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Abstract

We introduce a new fractionally integrated model for covariance matrix dynamics

based on the long-memory behavior of daily realized covariance matrix kernels and

daily return observations. We account for fat tails in both types of data by appropri-

ate distributional assumptions. The covariance matrix dynamics are formulated as a

numerically efficient matrix recursion that ensures positive definiteness under simple

parameter constraints. Using intraday stock data over the period 2001-2012, we con-

struct realized covariance kernels and show that the new fractionally integrated model

statistically and economically outperforms recent alternatives such as the Multivariate

HEAVY model and the 2006 “long-memory” version of the Riskmetrics model.

Keywords: multivariate volatility; fractional integration; realized covariance matri-

ces; heavy tails; matrix-F distribution; score dynamics.
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1 Introduction

The recent financial crisis reopened the interest for adequate multivariate volatility models

in various areas of risk- and portfolio management. The econometric literature on these

models has mainly developed along two lines, namely that of multivariate GARCH models

(for an overview, see Silvennoien and Teräsvirta, 2009) and stochastic volatility models (for

an overview, see Asai et al., 2006). More recently, the availability of intraday high-frequency

data has led to a new class of volatility models. These models capture multivariate volatility

dynamics by including realized (co)variance measures, which help to measure and forecast

volatility more precisely than do traditional squares and cross-products of returns; see for

instance Andersen et al. (2001). Typically, these models include either the realized variance

measures of Barndorff-Nielsen and Shephard (2002), or the realized kernel measures of

Barndorff-Nielsen et al. (2008). As an example of the latter, we refer to the HEAVY model

of Shephard and Sheppard (2010). Also Noureldin et al. (2012) develop the multivariate

analogue of the HEAVY model that incorporates the realized covariance or realized kernel

covariance into the model specification.

Volatilities are often found to be strongly persistent. This has led to the further introduc-

tion of models that also account for this data feature. A salient example is the fractionally

integrated GARCH (FI-GARCH) models of Baillie et al. (1996), which captures the strong

persistence in volatilities by a model with long-memory features. Conrad and Haag (2006)

ensure positivity of variances of the FI-GARCH class of models, which is particularly rel-

evant for our multivariate setting to ensure positive definiteness of covariance matrices.

Andersen et al. (2001) argue that realized volatility measures are also highly persistent and

behave as slowly mean-reverting or fractionally integrated processes, which can be modeled

by ARFIMA models; see also Koopman et al. (2005) and Janus et al. (2014). As an alter-

native to the fractionally integrated lag structure, Corsi (2009) develops the HAR model,

which relates realized volatility to a linear combination of lagged daily, weekly and monthly

realized volatilities to incorporate the long-memory effect of volatility.

Despite the abundance of available univariate volatility models that use daily returns

and/or realized measures with long-memory features, we note two main shortcomings of

these models that impede their application to the typical multivariate context. First, these
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models do not account for fat-tailed returns and outliers in either the realized measures, the

returns, or both. Though fat-tailed distributions are often used to describe returns, thin-

tailed distributions are typically used for the realized measures despite the fact that also

data for the realized measures can be subject to outliers and influential observations. For

example, the Flash Crash in 2010 led to a spike in the realized (co)variance of a large number

of assets. Ignoring these data features both in the likelihood and in the volatility propagation

dynamics may have a huge impact on the estimated dynamics for each of the recently

proposed volatility models discussed above. Second, multivariate models that incorporate

the long-memory feature of (realized) (co)variances face the challenge to simultaneously

avoid the curse of dimensionality and solve the requirement of ensuring positive definite

covariance matrices. Chiriac and Voev (2011) deal with these issues by proposing VARFIMA

models for the cholesky decomposition of the realized covariance matrix, while Bauer and

Vorkink (2011) consider modeling the matrix log transformation of the realized covariance

matrix. Both studies, however, model the vectorized (vech) matrix of interest, which may

become computationally intensive when the dimension increases.

In this paper, we solve both of the above issues by introducing a new multivariate

volatility model for realized (kernel) covariance matrices and daily return vectors. We al-

low for both the long-memory behavior and the fat-tailedness of (realized) covariances and

returns by combining fractionally integrated processes with the generalized autoregressive

score (GAS) dynamics of Creal et al. (2011, 2013). The only paper to our knowledge that

combines long-memory and GAS is Janus et al. (2014), but this paper is set entirely in a

univariate context and does not incorporate realized measures. The generalized autoregres-

sive score-driven framework uses the derivative of the log conditional probability density

function to drive the dynamics of the time-varying parameters, which in our case is the co-

variance matrix. The framework has been applied to many settings, including volatility and

location modeling (Harvey, 2013; Harvey and Luati, 2014), credit risk management (Creal

et al., 2014), and systemic risk management (Oh and Patton, 2016; Lucas et al., 2014).

The availability of a closed-form expression for the likelihood function and the optimality

of score-driven steps (see Blasques et al., 2015) make the GAS framework a good starting

point for combining long-memory, fat tails, robust time-varying parameter dynamics, and

ease of estimation.
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To account for fat tails, we assume a matrix-F distribution for the realized covariance

matrix and a Student’s t distribution for the daily returns. The use of the matrix-F dis-

tribution for realized volatility models was first propagated in Opschoor et al. (2014) in

a short-memory context. The combination of the matrix-F and vector-valued Student’s

t distribution allows for a tractable analytic expression for the score with respect to the

unknown, dynamic covariance matrix. The score expressions automatically account for a

reduced impact of outlying realized covariance matrices and/or return vectors in an intuitive

way. This is important, as such influential observations can otherwise corrupt our estimates

of the dynamics of the volatility matrix. To incorporate the long-memory feature into our

model, we replace the usual short-memory lag polynomials in Creal et al. (2013) by their

long-memory counterparts. Due to the matrix formulation of our volatility dynamics, this

can be done in a parsimonious yet flexible way that allows for generalizations of the model

in many directions of empirical interest. The parsimony of the approach is a major asset

in the multivariate context, where the curse of dimensionality looms large. In addition,

we can directly apply the theoretical results of Conrad and Haag (2006) and obtain simple

parameter restrictions to establish positive definiteness of the estimated covariance matrices

over the entire sample period.

We provide an empirical application of our multivariate Fractionally Integrated GAS

model based on the matrix-F and Student’s t distribution (FIGAS tF model from now on)

on daily realized kernels and daily returns for 15 equities from the S&P 500 index. Our

sample spans the period January 2001 to December 2012. Using a forecasting horizon of 1,

5, 10, and 22 days ahead, we compare both statistically and economically the performance

of our new dynamic covariance matrix model to several strong benchmarks, such as the

HEAVY model (Noureldin et al., 2012), the GAS tF model (Opschoor et al., 2014) and

the long-memory version of the RiskMetrics (RM) model introduced by (Zumbach, 2006).

