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Rutger-Jan Langea André Lucasb,c Arjen Siegmannb

(a) Erasmus Universiteit Rotterdam

(b) Vrije Universiteit Amsterdam

(c) Tinbergen Institute

Abstract

We compute joint sovereign default probabilities as coincident systemic risk in-

dicators. Instead of commonly used CDS spreads, we use government bond yield

data which provide a longer data history. We show that for the more recent sam-

ple period 2008–2015, joint default probabilities based on CDS and bond yield

data yield similar results. For the period 1987–2008, only the bond yield data

can be used to shed light on European sovereign systemic stress. We also show

that simple averages of rolling pairwise correlations do not always yield intuitive

systemic risk indicators.

Keywords: systemic risk, conditional default, credit default swaps, bond yields.

1 Introduction

In this chapter we investigate the robustness of systemic risk indicators based on al-

ternative but related data sources. Our focus is on indicators based on the generalized

autoregressive score methodology of Creal et al. (2013); see also Harvey (2013). In

particular, we provide new empirical results for joint default probabilities based on

score-driven models using historical government bond yield data versus CDS spread

data. Whereas CDS data is the more common choice in the empirical literature for

measuring sovereign systemic risk, the typical time span for obtaining reliable data is

rather short. Bond yield data, by constrast, allow us to go further back in time and

∗All authors thank the European Union Seventh Framework Programme (FP7-SSH/2007-2013,
grant agreement 320270 - SYRTO) for financial support. Email addresses: r.j.lange@vu.nl,
a.lucas@vu.nl, a.h.siegmann@vu.nl.
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therefore to test the adequacy of systemic risk measures over a much longer historical

period.

The literature on systemic risk is large and expanding and relates to many different

aspects of financial fragility as well as to the repercussions of financial stress on real

economic activity. Rather than attempting to summarize this vast literature, we refer

to some of the available surveys such as De Bandt and Hartmann (2000), Bisias et al.

(2012), and Ang and Longstaff (2013). Here, we refer to systemic risk as either the

simultaneous or conditional risk of financial stress for two or more sovereigns in the

European context. Questions that are of particular interest relate to whether two

countries are more likely to jointly default, rather than to whether one country defaults

in isolation. Conversely, we are more interested in the probability of for example county

X defaulting conditional on for example country Y already being in default, rather than

the (marginal) probability of country X defaulting by itself. Such joint or conditional

probability statements require a model for the dependence structure between different

countries. It is precisely here that we use our time-varying parameter methodology

to indicate which historical periods have experienced increased systemic vulnerability.

We thus contribute to identifying systemic sovereign crises as in Laeven and Valencia

(2013), but from a model-based perspective rather than an expert-based system.

Our focus in this paper is the comparison of systemic risk estimates based on CDS data

versus bond yield data. CDS spreads are widely regarded as providing good estimates

of credit risk, at least if the CDS is sufficiently liquid; see e.g. IMF (2013). For this

reason, CDS data have been used in a variety of earlier studies, both for sovereigns,

financial institutions, and corporates; see for example Rodŕıguez-Moreno and Peña

(2013), Caporin et al. (2013), Lucas et al. (2014, 2016), Blasques et al. (2014), Creal

et al. (2014), Oh and Patton (2016), Arakelian et al. (2016), and many more. Bond

yields, on the other hand, may more easily suffer from confounding influences related

to for example liquidity and flight-to-safety issues; see Pan and Singleton (2008). Still,

bond yield data have the advantage that they are available over a much longer time

span and a wider set of counterparties. For this reason, a number of authors have also

used bond yield data to measure systemic sovereign debt risk; see for example Ang and

Longstaff (2013) and Schwendner et al. (2015).

A key question that remains is whether systemic risk measures as computed on CDS

versus bond yield data result in similar conclusions. Whereas most papers opt for one
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data source or the other, we explicitly focus on the comparison of the two before we

interpret the more historical period that is covered by bond yield data, but not by CDS

data. In this way, we are close to Caporin et al. (2013), who also explicitly use both

sources of data. They find that for both types of data there is no evidence of sovereign

contagion risk as a channel for increased system fragility. We, by contrast, focus on

the dynamic relations of second moments as proposed in Lucas et al. (2014,2016) to

investigate the robustness of systemic risk measures.

