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1 Introduction

Traditional economic theories of firms assume that the sole aim of firms is profit maximization.

However, this assumption has been criticized by management researchers and economists who

have studied the organization as well as modern corporations. They argue that the complexity

of the managerial decision process and the separation of ownership and control, which is

common to most large-scale corporations, would lead managers to maximize an alternative

objective other than profits. If firms are likely to move away from profit-maximizing behavior,

what is the alternative? In the 1980s, Vickers (1985), Fershtman (1985), Fershtman and Judd

(1987), and Sklivas (1987) (hereafter, VFJS for short) examined a two-stage delegation game

in which, in the first stage, the owner maximizes profit by properly choosing the weights on

profit and sale revenue in the manager’s incentive contract, and, in the second stage, the

manager maximizes the objective function given the weights chosen in the first stage. These

papers led to fruitful studies in which researchers adopted the basic structure of this delegation

game. Among these studies, Fumas (1992) and Miller and Pazgal (2002) consider a two-stage

delegation game in which the manager’s incentive contract is based on a weighted sum of the

firm’s own profit and its rivals’ profits (or their average profits). More recently, Jansen et

al. (2007) and Ritz (2008) further consider the delegation game whose managerial incentive

scheme is a weighted average of profits and market share. They show that managers can

achieve more profits for owners with decisions based partly on non-profit considerations like

sales, production volumes, market share, and so on than with decisions driven solely by profit.

This literature usually assumes not only that the manager’s incentive contract is composed

of a linear combination of profit and a non-profit indicator but also that the market features

oligopolistic competition with linear demand and linear/quadratic production cost functions.

Since most of the papers in the literature have assumed linear inverse demand and linear

or quadratic production cost functions for mathematical tractability, each oligopoly firm has

a linear reaction function. This means that issues such as the existence, uniqueness, and

stability of a Cournot-Nash equilibrium in oligopolistic competition is of secondary importance.

Moreover, the assumption of symmetric firms has been employed quite often in the setting
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of n firms. Such simplification severely limits the validity and applicability of the results

of these models. In order to assess the robustness of the comparative statics, we need to

investigate an oligopoly model undermore general (or non-linear) demand and cost functions.

However, if we allow for more general demand and cost functions, the resulting oligopoly

model may exhibit multiple equilibria and/or lead to inconclusive comparative statics, which

in turn significantly reduces the predictability of the properties of the comparative statics.

One exceptional paper is concerned with these issues. Kaneda and Matsui (2003) consider

an n oligopoly-firm model with general (non-linear) demand and cost functions in which

each firm’s objective is to maximize the weighted average of profit and a general function

representing alternative objectives such as revenue, market share, and so on. They then

investigate the impact that the weights assigned to the alternative objectives have on the

outputs and profits of the oligopoly firms in equilibrium. Nevertheless, the authors assume

not only n symmetric oligopoly firms but also conditions that are quite similar to Hahn’s

condition as well as seemingly ad-hoc conditions on the function representing the alternative

objectives. These assumptions ensure the existence of a unique Nash equilibrium.

The principal motivation of this paper is to provide weaker but more general conditions

for the existence and uniqueness of a Cournot-Nash equilibrium in such oligopoly models.

We set up a Cournot oligopoly model composed of n heterogeneous firms, each of which

maximizes a different weighted average of profit and alternative, non-profit objectives, where

the alternative objectives may include revenue, production volumes, cost, market share, or per-

worker profits.1 Following Kaneda and Matsui (2003), we adopt a general objective function

to represent the alternative objectives not only because of its generality but also because of its

flexibility. Using their weighted sum formulation for the different objective functions allows

us to encompass various types of alternative objective functions for oligopoly firms, ranging

from a purely profit-maximizing oligopoly firm to a purely non-profit-maximizing firm.

The most important new contribution of this paper is that we adopt the share function ap-

proach suggested by Cornes and Hartley (2005, 2011) to investigate the existence, uniqueness,

1To our best knowledge, the unpublished paper by Kaneda and Matsui (2003) is the first to introduce
such a formulation. The resulting fairly complicated and restrictive technical conditions not only limit the
applicability of their model but also obscure the main messages of their model.
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stability, and comparative statics properties of the Cournot-Nash equilibrium in the oligopoly

game in which each oligopoly firm has the weighted average objective function stated above.

This share function approach is not only simple but also powerful in handling these issues in

a systematic and unified way. Irrespective of the form of the firm’s objective function, this

approach provides a general condition for the existence of a unique Cournot-Nash equilibrium.

Another advantage of this approach is that it easily allows for many heterogeneous oligopoly

firms, which is a generalization of the symmetric oligopoly game analyzed by Kaneda and

Matsui (2003). Although the existing literature on profit-maximizing oligopoly models has

commonly assumed Hahn’s condition in order to prove the existence of an equilibrium, it is

well recognized that this canonical condition is neither sufficient nor necessary for the exis-

tence of a unique Cournot-Nash equilibrium in the oligopoly model with strategic delegation.

In contrast, using the share function approach of Cornes and Hartley, we not only provide a

condition for the existence of a unique Cournot-Nash equilibrium in strategically delegated

oligopoly models with general demand and cost functions, but we also identify the extent to

which Hahn’s condition is useful in signing comparative statics with respect to an idiosyncratic

change in a parameter affecting only one specific firm in these oligopoly models. Kaneda and

Matsui (2003) make several specific assumptions on the alternative objective function, whereas

the share function approach of Cornes and Hartley enables us to show that Kaneda and Mat-

sui’s extra conditions are redundant. Moreover, Cornes and Hartley’s approach provides the

almost minimum set of conditions for the existence, uniqueness, and comparative statics prop-

erties in the Cournot oligopoly game in which each firm has the weighted sum formulation of

the objective functions, as long as the weighted-sum objective functions retain the structure of

aggregative games. We are especially concerned with how the different weights assigned to the

alternative objectives of the different oligopoly firms affect the profiles of their outputs and

profits in equilibrium.

The reminder of the paper is organized as follows. In Section 2, we present a basic oligopoly

model in which each firm maximizes the weighted average of profit and another objective,

such as revenue, output, cost, market share, or per-worker profits. We identify the general

conditions for the existence and uniqueness of a Cournot-Nash equilibrium in this oligopoly
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model. In Section 3, using a comparative statics analysis of this oligopoly model with respect

to an idiosyncratic change in a parameter that only affects a specific firm, we investigate how

different weights affect the profiles of the outputs and profits of oligopoly firms in equilibrium.

In Section 4, we investigate the conditions for stability of a Cournot-Nash equilibrium in this

oligopoly model. In Section 5, we apply the share function approach to oligopoly models

with more than two objectives and non-linear managerial contracts. In Section 6, we present

concluding remarks.

2 The Analysis

2.1 The Model

We assume that there are n potential producers of a homogeneous product, indexed by i =

1, 2, ..., n, in Cournot oligopoly, but the set of active firms (i.e., firms producing positive output)

will be determined endogenously.2 Firms simultaneously choose their own output. The inverse

demand function is given by P = P (X), where P is the price, xi is the output of firm i, and

X =
∑n

j=1 xj is the industry output.

