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Abstract

According to a growing body of empirical literature, global shocks have become less

important for business cycles in industrialized countries and emerging market economies

since the mid-1980s. In this paper, we analyze the question of what might have caused a

decoupling from the global business cycle: the smaller size of the global shocks or a reduced

sensitivity of national business cycles to these shocks? To this end, we employ a large scale

hierarchical dynamic factor model that decomposes the growth rates of GDP, consumption,

and investment for 106 countries over 1961–2014 into a global, a group-, and a country-specific

factor, as well as an idiosyncratic component. The factor loadings and conditional variances

are allowed to vary over time according to random walk processes. Instead of assuming

that the parameters change, we test for time variation using a Bayesian stochastic model

specification search. Our results confirm a reduction in the importance of the global business

cycle for the vast majority of our countries. However, the sensitivity of most countries to

global or group-specific shocks as measured by the factor loadings has not changed over time.

Instead, the magnitude of the global shocks relative to group-specific and country-specific

shocks has decreased, resulting in a lower relevance of global shocks for national cycles.

JEL Classification: F44, C52, C32

Keywords: global business cycle, dynamic factor model, time-varying parameter, stochastic
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1 Introduction

Over the past decades, economic linkages between countries have increased dramatically. The

reduction of trade barriers and capital controls have led to a substantial increase in world

trade and international capital flows. According to the conventional wisdom, this high level

of interconnectedness has resulted in a convergence of international business cycles and makes

countries more vulnerable to global shocks. However, the impact of the recent global financial

crisis on national business cycles differed remarkably in different regions of the world. While

the industrialized countries in Europe and North America experienced the deepest and longest

recession, many countries in Asia, Latin America, and Africa overcame this period with modest

or no reduction in the growth rate of their GDP. This experience has raised the question of

the relative importance of global versus regional or group-specific shocks in explaining national

business cycles.

The empirical literature indeed finds an increasingly important role for regional or group-

specific shocks and a reduced importance of global shocks for national business cycles. Using

data for 106 countries from 1960 to 2008, Kose et al. (2012) (henceforth KOP) employ a dynamic

factor model (DFM) to disentangle national business cycles into a global, a group-specific, and a

country-specific factor.1 They find that the fraction of the variance of output, consumption, and

investment growth explained by the global factor has decreased for emerging market economies

and industrial countries, but group-specific shocks have become more important for both coun-

try groups since the mid-1980s. KOP conclude that emerging economies have decoupled from

industrialized countries in the globalization era. Using the same dataset, Hirata et al. (2013)

estimate a DFM with seven regional factors instead of grouping countries according to their level

of development. They find that regional factors have gained importance over time, particularly

in regions where intra-regional trade and financial flows grew since the mid-1980s. Similarly,

Mumtaz et al. (2011) use a DFM to decompose output and inflation growth for 36 countries into

common, regional, and country-specific factors, and find regional cycles to have become more

important over time while the importance of the global factor has declined. A somewhat differ-

ent conclusion is drawn by Flood and Rose (2010), who calculate five-year correlation coefficients

over rolling sub-samples for GDP growth from 1947 to 2008 for 64 countries, and find rather

stable correlation coefficients of country pairs for advanced and emerging economies over time.

1KOP cluster countries according to their level of development, i.e., they distinguish between industrialized
countries, emerging market economies and developing countries.
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Ductor and Leiva-Leon (2016) estimate a DFM with time-varying factor loadings to investigate

whether national business cycles for a large number of countries have exhibited changes in the

sensitivity to a global business cycle. They find that the comovement of business cycles with

the global factor has increased over time for emerging market economies, as measured by an

increase in the loadings to the global factor.2

The literature using DFM to analyze changes in the synchronization of national business

cycles exhibits two limitations on which we focus in this paper. First, the vast majority of papers

employ a DFM with constant parameters. A potential variation over time in the comovement

of business cycles is analyzed by estimating the model over different subsamples. Most of the

aforementioned studies impose a break in 1985 and refer to the time prior to 1985 as the pre-

globalization period, and the time since 1985 as the globalization period. However, by allowing