Our findings are as follows. First, we find that the estimated probability of (at least)

two sovereign defaults in the Eurozone in the period 2008–2015 is very similar for

CDS and bond yield data. Important policy events lead to similar movements in

both risk measures. Second, extending the sample over the period 1987–2008, we

find increased systemic sovereign risk measures particularly during the early and mid

1990s. The Russian default, by contrast, only shows up as a very small and temporary

increase in systemic risk measures. Third, when comparing our estimated joint default

probabilities to direct market-observed measures of systemic risk, such as the pairwise

correlations of crisis-countries, we find that these simple measures do not fully capture

the joint default risk that we observe in the proposed risk-based measure. Our model-

based measures using bond yield data thus provide useful additional information to

identify and monitor sovereign systemic risk events in the Eurozone over longer periods.

By contrast, simple measures based on marginal risk indicators, such as the average of

the highest three CDS spreads in the Eurozone, can already capture a substantial part

of the dynamics multivariate systemic risk indicators.

The remainder of this paper is organized as follows. Section 2 introduces the model.

Section 3 discusses the data. Section 4 presents the empirical results, and Section 5

concludes.

2 Score-driven systemic risk models

We now present the details of our score driven model for systemic risk surveillance.

The model follows the set-up of Lucas et al. (2014). Let ỹi,t be the CDS spread or

bond spread (vis-à-vis Germany, see section 3)

for country i = 1, . . . , n and day t = 1, . . . , T . As in Alter and Beyer (2014), let yi,t
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denote the corresponding (log) differences,

yi,t =

log(ỹi,t)− log(ỹi,t−1) if ỹi,t is a CDS spread, and

ỹi,t − ỹi,t−1 if ỹi,t is a bond spread.
(1)

We stack yi,t into the vector yt = (y1,t, . . . , yn,t)
′ and assume that

yi,t | Ft−1 ∼ p(yi,t | Σt, ν), Σt+1 = Ω+ β Σt + α (wt yty
′
t − Σt) , (2)

where Ft = {yt, rt−1, . . .} is the information set spanned by all past observations;

p(· | Σt, ν) is a multivariate Student’s t distribution with zero mean, covariance matrix

Σt, and degrees of freedom parameter ν; wt is a scalar weight matrix to be discussed

further below; and Ω, β, α, and ν are static parameters or parameter matrices that

need to be fixed or estimated. For the Student’s t distribution, Creal et al. (2011)

prove that wt yty
′
t − Σt is proportional to the scaled derivative of the log predictive

density p(yt | Σt, ν) with respect to Σt, where we set

wt =
1 + (n+ 2)/(ν − 2)

1 + y′tΣ
−1
t yt/(ν − 2)

, (3)

such that Σt follows the score-driven dynamics introduced by Creal et al. (2011,2013)

and Harvey (2013). As shown in Blasques et al. (2015), using the derivative of the log

predictive density in (2) to update Σt has information theoretic optimality properties.

It provides a steepest ascent type improvement to the local likelihood function by up-

dating Σt to Σt+1 using the information in both the realization yt and the probabilistic

model p(yt | Σt, ν).

The above modeling approach was introduced for the computation of systemic risk

indicators in Lucas et al. (2014, 2016). As our focus here is on the robustness of these

indicators when using bond yield data rather than sovereign CDS data, we simplify

the estimation problem of the model by setting Ω = 0 and β = 1 to obtain integrated

score dynamics as in Lucas and Zhang (2016). We can then write the recursion for Σt

as an exponentially weighted moving average recursion (EWMA) of the form

Σt+1 = (1− α) Σt + αwt yty
′
t. (4)

Furthermore, we set α = 0.01 and ν = 4. As Lucas et al. (2014) show, the main ad-
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vantage of using the degrees of freedom parameter ν < ∞ is to capture the conditional

fat-tailedness of the marginal distributions, and the robust volatility and covariance

dynamics in (2). For the dependence structure in the current specific setting, the value

of ν appears to be less of a concern. The robustness of the propagation system for the

volatilities and covariances in (2) is obtained by the weight factor wt, which follows

directly from the expression of the score of the Student’s t distribution. Using wt,

aberrant values of yt are automatically downweighted by the expression ytΣ
−1
t yt in the

denominator of (3). The chosen value of ν = 4 lies in the empirically relevant range to

accommodate both the conditional fat-tailedness of the marginals and the robustness

of the transition equation for Σt.