Define the profit function of firm i as follows:

πi (xi,X) = P (X)xi − Ci (xi) . (1)

We further define the true objective function of firm i, which will be the main focus of our

analysis, as

Πi (xi,X, θi) ≡ (1− θi)π (xi,X) + θiF
i (xi, X) ,

= (1− θi) [P (X)xi − Ci (xi)] + θiF
i (xi, X) , (2)

where θi ∈ (0, 1) is a weight assigned to the alternative objective. Note that when θi = 0, firm

2This assumption does not imply that the number of firms is endogenously determined through the entry
of new firms until profits are driven to zero but rather that each firm may be an active supplier depending on
the market price of output and its cost function.
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i is a profit maximizer. Without loss of generality, we assume that θ1 < θ2 < · · · < θn. A lower

value of θi implies that the firm puts more weight on profits. The function F i (.) represents

the alternative objectives such as sales, production volumes, and so forth. In this paper, we

focus on the following alternative objectives.

1. Revenue: F i (xi,X) ≡ P (X)xi,

2. Output: F i (xi,X) ≡ xi,

3. Market share: F i (xi,X) ≡ xi/X,

4. Negative of cost: F i (xi, X) ≡ −Ci(xi),

5. Profit per worker: F i (xi,X) ≡
P (X)xi − Ci(xi)

N(xi)
.

Assume that

A.1 Πi (xi,X, θi) ∈ C2 for ∀i ∈ I, where I is the set of firms (assumed to be finite).

The first-order condition associated with the maximization of (2) is given by

∂Πi (xi, X, θi)

∂xi

= (1− θi) [P
′ (X)xi + P (X)− C ′

i (xi)] + θi
[

F i
1 + F i

2

]

≤ 0, (3)

with equality if xi > 0, where θi is a given positive parameter, and F i
1 ≡ ∂F i (xi, X) /∂xi

and F i
2 ≡ ∂F i (xi,X) /∂X. We denote the middle expression in (3) as γi (xi,X, θi), which

represents marginal profit.

2.2 Existence and Uniqueness

Cornes and Hartley (2005, 2011) further made the following assumptions in order to ensure

the existence and uniqueness of Nash equilibria in pure strategies:

A.2 (i)There exists at least one firm, say firm i ∈ I, such that for some xi > 0,3

Πi (xi, xi, θi) > Πi (0, 0, θi) .

(ii)There exists a ui ∈ R+ such that all strategies xi > ui are strictly dominated.
4

3This assumption implies that since at least one firm can make positive monopoly profits, the possibility
of a Nash equilibrium in which all firms choose zero output is ruled out, and, thus, the sum of the respective
share functions defined later exceeds or equals one at some level of industry output.

4Assumption A.2 will be replaced with A.6 later in the context of Cournot oligopoly competition.

5



A.3 For ∀i ∈ I, if (xi, X) satisfies 0 < xi < X and γi (xi,X, θi) = 0, then

∂γi (xi,X, θi)

∂xi

< 0, (4)

where

∂γi (xi,X, θi)

∂xi

≡ (1− θi) [P
′ (X)− C ′′

i (xi)] + θi
[

F i
11 + F i

12

]

,

and F i
11 ≡ ∂2F i (xi,X) /∂x2

i and F i
21 ≡ ∂2F i (xi, X) /∂X∂xi.

A.4 For ∀i ∈ I, if (xi, X) satisfies 0 < xi < X and γi (xi, X, θi) = 0, then

xi

∂γi (xi,X, θi)

∂xi

+X
∂γi (xi, X, θi)

∂X
< 0, (5)

where

∂γi (xi, X, θi)

∂X
≡ (1− θi) [P

′′ (X)xi + P ′ (X)] + θi
[

F i
12 + F i

22

]

,

and F i
12 ≡ ∂2F i (xi,X) /∂xi∂X and F i

22 ≡ ∂2F i (xi, X) /∂X2
i .

A.5 For ∀i ∈ I, if (xi, X) satisfies 0 < xi < X and γi (xi,X, θi) = 0, then5

∂γi (xi,X, θi)

∂X
< 0.

To understand the implications of A.3 and A.4, we need to understand the concepts

of the replacement and share functions. When firm i produces positive output, that is,

when an interior solution exists, then since γi (.) is continuously differentiable and due to

Assumption A.3, we can apply the implicit function theorem to the first-order condition

γi(x̂i, X̂, θi) = 0. As a result, there exists a continuously differentiable function ri : B �−→ A

with γi (ri(X, θi), X, θi) = 0, where A represents some open set containing X̂ and B repre-

sents some open set containing x̂i. We call such a function a replacement function ri(X, θi) =

5This assumption is stronger than necessary. Indeed, a weaker assumption such as

∂γi (xi, X, θi)

∂X
≤ 0.

is sufficient to prove the existence of a unique Nash equilibrium. However, in order to obtain definite compar-
ative statics results, it is convenient to assume a strict inequality in A.5.
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xi(X, θi), following Cornes and Hartley (2005, 2011).6 More formally, we can define the re-

placement function as follows:

Definition 1 If for any value of X ≥ 0 there is a unique value xBR
i ≡ ri(X, θi) such that x

BR
i

is a best response to X − xBR
i , then the function ri(X, θi) is the replacement function of firm

i.

For the reason stated later, when proving the uniqueness and existence of a Cournot-

Nash equilibrium, it may be more convenient to work with the share function rather than the

replacement function. Firm i’s share function is defined as follows:

Definition 2 Let firm i have a replacement function xi = ri(X, θi). Then, for all X > 0, the

function si(X, θi) ≡ ri(X, θi)/X is the share function of firm i.

ACournot-Nash equilibrium of the oligopoly model is an allocation at which
∑n

j=1 sj(X, θi) =

1. More precisely, if (1) each firm’s share function is continuous and monotonically decreasing

when the share value is strictly positive, (2) all share functions approach or equal zero for

larger X, and (3) each firm’s share function has at least a unit upper bound, then it follows

from the Intermediate Value Theorem that there exists a unique Cournot-Nash equilibrium in

oligopolistic competition.

6The best-reply function xi = bi(X−i, θi) implicitly satisfies the first-order condition (3); that is,

γi (bi(X−i, θi), X−i + b(X−i, θi)) = 0.

This produces

b′i(X−i, θi) = −
∂γi/∂X

(∂γi/∂xi) + (∂γi/∂X)
� 0 if and only if

∂γi

∂X
� 0,

provided (∂γi/∂xi) + (∂γi/∂X) < 0 (which is immediately obtained from A.4; see Remark 2), which is
consistent with the requirement of the second-order condition (i.e., strict concavity of the profit function;see
Remark 2). Hence, the slope of the best-reply function depends solely on the sign of (∂γi/∂X) so long as A.4

holds.
On the other hand, the slope of the replacement function ri(X, θi) is given by

r′i(X, θi) = −
∂γi/∂X

∂γi/∂xi

=
b′i(X−i, θi)

1 + b′i(Xi, θi)
⋚ 0 if and only if

∂γi

∂X
� 0,

provided ∂γi/∂xi < 0 (i.e., A.3). Comparing the above two expressions reveals that the sign of ∂γi/∂X solely
determines the slopes of both functions, given either A.3 or A.4. Alternatively, if A.3 and A.5 are assumed,
then A.4 is satisfied, and thus both functions are negatively sloped.
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The condition for a monotonically decreasing share function (i.e., (1) is met) is given by

dsi (X, θi)

dX
= −

xi

∂γi (xi, X, θi)

∂xi

+X
∂γi (xi,X, θi)

∂X

X2
∂γi (xi,X, θi)

∂xi

< 0 if A.3 and A.4 hold.

