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Forecasting Using Random Subspace Methods

Tom Boot∗ Didier Nibbering†

September 1, 2016

Abstract

Random subspace methods are a novel approach to obtain accurate
forecasts in high-dimensional regression settings. We provide a theoret-
ical justification of the use of random subspace methods and show their
usefulness when forecasting monthly macroeconomic variables. We fo-
cus on two approaches. The first is random subset regression, where
random subsets of predictors are used to construct a forecast. Second,
we discuss random projection regression, where artificial predictors are
formed by randomly weighting the original predictors. Using recent re-
sults from random matrix theory, we obtain a tight bound on the mean
squared forecast error for both randomized methods. We identify set-
tings in which one randomized method results in more precise forecasts
than the other and than alternative regularization strategies, such as
principal component regression, partial least squares, lasso, and ridge
regression. The predictive accuracy on the high-dimensional macroe-
conomic FRED-MD data set increases substantially when using the
randomized methods, with random subset regression outperforming
any one of the above mentioned competing methods for at least 66%
of the series.

Keywords: dimension reduction, random projections, random sub-
set regression, principal components analysis, forecasting
JEL codes: C32, C38, C53, C55

1 Introduction

Due to the increase in available macroeconomic data, dimension reduction
methods have become an indispensable tool for accurate forecasting. Fol-
lowing Stock and Watson (2002), principal component analysis is widely
used to construct a small number of factors from a high-dimensional set of
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predictors. For a recent overview of theoretical results and empirical ap-
plications, see Stock and Watson (2006). Instead of combining predictors
based on principal component loadings, different combination strategies can
be followed. If the underlying factor model is relatively weak, estimation
of the factors by principal component analysis is inconsistent as shown by
Kapetanios and Marcellino (2010) and one can consider partial least squares
as argued by Groen and Kapetanios (2016).

Both principal component regression and partial least squares construct
factors by combining the original predictors using data-dependent weights.
An intriguing alternative is offered by fully randomized combination strate-
gies. Here, the projection matrix to the low-dimensional subspace is inde-
pendent of the data and sampled at random from a prespecified probability
distribution. In this paper, we establish theoretical properties of two ran-
domized methods and study their behavior in Monte Carlo simulations and
in an extensive application to forecasting monthly macroeconomic data.

The first method we consider is random subset regression, which uses an
arbitrary subset of predictors to estimate the model and construct a forecast.
The forecasts from many such low-dimensional submodels are then combined
in order to lower the mean squared forecast error (MSFE). Previous research
by Elliott et al. (2013) focused on the setting where one estimates all possible
submodels of fixed dimension. However, when the number of predictors
increases, estimating all possible subsets rapidly becomes infeasible. As
a practical solution, Elliott et al. (2013) and Elliott et al. (2015) propose
to draw subsets at random and average over the obtained forecasts. We
show that there are in fact strong theoretical arguments for this approach,
and establish tight bounds on the resulting MSFE. Using a concentration
inequality by Ahlswede and Winter (2002), we also show that it is possible
to get arbitrarily close to this bound using a finite and relatively small
number of random subsets, explaining why Elliott et al. (2013) find a similar
performance when not all subsets are used.

Instead of selecting a subset of available predictors, random projection
regression forms a low-dimensional subspace by averaging over predictors
using random weights drawn from a normal distribution. Interest in this
method sparked by the lemma by Johnson and Lindenstrauss (1984), which
states that the geometry of the predictor space is largely preserved under
a range of random weighting schemes. This lemma has very recently in-
spired several applications in the econometric literature on discrete choice
models by Chiong and Shum (2016), forecasting product sales by Schneider
and Gupta (2016), and forecasting using large vector autoregressive models
by Koop et al. (2016) based on the framework of Guhaniyogi and Dunson
(2015). Despite the strong relation to the Johnson-Lindenstrauss lemma,
Kabán (2014) shows that in a linear regression model, the underlying as-
sumptions of the lemma are overly restrictive to derive bounds on the in-
sample MSFE and that improved bounds can be obtained which eliminate
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a factor logarithmic in the number of predictors from earlier work by Mail-
lard and Munos (2009). We show that such improved bounds apply to the
out-of-sample MSFE as well.

The derived bounds for the two randomized methods can be used to
determine in which settings the methods are expected to work well. For
random subset regression, the leading bias term depends on the complete
eigenvalue structure of the covariance matrix of the data in relation to the
non-zero coefficients, while for random projection it depends only on the
average of the eigenvalues multiplied by the average coefficient size. This is
shown to imply that in settings where the eigenvalues of the population co-
variance matrix are roughly equal, the difference between both methods will
be small. On the other hand, when the model exhibits a factor structure,
the methods deviate. If the regression coefficients associated with the most
important factors are non-zero, a typical setting for principal component
regression, random projection is preferred as the average of the eigenvalues
will be small, driving down the MSFE. If on the other hand the relation be-
tween the factor structure and the non-zero coefficients is reversed, random
subset regression yields more accurate forecasts.

Of practical importance is our finding, both in theory and practice, that
the dimension of the subspace should be chosen relatively large. This in
stark contrast to what is common for principal component regression, where
one often uses a small number of factors, see for example Stock and Watson
(2012). Instead, in an illustrative example, we find the optimal subspace
dimension k∗ to be of order O(

√
ps) with p the number of predictors and s

the number of non-zero coefficients. In our empirical setting where p = 130,
even if s = 10, the optimal subspace dimension equals k∗ = 36.

The theoretical findings are confirmed in a Monte Carlo simulation,
which also compares the performance of the randomized methods to several
well-known alternatives: principal component regression, based on Pearson
(1901), partial least squares by Wold (1982), ridge regression by Hoerl and
Kennard (1970) and the lasso by Tibshirani (1996). We consider a set-
up where the non-zero coefficients are not related to the eigenvalues of the
covariance matrix to study the effect of sparsity and signal strength. In
addition, we consider two settings where a small number of non-zero coef-
ficients is either associated with the principal components corresponding to
large eigenvalues, or to moderately sized eigenvalues.

Both randomized methods offer superior forecast accuracy over prin-
cipal component regression, even in some cases when the data generating
process is specifically tailored to suit this method. The random subspace
methods outperform the lasso unless there is a small number of very large
non-zero coefficients. Ridge regression is outperformed for a majority of the
settings where the coefficients are not very weak. When the data exhibits a
factor structure, but factors associated with intermediate eigenvalues drive
the dependent variable, random subset regression is the only method that
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outperforms the historical mean of the data.
The theoretical and Monte Carlo findings are empirically tested using

the FRED-MD dataset introduced by McCracken and Ng (2015). As the
derived theoretical bounds suggest, random subset regression and random
projection regression provide similarly accurate forecasts with a clear bene-
fit for random subset regression. This accuracy is shown to be substantially
less dependent on the dimension of the reduced subspace than it is in case of
principal component regression. In a one-by-one comparison, random subset
regression outperforms principal component regression in 88% of the series,
partial least squares in 70%, Lasso in 82% and Ridge in 67%. Random
projection regression likewise outperforms the benchmarks for a majority of
the series and is more accurate than principal component regression in 85%
of the series, partial least squares in 56%, Lasso in 82% and Ridge in 57%.
Random subset regression is more accurate than random projection regres-
sion in 65% of the series, indicating that the factor scenario in the Monte
Carlo study where non-zero coefficients are associated with intermediate
eigenvalues, is empirically more relevant.

The article is structured as follows. Using results from random matrix
theory, Section 2 provides tight bounds on the MSFE under random subset
regression and random projection regression. A Monte Carlo study is carried
out in Section 3, which highlights the performance of the techniques under
different model specifications. Section 4 considers an extensive empirical
application using monthly macroeconomic data obtained from the FRED-
MD database. Section 5 concludes.

2 Theoretical results

In this section, we start by setting up a general dimension reduction frame-
work, that naturally fits both deterministic and random methods. We sub-
sequently introduce two different randomized reduction methods: random
subset regression and random projection regression. We derive bounds on
the MSFE under general projection matrices, after which we specialize to
the case where these matrices are random. The resulting bounds turn out
to be highly informative on scenarios where the methods can be expected
to work well.

Consider the data generating process (DGP)

yt+1 = x′tβ + εt+1 (1)

for t = 1, . . . , T , and where x′t is a vector of predictors in Rp. We assume
that the errors satisfy εt ∼ i.i.d.(0, σ2). We regard the predictors xt as
weakly exogenous, which is not overly restrictive as one typically does not
average over lagged terms of the dependent variable. The DGP in (1) can
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be straightforwardly adjusted to the situation where some predictors always
need to be included.

Since the variance of ordinary least squares (OLS) estimates increases
with the number of estimated coefficients, forecasts can get inaccurate when
large numbers of predictors are available. As a solution, we project the
p-dimensional vector of predictors xt on a k-dimensional subspace using a
matrix Ri ∈ Rp×ki

x̃′t = x′tRi (2)

A frequently used choice for Ri in order to reduce the number of predictors,
is to take the matrix of principal component loadings corresponding to the
k largest eigenvalues from the sample covariance matrix 1

T−1

∑T−1
t=1 xtx

′
t.

Instead of using a single deterministic matrix, randomized methods sample
a large number of different realizations of Ri from a prespecified probability
distribution. As mentioned above, we consider two different methods to
generate Ri: random subset regression and random projection regression.