To initialize the recursion for Σt, we use the sample covariance matrix from the first

N = 200 trading days. In case of the CDS spreads, this is the only initialization

needed. For the bond yield data, countries enter the database as time goes on. Once

a country enters the sample, we reset the covariance matrix to the then prevailing

historical average over the past 200 trading days. Alternatively, we could let the new

series enter the covariance more gradually by altering the recursion in (4) into

Σt+1 = AΣt A+Bt yty
′
t Bt, A =

( √
1− α I 0

0 I

)
, Bt =

( √
αwt I 0

0 I/
√
N

)
,

(5)

where N = 200 is the initialization window length, and the matrices are partitioned to

contain the old series in the top-left block, and the new series in the lower-right block.

This approach ensures that Σt always remains positive definite, while at the same time

retaining the information built up on the covariance matrix for the series that were

already in the sample. After N = 200 days, the old recursion (4) applies.2

The above dynamic multivariate volatility model can be used to obtain probability

statements about joint or conditional sovereign default. Focussing on the joint default

probability, assume that the default of sovereign i at time t is given by pi,t. The joint

2Further minor modifications are needed if countries enter the sample in partially overlapping
windows that are smaller than 200 days. In that case, the dimension of the lower-right submatrices
decreases and that of the upper-left matrix increases every time a country crosses the boundary of
200 days in the sample.
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probability of a default of sovereigns i and j is then given by

pij,t = Pr
[
yi,t > F−1

i,t (pi,t) , yj,t > F−1
j,t (pj,t)

]
, (6)

where F−1
i,t (·) denotes the inverse (one-dimensional) cumulative Student’s t distribution

with volatility Σii,t, the ith diagonal element of Σt. Because of the non-zero correlation

between any two countries i and j, the probability pij,t in (6) is not equal to the product

of the marginal probabilities, i.e. pij,t ̸= pi,t pj,t. We obtain the probabilities in (6) for

each day t by simulating from the multivariate Student’s t with covariance matrix Σt

and counting the fraction of draws in the appropriate corner regions for given marginal

default probabilities pi,t.

To obtain the marginal default probabilities, we follow a simplified version of the ap-

proach proposed by O’Kane (2011). The core of the method is that we can look at the

CDS premium as a discounted value of the risk neutral expected loss. For our purposes,

approaximate the term structure by a flat yield curve, which we use for discounting.

We also use a fixed risk neutral loss-given-default assumption of L⋆ percent, and a fixed

risk neutral default default hazard rate π⋆. With c denoting the CDS premium and r

the discount rate, we have

c

(1 + r)
+

c

(1 + r)2
+ . . .

c

(1 + r)T
=

π⋆L⋆

(1 + r)
+

(1− π⋆)π⋆L⋆

(1 + r)2
+ . . .

(1− π⋆)T−1π⋆L⋆

(1 + r)T
⇐⇒

c · 1− (1 + r)−T

r
= L⋆π⋆ · 1− (1− π⋆)T (1 + r)−T

r + π⋆
, (7)

where default is assumed to strike at the end of each subperiod. The CDS premium

is thus approximately a multiple of the risk neutral per period expected loss L⋆π⋆,

where the multiple depends on r and π⋆. For small enough values of r and π⋆ and

maturity T , the multiplication factor can be approximated by 1, such that π⋆ ≈ c/L⋆.

Using a default rate of L⋆ = 50%, we can then multiply the CDS spread by a factor

two to obtain an approximate default hazard rate. For larger losses given default,

the estimated default probability reduces accordingly. Note that in line with earlier

literature, our estimates of default risk are risk neutral, and therefore typically higher

than the physical probabilities. Though this affects the level of our systemic risk
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Figure 1: Sovereign CDS spreads 2008-2016

Daily sovereign CDS spreads from January 2008 until June 2016. Important events in the Euro zone
crisis are listed in Table 2.

indicators, we do not expect it to affect the dynamics of the indicator too much, which

is our main point of interest in this paper; compare the discussion in Lucas et al.