Since the share function of firm i is bounded above by some positive real number (which

is implied by (i) in A.2), all share functions approach or equal zero for large enough X.

Therefore, the same is true of the aggregate share function, and consequently, (2) is satisfied.

Statement (ii) in A.2 implies that for an active equilibrium, where at least one firm produces

a positive amount of output, the aggregate share function should be equal to or exceed one

for some value of X > 0, thus implying that (3) is satisfied.

There are several advantages to using the share function. The first is that it allows us

to work with functions defined on the real line rather than a multi-dimensional best-reply

mapping from Rn to Rn. The second is that even if the replacement function is not monotonic,

the share function may be monotonically decreasing; in this sense, the share function approach

would potentially provide weaker conditions for the existence and uniqueness of a Cournot-

Nash equilibrium (see also footnote 6).

In order to ensure the existence and uniqueness of a Cournot-Nash equilibrium, much of

the existing literature on Cournot oligopoly commonly assumes Hahn’s condition, which is

associated with dynamic stability (Hahn, 1962). Hahn’s condition, P ′′ (X)X + P ′ (X) ≤ 0

(i.e., the decreasing marginal revenue property) and C ′′ (xi)− P ′ (X) > 0, requires that as X

increases, the replacement function xi(X, θi) decreases (see footnote 6). Nevertheless, Cornes

and Hartley’s condition (i.e., A.3 and A.4) allows for the possibility that xi(X, θi) increases

in response to an increase in X−i. In other words, their condition allows that the best-reply

function may be increasing or decreasing inX. For this reason, Cornes and Hartley’s condition

is significantly weaker than Hahn’s condition in proving the existence and uniqueness of an

equilibrium in the conventional Cournot oligopoly model (see Szidarovzsky and Yakowitz,

1977; Novshek, 1985).7

7For example, consider the constant elasticity of demand function X = αP−ε, which may not satisfy Hahn’s
condition (i.e., P ′′ (X)xi + P ′ (X) < 0).
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We can prove the following proposition in the Cournot oligopoly model with additional

alternative objectives:

Proposition 1 Assume that A.1–A.4 hold. There exists a unique Nash equilibrium in the

Cournot oligopoly game in which each firm maximizes (2).

Proof. The proof of Cornes and Hartley (2005, 2011) is here applicable with appropriate

modifications such as (2) and (3).

Remark 1 Kaneda and Matsui (2003) have assumed the following conditions to ensure the

existence of a unique Cournot-Nash equilibrium of their oligopoly model with identical cost

functions and with additional alternative objectives, that is,

P ′′ (X)X + P ′ (X) ≤ 0 and C ′′ (xi)− P ′ (X) > 0,

P ′′ (X) xi + 2P ′ (X)− C ′′ (xi) < 0. (6)

For the other objective, F , they assume that

F1 ≤ 0, F12 + F22 < 0 and F11 + 2F12 + F22 < 0. (7)

They claim that all these conditions together guarantee the unique existence of a Nash equilib-

rium, whereas our conditions (i.e., A.3 and A.4) for existence and uniqueness are not only

much simpler but also allow for heterogeneity of firms (i.e., heterogeneous cost functions).

Remark 2 We need not assume that the second-order condition is satisfied provided assump-

tions A.3 and A.4 hold. Indeed, since the second-order condition can be rewritten as

∂2Πi (xi,X, θi)

∂x2
i

=
∂γi (xi, X, θi)

∂xi

+
∂γi (xi, X, θi)

∂X

= X−1

[

(X − xi)
∂γi (xi,X, θi)

∂xi

+ xi

∂γi (xi,X, θi)

∂xi

+X
∂γi (xi, X, θi)

∂X

]

< 0, (8)

it immediately follows that A.3 and A.4 imply the second-order condition (8). On the other
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hand, since the second-order condition (8) can be rewritten as follows:

∂γi (xi, X)

∂xi

+
∂γi (xi,X)

∂X
=

(1− θi) [P
′ (X)− C ′′

i (xi)] + θi
[

F i
11 (xi,X) + F i

21 (xi, X)
]

+

(1− θi) [P
′′ (X)xi + P ′ (X)] + θi

[

F i
12 (xi,X) + F i

22 (xi, X)
]

, (9)

it is readily seen from (9) that the conditions postulated by Kaneda and Matsui (2003) (i.e.,

(6) and (7) in Remark 1) also provide the second-order condition.

3 Comparative Statics

In this section, we investigate the comparative statics properties of Cournot oligopoly models

with a variety of additional alternative objectives (i.e., the function F (.)) that have appeared

in the literature on oligopolies with strategic delegation and mixed oligopolies, as stated in

the introduction. Since the resulting weighted average between pure profit maximization and

non-profit maximization can be viewed as a reduced-form objective function at the second

stage of the two-stage delegation game analyzed by VFJS, we do not undertake a full analysis

of such a two-stage game. Instead, in what follows, we focus on the reduced-form objective

function (2), into which the delegation decision has been already incorporated.

Cornes and Hartley (2005, 2011) show that in a Cournot oligopoly game, an idiosyncratic

change in the payoff functions (i.e., profit functions) of a specific firm that leads the firm to

increase its own output also leads to an increase in the total output of the industry, although

other firms may respond by increasing or decreasing their outputs. We shall refer to a firm

in a game with a unique Nash equilibrium as active if it chooses a positive strategy in that

equilibrium; an inactive firm chooses zero. With some slight modifications, we will use the

following proposition:

Proposition 2 [Theorem 4.2 of Cornes and Hartley (2005) and Theorem 10 of Cornes and

Hartley (2011)] Let G1 and G2 be aggregative games with the same (finite) set of active firms,

I, and the same profits for all firms except i′ ∈ I. Suppose that A.1 and A.3 hold for all

10



firms and that G1 and G2 both have (unique) Nash equilibria: (x̂1
1.x̂

1
2, ..., x̂

1
n) and (x̂

2
1.x̂

2
2, ..., x̂

2
n).

Suppose further that, for any (xi,X) satisfying 0 < xi < X, we have

γ1
i′(xi′, X) < γ2

i′(xi′, X) and
∂

∂X
Πi (xi,X) < 0 (> 0) for all i ∈ I.

