effects and the

quadratic form of the standardized residuals of returns, based on the alternative SV models

developed in Asai and McAleer (2011). The Bayesian Markov Chain Monte Carlo (MCMC)

technique may also be developed for estimating the RMESV-ALM model by extending the work

of Ishihara, Omori and Asai (2016).
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Pérez, A. and E. Ruiz (2001), “Finite Sample Properties of a QML Estimator of Stochastic Volatility
Models with Long Memory”, Economics Letters, 70, 157–164.

Sandmann, G., and S. J. Koopman (1998), “Estimation of Stochastic Volatility Models via Monte Carlo
Maximum Likelihood”, Journal of Econometrics, 87, 271–301.

Shephard, N, and K. Sheppard (2010), “Realising The Future: Forecasting with High Frequency Based
Volatility (HEAVY) Models”, Journal of Applied Econometrics, 25, 197–231.

Shimotsu, K. (2007), “Gaussian Semiparametric Estimation of Multivariate Fractionally Integrated Pro-
cesses”, Journal of Econometrics, 137, 277–310.

Shimotsu, K. and P.C.B. Phillips (2006), “Local Whittle Estimation of Fractional Integration and Some
of Its Variants”, Journal of Econometrics, 130, 209–233.

So, M.K.P. (1999), “Time Series with Additive Noise”, Biometrika, 86, 474–82.

So, M.K.P. (2002), “Bayesian Analysis of Long Memory Stochastic Volatility Models”, Sankhyā, 24, 1–10.
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Table 1: Descriptive Statistics for Returns, Realized Volatilities and Co-Volatilities

Stock Mean Min Max Std.Dev. Skew. Kurt.
Returns
BAC −0.2105 −17.737 12.493 2.8161 −0.7993 8.2415
GE 0.1334 −13.334 14.458 2.7201 0.2109 8.3415
IBM −0.3329 −25.378 20.080 4.1100 −0.3400 10.916

Volatilities
BAC 10.550 1.1550 403.48 22.278 10.177 147.72
GE 8.3140 0.4397 334.09 19.300 7.9431 103.64
IBM 16.733 0.7791 688.46 41.977 7.8817 93.775

Co-volatilities
BAC-GE 3.3653 −0.1901 98.200 6.7915 6.0948 61.548
BAC-IBM 2.2917 −24.138 81.676 6.9318 5.1632 43.130
GE-IBM 2.8881 −9.4994 84.010 8.3987 4.4224 28.214

Note: The number of observations for each series is 500.

30



Table 2: Estimates of the Realized Diagonal HABEKK Model

Parameters i = 1 i = 2 i = 3
aii,d 0.3314 (0.1208) 0.3805 (0.0609) 0.5150 (0.1007)
aii,w 0.3385 (0.1252) 0.3279 (0.1664) 0.3913 (0.1043)
aii,m 0.3308 (0.4948) 0.3295 (0.5686) 0.3568 (0.2681)
cii,d 0.3031 (0.0844) 0.3625 (0.0637) 0.4558 (0.1378)
cii,w 0.3274 (0.1357) 0.3414 (0.1920) 0.3975 (0.1220)
cii,m 0.3314 (0.5150) 0.3289 (1.8452) 0.3547 (0.2793)
bii 0.3499 (0.1597) 0.3551 ( 0.0623) 0.4567 (0.0505)

LogLike −12331.1
AIC 24758.4
BIC 25192.4

Note: Standard errors are given in parentheses. We have omitted the estimates of
Σu and W to save space.
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Table 3: Estimates of the RMESV-ALM Model

(i, j) dij φij κij sij

(1,1) 0.2638 0.7353 1.7205 1.9292
(0.0239) (0.0867) (0.0274) (0.0553)

(2,1) 0.3967 0.4800 0.3630 0.3975
(0.0179) (0.4107) (0.0052) (0.0342)

(3,1) 0.2833 0.6717 0.0890 0.2053
(0.0080) (0.1102) (0.0050) (0.0703)