(2014). The same argument applies to the risk neutral loss-given-default rate L⋆ used

in the computations. In the case of bond yield data, we replace the CDS spread c by

the bond yield spread vis-à-vis Germany and follow the same approach as for CDS

spreads. We are now ready to operationalize our systemic risk measures for European

sovereign bond yield and CDS data.

3 Data

3.1 CDS

The CDS data are downloaded from Datastream and consist of daily CDS spreads on

5-year contracts for n = 10 EU-zone sovereigns: Austria, Belgium, Germany, Spain,

France, Greece, Ireland, Italy, the Netherlands and Portugal. The data sample period

spans January 1, 2008 to June 28, 2016, giving 2216 observations (trading days) per

country. As noted by IMF (2013), the market for sovereign CDS has been liquid since

early 2008.

Figures 1 shows the evolution of CDS spreads for the 10 countries included in the
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sample. The CDS spreads for Greece exceed 5000 bps during some periods. While

indicative of the extreme turmoil, we decide to exclude Greek CDS spreads from 16

September 2011, when they reached a level of 4652 basis points, until 27 November

2014, when they dropped back to around 700 basis points. At this point, Greece is

treated as a new country in the sample. As a robustness check, we also run the model

with Greece excluded entirely.

Table 1 Panel A provides summary statistics of our CDS returns as modeled by our

score-driven volatility model from Section 2. We observe a large effect of Dutch CDS

spreads jumping from 13 to 25 basis points on 2 October 2008 at the Dutch govern-

ment participation in the rescue of Fortis Bank. The increase implies a log-return of

+65%, causing a large kurtosis coefficient. If this observation is excluded, the standard

deviation, skewness and kurtosis of Dutch CDS spreads are less extreme at 3.43, 0.65

and 17.53, respectively. However, because our dynamic model is robust with respect

to such outliers, we keep this observation as is.

3.2 Bonds

Bond yield data are obtained from Datastream for the same group of 10 countries as

the CDS spreads. We take daily yield-to-maturity quotes on 5-year sovereign bonds.

The sample period differs per country, with starting dates varying between April 1977

(for Germany) and April 1999 (for Greece). The sample ends in June 2015, giving rise

to between 4425 and 9953 observations per country.

Note that we do not model bond yields directly, but rather the spreads vis-à-vis Ger-

many. Unlike the CDS spreads, our bond spreads are thus benchmarked against the

creditworthiness of the German sovereign rather than against a risk-free asset.

Figure 2 shows the evolution of bond yields. The figure shows one line per country, and

lines appear at the first date for which we have bond yield data. The first countries

for which we have data are Germany (April 1977) and the Netherlands (1978). We

have five countries from 1987 onwards. We choose to start our analysis of joint default

probabilities in 1987 and extend it with new countries at the point that they enter the

dataset.

The bond yield data show the familiar historical pattern. The yields converge until

1998, with the Greek bond yield entering the scene later and converging quickly there-
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Figure 2: Bond yields historical 1977-2015

Historical bond yields for the sovereign debt of the European countries from April 1977 to June 2015.
Our analysis starts in 1987, when the sample consists of 5 countries.

after. Yields remain in lock-step during the whole monetary integration process leading

up to the Euro and thereafter, until the financial crisis and the subsequent sovereign

debt crisis. Since then, the default risk of sovereign debt in a monetary union ap-

pears to be priced in by financial markets much more than before. We also see that

towards the end of the sample, disparities between bond yields are again decreasing,

Greece being the main exception due to the recurring sovereign debt and fiscal policy

renegotiations with the EU and the IMF.

Table 1 panel B provides summary statistics of the bond yield changes. We note the

27.48 percentage point drop in Greek bond yields, which occurred on 12 March 2012,

when the EU finalised the second bail-out package for Greece. When this extreme

observation is excluded, the new minimum is −4.3, which is somewhat more in line

with the other minima. Similarly, the standard deviation, kurtosis and skewness figures

are then less extreme at 0.25, 5.08, and 184.3, respectively. However, since the dynamic

equation (4) is robust to outliers, we decide not to delete any bond observations.