If i′ is inactive in G2, then (x̂1
1, x̂

1
2, ..., x̂

1
n) = (x̂2

1, x̂
2
2, ..., x̂

2
n). Otherwise,

1. X̂2 > X̂1, where X̂k ≡
∑n

j=1 x̂
k
j for k = 1, 2,

2. firms in I\ {i′} that are active in G1 are worse (better) off in G2 than in G1,

3. firms in I\ {i′} that are inactive in G1 are inactive in G2,

4. if Π1
i′ (0,X) ≤ Π2

i′ (0,X) for all X > 0, then firm i′ is better off in G2 than in G1, and

5. if A.5 holds for a player i who is active in G1, then x̂1
i > x̂2

i for i ∈ I\ {i′}, and

x̂1
i′ < x̂2

i′.
8

As an immediate application of Proposition 2, coupled with the assumption of symmetric

oligopoly firms, we can prove the following main proposition:

Proposition 3 Assume that all firms have identical cost functions and that A.1-A.4 hold.

Suppose further that, for any (xi,X) satisfying 0 < xi < X,

∂γi(xi, X)

∂θi
> 0 for all i ∈ I,

and 0 < θ1 < θ2 < · · · < θn < 1. Then

1. Total output increases,

2. If ∂Πi(xi, X, θi)/∂X > 0, then Π1 (x̂1, X, θ1) ≤ Π2 (x̂2,X, θ2) ≤ · · · ≤ Πn (x̂n,X, θn) and

the inequality is strict if si(X) > 0,

3. If ∂Πi(xi,X, θi)/∂X < 0, then Π1 (x̂1,X, θ1) ≥ Π2 (x̂2,X, θ2) ≥ · · · ≥ Πn (x̂n, X, θn)

and the inequality is strict if si(X) > 0, and

8Statement 5 of Proposition 5 is consistent with Proposition 2.4 and related results (see Corchón, 2001).
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4. If A.5 holds for an active player i, then x̂1 < x̂2 < · · · < x̂n.

Conversely, suppose that, for any (xi,X) satisfying 0 < xi < X,

∂γi(xi, X, θi)

∂θi
< 0 for all i ∈ I,

4. the results 1−4 hold with the inequalities reversed.

Proof. First, consider the case where ∂γi(xi, X)/∂θi > 0. To prove assertion 1, suppose

initially that θ1 = θ2 = · · · = θn. Since all firms are identical, they produce the same

amount of output, i.e., x1 = x2 = · · · = xn. We denote this output profile of all firms as

x(0) = (x
(0)
1 , x

(0)
2 , · · ·, x

(0)
n ) ∈ Rn

+, where the superscript represents the number of times the

profile (θ1, θ2, · · ·, θn) is changed. Suppose now that an idiosyncratic increase in only the

weight on firm 2 in the function F , θ2, occurs, which leads to the profile of weights with

θ1 < θ2 and θ1 = θ3 = · · · = θn. As shown in Figure 1, from statement 1 of Proposition 2,

the total output, X ≡
∑n

j=1 xj, rises (this follows from statement 1 of Proposition 2). When

A.5 holds, moreover, the resulting profile of outputs is given by x(1) ∈ Rn
+ with x

(1)
1 < x

(1)
2

and x
(1)
1 = x

(1)
3 = · · · = x

(1)
n ≥ 0. The first inequality is obtained by applying assertion 5 of

Proposition 1, and the equalities stem from the identical first-order conditions for all i except

for firm 2:

γi (xi,X, θi) = (1− θ) [P ′ (X)xi + P (X)− C ′ (xi)] +

θ [F1(xi,X) + F2(xi,X)] ≤ 0, for all i except for firm 2

with θ = θ1 = θ3 = · · · = θn.

Starting from the previous order of the weights (i.e., θ1 < θ2 and θ1 = θ3 = · · · = θn),

suppose next an idiosyncratic increase in only the weight of firm 3, θ3, which leads to a new

profile of weights with θ1 < θ2 < θ3 and θ1 = θ4 = · · · = θn. As before, the total output is

increased. WhenA.5 further holds, the output profile of all firms is given by x(2) ∈ Rn
+ with

x
(2)
1 < x

(2)
2 < x

(2)
3 and x

(2)
1 = x

(2)
4 = · · · = x

(2)
n . x

(2)
2 < x

(2)
3 due to assertion 5 of Proposition 2,

as before, and x
(2)
1 < x

(2)
2 because x

(1)
1 < x

(1)
2 and because increasing the total output reduces

12



Figure 1: Total output increases in response to an increase in θ3 (i.e., θ3 < θ′3).

both outputs. In this way, by repeating the same argument as before n − 1 times, we can

prove that x
(n)
1 < x

(n)
2 < · · · < x

(n)
n , and the total output continues to rise, which completes

the proofs of statements (i) and (iv). Conversely, when ∂γi(xi,X, θi)/∂θi < 0 (together with

A.3 and A.5), the inequalities in assertions 1-3 are reversed (see Lemma 4.1 of Cornes and

Hartley, 2005; Proposition 2.4 of Corchón, 2001). Assertions 1 and 2 of Proposition 3 can be

immediately proven by the straightforward application of assertions 2 and 4 of Proposition 2

at every step of changing the profile of weights.

It should be noted that the results of Proposition 3 are based crucially on the assumption

of identical cost functions. Since every oligopoly firm faces the same demand function, the

heterogeneity among the firms stems from only the different weights assigned to the alternative

objective functions. The symmetric assumption is quite important to rank profits as well as

output among more than two firms. In general, only the response of the specific firm that is

subject to an idiosyncratic shock affecting its own profit function can be signed; the responses

of the other firms cannot be signed. More precisely, when, say, only θ2 increases, the outputs

of all the firms except firm 2 fall, irrespective of whether the cost functions are identical or not.

At the next step, on the other hand, when only θ3 increases, the outputs of all the firms except

firm 3 unambiguously fall for the same reason as before. However, without the assumption of

13



identical cost functions, we are not able to identify whether the resulting output of firm 2 is

greater than that of firm 1 in equilibrium. Since the assumption of identical cost functions

makes it possible to directly compare the first-order conditions of both firms, we can identify

which firm has greater output.

Remark 3 To prove Proposition 3, Kaneda and Matsui (2003) have assumed either that

dF (xi, X) /dxi is positive whenever the (pure) marginal profit is nonnegative (i.e., P
′ (X)xi+

P (X)−C ′ (xi) ≥ 0) or that if dF (xi,X) /dxi is negative whenever the (pure) marginal profit is

non-positive (i.e., P ′ (X)xi+P (X)−C ′ (xi) ≤ 0). The first condition implies that the peak of

the profit function, P (X)xi−C (xi), is located to the left of the peak of the alternative objective

function F (xi, X), whereas the second condition implies that their positions are reversed. In

contrast, we do not need these conditions. Instead, the slope of the best-reply function matters

in signing the comparative statics properties.

Up to this point, we have assumed general conditions for the existence and uniqueness of

Nash equilibria independently of the detailed structure of the objective functions of a Cournot

oligopoly firm. In the subsequent subsections, we will carry out comparative statics analysis

exploiting the structure of the oligopolistic models with the various additional alternative

objectives listed before.

A.6 P (X) is a C2 class function. There exists an ξ ∈ (0,∞) such that P (X) = 0 holds for

X ∈ [ξ,∞), P ′(X) < 0 for X ∈ [0, ξ), XP (X) → 0 as X → 0, and P (X) → 0 as X

→ ∞. Ci (0) is a C2 class function. For ∀i ∈ I, C ′

i (xi) ≥ 0 for any xi ≥ 0, with strictly

inequality if xi > 0, and Ci (0) = 0.