Using a quasi-likelihood loss function, the FIGAS model outperforms the competing models,

especially for long horizons. We assess the economic significance of our results by considering

mean-variance efficient portfolios based on the forecasts. Again we find that the FIGAS tF

model outperforms its competitors by producing statistically significantly lower ex-post

conditional portfolio standard deviations, particularly at longer horizons.

The rest of this paper is set up as follows. In Section 2, we introduce the new FIGAS
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tF model for realized covariance matrices and return vectors under fat-tails. In Section 3,

we apply the model to a panel of daily realized kernels and equity returns. We conclude in

Section 4.

2 Modeling Framework

2.1 The Multivariate FIGAS tF model

Consider a (k×1) vector process yt and a (k×k) matrix process RKt, t = 1, . . . , T , generated

by

yt = µ+ V
1/2
t zt, zt|Ft−1 ∼ Dz(0, Ik), (1)

RKt = V
1/2
t Zt (V

1/2
t )′, Zt|Ft−1 ∼ DZ(Ik), (2)

where Ft−1 is the information set containing all information up to time t− 1, µ denotes the

conditional mean vector of the return vector yt, Vt denotes the conditional covariance matrix,

RKt denotes the realized kernel covariance matrix measure, and zt and Zt denote a (k × 1)

vector-valued and (k × k) matrix-valued innovation with possibly fat-tailed distribution

Dz(·)(0, Ik) and DZ(Ik), respectively, such that Et[zt] = 0 and Et[Zt] = Var[zt] = Ik. The

matrix root V
1/2
t is defined such that V

1/2
t (V

1/2
t )′ = Vt. The realized kernel RKt is a

consistent and robust estimator of Vt correcting for market-microstructure noise; for more

details, see Barndorff-Nielsen et al. (2011). For simplicity and ease of notation, we set

µ = 0. Note, however, that we can easily allow for time-varying conditional means µt that

incorporate for example autoregressive or moving average dynamics into the specification of

yt.

To drive the dynamics of Vt, we follow the score-driven approach of Creal et al. (2011,

2013). This approach adjust the time varying parameter Vt in the direction of steepest

ascent of the local log likelihood function. The approach is computationally straightforward

because of its explicit form for the likelihood function, and is known to possess information

theoretic optimality properties; see Blasques et al. (2015). Let p(yt, RKt | Vt) denote the

conditional predictive density for (yt, RKt). Then the (short-memory) score dynamics for
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Vt are given by

Vt+1 = Ω +B Vt + Ast, st = St ·
(

∂ log p(yt, RKt | Vt)/∂Vt
)

· S ′
t, (3)

where Ω is a k × k matrix of parameters, and for the sake of simplicity A and B are scalar

parameters. Further, st is the scaled score, and St is a scaling matrix to correct for the

curvature of the log predictive density at time t. We come back to the precise form of

the conditional observation density p(yt, RKt | Vt) and the scaled score st in detail further

below.

As shown by Robinson (1991), Baillie et al. (1996), and Andersen et al. (2001), the

covariance matrix Vt typically follows a highly persistent stationary process. To capture

this, we use fractionally integrated dynamics for Vt rather than the short-memory dynamics

as in (3). To cast the score-driven model into its fractionally integrated form, we follow the

approach of Baillie et al. (1996) and rewrite (3) as

(

1− BL
)

s⋆t+1 = Ω +
(

1− (B − A)L
)

st+1, (4)

where L denotes the lag operator Lst = st−1; s
⋆
t = st + Vt; and where the scaled scores

st follow a martingale difference sequence. We replace the left-hand side lag polynomial

(1−B L) by the fractionally integrated lag polynomial (1−L)d (1−φL) for a scalar φ, and

reparameterize the right-hand side polynomial (1− (B−A)L) as (1− B̃ L), thus obtaining

(

1− L
)d (

1− φL
)

s⋆t+1 = Ω +
(

1− B̃ L
)

st+1, (5)

where (1− L)d is the fractional difference operator defined by the binomial expansion

(1− L)d = 1− dL+
d(d− 1)

2!
L2 − d(d− 1)(d− 2)

3!
L3 + . . . , (6)

for any real order of fractional integration parameter |d| < 1. As an example, consider

the univariate case with the assumption of conditional Gaussian returns without realized

measures. We can then show that st = y2t − Vt and s⋆t = y2t and we obtain the precise

formulation of the FIGARCH model of Baillie et al. (1996). Using the definition s⋆t = st+Vt,
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we can rewrite (5) as the FIGAS(1, d, 1) model,

Vt+1 =
Ω

1− B̃
+

(

1−
(

1− L
)d (

1− φL
)

1− B̃ L

)

s⋆t+1

= Ω̃ + Ψ(L) s⋆t+1, (7)

with Ω̃ = Ω/(1− B̃), and

Ψ(L) = 1− (1− L)d(1− φL)

(1− B̃ L)
=

∞
∑

i=1

ψiL
i. (8)

Thus, the current conditional covariance matrix Vt is an infinite weighted sum of current

and past s⋆t s, where the weight assigned to each lag declines hyperbolically according to

Ψ(L). The FIGAS specification spans a variety of different autocovariance functions; see

Janus et al. (2014) for some illustrative univariate examples. This flexibility to describe a

range of autocovariance functions transfers a fortiori to the multivariate case.

An important feature of our current formulation of the FIGAS specification is that the

sequence of covariance matrices Vt is automatically positive definite for all times t if (i)

Ω̃ is positive definite; (ii) the coefficients ψi are non-negative; and (iii) the terms s⋆t are

non-negative definite. We show later that (iii) is automatically satisfied for the generalized

autoregressive score specification of Creal et al. (2011, 2013) and the distributional choices

made in this paper. Condition (i) is easily enforced through the model’s parameterization.

Condition (ii) is the most intricate. Given the analogy of our current model formulation to

Baillie et al. (1996), however, we can directly draw upon for instance Corollary 1 of Conrad

and Haag (2006, page 427) to check whether positivity of the ψis is ensured. This contrasts

sharply with the FIGAS set-up of Janus et al. (2014), where positivity of the covariance

matrix set-up cannot be easily ensured. In addition, Baillie et al. (1996) show that strict

stationarity and ergodicity are obtained for 0 ≤ d ≤ 1.