Looking at the differences in skewness and leptokurtosis between CDS returns and

bond yield changes in Table 1, we see that both the CDS and bond yield data are

unconditionally fat tailed. There seems to be no clear pattern on whether the bond

yield changes or the CDS returns are more non-normally distributed. We tackle this
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Table 1: Summary Statistics

Summary statistics bond yield changes and CDS log returns.Panel A contains summary statistics for
CDS spread log returns for 10 Euro-area countries from the start of the series until 28 June 2016.
Panel B contains summary statistics for bond yield changes for 10 Euro-area countries from the start
of the series until June 2015.

Panel A: CDS (log) returns
Country Start date Median Mean Stdev Skew Kurt Min Max
Austria 7/21/08 0.00 0.05 3.76 1.59 17.9 -19% 37%
Belgium 1/1/08 0.00 0.07 3.66 0.94 15.0 -24% 39%
France 7/2/08 0.00 0.07 3.68 1.46 20.8 -23% 41%

Germany 1/1/08 0.00 0.05 3.80 0.62 16.7 -28% 39%
Greece 1/1/08 0.00 0.41 4.82 0.04 24.8 -50% 36%
Ireland 3/3/08 0.00 0.05 3.64 0.15 25.9 -42% 29%

Italy 1/1/08 0.00 0.09 4.37 -0.23 15.9 -42% 34%
Netherlands 4/10/08 0.00 0.06 3.71 3.01 57.0 -26% 65%

Portugal 1/1/08 0.00 0.12 4.15 -0.57 23.3 -56% 30%
Spain 7/21/08 0.00 0.05 4.35 0.17 12.8 -37% 35%

Panel B: Bond yield changes
Country Start date Median Mean Stdev Skew Kurt Min Max
Austria 7/22/86 0.00 0.00 0.04 0.55 8.0 -0.26 0.32
Belgium 6/6/89 0.00 0.00 0.05 0.31 8.9 -0.34 0.40
France 2/4/86 0.00 0.00 0.05 -0.61 17.7 -0.87 0.46

Germany 4/19/77 0.00 0.00 0.04 0.00 8.6 -0.43 0.33
Greece 4/2/99 0.00 0.00 0.49 -40.12 2288.0 -27.48 7.03
Ireland 5/28/86 0.00 0.00 0.07 0.69 40.3 -1.03 1.15

Italy 3/7/91 0.00 0.00 0.07 -0.03 16.8 -0.78 0.67
Netherlands 4/4/78 0.00 0.00 0.05 -0.10 11.3 -0.51 0.49

Portugal 7/19/93 0.00 0.00 0.09 1.25 61.0 -1.47 1.69
Spain 4/5/91 0.00 0.00 0.06 -0.61 16.1 -0.88 0.43

via two channels. First, we allow for time varying volatilities, which reduces part of the

unconditional fat-tailedness. Second, we introduce a conditional fat-tailed distribution,

namely the Student’s t distribution.

4 Empirical results

4.1 Systemic risk based on CDS vs bond spreads

The main systemic risk measure in our analysis following Lucas et al. (2014) is the

joint default probability which we define as the probability of two or more sovereign

defaults, i.e.,

p
(2)
t = Pr

[
yi,t > F−1

i,t (pi,t) , yj,t > F−1
j,t (pj,t) for some i ̸= j

]
. (8)
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Figure 3: Probabilities of two or more defaults

The top panel includes all countries in the estimation. The bottom panel excludes Greece. The solid
line is based on bond yields, while the dotted line is based on CDS spreads. The events are defined
in Table 2.

A joint default probability for 3 or more defaults can be defined analogously. We

compute p
(2)
t separately for CDS and bond returns. The marginal default probabilities

are estimated as described in Section 2. Our analysis on CDS spreads is hampered by

the fact that CDS spreads for Greece are excluded from 16 September 2011 until 27

November 2014; see Section 3. However, the joint default measure is not necessarily

affected: it measures the risk in the system and is not determined fully by any single
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Table 2: Important events for European sovereign default risk

Event Date Description
Lehman default 15-Sep-08 The US-bank Lehman brothers files for bankruptcy
Start of US rebound 10-Mar-09 US stocks begin a turnaround, with better than ex-

pected results for Citibank.
Portugal assistance 6-Apr-11 The resigning Prime Minister José Sócrates an-

nounces on television that the country, facing a sta-
tus of bankruptcy, would request financial assistance
to the IMF and the European Financial Stability Fa-
cility

Irish rescue package 21-Nov-10 Eurozone countries agree to a rescue package for Ire-
land from the European Financial Stability Facility
in response to the country’s financial crisis.

