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Accounting for Missing Values in Score-Driven Time-Varying
Parameter ModelsI

André Lucasa, Anne Opschoora, Julia Schaumburga

aVrije Universiteit Amsterdam and Tinbergen Institute

Abstract

We show that two alternative perspectives on how to deal with missing data in the context of the score-driven time-
varying parameter models of Creal et al. (2013) and Harvey (2013) lead to precisely the same dynamic transition
equations. As score-driven models encompass a wide variety of time-varying parameter models (including generalized
autoregressive conditional volatility (GARCH) and duration (ACD) models), the results apply to a wide range of
empirically relevant models as applied in economics and statistics.

Keywords: generalized autoregressive score models, missing completely at random, Expectation-Maximization.

JEL: C53, C52

1. Introduction

We address the issue of missing values in observation-driven time-varying parameter models. Such models
are widely applied in the empirical economics and econometrics literature and include well-known examples
such as the generalized autoregressive conditional heteroskedasticity (GARCH) model of Engle (1982) and
Bollerslev (1986), the autoregressive conditional duration (ACD) model of Engle and Russell (1998), the
multiplicative error model (MEM) of Engle and Gallo (2006), and many more. In this paper, we focus on
the class of score-driven models as introduced and popularized by Creal et al. (2011, 2013) and Harvey
(2013). Score-driven models encompass earlier well-known models such as the normal GARCH and ACD
models, but also give rise to entirely new models, such as the mixed measurement dynamic factor model of
Creal et al. (2014) for macro and credit cycles, the dynamic Nelson-Siegel model with time-varying shape
parameter of Quaedvlieg and Schotman (2016) for long-term pension liability hedging, the time-varying
copula model of Oh and Patton (2016) to model credit risk in high dimensions, and the matrix-F dynamic
model for multivariate realized covariance matrices of Opschoor et al. (2014).1

A key property of observation-driven models in the classification of Cox (1981) is that they define the
time-varying parameter, such as a mean or a volatility parameter, in terms of its own lags and a (possibly
nonlinear) function of lagged observations. This directly poses a problem for updating the time-varying
parameter if a missing value is encountered: if the observation is missing, the function of lagged variables
cannot be evaluated and the dynamic parameter cannot be updated.

In this paper we discuss how missing values can be dealt with in the context of score-driven models. In
particular, we show how score-driven models provide a natural way to include the non-missing part of the
data into the updating mechanism, while accounting for the missing data in an intuitive and consistent way.
We do so by discussing two alternative perspectives of the missing value problem in our model setting and by
showing that the two perspectives lead to exactly the same solution. Under the first perspective, we exploit

ISchaumburg thanks the Dutch National Science Foundation (NWO, grant VENI451-15-022) for financial support.
Email addresses: a.lucas@vu.nl (André Lucas), a.opschoor@vu.nl (Anne Opschoor), j.schaumburg@vu.nl (Julia

Schaumburg)
1We refer to www.gasmodel.com for a compendium of papers employing the score-driven approach to time-varying parameter

models.

Preprint submitted to Tinbergen Institute August 29, 2016

http://www.gasmodel.com


the special feature of score-driven models that the direction in which the dynamic parameter is updated,
equals the derivative of the log of the conditional predictive density. If (part of) the data are missing, this
predictive density simplifies to a marginal density for the observed data part and the propagation mechanism
for the time-varying parameter adapts automatically. This approach is for example used in Creal et al.
(2014), where no further motivation was provided. A second perspective sets the missing value problem in
the much wider statistical literature about the treatment of missing values; see for example Little and Rubin
(2014) for a textbook review. This is also the typical context where the Expectation-Maximization (EM)
approach of Dempster et al. (1977) is used for estimation rather than the classical likelihood framework.
Though natural, there is as of yet no theory linking the statistical missing value literature to the updating
mechanism in score-driven models.