Random subset regression In random subset regression, the matrix Ri
is a random permutation matrix that selects a random set of k predictors
out of the original p available predictors. For example, if p = 5 and k = 3,
a possible realization of Ri is

Ri =

√
5

3


0 1 0
0 0 0
1 0 0
0 0 1
0 0 0

 (3)

For a single realization of Ri, the probability that a diagonal element is non-
zero equals k/p = 3/5. The scaling factor thus ensures that E[RiR

′
i] = I,

which is required in the following sections. More formally, define an index
l = 1, . . . k with k the dimension of the subspace, and a scalar c(l) such that
1 ≤ c(l) ≤ p. Denote by ec(l) the p-dimensional unit vector with the c(l)-
th entry equal to one, then random subset regression is based on random
projection matrices of the form

Ri =

√
p

k

[
eic(1), . . . , e

i
c(k)

]
eic(m) 6= eic(n) if m 6= n (4)

Random projection regression Instead of selecting a subset of predic-
tors, we can also take weighted averages to construct a new set of predictors.
Random projection regression chooses the weights at random from a normal
distribution. In this case, each entry of Ri is independent and identically
distributed as

[Ri]mn ∼ N
(

0,
1√
k

)
1 ≤ m ≤ p, 1 ≤ n ≤ k (5)
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where the scaling is again introduced to ensure E[RiR
′
i] = Ip. In fact, a

broader class of sampling distributions is allowed. For the results below, it
is only required that the entries have zero mean and finite fourth moment.

2.1 Mean squared forecast error bound

We now derive a bound on the mean squared forecast error for general
projection matrices Ri, which can be deterministic or random. Following
the ideas set out by Kabán (2014), we rewrite the data generating process
(1) as

yt+1 = x′tRiR
′
iβ + x′t(I −RiR′i)β + εt+1 (6)

Instead of (6) we estimate the low-dimensional model

yt+1 = x′tRiγi + ε̃t+1 (7)

where γi ∈ Rk denotes the optimal parameter vector in the k-dimensional
subproblem, that is

γi = arg min
u

E

[
T−1∑
t=1

(
yt+1 − x′tRiu

)2∣∣∣∣∣Ri
]

(8)

The least squares estimator of γi is denoted by γ̂i and given by

γ̂i =

(
T−1∑
t=1

R′ixtx
′
tRi

)−1(T−1∑
t=1

R′ixtyt+1

)
(9)

Using this estimate, we construct a forecast as

ŷiT+1 = x′TRiγ̂i (10)

If Ri is random, then intuitively, relying on a single realization of the ran-
dom matrix Ri is suboptimal. By Jensen’s inequality, we indeed find that
averaging over different realizations of Ri will improve the accuracy

E
[
(ERi

[
ŷiT+1

]
− x′Tβ)2

]
=

= E
[
ERi [ŷ

i
T+1]2

]
− 2E

[
ERi [ŷ

i
T+1]x′Tβ

]
+ E

[
(x′Tβ)2

]
≤ ERi

[
E
[
ŷiT+1

]2]− 2ERi

[
E[ŷiT+1]x′Tβ

]
+ E

[
(x′Tβ)2

]
≤ ERi

[
E
[
(ŷiT+1 − x′Tβ)2

]]
(11)

where ERi denotes the expectation with respect to the random variable Ri.
For ease of exposition we ignore the variance term εT+1.

Following (11), we consider the MSFE after averaging over different re-
alizations of the projection matrix Ri. For a single, deterministic projection
matrix, this expectation is obviously superfluous. The following bound can
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be established on the mean squared forecast error

Theorem 1 Let xt a vector of predictors for which 1
T

∑T−1
t=1 xtx

′
t

p→ ΣX

and E[xtx
′
t] = ΣX for all t, then

E
[(
x′Tβ − x′TERi [Riγ̂i]

)2]
=

≤ σ2 k

T
+ ERi

[
β′(I −RiR′i)ΣX(I −RiR′i)β

]
+ op(T

−1)
(12)

A proof is presented in Appendix A.
The first term of (12) represents the variance of the estimates. This

can be compared to the variance that is achieved by forecasting using OLS
estimates for β, which is σ2 p

T .
The second term reflects the bias that arises by estimating β in a low-

dimensional subspace. Loosely speaking, if in (12) the product RiR
′
i concen-

trates tightly around I under a particular choice of sampling distribution,
then the bias term will be small. It is exactly this concentration that un-
derlies the power of randomized methods.

The effect of the choice of k on the bias, can be anticipated from (12).
The elements of the matrix RiR

′
i are averages of k products of random

entries. Intuitively, as k increases, the concentration of RiR
′
i around its

expected value I will tighten. Indeed, we show below that the bias is a
decreasing function of k, emphasizing the bias-variance trade-off governed
by the choice of the subspace dimension k.

We now specialize to the two different randomized methods, in which
case analytic expression are available for the expectation in the bias term.

2.1.1 MSFE bound for random subset regression

For random subset regression, the dimension of the original data space is
reduced using a random permutation matrix Ri defined in (4). For this type
of matrices we have the following result by Tucci and Wang (2011)

Theorem 2: Let Ri ∈ Rp×k be a random permutation matrix, scaled such
that E[RiR

′
i] = I. Then

ERSRi

[
(I −RiR′i)ΣX(I −RiR′i)

]
=

=
p

k

([
k − 1

p− 1
− k

p

]
ΣX +

p− k
p− 1

DΣX

)
(13)

where [DΣX
]ii = [ΣX ]ii, and [DΣX

]ij = 0 if i 6= j.

Substituting this expression into (12), we obtain that for random subset

7



regression

E
[(
x′Tβ − x′TERSRi

[Riγ̂i]
)2]

=

≤ σ2k

T
+
p− k
k

p

p− 1

[
β′DΣX

β − 1

p
β′ΣXβ

]
+ op(T

−1)
(14)

We observe that as k → p, the bias decreases and we obtain the variance
formula for the OLS estimates of β when k = p. In many high-dimensional
settings, we expect p � k and p, k � 1, such that the leading bias term
is p

kβ
′DΣX

β. We will discuss this term in more depth in an illustrating
example below.

2.1.2 MSFE bound for random projection regression

For random projection defined in (5), the following theorem is derived by
Kabán (2014)

Theorem 3 For Ri ∈ Rp×k and [Ri]mn = N
(

0, 1√
k

)
and ΣX a positive

semi-definite matrix

ERPRi

[
(I −RiR′i)ΣX(I −RiR′i)

]
=

=
p

k

[(
k + 1

p
− k

p

)
ΣX +

1

p
trace(ΣX)I

]
(15)

This result holds when the assumption on the entries of the random matrix is
weakened, requiring only that they are drawn from a symmetric distribution
with zero mean and finite fourth moments.

Substituting (15) into (12), the mean squared forecast error that follows
from random projection regression satisfies the following bound

E
[(
x′Tβ − x′TERPRi

[Riγ̂i]
)2]

=

≤ σ2k

T
+

1

k

[
β′ΣXβ + trace(ΣX)β′β

]
+ op(T

−1)
(16)

A notable difference with random subset regression is that the bias term
remains non-zero even when p = k. The reason is that the columns of the
projections matrix are not exactly orthogonal, and therefore might span a
smaller space than the original predictor matrix. Indeed, when the columns
are orthogonalized, the following theorem by Marzetta et al. (2011) guaran-
tees that the bias is identically zero when k = p.

Theorem 4 Let Ri a random matrix with i.i.d. normal entries such that
R′iRi = p

kIk and ΣX a positive semi-definite matrix, then

EORPRi

[
(I −RiR′i)ΣX(I −RiR′i)

]
=

=
p

k

[(
pk − 1

p2 − 1
− k

p

)
ΣX +

p− k
p2 − 1

trace(ΣX)I

]
(17)
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Hence, the MSFE after orthogonalization is bounded by

E
[(
x′Tβ − x′TEORPRi

[Riγ̂i]
)2]

=

≤ σ2k

T
+
p− k
k

p2

p2 − 1

[
trace(ΣX)

p
β′β − 1

p
β′ΣXβ

]
+ op(T

−1)
(18)

where the second term equals zero when p = k. Orthogonalization leads to
an improved bound compared to (16), since the difference in MSFE between
random projection and its orthogonalized form satisfies

E
[(
x′Tβ − x′TERPRi

[Riγ̂i]
)2]− E [(x′Tβ − x′TEORPRi

[Riγ̂i]
)2] ≥ 0 (19)

which is derived in Appendix B. However, orthogonalization is computa-
tionally costly and in many examples the dimensions of the problem are
such that the gain in predictive accuracy will be negligible.

A second important difference with the results for random subset re-
gression, is that when p � k and p, k � 1, the leading bias term equals
trace(ΣX)

k β′β. For random subset regression the leading term was found to
be p

kβ
′DΣX

β. This points out a conceptual difference between the two meth-
ods that is further analyzed in the next section.

2.1.3 Comparison between the MSFE of OLS, RS, and RP

To gain intuition for the performance of the randomized methods compared
with unrestricted estimation by ordinary least squares (OLS), and to show
when one of the randomized methods is preferred over the other, we consider
a simplified setting. This setting nevertheless brings out the main features
we observe in the more sophisticated set-up studied in the Monte Carlo
simulations described in Section 3.