We now turn to the specific choice for the conditional observation densities Dz(·) and

DZ(·) in (1) and the completion of the FIGAS model specification under fat tails. To account

for the possible fat-tailedness of the returns, we assume that yt follows a (conditional)
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Student’s t distribution,

py(yt|Vt,Ft−1; ν0) =
Γ((ν0 + k)/2)

Γ(ν0/2)[(ν0 − 2)π]k/2|Vt|1/2
×
(

1 +
ytV

−1
t yt

ν0 − 2

)−(ν0+k)/2

, (9)

with degrees of freedom parameter ν0 > 2 and Vt a positive definite covariance matrix at

time t. Similarly, to account for possible fat tails of the realized kernel distribution, we

assume that RKt has a matrix-F distribution as given by

pRK(RKt|Vt,Ft−1; ν1, ν2) = K(ν1, ν2)×

∣

∣

∣

ν1
ν2−k−1

V −1
t

∣

∣

∣

ν1

2 |RKt|(ν1−k−1)/2

∣

∣

∣
Ik +

ν1
ν2−k−1

V −1
t RKt

∣

∣

∣

(ν1+ν2)/2
, (10)

with positive definite expectation Et[RKt|Ft−1] = Vt, and degrees of freedom parameters

ν1, ν2 > k + 1, where

K(ν1, ν2) =
Γk((ν1 + ν2)/2)

Γk(ν1/2)Γk(ν2/2)
, (11)

and Γk(x) is the multivariate Gamma function

Γk(x) = πk(k−1)/4 ·
k
∏

i−1

Γ(x+ (1− i)/2); (12)

see for example Konno (1991). Both observation densities depend on the common time

varying covariance matrix Vt. We assume that conditional on Vt and Ft−1, returns yt and

realized covariances RKt are independent such that the joint conditional density p(yt, RKt |
Vt) is just the product of the conditional marginal densities (9) and (10). Preliminary data

analysis for bivariate cases reveal that conditional correlations, if any, are typically very

small such that this is a reasonable assumption for the purpose at hand. The use of a

matrix-F distribution for realized kernels was first proposed in Opschoor et al. (2014) for

a short-memory context and short-term forecasting purposes. Here, we extend it to the

long-memory context and benchmark its long-term forecasting performance to that of the

HEAVY model of Noureldin et al. (2012) or the RiskMetrics 2006 methodology of Zumbach

(2006). We do so in a way that ensures positivity of the covariance matrices despite the
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complications of the fractionally integrated lag polynomial.

Given the two observation densities (9) and (10) and the conditional independence as-

sumption, the time t predictive log likelihood function and its derivatives become

Lt = log py(yt|Vt,Ft−1; ν0) + log pRK(RKt|Vt,Ft−1; ν1, ν2), (13)

st = Vt (∇y,t +∇RK,t) Vt/ (ν1 + 1). (14)

∇y,t = ∂ log py(yt|Vt,Ft−1; ν0)/∂Vt,

∇RK,t = ∂ log pRK(RKt|Vt,Ft−1; ν1, ν2)/∂Vt,

where ∇y,t and ∇RK,t are given by

∇y,t = 1
2
V −1
t [wt · yty′t − Vt]V

−1
t , (15)

wt = (ν0 + k) · (ν0 − 2 + y′tV
−1
t yt)

−1

∇RK,t = 1
2
ν1V

−1
t [Wt · RKt − Vt]V

−1
t , (16)

Wt =
ν1 + ν2

ν2 − k − 1
·
(

Ik +
ν1

ν2 − k − 1
RKtV

−1
t

)−1

,

such that after scaling the score by the matrix 2(Vt⊗Vt)/(ν1+1) to account for the curvature

of the log conditional density with respect to Vt (see Opschoor et al. (2014) for further details

on this part of the model), the scaled score st reads

st = 1
ν1+1

[wt · yty′t − Vt] +
ν1

ν1+1
[Wt · RKt − Vt]

= 1
ν1+1

[wt · yty′t] + ν1
ν1+1

[Wt · RKt]− Vt. (17)

= s⋆t − Vt (18)

with wt and Wt defined in (15) and (16) respectively. Due to the nature of Vt as a scale

matrix, the shifted scaled score s⋆t = st + Vt is positive definite by construction given the

definition of wt and Wt and a positive definite matrix Vt. Recall that s⋆t is the key term

in the infinite sum representation of the FIGAS model in (7). It can be interpreted as a

multivariate and score-driven analogue of the univariate squared return ǫ2t of the FIGARCH

model. We refer to the complete model as the FIGAS tF model.
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The specification of st in equations (14)–(18) has a number of interesting features for

our fractionally integrated specification. First, given the model’s assumptions, st forms a

martingale difference. This follows directly from the fact that st is an Ft−1-measurable

transformation of the derivative of the model’s log conditional density with respect to Vt.

This brings the model close the specifications of Granger and Joyeaux (1980) and Hosking

(1981) as formulated for the mean in that we have an infinite weighted sum of martingale

differences, with the weights co-determined by the fractional difference polynomial. Second,

both the score for the return equation and for the realized measure equation hold familiar

terms of the form wt yty
′
t − Vt and Wt RKt − Vt, respectively. For the normal distribution,

wt ≡ 1, such that Vt+1 directly reacts to the unweighted deviations of the squared returns

yty
′
t from their expected values in Vt. This is similar to a standard multivariate GARCH

model. For fat-tailed distributions, the weights wt automatically downplay the importance

of outlying values of yt for the future evolution of Vt in accordance with the estimated

fatness of the tails (ν0) of yt and the current estimate of the covariance matrix Vt. For the

realized measure (RKt) part of the score, we obtain a highly similar result. First consider

the case of a Wishart distribution, which is obtained by setting ν2 → ∞. In that case,

Wt ≡ Ik, and Vt directly reacts to the deviations of the realized measure RKt from its

expected value Vt. This is similar to a matrix-valued model for a time-varying mean. For

fat-tailed matrix distributions (ν2 < ∞), the matrix weight Wt automatically downplays

outliers in RKt in accordance with the tail behavior (ν2) of the distribution estimated for

RKt. The presence of both wt andWt thus gives the model a doubly robust feature for both

types of measurements of Vt.