Stress test results 15-Jul-11 The European Banking Authority (EBA) publishes
the results of its 2011 EU-wide stress test of 90 banks
in 21 countries.

ECB rate cut 3-Nov-11 The ECB unexpectedly reduces the key interest rates
after fears of recession

Bankia bailout 25-May-12 Bankia SA negotiates a 19 billion euro bailout pack-
age from the Spanish government. Share trading is
suspended.

Draghi speech 26-Jul-12 Speech of ECB president Mario Draghi at the Global
Investment Conference in London: “Within our
mandate, the ECB is ready to do whatever it takes
to preserve the euro. And believe me, it will be
enough.”

ECB forward guidance 4-Jul-13 The ECB reveals that key interest rates will remain
at present or lower levels for an extended period of
time. It is the first time that the ECB makes a com-
mitment regarding interest rates

Unconventional 12-Apr-14 The ECB president says that the ECB is ready to
use unconventional monetary policy instruments to
fight low inflation.

country. In principle, even though the level of systemic risk may appear lower when

Greece is excluded from the analysis, the dynamics should remain similar. Furthermore,

the Greek CDS spread still affects the creditworthiness of other countries and their CDS

spreads, even if Greece itself is excluded from the sample. We therefore run our analysis

with and without Greece to analyse whether the patterns of low and high systemic risk

remain qualitatively similar. The results are shown in Figure 3.

Panel A of Figure 3 shows that the joint default probability dynamics are similar,

regardless of whether they are based on CDS spreads or bond yields. Also when

Greece leaves the CDS dataset, the joint default probabilities based on CDS and bond

data diverge, but the relative movements over time remain highly similar.

Panel B shows the two joint default probabilities to be very similar over time when
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Greece is excluded. Moreover, the pattern of a rapid increase in systemic risk over

the 2011-2014 period is retained. The analysis confirms our intuition on the similarity

of both measures; i.e. those extracted from CDS changes and bond yield changes.

It follows that bond yield changes are quite suitable for estimating the joint default

probability. IMF (2013) suggests that the default risk of the strongest country in the

union (Germany) could be good proxy for systemic risk. If systemic risk is priced

as part of the bond yield of Germany itself, then it would be unwise to take bond

spreads relative to Germany. Instead, it would be better to use outright bond yields.

However, this approach would make the inputs of our model more sensitive to interest-

rate risk (which we factored out by subtracting German yields). Still, this might be

an interesting avenue for further research.

4.2 Joint default probability prior to 2008

The analysis of the previous subsection can be extended to the pre-2008 period using

only bond data. Figure 4 shows the joint default probability based on bond data for

the entire sample. We observe an initial jump in the joint default probability when

several countries enter the sample (early 1987). The peak in 1993 represents the ERM

crisis following the exit of the British Pound on Black Wednesday, September 16, 1992.

Interestingly, the 1995 peak represents the convergence of exchange rates and spreads

of member countries. So, whereas the first peak (1992) represents market panic, the

second peak (1995) reflects the settling down of markets. But peaks are classified as

periods of increased systemic risk by our model, as the probability of a joint default

is higher in both periods. After Greece joined the Euro in 2001, the joint default

probability reaches its lowest point in history. The peak and decline of the 2008-2015

period are the same as in Figure 3.

4.3 Conditional default probability

To focus attention on the core of the Euro area and its connectedness, we exclude

Greece from this analysis and focus on the probability of ≥ 2 defaults conditional on

≥ 1 default. The result is presented in Figure 5. It is clear that P (#defaults ≥ 2 |
#defaults ≥ 1) increased substantially over the 1990s. Dusing the 2000s until the

financial creasis, we notice a gradual decrease and some incidental temporary drops in

the conditional default probability. Since the financial crisis, the conditional probability
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Figure 4: Bond-based joint default probability 1987-2015

Estimated probability of ≥ 2 sovereign defaults using bond spread data, for the period 1987-2015.

has increased structurally to a higher level, where it remains until the very end of the

sample. This suggest that the reduction in joint default risk since the crisis is caused

mainly, and perhaps exclusively, by lower yields of stressed countries. At the same time,

it appears the interdependence in the Euro area has actually increased. The yardstick

of conditional default probability thus leads to the possibly worrying conclusion that

systemic risk remains high even after the crisis.