Suppose p � k and p, k � 1, then from (14) we have that the leading
bias term for random subset regression is p

kβ
′DΣX

β. For random projection,

we have from (16) that the leading bias term equals trace(ΣX)
k β′β. Suppose

that the population covariance matrix is given by

ΣX =


1 + α 0 . . . 0

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 (20)

For notational convenience, assume that σ2

T = 1. In this setting, the MSFE
for random subset regression is given by

E
[(
x′Tβ − x′TERSRi

[Riγ̂i]
)2] ≤ k +

p

k
(αβ2

1 + β′β) (21)
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This expression depends explicitly on the size of the coefficient β1. This in
contrast with random projection regression, for which the MSFE is given by

E
[(
x′Tβ − x′TERPRi

[Riγ̂i]
)2] ≤ k +

p+ α

k
β′β (22)

RS and RP versus OLS The simplest scenario is when α = 0 in (20),
and βi = c for i = 1, . . . , s, with s ≤ p, and zero otherwise. We refer to s as
the sparsity of the coefficient vector β. Both for RS and RP the bound on
the MSFE reduces to

E
[(
x′Tβ − x′TERi [Riγ̂i]

)2] ≤ σ2

T

[
k +

ps

k
c2
]

(23)

When using the optimal value of k derived in Appendix C, k∗ = c
√
ps, this

reduces to
E
[(
x′Tβ − x′TERi [Riγ̂i]

)2] ≤ 2c
√
ps (24)

Note that the optimal size is of order O(
√
ps), which can be much larger

than what one might expect based on findings when forecasting using factor
models where typically around 5 factors are selected, as for example in Stock
and Watson (2012). In the empirical setting of Section 4, we have p = 130
such that even at a sparsity level of 10%, the optimal model size is k∗ = 36.

Under the optimal value of k, the relative performance compared to

OLS is given by 2c
√

s
p . As one might expect, the increase in accuracy of the

randomized methods compared to OLS is larger when the coefficient size
and the number of non-zero coefficients are small.

RS versus RP To examine the relative performance of RS and RP, we
analyze the difference in MSFE obtained from (21) and (22)

∆ =
p

k
α

[
β2

1 −
β′β

p

]
(25)

If all coefficients are of the same size, then β2
1 ≈

β′β
p and the methods are

expected to perform equally well. The same happens if the covariance matrix
is well-conditioned, i.e. α → 0 and all eigenvalues of the covariance matrix
are of the same size.

For non-zero α, two things can happen. First, consider a typical principal
component regression setting where β1 is large while all other coefficients
are close or equal to zero. Here, the MSFE for random projection is only
affected by the large coefficient β1 through the inner product β′β

p . Random
subset regression on the other hand suffers, as the MSFE depends explicitly
on the product αβ2

1 . This setting therefore favors random projection. The
difference between the two methods increases as β1 and/or α grow larger.
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In contrast with the previous setting, it is also possible that the fac-
tor associated with the largest eigenvalue of ΣX is not associated with the
dependent variable. This is the case when α is large, while β1 = 0. If
any signal is present in the remaining factors, random subset regression will
outperform random projection.

In addition to the contrast in MSFE, there is also a difference in the
optimal subspace dimension. We have

k∗RS =
√
p(αβ2

1 + β′β)

k∗RP =
√

(p+ α)β′β
(26)

In the factor setting where both α and β1 are large, the optimal dimension
for random subset regression can be much larger. If on the other hand β1

is close to or equal to zero, random projection chooses a larger subspace
dimension when α > 0.

2.2 Feasibility of the MSFE bounds

The bounds from the previous section are calculated using expectations
over the random matrix Ri. In reality we have to settle for a finite number
of draws. We therefore need the average over these draws to concentrate
around the expectation, i.e. with high probability it should hold that

∆ =

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
i=1

RiR
′
iΣXRiR

′
i − E

[
RiR

′
iΣXRiR

′
i

]∣∣∣∣∣
∣∣∣∣∣ < e (27)

where || · || denotes the Euclidean norm and e is some small, positive num-
ber. Such a concentration can be proven both for random projections and
for random subset regression using the following theorem by Ahlswede and
Winter (2002)

Theorem 5 Let Xi, i = 1, . . . , N be a p × p independent random posi-
tive semi-definite matrix with ||Xi|| ≤ 1 almost surely. Let SN =

∑N
i=1Xi

and Ω =
∑N

i=1 ||E[Xi]||, then for all ε ∈ (0, 1)

P (||SN − E[SN ]|| ≥ εΩ) ≤ 2p exp(−ε2Ω/4) (28)

Since this holds for all ε ∈ (0, 1), we can make εΩ arbitrarily small, which
we use to show that (27) holds with high probability for small e. Using the
same approach, it is then straightforward to show that

∆̃ =

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
i=1

RiR
′
i − E

[
RiR

′
i

]∣∣∣∣∣
∣∣∣∣∣ < e (29)

for some finite number N .
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Random subset regression Consider random permutation matricesRi ∈
Rp×k suitably scaled by a factor

√
p
k to ensure that E[RiR

′
i] = I. Let

Qi = RiR
′
iΣXRiR

′
i, then

||Qi|| ≤ ||ΣX || · ||RiR′i||2 =
(p
k

)2
||ΣX || (30)

using that for any draw of Ri, the Euclidean norm of the outer product
satisfies ||RiR′i|| =

p
k . Define now Xi = Qi/||Qi||. Then

Ω = N
||E [RiR

′
iΣXRiR

′
i] ||( p

k

)2 ||ΣX ||
(31)

where we use that ||E [RiR
′
iΣXRiR

′
i]|| is independent of i which can be

observed from (13). We can simply plug this expression into (28) to obtain

P

(
||∆|| ≥ ε ||E [RiR

′
iΣXRiR

′
i] ||( p

k

)2 ||ΣX ||

)
=

≤ 2p exp

(
−ε2N ||E [RiR

′
iΣXRiR

′
i] ||

4
( p
k

)2 ||ΣX ||

) (32)

Now, to satisfy (27) with high probability, we need the right hand side to
be close to zero. If we require for some δ ∈ (0, 1) that

2p exp

(
−ε2N ||E [RiR

′
iΣXRiR

′
i] ||

4
( p
k

)2 ||ΣX ||

)
≤ δ (33)

then we should choose the number of samples

N ≥ 4||ΣX ||
ε2||E [RiR′iΣXRiR′i] ||

(p
k

)2
log

(
2p

δ

)
(34)

For the term in the denominator we know by Theorem 2 that

||E
[
RiR

′
iΣXRiR

′
i

]
|| = O

(p
k

)
(35)

Hence, we need
N = O(p log p) (36)

draws of the random matrix to obtain results that are close to the bounds of
the previous paragraph. This result shows the feasibility of random subset
regression in practice. It also provides a theoretical justification of the results
obtained in Elliott et al. (2013) and Elliott et al. (2015), where it was found
that little prediction accuracy is lost by using a finite number of random
draws of the subsets.
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Random projection regression For random projection regression, sim-
ilar bounds to the ones we found for random subset regression have been
established when Ri is a random projection matrix. The proof in this case is
somewhat more involved as one needs additional concentration inequalities
to bound the Euclidean norm ||RiR′i|| with high probability. A complete
proof of the following theorem can be found in Kabán et al. (2015)

Theorem 6: Let ΣX be a positive semi-definite matrix of size p × p and
rank r. Furthermore, let Ri, i = 1, . . . N be independent random projections
with [Ri]jk ∼ 1√

k
N(0, 1). Define ∆ as in (27), then for all ε ∈ (0, 1)

P

(
∆ ≥ ε ||E [RiR

′
iΣXRiR

′
i]||

K

)
≤ 2p exp

(
−ε2N ||E [RiR

′
iΣXRiR

′
i]||

4K

)
+ 4N exp

(
−N

1/3

2

) (37)

where

K = ||ΣX ||
[(

1 +

√
p

k

)
+

1√
k

]2 [(√
r

k
+

√
p

k

)
+

1√
k

]2

(38)

If we neglect the last term of (37), then by the same arguments as above it
can be shown that the required order of draws is the same as for random
subset regression, i.e. N = O(p log p). The additional term on the right-
hand side of (37) implies that we need a slightly larger number of draws for
random projection regression. In practice however, we found no difference
in the behavior for a finite number of draws between the two methods.

3 Monte Carlo experiments

We examine the practical implications of the theoretical results in a Monte
Carlo experiment. In a first set of experiments we show the effect of sparsity
and signal strength on the mean squared forecast error, and a second set of
experiments shows in which settings one of the random subspace methods is
preferred over the other. The prediction accuracy of the random subspace
methods is evaluated relative to several widely used alternative regulariza-
tion techniques.

3.1 Monte Carlo set-up

The set-up we employ is similar to the one by Elliott et al. (2015). The data
generating process takes the form

yt+1 = x′tβ + εt+1, (39)
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where xt is a p× 1 vector with predictors, β a p× 1 coefficient vector, and
εt+1 an error term with εt+1 ∼ N(0, σ2

ε).
In each replication of the Monte Carlo simulations, predictors are gen-

erated by drawing xt ∼ N(0,ΣX), after which we standardize the predictor
matrix. The covariance matrix of the predictors equals ΣX = 1

pP
′P , where

P is a p× p matrix whose elements are independently and randomly drawn
from a standard normal distribution. As argued by Elliott et al. (2015), this
ensures that the eigenvalues of the covariance matrix are reasonably spaced.