for Markov-switching parameters, Ductor and Leiva-Leon (2016) find changes in global business

cycle interdependence to have occurred in the early 2000s. Further, by assuming a single break,

these studies cannot account for heterogeneity across countries, i.e., countries that adjust at

different points in time. Second, the importance of the global or group factors for a country

are based on decomposing the variance of the business cycle indicator considered into various

components that can be attributed to global, group, country and idiosyncratic factors. The

relative importance of these factors, i.e., their share of the business cycle variable’s variance,

can change over time for two reasons: changes in the factor loadings or changes in the factor’s

variance. Differentiating between these two reasons of changes in the variance decomposition is

economically important. Changes in factor loadings reflect changes in how sensitive a country

is to that factor. Thus, a decline in the loading to the global factor may well be interpreted

as a decoupling, while an increased sensitivity to the regional or group factor, i.e., an increase

in the respective factor loading, points to an increased importance of regional or group specific

shocks. In contrast, changes in a factor’s variance reflect changes in the size of the shocks.

Allowing for heteroscedasticity is particularly important, as it is a potential reason for changes

in the variance decomposition. Suppose the volatility of the global factor declines more than

the business cycle volatility of a given country. The fraction of the country’s variance that

is explained by the global business cycle would decline too, even when its sensitivity, i.e., the

factor loading to the global factor, remains constant. However, smaller global shocks cannot be

interpreted as a decoupling of countries from the global factor.

2A related literature looks at the emergence of specific regional cycles, such as a European business cycle. For
a comprehensive overview see Hirata et al. (2013).
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Most of the literature restricts the innovation variance of the global and group factors to a

constant. As such, the existing literature cannot account for heteroscedasticity in any common

factor.3 Observed changes in the variance decomposition, as found in, e.g., KOP, are then

by construction due to changes in the factor loadings. An exception is Del Negro and Otrok

(2008), who estimate a DFM with time-varying factor loadings and stochastic volatility and find

a decline in the volatility for most countries in their sample of nineteen countries.

By ignoring the distinction between the source of changes in the variance decomposition,

the literature may have overstated the role of factor loadings and thus overemphasized the

decoupling hypothesis.

In this paper, we deal with these limitations and estimate a DFM with time-varying factor

loadings and stochastic volatilities. Particular attention is paid to model uncertainty: a Bayesian

model selection procedure is used to explicitly test for time variation in the factor loadings and

volatilities. As such, the model allows for time variation in the parameters but does not force

parameters to change. This enables us to obtain time-varying variance shares with endogenously

determined time variation. Additionally, we can attribute changes in the variance decomposition

to changes in either the factor loadings, volatilities, or both. We apply the model to the set of

106 countries analyzed by KOP and Hirata et al. (2013) with the sample period extended to

2014. Specifically, we follow KOP and disentangle GDP, consumption, and investment growth

into a global, three group-specific, a country, and an idiosyncratic factor.

The main findings can be summarized as follows. We do find strong evidence for changes in

the volatilities of the global and all three group factors: their volatility has steadily declined from

1960 until the early 2000s. Evidence for time variation in the factor loadings is much weaker.

While there is some heterogeneity across countries, the overall picture is that only industrialized

countries have exhibited changes in their sensitivity to the global factor. Emerging market

economies and developing countries have, on average, constant factor loadings with respect to

the global factor. Similarly, the sensitivity to the group-specific factors is found to be constant

for the majority of countries in each country group. As a consequence, changes in the variance

decomposition are primarily driven by changes in the volatilities. The importance of group-

specific factors for national business cycles is confirmed. However, substantial time variation in

the relative importance of the global versus group-specific factors are not found.

3However, there is empirical evidence that many countries experienced a decline in business cycle volatility.
For instance, Blanchard and Simon (2001) show that there has been a global decline in output volatility in G7
countries. Cecchetti et al. (2006) find breaks in the volatility in most of the 25 advanced and emerging countries
examined.
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The remainder of this paper is organized as follows: Section 2 introduces our empirical

approach, including the DFM with time-varying factor loadings and stochastic volatilities, and

explains the Bayesian model selection procedure to test for time variation in the parameters.