A final ingredient of the model is the parameter ν1 in (14). This parameter determines

the relative weights of ∇y,t and ∇RK,t in the evolution of Vt. If ν1 decreases to its lower

limit, the RKt measurements become increasingly fat-tailed and, as a result, increasingly

less reliable as a measurement for the current Vt. This results in a correspondingly lower

weight of the realized measure’s score in st. By contrast, if ν1 increases without bounds, the

realized measure becomes a precise measurement of the current value of Vt. Consequently,

the realized measure’s score in that case received the full weight in st, and the squared daily

returns no longer contribute to the dynamics of Vt.
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2.2 Estimation

We estimate the parameters of the FIGAS tF model by maximum likelihood. In order to

circumvent the number of estimated parameters corresponding to the Ω̃ matrix, we propose

two specifications: Ω̃ = cIk or Ω̃ = c(1/T )
∑T

t=1RKt with c a scalar. The first specifi-

cation restricts the matrix to a diagonal matrix with entries equal to c, while the second

specification is related to the covariance targeting approach as Ω depends on the sample av-

erage of RKt. We estimate the remaining static parameter vector θ = {c, φ, B̃, ν0, ν1, ν2, d}
of the FIGAS model by maximum likelihood. To do so, we maximize the log-likelihood

LtF(θ) =
∑T

t=1 Lt, where Lt is defined in equation (13). This standard prediction error de-

composition of the likelihood function is made possible due to the observation-driven nature

of the FIGAS model in the classification of Cox (1981). The starting value V1 can be either

estimated or set equal to RK1.

The maximum likelihood estimation for the fractionally integrated model requires trun-

cation of the infinite distributed lags of (6). We follow Baillie et al. (1996) and use a fixed

truncation at lag 1000. As indicated by Bollerslev and Mikkelsen (1996), the effect of initial

conditions for the starting process of the recursions has almost no effect on the parame-

ter estimates, provided that the sample size is sufficiently large. We therefore follow their

suggestion to put the pre-innovations to zero.

3 Empirical Application

In this section we apply the FIGAS model to an empirical data set of 15 US equities. All

equities are part of the S&P 500 index. We first describe some of the stylized facts of the

data. Next, we introduce our competing benchmark models. Finally, we test the in-sample

and out-of-sample performance of our model and the competing benchmarks.

3.1 Data

The data consist of daily returns and daily realized covariances measures for 15 US equities.

Table 1 provides an overview of the companies considered in our data set. The data spans

the period January 2, 2001 until December 31, 2012 and contains T = 3017 trading days.
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Table 1: S&P 500 constituents
This table lists 15 companies listed at the S&P 500 index during the period January 2, 2001 until December
31, 2012. Ts denotes the Ticker Symbol and PERMNO is the CRSP identifier.

Nr. Ts Permno Name Subsector
1 AA 24643 Alcoa Inc. Materials
2 AXP 59176 American Express Company Financials
3 BA 19561 The Boeing Company Industrials
4 CAT 18542 Caterpillar Inc. Industrials
5 GE 12060 General Electric Company Industrials
6 HD 66181 The Home Depot Consumer discretionary
7 HON 10145 Honeywell International Industrials
8 IBM 12490 International Business Machines IT
9 JPM 47896 JP Morgan Financials
10 KO 11308 Coca-Cola Consumer staples
11 MCD 43449 McDonald’s Consumer discretionary
12 PFE 21936 Pfizer Health care
13 PG 18163 Procter & Gamble Consumer staples
14 WMT 55976 Wal-Mart Stores Inc. Consumer staples
15 XOM 11850 Exxon Mobil Energy

We observe consolidated trades (transaction prices) extracted from the Trade and Quote

(TAQ) database from 9:30 until 16:00 with a time-stamp precision of one second. We first

clean the high-frequency data following the guidelines of Barndorff-Nielsen et al. (2009) and

Brownlees and Gallo (2006). Next, we construct realized kernels using the refresh-time-

sampling methods of Barndorff-Nielsen et al. (2011) with the same hyper-parameters as

used by Hansen et al. (2014).

Figure 1 shows a snapshot of the data by plotting the realized variances (based on the

kernel approach) of Alcoa Inc. (AA) and Caterpillar Inc. (CAT) in the diagonal panels, and

the realized correlation and covariance in the off-diagonal panels. The figure shows that

both the realized (co)variance(s) and the realized correlation contain a substantial number

of spikes. The spikes do not only occur during the global financial crisis, but also during

other periods such as the early 2000s. This motivates the use of our GAS framework based

on the fat-tailed matrix-F and Student’s t distributions, which automatically downweights

the impact of such incidental observations on the volatility and covariance dynamics.

The autocorrelation functions in Figure 2 strongly suggest that the realized covariance

matrix displays long-memory behavior. After lag 50, the autocorrelation is around 0.4 for

the realized kernel volatilities of AA and CAT. Likewise, the autocorrelation of the realized
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Figure 1: Realized Kernel estimates of AA/CAT
This figure shows daily realized kernel volatilities (square root of the variance) of Alcoa Inc. (AA) and
Caterpillar Inc. (CAT) returns on the diagonal panels. The off-diagonal panels contain the realized kernel
covariance (upper-right) and correlation (lower-left) between the two asset returns. The sample spans the
period from January 2, 2001 until December 31, 2012 (T = 3017 days).

covariance and correlation is equal to 0.25 and 0.3 at this long lag length. This provides an

empirical motivation for incorporating long-memory features into the model on top of the

fat-tailed, robust volatility dynamics discussed earlier.

3.2 Alternative forecasting models

To benchmark the performance of our FIGAS tF model, we use three relevant alternative

models: the multivariate HEAVY model of Noureldin et al. (2012), the short-memory GAS

tF model of Opschoor et al. (2014) and a multivariate analogue of the “quasi long-memory”

Riskmetrics 2006 approach of Zumbach (2006). The multivariate HEAVY model incorpo-

rates realized measures into the volatility specification, by proposing a system of two multi-

variate GARCH equations for the quantities Vt = Et[yty
′
t|Ft−1] andMt = Et[RKt|Ft−1]. The
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Figure 2: Empirical autocorrelation functions of realized kernels
This figure shows the autocorrelation function (ACF) for lag 1 until 50 of daily realized kernel volatilities
(square root of variance) of Alcoa Inc. (AA) and Caterpillar Inc. (CAT) in the diagonal panels. The off-
diagonal panels contain the ACF of the realized kernel covariance (upper-right) and correlation (lower-left)
between the two asset returns. The sample is January 2, 2001 until December 31, 2012 (T = 3017 days).

innovations in both of these equations are the realized (co)variance measures as gathered in

the matrix RKt. The dynamics are given by

Vt+1 = CVC
′
V + AVRKt +BV Vt, (19)

Mt+1 = CMC
′
M + AMRKt +BMMt, (20)

where AV , AM , BV , and BM are scalar parameters, and CV and CM are lower triangular

matrices. The scalar parameters of both equations are estimated separately by Maximum

Likelihood, assuming a Singular Wishart distribution for yty
′
t and a standardized Wishart

distribution with k degrees of freedom for RKt. The matrices CV and CM are typically

estimated by covariance targeting, as discussed by Noureldin et al. (2012). We follow this

approach when implementing the model in the remaining analysis.
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Our second benchmark is the GAS tF model. This model follows directly from the

FIGAS tF model by setting d to zero in (7) and is given by

Vt+1 = Ω + Ast +B Vt (21)

with st defined as in (14). This benchmark enables us to differentiate between short-memory

and long-memory GAS models.