The strength of the individual predictors is considered local-to-zero by
setting β =

√
σ2
ε/T · bιs for a fixed constant b The vector ιs contains s non-

zero elements that are equal to one. We refer to s as the sparsity of the
coefficient vector. We vary the signal strength b and the sparsity s across
different Monte Carlo experiments. In all experiments, the error term of the
forecast period εT+1 is set to zero, as this only yields an additional noise
term σ2 which is incurred by all forecasting methods.

We employ two sets of experimental designs, which mimick the high-
dimensional setting in the empirical application by choosing the number of
predictors p = 100 and the sample size T = 200. Results are based on
M = 10, 000 replications of the data generating process (39).

In the first set of experiments, we vary the signal to noise ratio b and
the sparsity s over the grids b ∈ {0.5, 1.0, 2.0} and s ∈ {10, 50, 100}. This
allows us to study the effect of sparsity and signal strength on the MSFE
and the optimal subspace dimension.

The second set of experiments reflects scenarios where random subset
and random projection regression are expected to differ based on the discus-
sion in Section 2.1.3. In this case we replace xt in the DGP (39) by a subset
of the factors extracted from the sample covariance matrix 1

T

∑T
t=1 xtx

′
t us-

ing principal component analysis. Denote by fi for i = 1, . . . , p the extracted
factors sorted by the explained variation in the predictors. In the first three
experiments, we associate nonzero coefficients with the 10 factors that ex-
plain most of the variation in the predictors. We refer to this setting as
the top factor setting. This setting is expected to suit random projection
over random subset regression. In the remaining experiments, we associate
the nonzero coefficients with factors {f46, . . . , f55}, which are associated with
intermediately sized eigenvalues. This setting is referred to as the intermedi-
ate factor setting and expected to suit random subset regression particularly
well. In both the top and intermediate factor setting, the coefficient strength
b is again varied as b ∈ {0.5, 1.0, 2.0}.

We generate one-step-ahead forecasts by means of random projection
and random subset regression using equation (7) in which we vary the sub-
space dimension over k = {1, . . . , p}. The subspace methods, as well as the
benchmark models discussed below, estimate (39) with the inclusion of an
intercept that is not subject to the dimension reduction or shrinkage proce-
dure. We average over N = 1, 000 predictions of the random subspace meth-
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ods to arrive at a one-step-ahead forecast. This is in line with the findings
in Section 2.2 which suggest to use O(p log p) = O(100 · log 100) = O(460)
draws.

Benchmark models We compare the performance of the random meth-
ods with principal component regression, and partial least squares regression
introduced by Wold (1982). Both methods approximate the data generating
process (39) as

yt+1 = z′tδ
f +

k∑
i=1

ftiβ
f
i + ηt (40)

where k ∈ {1, . . . , p}. The methods differ in their construction of the fac-
tors fti. Principal component regression is implemented by extracting the
factors from the standardized predictors xt with t = 1, . . . , T using prin-
cipal component analysis. We then estimate (40) and generate a forecast

as ŷT+1 = z′tδ̂
f +

∑k
i=1 fT iβ̂

f
i . Note that for the top factor setting in the

second set of experiments, the principal component regression model is thus
correctly specified.

Partial least squares uses a two-step procedure to construct the factors,
as described by Groen and Kapetanios (2016). We orthogonalize both the
standardized predictors xt and the dependent variable yt+1 with respect to
zt for t = 1, . . . , T−1. We then calculate the covariance of each predictor xit
with yt+1 which yields weights w = {w1, . . . , wp}. The first factor is readily
constructed as ft1 = x′tw. We then orthogonalize xit and yt+1 with respect
to this factor and repeat the procedure with the corresponding residuals
until the required number of factors ft1, . . . , ftk is obtained. To construct a
forecast we require fT for which the above procedure is repeated now taking
t = 1, . . . , T . Calculating the covariance with yT+1 naturally is infeasible,
such that the same weights wi are used as obtained before.

In addition to comparing the random subspace methods to principal
component regression and partial least squares, we include two widely used
alternatives: ridge regression (Hoerl and Kennard, 1970) and the lasso (Tib-
shirani, 1996). We generate one-step-ahead forecasts using these methods
by ŷT+1 = z′tδ̂k + x′T β̂k, with

(δ̂k, β̂k) = arg min
δ,β

(
1

T − 1

T−1∑
t=1

(yt+1 − z′tδ − x′tβ)2 + kP (β)

)
, (41)

where zt includes an intercept. The penalty term P (β) =
∑p

j=1
1
2β

2
j in

case of ridge regression and P (β) =
∑p

j=1 |βj | for the lasso. The penalty
parameter k controls the amount of shrinkage. In contrast to the previous
subspace methods, the values of k are not bounded to integers nor is there a
natural grid. We consider forecasts based on equally spaced grids for ln k of
100 values; ln k ∈ {−30, . . . , 0} for lasso and ln k ∈ {−15, . . . , 15} for ridge
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regression. In general, we expect lasso to do well when the model contains
a small number of large coefficients. Ridge regression on the other hand is
expected to do well when we have many weak predictors.

Evaluation criterion We evaluate forecasts by reporting their mean squared
forecast error relative to that of the prevailing mean model that takes
ȳT+1 = 1

T−1

∑T−1
t=1 yt+1. The mean squared forecast error is computed as

MSFE =
1

M

M∑
j=1

(y
(j)
T+1 − ŷ

(j)
T+1)2, (42)

where y
(j)
T+1 is the realized value and ŷ

(j)
T+1 the predicted value in the jth

replication of the Monte Carlo simulation. The number of replications M is
set equal to M = 10, 000.

3.2 Simulation results

3.2.1 Sparsity and signal strength

Table 1 shows the Monte Carlo simulation results for the first set of experi-
ments for the value of k that yields the lowest MSFE. Results for different
values of k are provided in Table 5 in the appendix. The predictive perfor-
mance of each forecasting method is reported relative to the prevailing mean.
Values below one indicate that the benchmark model is outperformed.

We find that in general, a lower degree of sparsity results in a lower
relative MSFE. Since the predictability increases in s, it is not surprising
that a less sparse setting results in better forecast performance relative to the
prevailing mean, which ignores all information in the predictors. Similarly,
the prediction accuracy also clearly increases with increasing signal strength.
The results for different values of k reported in Table 5 in the appendix, show
that in case of a weak signal, increasing the subspace dimension worsens the
performance, due to the increasing effect of the parameter estimation error
when the predictive signal is small. This dependency on k tends to decreases
for large values of s and b, where we observe smaller differences between the
predictive performance over the different values of k.

Comparing the random subspace methods, we find that in these exper-
iments, as expected, the predictive performance of random projections and
random subsets is almost the same. Table 1 shows that when choosing the
optimal subspace dimension, these methods outperform both the prevailing
mean as principal component regression and partial least squares for each
setting. Lasso is not found to perform well. Only in the extremely sparse
settings where s = 10 and b increases, its performance tends towards the
random subspace methods. Ridge regression yields similar prediction accu-
racy as the random subspace methods. For strong signals, when b = 2 the
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Table 1: Monte Carlo simulation: MSFE under optimal subspace dimension

b RP RS PC PL RI LA

s = 10

0.5 0.966 ( 2) 0.966 (2) 1.259 (1) 9.698 (1) 0.969 (-3.8) 1.000 (-30.0)
1.0 0.866 (8) 0.867 (8) 1.052 (1) 3.087 (1) 0.860 (-2.3) 0.960 (-28.2)
2.0 0.630 (22) 0.629 (22) 0.953 (7) 0.962 (1) 0.632 (-1.1) 0.648 (-27.6)

s = 50

0.5 0.831 (10) 0.829 (10) 1.049 (1) 2.492 (1) 0.829 (-2.0) 0.974 (-28.2)
1.0 0.574 (25) 0.574 (25) 0.869 (14) 0.796 (1) 0.579 (-0.8) 0.724 (-27.6)
2.0 0.289 (46) 0.290 (46) 0.428 (43) 0.372 (2) 0.304 ( 0.5) 0.369 (-26.7)

s = 100

0.5 0.715 (16) 0.714 (16) 0.998 (1) 1.383 (1) 0.712 (-1.4) 0.872 (-27.9)
1.0 0.436 (35) 0.436 (35) 0.667 (25) 0.535 (1) 0.438 (-0.2) 0.569 (-27.3)
2.0 0.195 (56) 0.195 (56) 0.277 (61) 0.236 (3) 0.200 (0.8) 0.259 (-26.4)

Note: this table reports the MSFE relative to the benchmark of the prevailing
mean, for the optimal value of k corresponding to the minimum MSFE which is
given in brackets. For additional information, see the note following Figure 5

random subspace methods perform better, whereas for very weak signals
with b = 0.5 ridge regression appears to have a slight edge.

Table 1 shows that the optimal subspace dimension increases with both
the sparsity s and the signal strength governed by b. Interestingly, random
subset regression and random projection regression select exactly the same
subspace dimension. Principal components is observed to select less factors
for almost all settings. The results for partial least squares reflect that in
settings with a small number of weak predictors, the factors cannot be con-
structed with sufficient accuracy. In these settings, more accurate forecasts
are therefore obtained by ignoring the factors all together. Note that where
the parameter k has a intuitive appeal in the dimension reduction meth-
ods, the values in the grid of k for lasso and ridge regression methods lack
interpretation.