The results are presented in Section 3 and the last section concludes.

2 Empirical Approach

This section explains our econometric approach. First, it lays out a DFM with time-varying fac-

tor loadings and stochastic volatilities. Second, the Bayesian stochastic model selection approach

is explained, followed by a description of the Markov Chain Monte Carlo (MCMC) algorithm

employed to estimate the model.

2.1 A DFM with time-varying loadings and stochastic volatilities

We follow KOP and construct a multivariate DFM that decomposes the real GDP, private

consumption, and investment growth into a global factor F g
t , which is common to all variables

in all countries, three group-specific factors, denoted F IC
t , FEM

t , and FDC
t , which are common to

all variables and all countries belonging to either the group of industrial countries (ICs), emerging

market economies (EMs), or other developing countries (DCs), a country-specific factor F c
i,t that

is common to all variables within a country i, and idiosyncratic factors εji,t, which are specific

to each variable.

More specifically, let yji,t denote the annual growth rate of variable j in country i at time

t. The model is given by

yji,t = αj
i,tF

g
t + βji,tF

r
t + δji,tF

c
i,t + εji,t, (1)

where the group-specific factor F r
t equals either F IC

t , FEM
t , or FDC

t , depending on the group

affiliation of country i. All factors in Eq. (1) are assumed to follow independent AR(3) processes,

Dt =
3∑

l=1

θDl Dt−l + exp(hDt )ψ
D
t , ψD

t
iid
∼ N (0, 1), (2)

where Dt =
{
F g
t , F

IC
t , FEM

t , FDC
t , F c

i,t

}
. Similarly, the idiosyncratic factors follow AR(3) pro-
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cesses,4

εji,t =

3∑

l=1

φjl,iε
j
i,t−l + νji,t, νji,t

iid
∼ N (0, σ2ν,i,j). (3)

In order to take into account possible changes in the sensitivity to the factors, we model all

factor loadings as random walks,

ζji,t = ζji,t−1 + κjζ,i,t, κjζ,i,t
iid
∼ N (0, σ2κ,ζ,i,j), (4)

where ζ = {α, β, δ}. The innovations to the factor loadings are orthogonal, implying that changes

in the factor loadings are uncorrelated across countries. Changes in the factors’ variances are

accounted for by modeling the log standard deviations of the error terms pertaining to the

global, the group-specific, and the country-specific factors as random walk processes,

hDt = hDt−1 + ηDt , ηDt
iid
∼ N (0, σ2η,D). (5)

A key feature of the stochastic volatility components, exp
{
hDt

}
ψD
t , is that they are nonlinear

but can be transformed into linear components by taking the logarithm of their squares

ln
(
exp

{
hDt

}
ψD
t

)2
= 2hDt + ln

(
ψD
t

)2
, (6)

where ln
(
ψD
t

)2
is log-chi-square distributed with expected value −1.2704 and variance 4.93.

Following Kim et al. (1998), we approximate the linear model in (6) by an offset mixture time

series model:

gDt = 2hDt + ǫDt , (7)

where gDt = ln
((

exp
{
hDt

}
ψD
t

)2
+ c

)
with c = .001 being an offset constant, and the distribution

of ǫDt being the following mixture of normals,

f
(
ǫDt

)
=

M∑

n=1

qnfN
(
ǫDt |mn − 1.2704, ϑ2n

)
, (8)

4Given that the model is fitted to annual data, the AR(3) assumption is sufficient to capture the dynamics in
output, consumption and investment growth. Furthermore, it allows us to directly compare our results to KOP,
as they also model all factors as AR(3) processes.
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with component probabilities qn, means mn − 1.2704, and variances ϑ2n. Equivalently, this

mixture density can be written in terms of the component indicator variable ιDt as

ǫDt |
(
ιDt = n

)
∼ N

(
mn − 1.2704, ϑ2n

)
, with Pr

(
ιDt = n

)
= qn. (9)

Following Omori et al. (2007), we use a mixture of M = 10 normal distributions to make the

approximation to the log-chi-square distribution sufficiently good. Values for {qn,mn, ϑ
2
n} are

provided by Omori et al. in their table 1.