Our final benchmark is the RiskMetrics 2006 approach. This is a less well-known exten-

sion of the classical Exponentially Weighted Moving Average (EWMA) model introduced

earlier by RiskMetrics. The 2006 model is a sum of EWMA models over increasing time

horizons and in this sense is close in spirit to the HAR models of Corsi (2009). The goal

of the RiskMetrics 2006 model is to capture the multi-scale trading structure of markets

by averaging over intra-day, daily, weekly and monthly time horizons. In the univariate

approach introduced by Zumbach (2006), a set of nmax historical conditional volatilities σn,t

are modeled by an exponentially weighted moving average of the squared returns y2t . This

is done using the recursive equations

σ2
n,t+1 = αnσ

2
n,t + (1− αn)y

2
t , (22)

αn = exp(−1/τn), (23)

τn = τ1 ρ
n−1, (24)

for n = 1, . . . , nmax and the two tuning constants τ̄ > 0 and 0 < ρ < 1. The ‘effective’

volatility σeff,t is then defined as the sum over the historical volatilities, with logarithmically

decaying weights, i.e.,

σ2
eff,t =

nmax
∑

n=1

wnσ
2
n,t, (25)

wn =
1

Q

(

1− log(τn)

log(τ0)

)

, (26)

where Q is a normalizing constant such that the weights wn sum to one. As in Zumbach

(2006), we set the tuning parameters to τ1 = 4 ⇔ α1 ≈ 0.819; τnmax
= 512 ⇔ αnmax

≈ 0.998;

nmax = 15; τ0 = 1560; and ρ =
√
2. To accommodate our multivariate analysis, we extend
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the original univariate approach of Zumbach (2006) to the multivariate setting by replacing

the squared return y2t by the outer product yty
′
t and and the effective variance σ2

eff,t by the

covariance matrix Vt.

All benchmark models allow for easy h-step ahead prediction of Vt. In case of the HEAVY

model, the second transition equation delivers forecasts of RKt+h for h = 1, 2, . . ., which

can subsequently be inserted into the first equation to obtain Vt+h. In the univariate RM

2006 approach, we use the recursive equations

Et[σ
2
n,t+h|Ft] = αnEt[σ

2
n,t+h−1|Ft] + (1− αn)Et[σ

2
eff,t+h−1|Ft], (27)

Et[σ
2
eff,t+h|Ft] =

nmax
∑

n=1

wnEt[σ
2
n,t+h|Ft]. (28)

We can easily generalize these equations to the multivariate setting by replacing σ2
n,t by ma-

trices, and σ2
eff,t by Vt. The h-step ahead forecast of Vt of the FIGAS model follows directly

from (7): Vt+h depends on s∗t+h−1, s
∗
t+h−2, . . . s

∗
t , s

∗
t−1, . . ., with s∗t = st + Vt by definition.

Given the property that Et[st+h|Ft] = 0k for any value of h ≥ 1, Vt+h is obtained recursively

by setting the values of future score matrices to the zero. Similar results hold for the GAS

tF model.

3.3 Model Evaluation Procedure

We follow Noureldin et al. (2012) and compare the in- and out-of-sample statistical fit of

the models by computing the quasi-likelihood loss function:

QLIKt,h(RKt+h, V
a
t+h|t) = log |V a

t+h|t|+ tr((V a
t+h|t)

−1RKt+h), (29)

with V a
t+h|t the covariance matrix estimate/forecast for time t + h given all information up

to time t based on model a. Note that we use RKt+h as proxy of the true covariance matrix.

In-sample, h is set to zero and since Vt is known at time t − 1, the criteria can also be

interpreted as one-step ahead forecasting criteria. As indicated by Patton (2011), the QLIK

loss-function implies a consistent ranking of volatility models since it is robust to noise in

the proxy RKt. To assess the in-sample performance, we set h = 0 and note that Vt only

depends on the information in Ft−1 for al three models considered. For the out-of-sample
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performance, we set h > 0.

We additionally test the predictive performance of the models using the framework of

Giacomini and White (2006). We start by computing the difference in loss functions between

two competing models a and b,

dt,h(a, b) = QLIKt,h(RKt+h, V
a
t+h|t)−QLIKt,h(RKt+h, V

b
t+h|t), (30)

for t = R + 1, . . . T − h, where the parameters are estimated based on a rolling window of

Tw = 1500 observations. The difference dt can be interpreted as a difference between two

Kullback-Leibner (KL) divergences. Even if the underlying two models are both misspeci-

fied, the difference in their KL divergences still provides a valid assessment criterion. The

corresponding null-hypothesis of equal predictive ability is given by H0 : E[dt,h(a, b)] = 0 for

all T − h− R out-of-sample forecasts, which can be tested using the Diebold and Mariano

(1995) (DM) test-statistic given by

DMh(a, b) =
d̄h

√

ŝ2h/(T − h−R)
, (31)

with d̄h the out-of-sample average of the loss differences, and ŝ2h a HAC-consistent variance

estimator of dt,h(a, b). A significantly negative value of DMh(a, b) means that model a

has a superior forecast performance over model b. The QLIK test can be used in-sample

(interpreted as a ‘one-step-ahead prediction’) and out-of-sample. In the out-of-sample test,

we choose h = 1, 5, 10 and 22. In addition, we consider the cumulative forecasts Vt:t+N |t =
∑N

i=1 Vt+i|t, where N equals 5 and 10 respectively.