3.2.2 Experiments using a factor design

The small differences between random subset and random projection regres-
sion in the previous experiments stand in stark contrast with the findings
on the factor structured experiments. The relative MSFE for the choice of k
that yields the lowest MSFE compared to the prevailing mean is reported in
Table 2. Table 6 in the appendix shows results for different values of k. We
observe precisely what was anticipated based on the discussion in Section
2.1.3. In the top factor setting, where the nonzero coefficients are associated
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Table 2: Monte Carlo Simulation: optimal subspace dimension under a
factor design

b RP RS PC PL RI LA

Top factor setting

0.5 0.713 (10) 0.959 (9) 0.952 (3) 2.466 (1) 0.712 (-2.0) 0.861 (-28.2)
1.0 0.421 (21) 0.853 (27) 0.297 (10) 0.501 (1) 0.419 ( -1.1) 0.474 (-27.9)
2.0 0.202 (33) 0.573 (60) 0.075 (10) 0.133 (1) 0.202 ( -0.5) 0.147 (-27.6)

Intermediate factor setting

0.5 1.010 (1) 0.998 (1) 1.489 (1) 16.766 (1) 1.000 (-15.0) 1.000 (-29.7)
1.0 1.002 (1) 0.982 (4) 1.181 (1) 7.034 (1) 1.000 (-6.5) 1.000 (-29.4)
2.0 1.001 (1) 0.916 (16) 1.063 (1) 2.894 (1) 1.000 (-15.0) 1.000 (-30.0)

Note: this table shows the out-of-sample performance of random projection (RP),
random subset (RS), principal component (PC), partial least squares (PL), ridge
(RI), and lasso (LA) in the Monte Carlo simulations using a factor design and
selecting the value of k that yields the minimum MSFE compared to forecasting
using the prevalent mean. For additional information, see the note following Table
6.

with the factors corresponding to the largest 10 eigenvalues, random pro-
jection regression outperforms random subset regression by a wide margin.
For a weak signal, when b = 0.5, it even outperforms principal component
regression, which is correctly specified in this set-up. When b = 2, we are in
a setting where we have a small number of large coefficients. As expected,
this favors lasso, although not to the extend that it outperforms principal
component regression. The findings are almost completely reversed in the in-
termediate factor setting, when the nonzero coefficients are associated with
factors f46, . . . , f55. Here we observe that random subset regression out-
performs random projection. In fact, random subset regression is the only
method that is able to extract an informative signal from the predictors and
outperform the prevailing mean benchmark.

The difference in predictive performance is reflected in the optimal sub-
space dimension reported in brackets in Table 2. For the top factor setting,
when b = {1, 2}, we observe that the MSFE for random subset regression
is minimized at substantially larger values than for random projection re-
gression. This evidently increases the forecast error variance, and the added
predictive content is apparently too small to outweigh this. Principal compo-
nent regression in turn selects the correct number of factors when b = {1, 2}.
In the intermediate factor setting, the dimension of random subset is again
larger than for random projection, with an impressive difference when b = 2.
Here, random projection is apparently not capable to pick up any signal and
selects k = 1, while random subset regression uses a subspace dimension of
k = 16. Lasso and ridge both choose such a strong penalization that they
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reduce to the prevailing mean benchmark for all choices of b.

3.3 Relation between theoretical bounds and Monte Carlo
experiments

The qualitative correspondence between the results from the Monte Carlo
experiments and the theoretical results show that the bounds are useful to
determine settings where the random subspace methods are expected to do
well. In this section, we investigate how close the bounds are to the exact
MSFE obtained in the Monte Carlo experiments.

Figure 1 shows the MSFE over different subspace dimensions of random
projection and random subset regression, along with the theoretical upper
bounds on the MSFE derived in Section 2.1, for the first set of experiments
described above. As we found in Table 5, the values of the MSFE of the
random subspace methods are almost identical to each other over the whole
range of k. The bounds are closest to the exact MSFE from the Monte
Carlo experiments when the signal is not too strong and for large values of
k. The bound for random subset regression is tighter than the bound for
random projection regression due to the lack of exact orthogonality of the
projection matrix. From the Monte Carlo results, it appears that this lack
of orthogonality is not a driving force behind the difference between both
methods.

In Figure 2 we show the bounds for the factor settings. Here we see
that the bounds correctly indicate which method is expected to yield better
results in the settings under consideration. The upper panel, corresponding
to the top factor structure, shows the bound for random projection to be
lower. In line with our theoretical results, the optimal subspace dimension
for random projection regression is found to be lower. In the lower panel
displays the MSFE in the intermediate factor setting. We observe that both
the bounds and the exact Monte Carlo results indicate that random subset
regression is best suited in this case.

4 Empirical application

This section evaluates the predictive performance of the discussed methods
in a macroeconomic application.

4.1 Data

We use the FRED-MD database consisting of 130 monthly macroeconomic
and financial series running from January 1960 through December 2014.
The data can be grouped in eight different categories: output and income
(1), labor market (2), consumption and orders (3), orders and inventories
(4), money and credit (5), interest rate and exchange rates (6), prices (7),
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Figure 1: Monte Carlo simulation: comparison with theoretical bounds
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Note: this figure shows the MSFE for different values of the subspace dimension k, along
with the theoretical upper bounds on the MSFE derived in Section 2.1 after a small
sample size correction. The different lines correspond to the upper bound for random
projections (bound RP, diamond marker), upper bound for random subsets (bound RS,
asterisk marker), and the evaluation criteria for the dimension reduction methods random
projections (MC RP, solid) and random subsets (MC RS, dashed). The four panels cor-
respond to settings in which the sparsity s alternates between 10 and 100, and the signal
to noise ratio parameter b between 0.5 and 1.

and stock market (8). The data is available from the website of the Fed-
eral Reserve Bank of St. Louis, together with code for transforming the
series to render them stationary and to remove severe outliers. The data
and transformations are described in detail by McCracken and Ng (2015).
After transformation, we find a small number of missing values, which are
recursively replaced by the value in the previous time period of that variable.

4.2 Forecasting framework

We generate forecasts for each of the 130 macroeconomic time series using
the following equation

yt+1 = z′tδ + x′tRiγi + ut+1,

where zt is a q × 1 vector with predictors which are always included in the
model and not subject to the dimension reduction methods, xt a p×1 vector
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Figure 2: Monte Carlo simulation: comparison with theoretical bounds -
factor design
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Note: this figure shows the MSFE for different values of the subspace dimension k, along
with the theoretical upper bounds on the MSFE derived in Section 2.1 for the top and
intermediate factor settings. For additional information, see the note following 1.

with possible predictors, and Ri a p×k projection matrix. In this application
yt+1 is one of the macroeconomic time series, zt includes an intercept along
with twelve lags of the dependent variable yt+1, and xt consists of all 129
remaining variables in the database. The predictors in xt are projected on
a low-dimensional subspace using four different projection methods whose
projection matrices are discussed in Section 2: random projection regression
(RP), random subset regression (RS), principal component regression (PC)
and partial least squares (PL). In addition, we again compare the perfor-
mance to lasso (LA) and ridge regression (RI) as described in Section 3.1, as
well as to the baseline AR(12) model (AR). Predictive accuracy is measured
by the MSFE defined in (42).

We use an expanding window to produce 348 forecasts, from January
1985 to December 2014. The initial estimation sample contains 312 obser-
vations and runs from January 1960 to December 1984. We standardize the
predictors in each estimation window. In case of RP and RS we average over
N = 1.000 forecasts to obtain one prediction. In some cases, random sub-
set regression encounters substantial multicollinearity between the original
predictors. Insofar this leads to estimation issues due to imprecise matrix
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Table 3: FRED-MD: percentage best predictive performance

percentage loss
RP RS PC PL RI LA AR All

p
er

ce
n
ta

ge
w

in
s RP 34.62 84.62 82.31 56.92 56.15 72.31 5.38

RS 65.38 87.69 81.54 66.92 70.00 73.08 42.31
PC 15.38 12.31 46.92 16.15 22.31 50.77 5.38
PL 17.69 17.69 53.08 16.92 20.00 39.23 4.62
RI 43.08 33.08 83.85 83.08 58.46 72.31 3.85
LA 43.85 30.00 77.69 80.00 41.54 69.23 20.00
AR 27.69 26.15 49.23 50.00 27.69 30.77 18.46

Note: this table shows the percentage wins of a method in terms of lowest MSFE
compared to other methods separately, and with respect to all other methods (last
column). Ties occur if only k = 0 is selected by both methods throughout the
evaluation period, which is why losses and wins do not necessarily add up to 100.
The percentages are calculated over forecasts for all 130 series in FRED-MD gen-
erated by random projections (RP), random subsets (RS), principal components
(PC), partial least squares (PL), lasso (LA), ridge regression (RI), and an AR(12)
model (AR). The numbers represent the percentage wins of the method listed in
the rows over the method listed in the columns.

inversion, these are discarded from the average. The models generate fore-
casts with subspace dimension k running from 0 to 100, and we recursively
select the optimal k based on past predictive performance, using a burn-in
period of 60 observations. Note that when k = 0, no additional predictors
are included and we estimate an AR(12) model.