4.4 Decomposition of risk

In order to decompose systemic risk by source, we note that the probability of two

or more sovereigns going into default is affected by three factors: (i) the marginal

probability of each country going into default; (ii) tail dependence, which describes the

higher order dependence structure even if there are no correlations; (iii) the correla-

tion structure, which describes the remaining (linear) dependence between countries.

To capture component (i), we treat all default events as independent. Next, we cap-

ture component (ii) by adding our time varying multivariate Student’s t dependence

structure, but with a unit correlation matrix. This introduces tail dependence, but

no correlations. The increase in the joint default probability compared to setting (i)

is attributed to the tail dependence. Finally, we also add the correlations component

via the fully fledged model specification. The increase in the joint default probability
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Figure 5: Conditional probability of two or more defaults

Conditional probability of two or more defaults calculated as P (#defaults ≥ 2|#defaults ≥ 1) =
P (#defaults ≥ 2)/P (#defaults ≥ 1).

compared to setting (ii) is attributed to the correlation component.

Figure 6 presents the decomposition results for the probability of two or more sovereigns

defaults. Panel A displays the contribution of these effects, measured in percentage

points, such that the sum the three contributions varies over time and is equal to

the probability of a systemic event. Panel B, on the other hand, shows the relative

contribution by source, measured as a percentage of a percentage, such that the sum of

the three contributions is always equal to one hundred percent.

We observe that the dynamics of joint default risk are largely captured by the marginals.

Particularly in times of crisis, the percentage of the systemic risk joint default prob-

ability captured by the marginals increases to around 50% in the 1990s, 30% in the

financial crisis, and 70% in the European sovereign debt crisis. Still, tail risk and corre-

lation risk make up for a sizeable additional portion of systemic risk. Most interesting

is the pattern towards the end of the sample. Clearly, the contribution of tail and corre-

lation risk is largest during all periods where the perceived marginal risks are low (e.g.,

1998–2007). At the end of the sample, however, the tail and correlation risks remain

at peak levels compared to any other period in the sample where marginal risks are

low. This suggests that markets perceive the European sovereign interconnectedness

to remain high with all its possible implications for systemic fragility in Europe.
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Panel A: Probability of #defaults ≥ 2 decomposed by source
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Panel B: Probability of #defaults ≥ 2 decomposed by source (percentage of percentage)

Figure 6: Decomposition of the joint default probability

Panel A and Panel B show a decomposition of the joint default probability, i.e. the probability of
#defaults ≥ 2, decomposed by source: i.e. the part caused by the marginal probabilities, tail or
correlation risk. Panel A (Panel B) shows the absolute (relative) contribution of these sources, such
that their sum is equal to the probability of #defaults ≥ 2 (one hundred percent). As explained in
the text, both panels exclude Greece.
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We note that Figure 6 excludes Greece. If Greece is included, the correlation between

sovereigns sometimes lowers the probability of two or more defaults. It turns out that

during the high peak of the crisis Greek bond returns were negatively correlated with

those of other countries, possibly due to a flight-to-safety effect. By excluding Greece,

we ensure that the correlation component almost always increases the joint default

probability, as would be expected for a component of systemic risk. Still, even without

Greece the flight-to-safety patterns in the market at the peak of the European sovereign

debt crisis result in an almost negligible contribution of the correlation component to

the systemic risk measure.

4.5 Comparison with simple measures

A practical and widespread approach for assessing sovereign stress consists of simply

plotting bond yields and CDS spreads. For example, during the European sovereign

crisis of 2010/2011, as well as during later Greek government announcements, the CDS

spread of Greek sovereign bonds could be monitored on a daily basis — or even an

intra-daily basis — in order to gauge market expectations of a Greek default. The

decomposition results from the previous section are suggestive that a large part of the

joint default dynamics may already be captured by such marginal default dynamics.