We have two main contributions in this paper. First, we show how a score-driven approach may be devised
outside the familiar conditional predictive density context of Creal et al. (2011, 2013). In particular, we use
the EM criterion function and its scores to drive the time-varying parameter. This is a novel perspective on
the usefulness of score-driven dynamic parameter models. Second, we show that for data that are missing
completely at random, a score-driven approach based on the marginal predictive density produces exactly
the same result as a score-driven approach based on the EM criterion. This holds irrespective of the scaling
choice for the score. This result is an important step in motivating how to deal with missing values in the
context of score-driven models as in, for instance, Creal et al. (2014). At the same time, it closes the gap
between the literature on score-driven time series models and the classical statistical missing value and EM
literature.

The rest of this paper proceeds as follows. Section 2 explains the issue of missing values in the context
of the generalized autoregressive score (GAS) model of Creal et al. (2013).2 Section 3 sets up a score based
approach in the EM set-up of Dempster et al. (1977) and proves our theoretical result.

2. Missing-values and standard GAS models

Let xt and yt denote two vectors of observations, characterized by the conditional density

(xt, yt) ∼ p(xt, yt | ft),

where ft is a time-varying parameter. For example, ft may contain the conditional means of xt and yt, their
conditional variances, their correlations, or other higher order features of the conditional distribution; see for
example Creal et al. (2011, 2013) and Harvey and Luati (2014) for a range of applications. We consider xt
and yt as scalars in the remainder of this paper, but all derivations also go through in a higher dimensional
context. The conditioning set of p( · | ft) can be augmented with other predetermined information, such as
further lags of xt and yt. We assume that the dynamics for ft are given by the generalized autoregressive
score dynamics

ft+1 = ω + β ft + α st, st = sjointt = St
∂ log p(xt, yt | ft)

∂ft
, (1)

where ω, α, and β are parameters that need to be estimated, and St is a scaling matrix that may depend on
ft itself. The score step in equation (1) increases the local model fit in the steepest ascent direction of the
local likelihood contribution. Blasques et al. (2015) show that a score-driven improvement is locally optimal
from an information theoretic perspective: it locally improves the Kullback-Leibler divergence between the
unkown true data generating process and the statistical model upon each parameter update. This result
holds under quite general conditions, even in cases where the density p(xt, yt | ft) is severely mis-specified.
Putting St equal to the inverse conditional expectation of the squared score,

St = E

[
∂ log p(xt, yt | ft)

∂ft

∂ log p(xt, yt | ft)
∂f ′t

]−1
2See also Harvey (2013), who refers to these models as dynamic conditional score models. We also refer to the site

gasmodel.com for a much more complete compendium of published and unpublished work on score-driven (GAS) models

2

http://gasmodel.com


corrects the steepest ascent step for the local curvature and creates a Newton-Raphson type improvement
step. Other choices for the scaling matrix St are also possible.

An important advantage of the score driven approach is that it is observation-driven in the classification
of Cox (1981). This enables us to write down the likelihood function LT in analytic form via a prediction
error decomposition,

LT =

T∑
t=1

log p(xt, yt | ft),

and to estimate the model’s static parameter by standard maximum likelihood estimation.
A drawback of the observation-driven specification is that a problem occurs is yt (and/or xt) is missing.

Also the score-based framework, being observation-driven, faces this challenge. If yt is missing, the score
st cannot be computed, as it depends on both observations. Creal et al. (2014) solve this problem by
arguing that missing values yt are no problem for the score-based approach: at time t, the score should be
taken of the conditional observation density. If yt is missing, the observation density at time t collapses to
the marginal density for xt and thus the score should be computed based on the density of the remaining
observation xt, i.e., using ∂ log p(xt|ft)/∂ft, where p(xt|ft) is the marginal conditional density of xt. The
reasoning of Creal et al. (2014) appears intuitive: if yt is missing, the only information about ft can be
obtained from xt and therefore from its marginal conditional density, such that

st = smarg
t = E

[
∂ log p(xt | ft)

∂ft

∂ log p(xt | ft)
∂f ′t

]−1
∂ log p(xt | ft)

∂ft
. (2)

A different line of argument, however, argues from a conditional expectations perspective.3 The reasoning
is as follows. The above approach of Creal et al. (2014), though intuitive, is rather detached from the
common approach of dealing with missing values; see Dempster et al. (1977). Consider for example a setting
of a bivariate normal (xt, yt) with time-varying means. If we know that xt and yt are strongly positively
correlated, and if at time t the variable xt is above its mean while yt is missing, we might infer that yt is
also above its mean at time t with high probability. Why not use this inferred information to also update
the mean of yt upward?