We report aggregate statistics over all 130 series, as well as detailed
results for 4 major macroeconomic indicators out of the 130 series; indus-
trial production index (INDP), unemployment rate (UNR), inflation (CPI),
and the three-month Treasury Bill rate (3mTB). These series correspond
to the FRED mnemonics INDPRO, UNRATE, CPIAUCSL, and TB3MS,
respectively.

4.3 Empirical results

4.3.1 Aggregate statistics

We obtain series of forecasts for 130 macroeconomic variables generated by
six different methods. Table 3 shows the percentage wins of a method in
terms of lowest MSFE compared to each of the other methods. The last
column reports the percentage of the series for which a method outperforms
all other methods. We find that random subset regression is more accurate
than the other methods for 42% of the series. This is a substantial difference
with lasso and the AR(12) model that win in approximately 20% of the
cases. Random projection, principal component regression, ridge regression
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Figure 3: FRED-MD: predictive accuracy of random subspace methods com-
pared with PCR
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Note: this figure shows the MSFE of the forecasts for all series in the FRED-MD dataset
produced by random projection regression (upper panel) and random subset regression
(lower panel), scaled by the MSFE of principal component regression. Series are grouped
in different macroeconomic indicators as described in McCracken and Ng (2015). Values
below one prefer the method over principal components. Colors of the bars different from
white indicate that the difference from one is significant at the 10% level (grey), 5% level
(dark-grey), or 1% level (black), based on a two-sided Diebold-Mariano test.

and partial least squares score approximately equally well at 5%.
If a model is the second most accurate on all series, this cannot be ob-

served in the overall comparison. For this reason, we analyze the relative
performance of the methods in a bivariate comparison. Table 3 shows again
that random subset regression achieves the best results, outperforming the
alternatives for at least 65% of the series. Interestingly, its closest com-
petitor is random projection, which itself is also more accurate than all five
benchmarks for a majority of the series. Out of the benchmark models, ridge
regression appears closest to random subset regression, which is nevertheless
outperformed for more than 66% of the series.

In addition to the ranking of the methods, we are also interested in the
relative MSFE of the methods. To get an overview of the predictive perfor-
mance of the random methods sorted by category, Figure 3 shows relative
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predictive performance compared with principal component regression, for
all series available in the FRED-MD dataset over the period from January
1985 through December 2014. The MSFE is calculated for the subspace
dimension as determined by past predictive performance. The upper panel
shows the relative MSFE of random subset regression to principal compo-
nent regression and the lower panel compares random projection to principal
component regression. Values below one, indicate that the random method
is preferred over the benchmark. As found in Table 3, the random methods
outperform the deterministic principal components in most of the cases. For
random subset regression this happens in 88% of the cases, which is slightly
lower for random projections with 85%. Figure 3 also shows the signifi-
cance of the differences between the methods. The color of the bar indicates
significance as determined by a Diebold and Mariano (1995) test. We see
that for series where principal component regression is more accurate, the
difference with the random methods is almost never significant, even at a
10% level. The random methods show the largest improvements in forecast
performance in category 6, which contains the interest rate and exchange
rate series.

4.3.2 A case study of four key macroeconomic indicators

We look more closely into the predictive performance of the different meth-
ods on four key macroeconomic indicators: industrial production index
(INDP), unemployment rate (UNR), inflation (CPI), and the three-month
Treasury Bill rate (3mTB). In Table 4 we show the MSFE relative to the
AR(12) model for different values of the subset dimension or penalty param-
eter k. The first row of each panel shows the relative MSFE corresponding to
the recursively selected optimal value of k, denoted by kR. The last column
of each panel shows the average relative MSFE over all series.

Consistent with our previous findings, random subset regression per-
forms best over all series when the optimal subspace dimension is selected.
However, some differences are observed when analyzing the four individual
series. For predicting inflation and the treasury bill rate, random projection
yields a lower MSFE compared to random subset regression. Principal com-
ponent regression is worse than the random methods in predicting all four
series and substantially worse on average over all series. The same holds
for partial least squares, with the exception of the three month Treasury
bill rate, where it outperforms random subset, but not random projection
regression.

With regard to the lasso and ridge regression benchmarks, the results
show that on average, these methods are outperformed by both random
subset and random projection regression. For the individual series reported
here, the evidence is mixed. Random subset regression outperforms both
lasso and ridge on industrial production and the unemployment rate series,
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Table 4: FRED-MD: predictive accuracy relative to the AR(12)-model

INDP UNR CPI 3TB Avg. INDP UNR CPI 3TB Avg.

k Random projection regression k Random subset regression

kR 0.955 0.884 0.899 1.123 0.969 kR 0.912 0.863 0.915 1.255 0.962

1 0.987 0.982 0.993 0.969 0.990 1 0.984 0.976 0.992 0.966 0.987
5 0.955 0.936 0.974 0.934 0.969 5 0.942 0.921 0.974 0.929 0.964

10 0.935 0.906 0.954 0.954 0.962 10 0.917 0.892 0.958 0.952 0.957
15 0.926 0.891 0.938 1.001 0.963 15 0.905 0.878 0.943 0.993 0.957
30 0.921 0.879 0.900 1.184 0.987 30 0.894 0.860 0.908 1.133 0.972
50 0.946 0.902 0.883 1.434 1.049 50 0.902 0.875 0.887 1.323 1.017

100 1.109 1.111 0.976 2.016 1.324 100 1.061 1.083 0.950 1.913 1.278

k Principal component regression k Partial least squares

kR 1.027 0.922 0.938 1.360 1.017 kR 1.027 0.917 0.949 1.224 1.011

1 0.953 0.933 1.014 0.974 1.003 1 0.964 0.917 0.998 0.997 1.011
5 0.955 0.921 0.969 1.136 1.007 5 1.110 1.013 0.943 2.066 1.254

10 0.976 0.924 0.932 1.426 1.019 10 1.162 1.143 0.988 2.285 1.357
15 0.973 0.891 0.946 1.585 1.040 15 1.190 1.181 1.002 2.328 1.415
30 1.007 0.888 0.932 1.732 1.102 30 1.209 1.257 1.030 2.359 1.507
50 1.049 0.961 0.918 1.864 1.178 50 1.243 1.287 1.033 2.447 1.541

100 1.192 1.163 1.012 2.290 1.417 100 1.248 1.305 1.045 2.462 1.541

ln k Ridge regression ln k Lasso

kR 0.953 0.881 0.898 1.140 0.974 kR 0.963 0.888 0.905 1.100 0.979

-6 0.997 0.995 0.998 0.990 0.997 -28 0.956 0.934 0.962 0.953 0.979
-4 0.983 0.973 0.989 0.957 0.985 -27 0.917 0.883 0.891 1.127 0.971
-2 0.936 0.907 0.954 0.956 0.962 -26 0.927 0.901 0.901 1.435 1.024
0 0.927 0.881 0.887 1.287 1.008 -25 1.004 0.979 0.924 1.694 1.126
4 1.118 1.118 0.983 2.056 1.341 -22 1.227 1.280 1.038 2.369 1.514
8 1.261 1.324 1.058 2.464 1.592 -15 1.305 1.390 1.079 2.612 1.639

12 1.305 1.392 1.079 2.606 1.641 -5 1.305 1.392 1.080 2.613 1.641

Note: this table shows the out-of-sample performance of random projections, random
subsets, principal components, lasso, and Ridge regression relative to the benchmark
of an autoregressive model of order twelve, for different values of subspace dimen-
sion k and the recursively selected optimal value of k denoted by kR. For lasso and
ridge regression, the penalty parameter runs over a grid of values k. The predic-
tive accuracy is reported for the dependent variables industrial production (INDP),
unemployment rate (UNR), inflation (CPI), three month treasury bill rate (3TB),
and the average over the mean squared forecast errors for all series. The predictive
accuracy is measured by relative MSFE, which equals values below one when the
particular method outperforms the benchmark model.

while the situation is reversed on the inflation and treasury bill rate. Ran-
dom projection has a slight edge when predicting the treasury bill rate, but
is close to ridge regression, which is in line with our findings in Section 3,
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Figure 4: FRED-MD: predictive accuracy for different subspace dimensions
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Note: this figure shows the MSFE for different values of the subspace dimension k. The
different lines correspond to the evaluation criterium for the dimension reduction meth-
ods random projection (RP, solid), random subset (RS, dashed), and principal compo-
nent regression (PC, dotted). The models at k = 0 correspond to the benchmark of
an autoregressive model of order twelve. The four panels correspond to four dependent
variables, industrial production (INDP), unemployment rate (UNR), inflation (CPI), and
three month treasury bill rate (3mTB).

and lasso on all four series.
Table 4 also shows the dependence of the MSFE on the value of k if we

were to pick the same k throughout the forecasting period. Apart from the
treasury bill rate, the random subspace methods outperform the AR(12)
benchmark model for almost all subspace dimensions, even for very large
values of k. Compared to PC and PL, we again see that the random methods
select much larger values of k.

To visualize the dependence on k for the different projection methods,
Figure 4 shows the results for all subspace dimensions ranging from 0 to
100. The first thing to notice is the distinct development of the MSFE of
forecasts generated by principal components compared to the random sub-
space methods. The MSFE evolves smoothly over subspace dimensions for
random projections and random subsets, where the MSFE of the principal
components changes rather erratically.