As the above evaluation criteria are statistical in nature, we finally also assess the fore-

casting performance from a economic point of view. Motivated by the mean-variance op-

timization setting of Markowitz (1952), we do so by considering global minimum variance

portfolios (GMVP); see for example Chiriac and Voev (2011); Engle and Kelly (2012),

among others, who perform a similar analysis. The best forecasting model should provide

portfolios with the lowest ex-post variance. Assuming that the investor’s aim is to minimize

the h-step portfolio volatility at time t subject to a fully invested portfolio, the resulting

17



GMVP weights wt+h|t are obtained by the solution of the quadratic programming problem

minw′
t+h|tVt+h|twt+h|t, s.t. w′

t+h|tι = 1. (32)

with ι a k×1 vector of ones. Similar as Chiriac and Voev (2011), we assess the predictive abil-

ity of the different models by comparing the results to the ex-post realizations or ‘oracle fore-

casts’ of the conditional standard deviation, which are given by σp,t =
√

w′
t+h|tRKt+hwt+h|t.

We again test for significantly different portfolio standard deviations by means of the DM

test statistic.

3.4 In-sample results

Table 2 shows parameter estimates and standard errors based on the inverse hessian of

the likelihood evaluated at the optimum. We show the results for two selections of k = 5

stocks, as well as for the complete set of all 15 equities. In addition, we presents the total

log-likelihood values corresponding with the (FI)GAS tF model and the HEAVY model as

well as the average loss function for all competing models. Note that we present a different

specifications of the HEAVY model: we found that that the standard covariance targeting

approach does not work well for the HEAVY model. Hence we improve the performance of

the HEAVY benchmark model by estimating the HEAVY model with

Vt+1 = cV ΩV + AVRKt +BV Vt, (33)

where cV is a scalar static parameter that is estimated together with the other static pa-

rameters, and ΩV is the unconditional covariance matrix, estimated by its sample analogue

ΩV =
∑T

t=1 yty
′

t. This slightly increased flexibility in the specification of the HEAVY model

substantially increases the performance of the HEAVY model and makes it an even stricter

benchmark for our FIGAS tF model.

The results in Table 2 show that the FIGAS tF model has the best fit to the data

compared to the other models. Note that we estimated a FIGAS(1, d, 0) model as the φ

coefficient turned out to be insignificant. The results therefore only report the parameters B̃

and d for this model. Based on the QLIK loss function, the FIGAS tF has the lowest value,
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Table 2: Parameter estimates, likelihoods and loss function
This table reports maximum likelihood parameter estimates of the FIGAS tF, HEAVY and the GAS tF model, applied to daily equity returns and daily
realized kernels of 5 and 15 assets. Asset identifiers are explained in Table 1. Standard errors are provided in parenthesis. The first three rows (A,B, c)
correspond with the parameters of the equation for Vt of the (FI)GAS tF and the HEAVY model, defined in (33) with the additional scaling parameter c.
The fourth and fifth row (AM , BM ) are related to the HEAVY equation (20) of RKt with covariance targeting (CT). For the RM 2006 methodology, we use

the parameters τ0 = 1500,τ1 = 4, τnmax
= 512, ρ =

√
2, and nmax = 15. The table reports the log-likelihood as well as the the QLIK loss function, which

is defined in (29). The likelihoods of the models are decomposed into their constituents, i.e., the part for the vector-valued yt (Lt) and the matrix-valued
RKt (LF) for the (FI)GAS tF model, and the part for the singular yty

′

t (LSW) and the matrix-valued RKt (LW) for the HEAVY model. The sample is
January 2, 2001, until December 31, 2012 (3017 observations).

AA/BA/CAT/GE/KO CAT/HON/IBM/MCD/WMT All equities
Coef. FIGAS HEAVY GAS RM FIGAS HEAVY GAS RM FIGAS HEAVY GAS RM
d 0.660 0.681 0.645

(0.009) (0.009) (0.004)
AV /A 0.419 0.619 0.462 0.635 0.265 0.388

(0.035) (0.012) (0.032) (0.012) (0.011) (0.004)

B̃/BV /B -0.064 0.597 0.986 -0.053 0.554 0.985 0.164 0.743 0.991
(0.018) (0.033) (0.001) (0.016) (0.029) (0.001) (0.006) (0.010) (0.000)

c/cV 0.004 0.046 0.004 0.060 0.005 0.026
(0.001) (0.006) (0.001) (0.007) (0.001) (0.002)

AM 0.286 0.286 0.196
(0.009) (0.008) (0.003)

BM 0.698 0.696 0.792
(0.010) (0.009) (0.003)

ν0 10.37 10.01 9.141 8.973 12.10 11.61
(0.501) (0.469) (0.394) (0.497) (0.404) (0.377)

ν1 46.28 46.61 48.36 49.10 67.00 66.66
(0.938) (0.911) (0.968) (0.896) (0.377) (0.375)

ν2 36.21 34.97 34.75 33.65 61.95 61.16
(0.585) (0.521) (0.512) (0.518) (0.322) (0.315)

Lt -26,431 -26,474 -25,057 -25,085 -72,210 -72,343
LSW -43,838 -40,695 -150,072
LF /LW -20,795 -45,750 -21,243 -12,082 -37,114 -12,420 67,131 -42,958 64,774
QLIK 7.692 7.806 7.712 51.43 6.758 6.873 6.774 93.15 19.04 19.25 19.13 602.9
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followed by the GAS tF, HEAVY and the RM 2006 model respectively. Comparing the

(FI)GAS and HEAVY models, the values suggest for k = 5 that the largest gain is obtained

by introducing the GAS framework, as the average QLIK drops by 0.10. Hence allowing for

fat-tailedness in both the return observations and realized covariance kernels improves the

fit substantially. For all equities the combination of long-memory and fat-tailedness that

plays a role, though the importance of the long-memory part is less strong for the h = 1

forecast horizon. This is not surprising, as the long-memory feature should be particularly

relevant for longer forecast horizons. We turn to this in our out-of-sample analysis later on.

We also decompose the likelihoods of the models into their constituents. For the (FI)GAS

tF model, we distinguish the part of the likelihood attributable to the Student’s t vector-

valued observations yt (Lt) and to the matrix-F distributed observations RKt (LF). Sim-

ilarly, for the HEAVY model we distinguish the likelihood part LSW attributable to the

singular Wishart observations yty
′
t and the part LW attributable to RKt. It is clear that

the (FI)GAS tF model performs much better for both parts of the model than the HEAVY

model, i.e., for both yt and RKt. For the return observations yt this is well-known. The

results underline again, however, that it is also important to account for the fat-tailedness of

the realized realized covariance kernels. The (FI)GAS tF model deals with this by adopting

the matrix-F distribution for RKt. Finally, the log-likelihood of the matrix-F distribution

increases by 400 (k = 5) or even 2,500 points (all equities) when allowing for long-memory

effects in the GAS framework. This illustrates that including one extra parameter (d) has

a considerable effect on the statistical fit of the model.