A.7 (The strict inequality version of Hahn’s condition) For ∀i ∈ I,

P ′′ (X)X + P ′ (X) < 0 and C ′′

i (xi)− P ′ (X) > 0.

A.6 implies that the inverse demand function P (X) must eventually fall below the average

cost for larger X, and the corresponding levels of output are dominated by the choice of
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no output in the conventional Cournot oligopoly model as long as an additional alternative

objective function F (, ) is absent. It also implies that there exist positive monopoly profits at

smaller levels of X because the cost function continuously decreases to zero with xi, whereas

P (X) eventually becomes positive with smaller levels of X. Taken together, A.6 ensures

the fulfillment of A.2 as far as the standard Cournot oligopoly model without alternative

objectives is concerned.

3.1 Revenue

VFJS consider the oligopoly model with delegation in which the manager’s incentive contract

consists of a linear combination of profits and sales revenue. In this case, each oligopoly firm

maximizes the delegated objective function:

ΠR
i (xi,X, θi) ≡ (1− θi) [P (X)xi − C (xi)] + θiP (X)xi. (10)

In what follows, we assume that all firms have identical cost functions. i.e., C (xi) = Ci (xi)

for ∀i ∈ I. The first-order condition for profit maximization is given by

γR
i (xi, X, θi) ≡ (1− θi) [P

′ (X) xi + P (X)− C ′ (xi)] + θi [P
′ (X)xi + P (X)]

≡ P ′ (X)xi + P (X)− (1− θi)C
′ (xi) ≤ 0, (11)

where γR
i (xi,X, θi) stands for the marginal profit function of firm i as a function of xi and X,

given a θi.

To prove existence and uniqueness, we need to assume that A.3 and A.4 hold, i.e.,

∂γR
i (xi, X, θi)

∂xi

= P ′ (X)− (1− θi)C
′′ (xi) < 0, (12)
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and

xi

∂γR
i (xi,X, θi)

∂xi

+X
∂γR

i (xi, X, θi)

∂X
=

xi [P
′ (X)− (1− θi)C

′′ (xi)] +X [P ′′ (X)xi + P ′ (X)] < 0. (13)

In addition, it is easy to see that A.2 is satisfied under A.6 (A.1 is trivially satisfied);

consequently, Proposition 1 holds. Moreover, it can be verified that under A.6

∂γR
i (xi,X, θi)

∂θi
= C ′ (xi) ≥ 0, (14)

∂ΠR
i (xi,X, θi)

∂X
≡ (1− θi)P

′ (X) xi + θiP
′ (X)xi = P ′ (X)xi < 0, (15)

ΠR
i (0, X, θi) = 0 = ΠR

i (0,X, θj) for all X and θi < θj,

but

∂γR
i (xi,X, θi)

∂X
= P ′′ (X)xi + P ′ (X) � 0. (16)

Taken together, under A.3, A.4, and A.6, it turns out not only that a unique Cournot-

Nash equilibrium exists, but also that ΠR
1 (x̂1,X, θ1) ≥ ΠR

2 (x̂2, X, θ2) ≥ · · · ≥ ΠR
n (x̂n, X, θn)

(the inequality is strict if firm i is active), and the total output falls since (14) and (15) hold

(recall Proposition 3).

Taking another set of assumptions, if Hahn’s conditionA.7, together withA.6, is assumed,

thenA.3 and A.5 are satisfied (see (12) and (13)), thus ensuring the existence and uniqueness

of the equilibrium and, moreover, that the sign of ∂γR
i (xi,X, θi) /∂X in (16) is negative;

consequently, we obtain an increasing order of outputs across active firms (i.e., x̂1 < x̂2 < ··· <

x̂n). Notably, different from Kaneda and Matsui (2003), without imposing any further specific

conditions on the function F (xi, X), we can identify definite comparative statics responses

with respect to the profits as well as the outputs of all firms. In short, Cornes and Hartley’s

condition (i.e.,A.3 andA.4) enables us to highlight how and to what extent Hahn’s condition

(i.e., A.7) is effective in carrying out a comparative statics analysis and existence proof.
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Moreover, although the conditions that Kaneda and Matsui (2003) impose on the function

F (xi,X) (i.e., (7) in Remark 1) mask such a relationship, Cornes and Hartley’s condition

reveal that these conditions imposed on F (xi, X) are clearly redundant.

3.2 Output

The second model is that the manager’s incentive contract consists of a linear combination of

profits and units sold (i.e., output), as considered by Vickers (1985) and Stewart (1992). In

this case, the manager’s objective function for oligopoly firm i is expressed by:

ΠO
i (xi, X, θi) ≡ (1− θi) [P (X) xi − C (xi)] + θixi. (17)

The first-order condition for profit maximization is given by

γO
i (xi,X, θi) ≡ (1− θi) [P

′ (X) xi + P (X)− C ′ (xi)] + θi ≤ 0. (18)

To prove existence and uniqueness, we first assume that A.3 and A.4 hold; i.e.,

∂γO
i (xi, X, θi)

∂xi

= (1− θi) [P
′ (X)− C ′′ (xi)] < 0, (19)

xi

∂γR
i (xi,X, θi)

∂xi

+X
∂γR

i (xi, X, θi)

∂X
=

(1− θi) [xi (P
′ (X)− C ′′ (xi)) +X (P ′′ (X)xi + P ′ (X))] < 0. (20)

In addition, since A.2 (as well as A.1) are trivially satisfied, the existence and uniqueness of

the equilibrium follow from Proposition 1.

To see how an increase in θi affects the behavior of oligopoly firms, we differentiate (18)

with respect to θi to yield

∂γO
i (xi, X, θi)

∂θi
= − [P (X) + P ′ (X)xi − C ′ (xi)] + 1

≥
θi

1− θi
+ 1 =

1

1− θi
> 0, (21)
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where the first inequality follows from (18). Furthermore, it turns out that under A.6

∂ΠO
i (xi,X, θi)

∂X
= (1− θi)P

′ (X)xi ≤ 0, ∀ i ∈ I, (22)

ΠO
i (0, X, θi) = 0 = ΠO

i (0,X, θj) for all X and θi < θj,

and

∂γO
i (xi, X, θi)

∂X
= (1− θi) [P

′′ (X)xi + P ′ (X)] � 0. (23)

To sum up, underA.3, A.4, andA.6, we can prove not only that a unique Cournot-Nash equi-

librium exists but also that total output increases and the profits decrease in order across all

output-concerned oligopoly firms, as in the case of revenue-concerned oligopoly firms. Under

the alternative set of assumptions A.6 and A.7, on the other hand, ∂γR
i (xi,X, θi) /∂X < 0 is

obtained in addition to the existence and unique of the equilibrium, thus implying an increasing

order of outputs across firms due to statement 5 of Proposition 2. Hence, the output-concerned

oligopoly firms respond to different weights on the alternative objectives in the exact same

way as the revenue-concerned oligopoly firms without the additional assumptions imposed on

F (.).

3.3 Negative of Cost

Private firms in the most energy-intensive sectors, such as airlines and transport and delivery

companies, are very concerned about higher oil prices. The regulation of public firms is

sometimes based on cost observations because regulators do not know a firm’s true cost.