Figure 4 confirms that the random methods reach their minimum for
relatively large values of k as discussed in Section 2. The selected value is
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substantially larger than the selected dimension when using principal com-
ponent regression. The difference is especially clear for industrial production
in the upper left panel, where principal components suggests to use a sin-
gle factor, while the random methods reach their minimum when using a
subspace of dimension 30. Apparently, the information in the additional
random factors outweigh the increase in parameter uncertainty and contain
more predictive content than higher order principal components. In general,
the MSFE of the random methods seems to be lower for most values of k,
except for inflation where a large principal component model yields more
accurate results.

In practice, we do not know the optimal subspace dimension. Therefore,
real-time forecasts are based on recursively selected values for k based on
past performance. We found in Figure 4 that the minimum MSFE is lower
for random subset than for random projection regression for all four series
but inflation. However, the MSFE of the treasury bill rate corresponding to
the recursively selected optimal value of k is lower for random projections
while for all fixed k random subsets perform better. This shows that the
selection of k plays an important role in the practical predictive performance
of the methods.

Figure 5 shows the selection of the subspace dimension over time. In
line with the ex-post optimal subspace dimension, the selected value of k
based on past predictive performance is smallest for principal component
regression. The selected subspace dimension for random subset regression
and random projection regression is very similar, but we do find quite some
variation over time. The left upper panel shows that for industrial pro-
duction, the subspace dimension has been gradually decreasing over time.
While starting at a very large dimension around 70 in 1985, this has since
dropped to values around 40. A minor effect of the global financial crisis
is observed on random subset regression. For the unemployment rate in
the right upper panel, we observe that more factors seem to be selected
since 2008 for both randomized methods, although this has not risen above
historically observed values. This is in contrast with the inflation series in
the lower left panel. Since the early 2000s both random methods choose
gradually large subspaces, while principal components shows a single sharp
increase in 2009. The right lower panel shows that for the treasury bill rate,
as one might expect, the subspace dimension decreases over time, reaching
its minimum after the onset of the global financial crisis. The historical low
can be explained by the lack of predictive content in the data since the zero
lower bound of the interest rate impedes most variation in the dependent
variable.

The dimension reduction methods are expected to trade of bias and vari-
ance when the subspace dimension k varies. One would typically expect the
forecast variance to be decreasing with k, while the bias is increasing with
k. Figure 6 plots the bias-variance trade-off of the dimension reduction
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Figure 5: FRED-MD: recursive selection of subspace dimensions
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Note: this figure shows the selection of subset dimension k. The different lines correspond
to the dimension reduction methods random projection (RP, solid), random subset (RS,
dashed), and principal component regression (PC, dotted). At each point in time the
subset dimension is selected based on its past predictive performance up to that point
in time. The four panels correspond to four dependent variables, industrial production
(INDP), unemployment rate (UNR), inflation (CPI), and the three month treasury bill
rate (3mTB).

methods. It is immediately clear that for PC, the behavior is very erratic.
Although in general a large number of factors translates into a larger forecast
variance, this increase is by no means uniform. For random subset regression
and random projection regression, we find values for k where both the vari-
ance and the bias are smaller relative to principal components, explaining
the better performance of the random method. The relationship between
forecast error variance and squared bias follows a much smoother pattern
over k for the random methods. Nevertheless, it is striking that also for
both random methods the forecast error variance does not monotonically
increase in k, and the bias not automatically declines with increasing sub-
space dimension. This observation is explained by the fact that the forecasts
are constructed as averages over draws of projection matrices. The reported
forecast error variance only includes the ‘explained’ part of the variance,
the variance over the averaged predictions. However, there is also an unex-
plained part, due to the variance over the predictions within the averages.
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Figure 6: FRED-MD: bias-variance trade-off
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Note: this figure plots the forecast error variance against the squared bias for different
values of the subspace dimension k. The different lines correspond to the dimension reduc-
tion methods random projection (RP, solid), random subset (RS, dashed), and principal
component (PC, dotted) regression. The four panels correspond to four dependent vari-
ables, industrial production (INDP), unemployment rate (UNR), inflation (CPI), and the
three month treasury bill rate (3mTB).

Appendix D shows that the sum of the explained and unexplained part, the
total forecast error variance, increases in the subspace dimension, but due to
the variance from the draws of the projection matrix, the observed forecast
error variance can be decreasing in k.

5 Conclusion

In this paper we study two random subspace methods that offer a promising
way of dimension reduction to construct accurate forecasts. The first method
randomly selects many different subsets of the original variables to construct
a forecast. The second method constructs predictors by randomly weighting
the original predictors. Although counterintuitive at first, we provide a
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theoretical justification for these strategies by deriving tight bounds on their
mean squared forecast error. These bounds are highly informative on the
scenarios where one can expect the two methods to work well and where one
is to be preferred over the other.

The theoretical findings are confirmed in a Monte Carlo simulation,
where in addition we compare the predictive accuracy to several widely used
benchmarks: principal component regression, partial least squares, lasso reg-
ularization and ridge regression. The performance increases for nearly all
settings under consideration compared to principal component regression
and lasso regularization. Compared to ridge regression, we find large dif-
ferences when we impose a factor structure on the model. When nonzero
coefficients are associated with factors that explain most of the variance,
random projection regression gives results very similar to ridge regression,
but random subset regression is clearly outperformed. On the other hand,
when the nonzero coefficients are associated with intermediate factors, ran-
dom subset regression is the only method that is capable of beating the
historical mean.

In the application, it seems this last scenario is prevalent, with random
subset regression providing more accurate forecasts in 45% of the series. In
method-by-method comparison, it outperforms the benchmarks in no less
than 67% of the series. It also outperforms random projection regression in
65% of the cases. Random projection regression itself is more accurate than
the benchmarks in at least 56% of the series.
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A Proof of Theorem 1

We start by noting that by Jensen’s inequality

E
[(
x′Tβ − x′TERi [Riγ̂i]

)2] ≤ ERiE
[(
x′Tβ − x′TRiγ̂i

)2∣∣∣Ri] (43)

Furthermore, since by assumption E[xTx
′
T ] = ΣX and γ̂i is independent of

xT we have that

E
[(
x′Tβ − x′TRiγ̂i

)2]
= E

[
(β −Riγ̂i)′ΣX (β −Riγ̂i)

]
+ op(T

−1)
(44)

For the MSFE, we now have

E
[
(x′T (β − ERi [Riγ̂i]))

2
]

=

≤ ERiE
[
||Σ1/2

X (β −Riγ̂i) ||2
∣∣∣Ri]+ op(T

−1)

= ERiE
[
||Σ1/2

X (β −Riγi −Ri(γ̂i − γi)) ||2
∣∣∣Ri]+ op(T

−1)

= ERi ||Σ
1/2
X (β −Riγi)||2 + ERiE

[
||Σ1/2

X Ri(γ̂ − γi)||2
∣∣∣Ri]

− 2ERiE
[
(β −Riγi)′ΣXRi(γ̂i − γi)

∣∣Ri]+ op(T
−1)

(45)

The parameter γi is estimated by OLS and we have

XRi(γ̂i − γi) = PXRiX(β −Riγi) + PXRiε (46)

where PXRi denotes the projection matrix on the subspace spanned by the
columns of XRi. The crucial step, observed in Kabán (2014), is that γi is
the optimal parameter vector in the low-dimensional subproblem, defined as

γi = arg min
u

E

[
T−1∑
t=1

(
yt+1 − x′tRiu

)2∣∣∣∣∣Ri
]

(47)

32



This implies the following inequality

||Xβ −XRiγi||2 ≤ ||Xβ −XRiR′iβ||2 (48)

Substituting (48) and (46) into (45) and using that 1
TX

′X = ΣX + op(T
−1)

we obtain

E
[
(x′Tβ − x′TERi [Riγ̂i])

2
]

≤ σ2 k

T
+ ERi

[
(β −Riγi)′ΣX(β −Riγi)

]
− ERi

[∣∣∣∣∣∣P
Σ

1/2
X Ri

Σ
1/2
X (β −Rγi)

∣∣∣∣∣∣2]+ op(T
−1)

≤ σ2 k

T
+ ERi

[
β′(I −RiR′i)ΣX(I −RiR′i)β

]
− ERi

[∣∣∣∣∣∣P
Σ

1/2
X Ri

Σ
1/2
X (β −Riγi)

∣∣∣∣∣∣2]+ op(T
−1)

(49)

Finally, (47) has a simple solution

γi =

(
1

T − 1

T−1∑
t=1

R′ixtx
′
tRi

)−1(
1

T − 1

T−1∑
t=1

R′ixtx
′
tβ

)
(50)

Hence
Σ

1/2
X (β −Riγi) =

(
I − P

Σ
1/2
X Ri

)
Σ

1/2
X β (51)

which shows that the last term of (49) is identically zero.

B Derivation of equation (19)

For the difference between the MSFE under random projection and orthog-
onalized random projection we have that

∆ =
1

k

[
β′ΣXβ + trace(ΣX)β′β

]
− p− k

k

1

p2 − 1

[
ptrace(ΣX)β′β − β′ΣXβ

]
=

1

k

[
β′ΣXβ

(
1 +

p− k
p2 − 1

)
− trace(ΣX)||β||2kp− 1

p2 − 1

]
≥ β′ΣXβ

k

p2 − 1 + p− k − kp+ 1

p2 − 1

=
β′ΣXβ

k

p− k
p− 1

≥ 0

(52)
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In the third line we use the fact that ΣX = UΛU ′ with U an orthogonal
matrix and Λ a diagonal matrix consisting of the non-negative eigenvalues
of ΣX . Then

β′ΣXβ − trace(ΣX)||β||2 = β′(ΣX − trace(ΣX))β

= β′U

[
Λ−

(
p∑
i=1

λi

)
I

]
U ′β

≤ 0

(53)

where the last inequality holds since each term on the diagonal satisfies
λi −

∑p
j=1 λj = −

∑
j 6=i λj < 0.