Identification

The model in Eqs. (1)–(5) exhibits two well known identification problems present in all DFM,

even with constant parameters. First, we cannot separately identify the factor loadings and the

factor variances, as it is possible to multiply the terms ζji,tDt by any constant, which results in

different decompositions of the observed time series yji,t. This is referred to as the scale problem

in dynamic factor models. To overcome this problem, we follow Del Negro and Otrok (2008) and

fix the initial volatility hD0 of each factor D to a constant. The second problem is that the signs

of the factor loadings and the factors are not jointly identified, since the likelihood remains the

same if we multiply ζji,t and Dt by −1. We identify the sign of the global factor by restricting

the initial value of the time-varying loading to the global factor for U.S. output growth to be

positive, i.e., αY
US,0 > 0. Likewise, to identify the signs of the group-specific factors, we restrict

the loading for the first country listed in each group (see Appendix A) to be larger than zero

for output growth. Finally, country factors are identified by means of positive loadings for the

output growth of each country.

Time-varying variance decompositions

We use variance decompositions to measure the relative importance of each factor. Since, by

construction, all factors are orthogonal, the variance decompositions can be calculated based

on Eq. (1). For instance, the variance share (V S) of the global factor for GDP growth (Y ) in

country i is given by

V Sg,Y
i,t =

(αY
i,t)

2vart(F
g
t )

vart(Yi,t)
, (10)
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where vart(Yi,t) = (αY
i,t)

2vart(F
g
t ) + (βYi,t)

2vart(F
r
t ) + (δYi,t)

2vart(F
c
i,t) + σ2ν,i,Y . The factors’

variances can be calculated based on their autoregressive dynamics and time-varying volatilities,

i.e.,

vart(F
D
t ) =

(
exp

(
hDt

))2
[I32 − (Θ⊗Θ)]−1 . (11)

with ⊗ denoting the Kronecker product, I the identity matrix, and Θ the companion form of

the AR coefficients in Eq. (2). The variance shares in Eq. (10) are time-varying due to the

time-varying factor loadings and the stochastic volatilities. This allows us to analyze changes

over time in the relative importance of factors without splitting the sample at an arbitrary point

in time. Further, it allows for heterogeneity across countries since the timing of the changes in

the variance shares can be different in each country. Changes in the variance share of, e.g., the

global or a group factor can be caused by changes in the loadings, changes in the volatilities, or

both.

A drawback of the model outlined so far is that it forces the factor loadings and the volatil-

ities, and thus the variance shares, to change over time. The dynamics of the factor loadings and

the (log) volatilities are given by random walk processes, which are driven by their innovation

variance parameters, σ2κ,ζ,i,j and σ
2
η,D. Bayesian estimation techniques typically assume that the

prior for a variance parameter follows an inverse Gamma distribution, which has no probability

mass at zero. However, the inverse Gamma prior for σ2κ,ζ,i,j has two undesirable properties.

First, consider the question whether a loading ζji,t is time-varying or constant. This implies

testing the null hypothesis of σ2κ,ζ,i,j = 0 against the alternative σ2κ,ζ,i,j > 0 in Eq. (4), which is a

non-regular testing problem since the null hypothesis lies at the boundary of the parameter space

for the variance parameter. The same problem arises when testing whether the factors’ condi-

tional variances are time-varying or constant. As such, using the conventional inverse Gamma

prior does not allow testing the null of constant parameters and variances. Second, as shown by

Frühwirth-Schnatter and Wagner (2010), using an inverse Gamma prior can lead to a substantial

overestimation of the variances, even in cases where the true innovation variance is positive but

small. As a consequence, it can overstate changes in the variance decomposition. To deal with

these problems, we rewrite the random walk processes in a non-centered parametrization form,

which allows us to estimate the innovation standard errors instead of variances. Additionally,

we use a stochastic model specification search to test the hypothesis of constant factor loadings

8



and volatilities.