At first sight, this alternative approach appears to be in line with a typical EM perspective, where
we would also work with a conditional expectation (of the log likelihood function) with respect to the
missing observations, conditional on the non-missing observations. It contrasts, however, with the previously
described approach based on the score of the marginal distribution of xt. There the mean of yt would not
receive an update signal as the score of the marginal density p(xt | ft) with respect to the mean of yt would
be zero, and consequently the time-varying mean of yt would mean-revert via the transition equations (1)
and (2).

3. EM score models and equivalence result

To resolve which of the two perspectives discussed in Section 2 is correct, we propose to close the gap
between the score approach based on marginal distributions and the EM perspective of dealing with missing
values. In doing so, we show that the second line of argument in Section 2 is actually false as the conditional
expectation that is taken in the EM algorithm relates to the complete data log likelihood function, and not
to yt itself. We proceed as follows. First, we define a score-based approach based on the local EM type
objective function

log p̃(xt | ft) := E [log p(xt, yt | ft) | xt, ft] . (3)

This is a novel perspective on score-based time-varying parameter modeling, where usually the score is taken
of a predictive density in a likelihood framework. Only Creal et al. (2016) is related to our approach in

3We found this argument repeatedly popping up when discussing the issue of missing values in score-driven models.
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that it gives a score-based generalization of the Generalized Method of Moments (GMM) based on a local
moments criterion function. Just as p(xt | ft) is the local (marginal) likelihood contribution in a set-up
based on predictive densities, p̃(xt | ft) is the local contribution to the criterion function in an EM set-up.
In fact, if there are no missing data, the two approaches coincide and p( · | ft) = p̃( · | ft).

We now generalize the standard score-driven transition equation (1) by replacing the scaled derivative of
the marginal data likelihood by the scaled derivative of the local conditionally expected complete likelihood
function, i.e., the conditional expectation of the log likelihood contribution at time t of both the missing
(yt) and non-missing (xt) data. Using the EM-based score, we improve the value of ft by exploiting the
full dependence structure between xt and yt as given by the joint density. Therefore, if xt and yt are highly
correlated, this information is also taken into account. We have

st = sEM
t = E

[
∂ log p̃(xt | ft)

∂ft

∂ log p̃(xt | ft)
∂f ′t

]−1
∂ log p̃(xt | ft)

∂ft
. (4)

We note that this new score type model model automatically deals with missing values in a way that is fully
compatible with the EM framework.

The key question now is what differences there are between a transition equation for ft that is based on
score steps from a likelihood perspective and marginal distributions (smarg

t ) and one that is based on the
EM perspective (sEM

t ). The key theoretical result of this paper is that there is no difference and that the
two approaches are actually fully equivalent. We state this in the following theorem.

Theorem 1. If the density p(xt, yt | ft) is correctly specified, sEM
t = smarg

t .

Proof. We note that

∂ log p(xt, yt | ft)
∂ft

=
∂
(

log p(yt | xt, ft) + log p(xt | ft)
)

∂ft
,

such that
∂ log p̃(xt | ft)

∂ft
= E

[
∂ log p(yt | xt, ft)

∂ft

∣∣∣∣ xt, ft

]
+

∂ log p(xt | ft)
∂ft

=
∂ log p(xt | ft)

∂ft
,

where the last equality follows directly from the property that the (conditional) score of a correctly specified density
has expectation zero.

The result in Theorem 1 substantiates the way missing values are dealt with in papers such as Creal
et al. (2014) and others. At the same time, it ties the score-driven modeling approach in the presence of
missing value closer to the older and larger literature on how to deal with missing values via conditional
expectation-maximization. Interestingly, it also brings the score-driven approach closer to how missing
values are dealt with in the state-space framework. Also there, the marginal score of the density for the non-
missing data with respect to the time-varying parameter is key; see for example Durbin and Koopman (2012).
Theorem 1 illustrates that this is fully in line with the score-based approach, and that both approaches are
moreover strongly related to the EM approach thanks to the particular features of the score as a propagation
mechanism for ft.
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