C Optimal bounds

The optimal, but infeasible, choice of k that minimizes the bounds is given
by

k∗RSR =

[
T

σ2
p

p

p− 1

(
β′DΣX

β − 1

p
βΣXβ

)]1/2

k∗RP =

[
T

σ2

(
β′ΣXβ + trace(ΣX)β′β

)]1/2
(54)

The optimal choice of k leads to the following bound for random subset
regression

E
[(
x′Tβ − x′TERSRi

[Riγ̂i]
)2]

=

≤ 2

[
σ2

T
p

p

p− 1

(
β′DΣX

β − 1

p
βΣXβ

)]1/2

− p

p− 1

p∑
j=1

(
β′DΣX

β − 1

p
βΣXβ

)
+ op(T

−1)

(55)

For random projection regression under k = k∗RP we have

E
[(
x′Tβ − x′TERPRi

[Riγ̂i]
)2]

=

≤ 2

[
σ2

T

(
β′ΣXβ + trace(ΣX)β′β

)]1/2

+ op(T
−1)

(56)

D Application: bias-variance tradeoff

The mean squared forecast error can be decomposed in a bias and a variance
component:

E
[
(yt+1 − ERi [ŷ

i
T+1])2

]
= E

[
yt+1 − ERi [ŷ

i
T+1]

]2
+ Var

[
yt+1 − ERi [ŷ

i
T+1]

]
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Figure 7: Bias-variance Trade-off
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Note: this figure plots the forecast error variance against the squared bias for different
values of the subspace dimension k. The three panels show the total forecasts error
variance, the unexplained and the explained part. The forecasts are generated by random
projections in a simulation design as discussed in Section 3.1, where we us M = 1000
replications with b = 1 and s = 50.

The first term equals the squared bias of the forecasts and the second term
the forecast error variance. However, since we average over realizations of
Ri, the second term only includes the explained component of the forecast
error variance. This can be illustrated by applying the law of total variance
on the forecast error of all generated predictions:

Var
[
yt+1 − ŷiT+1

]
= E

[
yt+1 −VarRi [ŷ

i
T+1]

]
+ Var

[
yt+1 − ERi [ŷ

i
T+1]

]
where the left term equals the unexplained and the right term the explained
component of the forecasts error variance.

Because of computational constraints, we do not store predictions for all
different projection matrices in the empirical application. Hence, we setup a
Monte Carlo experiment to investigate the behaviour of the unexplained and
explained components of the forecast error variance. The simulation design
is a small scale version of the experiments explained in Section 3.1, where we
use M = 1000 replications with b = 1 and s = 50 to generate forecasts with
random projection regressions. Figure 7 shows the bias-variance trade-off
for the total variance and the unexplained and explained variance compo-
nents. The total variance behaves as expected; the forecast error variance
increase with the subspace dimension k. The unexplained component shows
unpredictable behaviour, which causes that the explained variance is not
always increasing in k. The third panel of Figure 7 shows similar patterns
as we find in Figure 6, which shows the bias-variance trade-off in the empir-
ical example. The empirical findings can be explained by the fact that the
reported forecast error variance leaves out the unexplained part, leading to
a forecast error variance that can decrease for larger subspace dimensions.
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Table 5: Monte Carlo simulation: MSFE relative to prevailing mean

Random projections - k Random subsets - k

s b 1 10 25 50 1 10 25 50

10 0.5 0.977 1.291 3.584 11.861 0.977 1.301 3.626 11.938
1.0 0.968 0.875 1.382 3.873 0.967 0.876 1.396 3.889
2.0 0.964 0.732 0.635 1.091 0.964 0.729 0.635 1.096

50 0.5 0.965 0.831 1.188 3.160 0.965 0.829 1.196 3.174
1.0 0.963 0.716 0.574 0.885 0.962 0.714 0.574 0.889
2.0 0.962 0.682 0.408 0.293 0.961 0.679 0.406 0.293

100 0.5 0.964 0.756 0.781 1.668 0.963 0.753 0.782 1.673
1.0 0.962 0.697 0.473 0.512 0.962 0.693 0.472 0.513
2.0 0.961 0.678 0.386 0.202 0.961 0.674 0.384 0.202

Principal components - k Partial least squares - k

s b 1 10 25 50 1 10 25 50

10 0.5 1.259 3.883 8.929 19.732 9.698 41.613 50.135 52.279
1.0 1.052 1.696 3.143 6.385 3.087 13.005 15.610 16.278
2.0 0.990 0.961 1.085 1.733 0.962 3.455 4.192 4.408

50 0.5 1.049 1.477 2.584 5.231 2.492 10.157 12.189 12.732
1.0 0.979 0.886 0.941 1.416 0.796 2.781 3.371 3.525
2.0 0.960 0.733 0.518 0.438 0.438 0.679 0.821 0.864

100 0.5 0.998 1.097 1.493 2.761 1.383 5.241 6.326 6.642
1.0 0.971 0.783 0.667 0.790 0.535 1.345 1.621 1.703
2.0 0.959 0.690 0.451 0.287 0.371 0.335 0.424 0.444

Ridge regression - ln k Lasso - ln k

s b -6 -4 -2 0 -28 -27 -26 -25

10 0.5 0.993 0.972 1.370 7.359 1.526 6.449 16.136 27.703
1.0 0.990 0.948 0.873 2.370 0.998 2.239 4.950 8.326
2.0 0.989 0.937 0.707 0.818 0.677 0.818 1.475 2.378

50 0.5 0.990 0.945 0.829 1.981 1.006 1.953 4.111 6.877
1.0 0.988 0.934 0.685 0.689 0.760 0.803 1.257 1.911
2.0 0.985 0.917 0.599 0.306 0.516 0.374 0.404 0.521

100 0.5 0.989 0.940 0.741 1.115 0.872 1.197 2.225 3.585
1.0 0.988 0.929 0.648 0.449 0.671 0.569 0.720 1.007
2.0 0.982 0.900 0.546 0.218 0.425 0.281 0.262 0.300

Note: this table shows the MSFE divided by that of the prevailing mean forecast,
for random projection regression, random subset regression, principal component
regression, partial least squares, lasso, and ridge regression under the data generat-
ing process (39) based on 10,000 replications, for increasing values of the subspace
dimension k. The coefficient size varies over b = {0.5, 1.0, 2.0}, and s = {10, 50, 100}
out of p = 100 coefficients are non-zero.
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Table 6: Monte Carlo simulation: relative MSFE under a factor design

Random projections - k Random subsets - k

s b 1 10 25 50 1 10 25 50

Top
0.5 0.942 0.713 1.217 3.872 0.992 0.959 1.145 2.599
1.0 0.936 0.552 0.438 1.062 0.991 0.917 0.854 1.053
2.0 0.935 0.510 0.230 0.287 0.990 0.903 0.764 0.595

Int.
0.5 1.010 1.834 5.749 19.192 0.998 1.213 2.797 11.190
1.0 1.002 1.299 2.735 7.629 0.993 1.015 1.497 4.435
2.0 1.001 1.068 1.363 2.336 0.990 0.929 0.947 1.558

Principal components - k Partial least squares - k

s b 1 10 25 50 1 10 25 50

Top
0.5 0.976 1.082 2.774 6.390 2.466 13.681 16.341 17.293
1.0 0.901 0.297 0.745 1.719 0.501 3.704 4.393 4.602
2.0 0.883 0.075 0.192 0.449 0.133 0.936 1.125 1.181

Int.
0.5 1.489 5.917 14.398 32.184 16.766 66.078 78.234 82.060
1.0 1.181 2.943 6.388 12.876 7.034 24.611 29.615 31.166
2.0 1.063 1.637 2.722 4.077 2.894 7.410 8.587 8.970

Ridge regression - ln k Lasso - ln k

s b -6 -4 -2 0 -28 -27 -26 -25

Top
0.5 0.983 0.908 0.712 2.296 2.367 5.358 9.181 13.919
1.0 0.981 0.891 0.517 0.680 0.737 1.516 2.582 3.879
2.0 0.976 0.867 0.417 0.226 0.201 0.391 0.648 0.968

Int.
0.5 1.001 1.025 1.931 11.236 10.792 25.880 45.308 68.811
1.0 1.000 1.007 1.340 4.761 4.749 10.264 17.290 25.895
2.0 1.000 1.002 1.083 1.774 1.772 3.053 4.856 7.162

Note: this table shows the out-of-sample performance of random projection regression
(RP), random subset regression (RS), principal component regression (PC), partial
least squares (PL), ridge regression (RI), and lasso (LA) in the Monte Carlo simula-
tions when the underlying model has a factor structure. In the experiments referred
to with ‘High’, we associate nonzero coefficients with the 10 factors that explain most
of the variation in the predictors. In the remaining experiments referred to with ‘Int.’
we associate the nonzero coefficients with intermediate factors {f46, . . . , f55}. For ad-
ditional information, see the note following Table 5.

37