Baron and Besanko (1984) and Laffont and Tirole (1986) derive the optimal incentive scheme

or contract that negatively depends on the costs reported by public firms. This incentive

scheme encourages the manager to reduce the cost of production. In this case, the manager’s

objective function for oligopoly firm i is expressed by:

ΠC
i (xi,X, θi) ≡ (1− θi) [P (X)xi − C (xi)]− θiC (xi) . (24)

18



The first-order condition for profit maximization is given by

γC
i (xi,X, θi) ≡ (1− θi) [P

′ (X)xi + P (X)− C ′ (xi)]− θiC
′ (xi)

= (1− θi) [P
′ (X)xi + P (X)]− C ′ (xi) ≤ 0. (25)

Since A.2 is also trivially satisfied under A.6, and assuming that A.3 and A.4 hold, i.e.,

∂γC
i (xi,X, θi)

∂xi

= (1− θi)P
′ (X)− C ′′ (xi) < 0, (26)

and

xi

∂γR
i (xi,X, θi)

∂xi

+X
∂γR

i (xi, X, θi)

∂X
=

xi [(1− θi)P
′ (X)− C ′′ (xi)] +X [P ′′ (X)xi + P ′ (X)] < 0, (27)

we can prove the existence of a unique Cournot-Nash equilibrium due to Proposition 1.

To see how an increase in θi affects the behavior of oligopoly firms, we differentiate (25)

with respect to θi to yield

∂γC
i (xi,X, θi)

∂θi
= − [P ′ (X)xi + P (X)] ≤ 0, (28)

where the inequality follows from (25). Furthermore, it turns out that under A.6

∂ΠC
i (xi,X, θi)

∂X
= (1− θi)P

′ (X)xi ≤ 0, ∀ i ∈ I , (29)

ΠC
i (0, X, θi) = 0 = ΠC

i (0,X, θj) for all X and θi < θj,

and

∂γC
i (xi,X, θi)

∂X
= (1− θi) [P

′′ (X)xi + P ′ (X)] � 0. (30)

Taken together, it turns out that under A.3, A.4, and A.6, a unique Cournot-Nash equilib-

rium exists, but the total output of the industry falls, and thus we see that an increasing order
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Figure 2: Total output decreases in response to an increase in θ3 (i.e., θ3 < θ′3).

of profits across all output-concerned oligopoly firms (i.e., ΠC
1 (x̂1, X, θ1) < ΠC

2 (x̂2,X, θ2) <

· · · < ΠC
n (x̂n,X, θn)) prevails due to (29) and Proposition 3, unlike the cases of revenue-

concerned and output-concerned oligopoly firms. Moreover, it follows from (28) that although

under A.6 and A.7 ∂γC
i (xi,X, θi) /∂X < 0 is obtained, a decreasing order of outputs across

firms emerges (see Corchón, 2001).9 The intuition behind these reversed results is clear. The

effect of increasing the weight θi reduces the marginal profit of firm i (see (28)), which is differ-

ent from the revenue- and output-concerned oligopoly firms. Graphically, since the decreased

marginal profit of firm i shifts the aggregate share function to the left, thus resulting in a

lower level of the total industry output, as illustrated in Figure 2.

3.4 Market Share

Jansen et al. (2007) and Ritz (2008) consider a delegation game in which the manager’s

incentive contract is written as a linear combination of profits and market share. In this case,

the manager’s objective function can be expressed by:

9Since
P ′ (X)− C′′ (xi) < (1− θi)P

′ (X)− C ′′ (xi) < 0,

Hahn’s condition (i.e., P ′ (X)−C′′ (xi) < 0) does not ensure the negativity of (1− θi)P
′ (X)−C ′′ (xi) (recall

that P ′ (X) < 0, but the sign of C′′ (xi) is indeterminate). More precisely, we here have to make a slightly
stronger assumption in that (1− θi)P

′ (X)− C ′′ (xi) < 0 rather than Hahn’s condition.
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ΠM
i (xi, X, θi) ≡ (1− θi) [P (X)xi − C (xi)] + θi(xi/X). (31)

The first-order condition for profit maximization is given by

γM
i (xi,X, θi) ≡ (1− θi) [P

′ (X)xi + P (X)− C ′ (xi)] + θi(X − xi)X
−2 ≤ 0. (32)

As before, assuming that for ∀i ∈ I A.3 and A.4 hold, i.e.,

∂γM
i (xi, X, θi)

∂xi

= (1− θi) [P
′ (X)− C ′′ (xi)]− θi

1

X2
< 0, (33)

xi

∂γR
i (xi,X, θi)

∂xi

+X
∂γR

i (xi, X, θi)

∂X
=

xi [P
′ (X)− (1− θi)C

′′ (xi)] +X [P ′′ (X)xi + P ′ (X)] < 0, (34)

and since A.2 is trivially satisfied, the existence and uniqueness of the equilibrium are guar-

anteed.

We differentiate (32) with respect to θi to yield

∂γM
i (xi, X, θi)

∂θi
= − [P ′ (X)xi + P (X)− C ′ (xi)] +

X − xi

X2

≥
θi

1− θi

X − xi

X2
+

X − xi

X2
> 0, (35)

where the first inequality follows from (32). Furthermore, it follows from A.6 that

∂ΠM
i (xi,X, θi)

∂X
= (1− θi)P

′ (X)xi − θi(xi/X
2) < 0,∀i ∈ I ,

ΠM
i (0, X, θi) = 0 = ΠM

i (0,X, θj) for all X and θi < θj,

and

∂γO
i (xi,X, θi)

∂X
= (1− θi) [P

′′ (X)xi + P ′ (X)] + θi
2xi −X

X3
� 0. (36)
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Under A.3, A.4, and A.6, we can obtain the same results as for revenue- and output-

concerned oligopoly firms. However, it is immediately seen from (36) that Hahn’s condition no

longer suffices to signA.5, so that neither the comparative statics properties nor the existence

of a unique Nash equilibrium is obtained. This result is due to the presence of an additional

term arising from the alternative objective function F (.), which is different from any of the

previous oligopoly models.