Looking at the individual parameter estimates, we first note the positive and strongly

significant long-memory coefficient d, indicating the presence of long-memory effects in

volatility. The value of d is highly robust across the two sets of k = 5 equities considered,

and also hardly changes if we consider all 15 equities. The value of B̃ changes from negative

for k = 5 for both sets of equities, to positive for the case of all equities. Based on Corollary

3 of Conrad and Haag (2006, page 427), in all three cases we satisfy the constraint for

positive definiteness of the resulting covariance matrices Vt. In particular, the Corollary

states that if −1 ≤ B̃ ≤ 0, Vt is always positive if (d−
√

2(2− d)/2 ≤ B̃. If 0 ≤ B̃ ≤ 1, the

variance is positive if d − B̃ ≥ 0. Both restrictions hold in our empirical application and

imply the positive definiteness of the covariance matrices. Though the value of B is negative
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Figure 3: Implied correllograms for Vt
This figure plots the implied correllograms of the conditional variance of Alcoa Inc. (AA) corresponding with
the FIGAS tF model based on parameter estimates in Table 2. The left (right) panel shows the correllogram
implied by the estimated model on AA/BA/CAT/GE/KO (all equities).

for k = 5 and positive for k = 15, both values imply a highly similar set of autocovariance

functions; see Figure 3. If anything, the increase of the dimension leads to a slightly stronger

long-memory feature.

The high degree of persistence in the FIGAS tF model is mirrored by the other models.

For example, the estimate of B for the short-memory GAS is very close to 1, indicating a

strong persistence. Similarly, the sum of AM and BM (the parameters corresponding with

the second HEAVY equation) is also very close to 1. The degrees of freedom parameter ν2 is

estimated at around 35 and 65 for 5 and 15 dimensions, respectively. Despite that the value

of ν̂2 may appear high, such values already result in a substantial moderation of the effect

of incidentally large observations RKt in (16) through the matrix weighting scheme and

substantial fat-tailedness of the distribution of RKt compared to the Wishart distribution.

Figure 4 plots some of the fitted volatilities and correlations. We show the results

for Alcoa (AA) and Boeing (BA) for the FIGAS tF model (blue line) and the HEAVY

model of equation (33) (red line). The figure shows remarkable differences between the

two models for both the volatility and the covariances/correlations. Focusing first on the

volatilities and covariances, the robust transition scheme based on the Student’s t and

matrix-F GAS dynamics produces considerably less spikes. The GAS framework is able to

mitigate the impact of temporary RKt and yty
′
t observations on the estimates of Vt. The

HEAVY model, based on the thin-tailed (singular) Wishart distribution, produces many

more spikes. Notable differences are apparent for both companies during the periods 2001-
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Figure 4: Estimated volatilities and correlations
This figure plots the estimated volatilities of AA and BA (see Table 1) in the upper-left and lower-right
panels, and the pairwise covariances and correlations in the upper-right and lower-left panels respectively.
Time varying parameter paths are estimated using the FIGAS tF model (red line) and HEAVY model
(blue line). The estimates are based on the full sample, January 2, 2001 until December 31, 2012 (3017
observations).

2003, 2007-2008, and 2010–2011. The patterns for the correlations reveal similar remarkable

differences. Again, the number of spikes in the correlation patterns for the HEAVY model

is much higher than for the FIGAS model.

3.5 Out-of-sample results

In our out-of-sample analysis, we assess both the short-term and long-term forecasting

performance of the FIGAS tF model. We consider h-step ahead forecasts, with h = 1, 5, 10,

and 22. In addition, we consider aggregated covariance forecasts for the next one or two

trading weeks, i.e. Vt:t+h = Vt+1 + Vt+2 + . . .+ Vt+h with h = 5, 10. Similar to the in-sample

analysis of the previous subsection, we compare the FIGAS tF model with the HEAVY

model, the GAS tF model and the RM2006 approach.
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Table 3: Test-statistics on predictive ability (QLIK criterion)
This table shows test statistics on superior predictive ability between the FIGAS tF model and the HEAVY,
GAS tF or RM 2006 model respectively, based on the QLIK loss function defined in (29). The test is based
based on 1, 5, 10 and 22-step ahead predictions of the covariance matrix, applied to 5 and 15 (all) equities.
In addition, we show results of the aggregated forecast of 5 and 10 consecutive days (1:5 and 1:10). We
report the average QLIK loss for each model with the associated DM-type of test statistic in parentheses.
A negative test statistic indicates superior predictive ability of the FIGAS tF model. We use a moving
window of 1500 observations. The prediction period runs from December, 2006 until December, 2012 and
contains 1495 observations. The number of observations corresponding with the aggregated forecasts are
equal to 300 (1:5) and 150 (1:10) respectively.

1 5 10 22 1:5 1:10

Panel A: AA/BA/CAT/GE/KO
FIGAS tF 8.04 8.42 8.68 9.14 16.30 19.94

( ) ( ) ( ) ( ) ( ) ( )
HEAVY 8.07 8.44 8.73 9.31 16.33 19.99

(-1.5) (-0.8) (-1.1) (-3.1) (-1.0) (-1.1)
GAS tF 8.05 8.43 8.75 9.32 16.31 19.97

(-2.7) (-0.8) (-1.7) (-2.7) (-0.6) (-1.1)
RM 2006 8.84 9.30 10.14 12.67 17.06 20.86

(-13.7) (-8.0) (-7.0) (-7.6) (-6.5) (-4.4)

Panel B: CAT/HON/IBM/MCD/WMT
FIGAS tF 6.13 6.46 6.71 7.12 14.37 17.98

( ) ( ) ( ) ( ) ( ) ( )
HEAVY 6.20 6.57 6.84 7.37 14.49 18.12

(-3.9) (-3.3) (-2.7) (-4.1) (-4.0) (-3.0)
GAS tF 6.12 6.44 6.70 7.23 14.36 17.97

(0.5) (1.4) (0.0) (-2.2) (1.2) (0.5)
RM 2006 7.01 7.44 8.28 10.66 15.23 18.94

(-11.6) (-6.4) (-5.6) (-6.7) (-5.3) (-3.7)

Panel C: all equities
FIGAS tF 19.06 20.05 20.81 21.97 43.77 54.65

( ) ( ) ( ) ( ) ( ) ( )
HEAVY 19.12 20.11 20.93 22.33 43.87 54.84

(-1.0) (-0.6) (-0.8) (-2.4) (-1.1) (-1.5)
GAS tF 19.12 20.06 20.89 22.23 43.79 54.72

(-2.9) (-0.2) (-0.8) (-1.7) (-0.4) (-0.7)
RM 2006 24.58 26.62 29.74 38.20 49.61 61.27

(-10.1) (-8.6) (-8.0) (-8.4) (-5.7) (-4.5)

We test the predictive ability of the different models based on the loss-differences of the

QLIK loss function (29) using the test-statistic defined in (31). We use a moving window of

1500 observations and re-estimate the parameters after each 25 observations (≈ one month).