(2,2) 0.3805 0.4828 1.1192 1.5386
(0.0217) (0.1488) (0.0362) (0.0412)

(3,2) 0.4081 0.4996 0.1394 0.0186
(0.0223) (0.2397) (0.0064) (0.0425)

(3,3) 0.2967 0.5302 1.9762 2.5650
(0.0225) (0.0886) (0.0340) (0.0863)

(i, j) qi1 qi2 qi3 ρi

(1,j) 1 −0.0421 −0.6415 −0.1165
(0.1055) (0.0431) (0.0209)

(2,j) 0.1101 −0.0367 0.1344 −0.1105
(0.0673) (0.0366) (0.0101) (0.0167)

(3,j) −0.0650 0.0762 0.2948 −0.2090
(0.0903) (0.0462) (0.0221) (0.0063)

(4,j) 0.1966 1 0.4078
(0.3395) (0.0498)

(5,j) 0.3870 0.1765 0.4078
(0.3034) (0.1324) (0.0439)

(6,j) 0.4078 −0.5243 1
(0.1125) (0.0557)

LogLike −2865.7
AIC 5863.4
BIC 6643.3
LRcs 218.38 [0.0000]
LRds 70.343 [0.0000]

Note: The entries show the MCL estimates, except for the long
memory parameter, dij , which are the LW estimates. Standard
errors are given in parentheses. LRcs and LRds denote the
likelihood ratio tests for constant and dynamic spillover effects,
respectively. P -values are given in brackets. We have omitted
the estimates of Σu and Σv to save space.
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Table 4: Results for Out-of-Sample Forecasting Performance

Model FN WM
MER-GARCH 4.7256 3.2324
MERSV-ALM 2.4580 2.5751
Note: FN denotes the RMSE based on the
Frobenius norm of the forecasting error (22),
while WM is the Wishart-type measure de-
fined by equation (23).
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Figure 1: News Impact Curves for the RMESV-ALM Model
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Note: R(i) and S(i) (i = BAC,GE,IBM) indicate the i-th return and its one-step-ahead standard deviation, respec-

tively. The horizontal axis indicates the value of the annualized return, while the vertical axis gives the value of the

annualized standard deviation. We adjusted the curves so that they are zero at the origin.
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Figure 2: News Impacts on Correlation Dynamics for the RMESV-ALM Model
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Note: R(i) and Corr(i,j) (i, j = BAC,GE,IBM) indicate the return and one-step-ahead correlation coefficient

between the i-th and j-th returns, respectively. The horizontal axis indicates the value of the annualized return,

while the vertical axis gives the value of the correlation coefficient.
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Figure 3: Impulse Response Functions from Negative Returns to Future Volatility
for the RMESV-ALM Model

0 100 200
0.1

0.15

0.2

0.25
(a) R(BAC) to S(BAC)

0 100 200
0.11

0.115

0.12

0.125
(d) R(BAC) to S(GE)

0 100 200
0.02

0.03

0.04

0.05
(g) R(BAC) to S(IBM)

0 100 200
0.11

0.12

0.13
(b) R(GE) to S(BAC)

0 100 200
0.15

0.2

0.25
(e) R(GE) to S(GE)

0 100 200
-0.1

-0.05

0

0.05
(h) R(GE) to S(IBM)

0 100 200
0

0.05

0.1

0.15
(c) R(IBM) to S(BAC)

0 100 200
0.14

0.16

0.18

0.2
(f) R(IBM) to S(GE)

0 100 200
0

0.1

0.2

0.3
(i) R(IBM) to S(IBM)

Note: R(i) and S(i) (i = BAC,GE,IBM) indicate the i-th return and its future standard deviation, respectively. We

use −10 percent of annual return as the impulse at time zero in order to draw responses at time h (h = 1, . . . , 100).

The horizontal axis represents time h, while the vertical axis gives the value of the annualized standard deviation.
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