3.5 Labor-Managed Oligopoly

Many authors investigate the interaction between profit-maximizing and labor-managed Cournot

oligopolies, whereas Stewart (1992) considers a delegation game in a mixed oligopoly setting

in which a labor-managed firm and a private firm compete with each other and the managers

of both firms are concerned with profit, the surplus to workers, or output. We consider a

mixed oligopoly model whose objective function is expressed by a linear combination of profit

and the surplus to workers:

ΠL
i (xi,X, θi) ≡ (1− θi) [P (X)xi − C(xi)] + θi

P (X)xi − Ci(xi)

N(xi)
. (37)

The first-order condition for profit maximization is given by

γL
i (xi,X, θi) ≡ (1− θi) [P

′ (X)xi + P (X)− C ′ (xi)]+

θi

{

P ′ (X)xi + P (X)− C ′ (xi)

N(xi)
−

[P (X)xi − C(xi)]N
′(xi)

[N(xi)]2

}

≤ 0. (38)

We assume that A.3 and A.4 hold, i.e.,

∂γL
i (xi,X, θi)

∂xi

= (1− θi) [P
′ (X)− C ′′ (xi)]

+
θi

[N(xi)]2
{[P ′ (X)− C ′′(xi)]N(xi)− [P (X) + P ′ (X)xi − C ′(xi)]N

′(xi)

+ [P (X)− C ′(xi)]
N ′(xi)

N(xi)

[

−
1

N(xi)
+N ′(xi)

]

− [P (X)xi − C(xi)]N
′′(xi)

}

< 0. (39)
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xi

∂γR
i (xi, X, θi)

∂xi

+X
∂γR

i (xi,X, θi)

∂X
< 0. (40)

Nevertheless, in spite of assuming A.6, N ′(xi) > 0, N ′′(xi) > 0, and N(xi)− xiN
′(xi) < 0

(see Remark 4 and Footnote 9), we cannot sign the following expressions:

∂γL
i (xi, X, θi)

∂X
= (1− θi) [P

′′ (X)xi + P ′ (X)] + θi

{

P ′′ (X)xi + P ′ (X)

N(xi)
−

P ′ (X) xiN
′(xi)

[N(xi)]2

}

=

(

1− θi +
θi

N(xi)

)

[P ′′ (X) xi + P ′ (X)]− θi
P ′ (X) xiN

′(xi)

[N(xi)]2
� 0, (41)

and

∂γL
i (xi, X, θi)

∂θi
= − [P ′ (X)xi + P (X)− C ′ (xi)]

+
P (X) + P ′ (X)xi − C ′ (xi)

N(xi)
−

[P (X)xi − C ′ (xi)]N
′(xi)

[N(xi)]2
� 0, (42)

whose inequality follows from (38). On the other hand, under A.6

∂ΠL
i (xj,X, θi)

∂X
= P ′ (X)xi

[

1− θi +
θi

N(xi)

]

< 0, (43)

and

ΠL
i (0, X, θi) = 0 = ΠL

i (0,X, θj) for all X and θi < θj.

Taken together, underA.3, A.4, andA.6, the existence and uniqueness of the equilibrium are

guaranteed due to Proposition 1. However, the order of the individual firms’ profits as well as

the total output may shift in either direction depending on the sign of ∂γL
i (xi, X, θi) /∂θi in

(42)), in spite of the negative sign of ∂ΠL
i (xj,X, θi) /∂X in (43). This ambiguous result stems

from the fact that higher values of the weight θi move the reaction function of an individual

firm (38) inwards or outwards depending on the sign of ∂γL
i (xi,X, θi) /∂θi. Even if A.5 is

assumed (i.e., ∂γL
i (xi, X, θi) /∂X < 0), either result still emerges for the output ranking across

firms depending on the sign of ∂γL
i (xi,X, θi) /∂θi.

As one may expect, Hahn’s condition no longer serves in either proving the unique existence

of an equilibrium or identifying comparative statics properties. Hence, in this model, either
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A.3 and A.4 (Cornes and Hartley’s condition; 2005, 2012) or A.3 and A.5 (Corchón’s

condition, 2001) is quite essential to ensure the existence of the equilibrium and to derive

comparative statics.

Remark 4 Kaneda and Matsui (2003) have assumed conditions such as N ′(xi) > 0, N ′′(xi) >

0, and N(xi) − xiN
′(xi) < 0, together with Hahn’s condition in (6), to ensure the existence

of a Cournot-Nash equilibrium. The first two assumptions hold under a decreasing-returns-

to-scale production function.10 In contrast, we can dispense with these assumptions to prove

the existence of an equilibrium for labor-managed oligopoly firms by using the share function

approach.

4 Stability

In this section, we investigate the global stability of the equilibria of the oligopoly game

presented in the previous section. The assumption of stability is needed not only to sign the

comparative statics properties of the oligopoly equilibrium but also to enable comparative

statics analysis in the sense that the system automatically moves to a new Nash equilibrium

over time after some exogenous shock occurs.

We focus on the Gradient Dynamics where each firm increases the value of its strategy if

and only if its marginal profit is positive. A motivation for Gradient Dynamics is that firms

attempt to increase their profits by moving in the direction given by the gradient of their

profit functions:

ẋi = κiγi (xi,X, θi) for all i ∈ I, (44)

where κi > 0 denotes the speed of response of i, γi (xi,X, θi) corresponds to the marginal profit

in (3), and the initial point satisfies (x1(0), x2(0), ..., xn(0)) > 0. Alternatively, the dynamics

can be expressed by Hahn-Novshek’s best-reply dynamics:

ẋi = κi [bi(X−i, θi)− xi] for all i ∈ I, (45)

10This assumption amounts to assuming that the production function of firm i displays decreasing returns-
to-scale. Indeed, denote such a production function as xi = fi(Ni), with f ′

i(Ni) > 0 and f ′′
i (Ni) < 0. We

obtain dN/dx = 1/f ′(Ni) > 0 and d2N/dx2 = −f ′′
i (Ni)/[f

′(Ni)]
2 > 0.
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provided each oligopoly firm has a well-defined best reply function, bi(X−i, θi). As shown

below, the downward-sloping share function is not sufficient to demonstrate the stability of a

Cournot-Nash equilibrium under both (44) and (45). We need a stronger condition such as

A.5, which produces the following proposition:

Proposition 4 Suppose x̂ = (x̂1, x̂2, ..., x̂n) is a non-critical Cournot-Nash equilibrium of a

smooth aggregate game in which A.1, A.2, A.3, and A.5 hold for all firms. There exists a

unique Cournot-Nash equilibrium that is asymptotically stable under the adjustment rule (44)

or (45).

The proof of Cornes and Hartley (2005) and Corchón (2001) is applicable here with ap-

propriate modifications (2) and (3). This proof shows that a negative slope of the best-reply

function (or equivalently, a replacement function that is decreasing in total output) is needed

to ensure stability. Hence, condition A.5 (together with A.3) ensures not only the existence

of a unique Nash equilibrium but also its stability, because it ensures that the best-reply

function bi(X−i, θi) is decreasing in X−i (or equivalently, the replacement function, ri(X, θi),

is decreasing in X). Nevertheless, Hahn’s condition still suffices to insure stability for the

cases of the revenue-, output-, and cost-concerned oligopoly firms, whereas it does not help

in signing ∂γL
i (xi, X, θi) /∂X (i.e., A.5) and thus does not ensure stability for the market-

share-concerned and labor-managed oligopoly firms. In light of these results, the use of A.5

to obtain definite comparative statics results might be justified to ensure the stability of the

oligopoly model we have considered.