The first in-sample period corresponds to the period January 2001 until December 2006,

which is well before the financial crisis of October 2008. This current forecasting experiment

therefore constitutes a major robustness test for all the models considered.
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Table 3 contains the results. Negative t-test statistics (in parentheses) indicate that the

FIGAS tF model performs better. The negative values in the table clearly show that the

FIGAS model outperforms all competing models. This holds particularly for long horizons.

For example, the t-statistics −3.1, −4.1, and −2.4 confirm that the FIGAS significantly

outperforms the HEAVY model at the 22-step-ahead horizon. Similar results hold with

respect to the GAS model and the RM2006 approach. Hence, in contrast to the in-sample

results for h = 1 discussed in the previous section, we clearly see the importance of long-

memory in addition to the GAS framework for long-term predictions. Note that the FIGAS

model also outperforms the GAS model in panel A for 1-step and 10-step ahead forecasts

(t-stats of −2.7 and −1.7) and in panel C for 1-step ahead forecasts. The same result holds

with respect to the HEAVY model, where panel B indicates that the FIGAS model performs

better for short horizons. Compared to the RM 2006 model, FIGAS performs better for all

horizons and equity combinations considered. To summarize, taking fat-tailedness of returns

and realized covariance kernels into account while simultaneously allowing for long-memory

effects provides superior performance to the FIGAS tF model.

Finally, we turn to the economic significance of the covariance matrix forecasts. Table

4 shows the mean of the ex-post conditional portfolio standard deviation, computed by im-

plementing the period-by-period ex-ante minimum variance portfolio weights obtained from

equation (32). Panels A, B and C display the average out-of-sample portfolio standard devi-

ation and the associated DM test statistics vis-à-vis the FIGAS tF model (in parentheses).

For all pairs of assets and all forecasting horizons considered, the FIGAS tF model produces

the lowest ex-post portfolio standard deviation. The reductions in standard deviations are

statistically significant, compared to the HEAVY model, the GAS tF model and the RM

2006 approach. There appears only one exception (panel B): the ex-post portfolio standard

deviation corresponding to the 22-step ahead forecasts of the FIGAS tF and GAS tF model

are not statistically significantly different. We conclude that the forecasting performance

of the FIGAS tF model is superior at both short and long horizons when compared to the

HEAVY model, the GAS tF model and the RiskMetrics 2006 approach.
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Table 4: Ex-post minimum variance portfolio standard-deviations
This table shows results on a global minimum variance portfolio, based on 1, 5, 10 and 22-step ahead
predictions of the covariance matrix, according to the FIGAS tF, HEAVY, GAS and the RiskMetrics
2006 approach, applied to 5 and 15 equities. For each model, the table shows the ex-post mean of the daily
portfolio volatility, whereas below the HEAVY, GAS and RM 2006 model. The number between parentheses
shows the test-statistic on equal portfolio volatility between the FIGAS tF model and the HEAVY, GAS
or RM 2006 model. We use a moving window of 1500 observations. The prediction period runs from
December, 2006 until December, 2012 (1495 observations). The number of observations corresponding with
the aggregated forecasts are equal to 300 (1:5) and 150 (1:10) respectively.

1 5 10 22 1:5 1:10

Panel A: AA/BA/CAT/GE/KO
FIGAS tF 0.925 0.933 0.938 0.946 2.117 3.028

( ) ( ) ( ) ( ) ( ) ( )
HEAVY 0.927 0.936 0.942 0.951 2.122 3.040

(-4.7) (-4.1) (-4.2) (-4.8) (-3.1) (-3.7)
GAS tF 0.926 0.936 0.942 0.951 2.122 3.042

(-5.1) (-6.5) (-5.0) (-5.6) (-4.6) (-4.4)
RM 2006 1.013 1.010 1.008 1.005 2.303 3.280

(-14.2) (-13.3) (-12.3) (-12.3) (-7.9) (-5.8)

Panel B: CAT/HON/IBM/MCD/WMT
FIGAS tF 0.848 0.856 0.859 0.865 1.941 2.771

( ) ( ) ( ) ( ) ( ) ( )
HEAVY 0.850 0.858 0.862 0.868 1.949 2.781

(-2.4) (-3.4) (-2.6) (-2.2) (-2.0) (-2.8)
GAS tF 0.849 0.858 0.861 0.866 1.944 2.775

(-2.6) (-4.0) (-3.0) (-1.3) (-4.2) (-2.4)
RM 2006 0.907 0.900 0.895 0.891 2.055 2.921

(-13.0) (-12.9) (-13.1) (-10.0) (-7.8) (-6.0)

Panel C: all equities
FIGAS tF 0.688 0.700 0.707 0.718 1.586 2.278

( ) ( ) ( ) ( ) ( ) ( )
HEAVY 0.690 0.703 0.711 0.723 1.592 2.289

(-2.6) (-4.2) (-4.7) (-4.5) (-3.2) (-4.7)
GAS tF 0.689 0.703 0.711 0.723 1.590 2.286

(-4.7) (-5.3) (-5.3) (-5.8) (-4.0) (-3.9)
RM 2006 0.830 0.817 0.805 0.796 1.872 2.646

(-15.4) (-14.5) (-13.6) (-12.7) (-8.2) (-6.2)

4 Conclusions

We introduced a new multivariate fractionally integrated model with score-driven volatility

dynamics (FIGAS tF) that combines observed realized covariance matrices and vector-

valued return observations to estimate the dynamics of unobserved common covariance ma-

trices. The proposed model explicitly acknowledges that (co)variances display long-memory

behavior. In addition, the model takes into account that both realized covariance matrices

25



and financial return data are typically fat-tailed. The score-driven matrix-valued dynamics

automatically correct for influential observations in either type of data. For S&P500 equity

returns over the period 2001–2012 we showed that both in-sample and out-of-sample and

both statistically and economically the new model outperformed recent competitors such as

the HEAVY model of Noureldin et al. (2012), the GAS tF model of Opschoor et al. (2014),

and the Zumbach (2006) long-memory version of the RiskMetrics model.
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