In order to assess what can be learned from this direct approach, we construct simple

variables that measure the dependence between countries.

For CDS data, we exclude Greece and take (i) the German spread and (ii) the average

of the highest two CDS spreads. For bond data, we take (i) the average of the highest

three spreads versus Germany and (ii) three rolling pairwise correlations between Italy,

Spain and Portugal. Figure 7 compares the evolution of these simple measures against

the joint or conditional probability measure of two or more sovereign defaults.

Panel A shows the CDS-based joint default probability P (#defaults ≥ 2) against two

simple measures. We see that the simple average of the two highest CDS spreads

(excluding Greece) tracks P (#defaults ≥ 2) quite well. This is in line with the de-

composition results in Figure 6, where we see that during the crisis the joint default

probability is driven to a large extent by the marginal default probabilities. While

the German CDS spread also peaks in the crisis, it appears that our joint default risk

measure is driven more by stressed countries than by the benchmark.

Panel B shows that the relative movement of the bond-based probability P (#defaults ≥
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Panel A: CDS-based probability of #defaults ≥ 2 versus the average of the highest two CDS spreads (excluding
Greece) and against the German CDS spread
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Panel B: Bond-based probability of #defaults ≥ 2 versus the average of the highest three bond spreads
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Figure 7: Simple measures of systemic risk

The joint default probability P (#defaults ≥ 2) based on CDS and bond data is compared against simple measures based
on those same data sets. Panel A shows the average CDS spread for the two highest spreads excluding Greece (dotted
line) versus our estimated CDS-based joint default probability (solid line) and the German spread (grey line). Panel B
shows the average bond spread for the three highest spreads (dotted line) versus our bond-based estimated joint default
probability (solid line). Panel C shows the bond-based conditional default probability P (#defaults ≥ 2|#defaults ≥ 1)
against rolling correlations.
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2) is similar to the average of the three highest bond spreads. While there is still

a substantial discrepancy during the earlier period, when the sample contains fewer

countries, the similarity is particularly striking post-2000.

Panel C shows the bond-based conditional default probability P (#defaults ≥ 2|#defaults ≥
1) over time (excluding Greece) together with three pairwise rolling-window correla-

tions between countries that were vulnerable in the Euro crisis (Italy, Portugal and

Spain). It can be seen that the rolling correlations go down during periods of systemic

stress. This seems counter-intuitive, since lower correlations could be viewed as ‘re-

lieving’ any risk of contagion. However, it turns out that this decreased correlation is

often caused by a high spike in the bond yield of an individual country. While the cor-

relation has gone down, both idiosyncratic and systemic risk may have increased: the

spike in the bond yield of a single country off-sets the decrease in correlation such that

systemic risk, i.e. the risk of two or more defaults, remains high, or even increases. We

conclude that our probability measure of two or more defaults captures systemic risk

in ways that are not easily observed from plotting pairwise correlations of bond yield

changes in the market. In particular, the trend of P (#defaults ≥ 2|#defaults ≥ 1) as

discovered in Figure 5 cannot be captured using rolling-window correlation measures.

5 Conclusion

We computed the joint default probabilities for European sovereigns based on bond

yields or CDS spreads. We found that both types of data yield similar results. This is

comforting, as it allows for the use of bond yields to construct systemic risk measures

that so far were predominantly developed for CDS spreads. Using this finding, we

were able to infer joint probabilities of default in the Euro area for bond yields going

back to 1987. The results are consistent with popular notions of when systemic risk

was elevated, such as during the ERM crisis of 1992-1993. Moreover, the joint default

probability in 2009 was only slightly lower than during the ERM crisis, suggesting that

the measure is useful as an warning signal for sovereign systemic risk. Our decompo-

sition further revealed that a large part of the joint default dynamics co-moves with

the marginal default dynamics, such that also marginal measures can already convey

useful information. The interconnectedness of the system, however, cannot easily be

captured by simple measures such as rolling correlations, as these fail to capture the

upward trend of conditional default risk as uncovered by our analysis. This paper
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therefore has shown that both simple and more sophisticated systemic risk measures

have their merits, depending on the precise goal of the analysis.
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