5 Multiple Objectives and Non-linear Managerial Con-

tracts

In this section, we consider an oligopoly firm that has more than two objectives. For example, a

public firmmay have several objectives such as pure profit maximization, output maximization,

revenue maximization, and so forth at the same time. The manger’s incentive contract may

be written as a weighted sum of more than two objectives. The true objective function of firm
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i with multiple alternative objectives (m total objectives including pure profit maximization)

is given by:

Πi (xi,X,Θi) ≡ θi1 [P (X)xi − Ci (xi)] +
m
∑

j=1

θijF
ij (xi,X) , i = 1, 2, ..., n, (46)

where the vector Θi ≡ (θi1, θi2, · · ·, θim) ∈ Rm
+ represents the weights of firm i assigned to the

alternative objectives stated before with
∑m

j=1 θij = 1, and F ij (xi, X) represents the objective

j of firm i. The conditions to ensure the existence of a unique Cournot-Nash equilibrium in

the oligopoly model with multiple objectives are once again given by A.3 and A.4 with

appropriate modifications. Stability is also ensured by A.3 and A.5, even in the presence of

the additional alternative objectives in (46). However, there is no prospect for the application

of Hahn’s condition to draw meaningful comparative statics results as well as to prove the

existence of an equilibrium when oligopoly firms have such complicated objective functions.

On the other hand, once we know the effect of changing θij on the marginal profit (i.e., the sign

of ∂γi (xi,X,Θi) /θij, j = 1, ..m) and ∂Πi (xi, X,Θi) /∂X, i = 1, ..m, we can unambiguously

identify the effects on the profits and the outputs of firms under A.3, A.5, and A.6.

Another interesting extension is to consider a mixed oligopoly model in which several firms

in the same market have different objectives. For example, the true objective function of one

firm is the weighted average of profits and sale revenues, whereas other firms may have as an

objective function the weighted average of different combinations such as profit and output,

profit and market share, the surplus to workers and output, and so on. In such a mixed

market, provided the marginal profit function of the respective oligopoly firms satisfies A.3,

A.4, and A.6 (alternatively, A.3, A.5, and A.6), the existence of a unique Cournot-Nash

equilibrium of this oligopoly competition can easily be guaranteed, and, moreover, stability is

ensured by A.5.

Although we have focused on linear managerial contracts so far, we may consider a more

general non-linear managerial incentive contract such as

Πi (xi, X) ≡ Bi

[

F i0 (xi, X) , F i1 (xi,X) , · · ·, F im (xi,X)
]

, i = 1, 2, ..., n,
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where F i0 (.) represents the pure profit purpose and F ij (xi,X) represents the alternative

purposes. Since the manager receives a bonus according to this non-linear contract, she

maximizes the above objective function in the second stage of the delegation game. In this

case, the conditions for existence, uniqueness, comparative statics, and stability are the same

as before, although Hahn’s condition is no longer helpful in proving these issues. Since in

this model there is no explicit parameter for the weights, we can alternatively investigate the

effects on outputs and profits caused by other underlying basic parameters that characterize

the structure of the contract or technological improvements in the cost, factor prices, output

prices, and so on.

6 Concluding Remarks

In this paper, we investigate the existence and uniqueness of a Nash equilibrium in Cournot

oligopoly models where firms maximize a weighted average of a pure profit-maximizing objec-

tive and an alternative, non-profit-maximizing objective. Hahn’s condition does not in general

serve in resolving these issues in these oligopoly models because the complexity of the objec-

tive functions prevents from a straightforward application of Hahn’s condition. Under these

circumstances, the conditions for the downward-sloping share function provided by Cornes

and Hartley (2005, 2011) play a decisive role in deriving the existence, uniqueness, some com-

parative static properties, and stability for a Cournot-Nash equilibrium. More precisely, if

we are only interested in the existence of a unique Nash equilibrium, assumptions A.3 and

A.4 (which together imply a downward-sloping share function), coupled with either A.1 and

A.2 or A.6, are sufficient to prove it. In other words, the share function approach would

provide weaker and more powerful conditions to ensure the existence and uniqueness of the

equilibrium in the Cournot oligopoly model with heterogeneous firms possessing complicated

objective functions arising from, say, a strategic delegation game with an owner and a man-

ager. It should be stressed that the strength of Cornes and Hartley’s share function approach

lies in the wider applicability and generality in the sense that it does not rely on the specific

details of the model.
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Furthermore, Cornes and Hartley’s share function approach also enables us to identify

how and to what extent Hahn’s condition, which is the most commonly used condition in the

conventional Cournot oligopoly model without alternative, non-profit-maximizing objectives,

serves in analyzing comparative statics and insuring the stability of a Cournot-Nash equilib-

rium. The downward-sloping best-reply function is ensured by Hahn’s condition as long as

the alternative objective of oligopoly firms is given by revenue, output, or cost. Nevertheless,

Hahn’s condition does not help us to identify comparative statics properties and to ensure sta-

bility in the cases of the market share-concerned or labor-managed oligopoly firms because the

one-to-one relationship between Hahn’s condition andA.5 fails to hold due to the complexity

of the objective functions.11

The model and approach presented in this paper should be developed further in several

directions. First of all, introducing product differentiation would make this oligopoly model

and its results richer and more fruitful. We are particularly interested in understanding which

forms of the consumers’ utility functions generate aggregate games. To conduct this ex-

tension, we would have to apply the generalized aggregate game developed by Cornes and

11Unfortunately, the aggregative game approach is not useful for the model of Fumas (1992) and Miller and
Pazgal (2002) in which the manager’s incentive contract is based on a weighted sum of the firm’s own profit
and its rival’s profits (or their average profits):

ΠRP
i (x1, ..., xn, X, θi) ≡ (1− θi)πi (xi, X) + θi



πi (xi, X)−
1

n

n
∑

j=1

πj (xi, X)





= πi (xi, X) + θi



−
1

n

n
∑

j=1

πj (xi, X)



 .

It is easily seen that the above true profit function (in particular, the second term in ΠRP
i (.)) depends on the

profile of the other firms’ outputs in addition to its own output and total output, which violates the definition
of an aggregative game (see Cornes and Hartley, 2005, 2011).
On the other hand, in the literature on mixed oligopoly, a public firm is usually assumed to maximize social

welfare, defined as the sum of consumer surplus and firm profit (see, e.g., De Fraja and Delbono, 1989;
White, 1996). The true objective functions of those firms, ΠS

i (.), depend also on the output choices of other
firms (through social welfare) in addition to the firms’ own output choices as well as the aggregative level of
industry output such as

ΠS
i (x1, ..., xn, X, θi) ≡ (1− θi) [P (X)xi − C (xi)] + θiSWi (x1, ..., xn, X) ,

where

SW (x1, ..., xn, X) ≡

∫ X

0

P (q)dq − P (X)X +
n
∑

j=1

[P (X)xj − C(xj)] =

∫ X

0

P (q)dq −
n
∑

j=1

C(xj),

which clearly violates the definition of the aggregative game.

28



Hartley (2012), which will be left as our future work. Another important research agenda is

to investigate the effect of changes in tax, such as commodity taxes imposed on the market

equilibrium price and output or corporate income taxes. In particular, comparing specific and

ad valorem taxes would be an interesting research approach. The aggregate game approach

certainly provides a powerful tool to analyze these comparative statics effects in a systematic

way without complicated algebraic calculations. A more challenging research agenda would be

to allow for some firms whose share functions are not monotonically decreasing. Nevertheless,

as the number of firms having a monotonically declining share function becomes larger, such

a non-monotonic effect would be neutralized so that the aggregate share function would have

a unique intersection with the 45-degree line, thus ensuring the existence of a unique Nash

equilibrium.
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