2.2 Stochastic model specification search

The Bayesian stochastic model specification search is based on Frühwirth-Schnatter and Wagner

(2010) and extends Bayesian variable selection in standard regression models to state space

models. The model selection relies on a non-centered parametrization of the model in which

(i) binary stochastic indicators for each of the model components are sampled together with

the parameters and (ii) the standard inverse Gamma prior for the variances of innovations to

the components is replaced by a Gaussian prior centered at zero for the square root of these

variances.

Non-Centered parametrization

The first piece of information on the hypothesis whether a variance parameter is zero or not can

be obtained by considering a non-centered parametrization. For the variances of the innovations

to the factor loadings, i.e., σ2κ,ζ,i,j , this implies rearranging Eq. (4) to

ζji,t = ζji,0 + σζκ,i,j ζ̃
j
i,t, (12)

with ζ̃ji,t = ζ̃ji,t−1 + κ̃j,ζi,t , ζ̃ji,0 = 0, κ̃j,ζi,t
iid
∼ N (0, 1), (13)

where ζji,0 is the initial value of the level of ζ
j
i,t. A crucial aspect of a non-centered parametrization

is that it is not identified, i.e., the signs of σζκ,i,j and ζ̃ji,t can be changed by multiplying both

with −1 without changing their product in Eq. (12). As a result of this non-identification, the

likelihood is symmetric around 0 along the σζκ,i,j dimension and therefore multimodal. If the

factor loading is time-varying, i.e., σ2κ,ζ,i,j > 0, the likelihood function will concentrate around

the two modes −σζκ,i,j and σζκ,i,j . For σ
2
κ,ζ,i,j = 0, the likelihood function will become unimodal

around zero. As such, allowing for a non-identification of σζκ,i,j provides useful information on

whether σ2κ,ζ,i,j > 0.

Likewise, the non-centered parametrization of the stochastic volatility terms in Eq. (5) is

given by

hDt = hD0 + ση,Dh̃
D
t , (14)

with h̃Dt = h̃Dt−1 + η̃Dt , h̃D0 = 0, η̃Dt
iid
∼ N (0, 1), (15)
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where hD0 is the initial value of the level of hDt .
5

Parsimonious specification

A second advantage of the non-centered parametrization is that when, e.g., σζκ,i,j = 0, the

transformed component ζ̃ji,t, in contrast to ζji,t, does not degenerate to a time-invariant factor

loading, as this is now represented by ζji,0. As such, the question whether the factor loadings are

time-varying or not can be expressed by a variable selection problem in Eq. (4). Consider the

following parsimonious specification,

ζji,t = ζji,0 + λζi,jσ
ζ
κ,i,j ζ̃

j
i,t, (16)

where λζi,j is a binary indicator which is either 0 or 1. If λζi,j = 0, the component ζ̃ji,t drops out

of the model, so that ζji,0 represents a constant factor loading. If λζi,j = 1, then ζ̃ji,t is included

in the model, and σζκ,i,j is estimated from the data. In this case, ζji,0 is the initial value of the

time-varying factor loading.

Likewise, the parsimonious non-centered specification of the stochastic volatility terms in

Eq. (5) is given by

hDt = hD0 + ρDση,Dh̃
D
t , (17)

where ρD is again a binary indicator. If ρD = 0, the component h̃Dt drops out of the model, so

that
(
exp{hD0 }

)2
is the constant variance of ψD

t . If ρD = 1, then h̃Dt is included in the model and

ση,D is estimated from the data. In this case,
(
exp{hD0 }

)2
is the initial value of the time-varying

variance of ψD
t . We collect the binary indicators into the vector M = (λζi,j , ρ

D).

Gaussian prior centered at zero

It is well-known that when using an inverse Gamma prior distribution for the variance parame-

ters, the choice of the shape and scale hyperparameters that define this distribution have a strong

influence on the posterior when the true value of the variance is close to zero. More specifically,

as the inverse Gamma distribution does not have any probability mass at zero, using it as a prior

distribution tends to push the posterior density away from zero. This is of particular impor-

tance when estimating the variances of the innovations to the time-varying factor loadings and

5As mentioned before, hD
0 is fixed to be a constant due to an identification restriction.
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to the stochastic volatilities, because for these components we want to decide whether they are

relevant or not. A further important advantage of the non-centered parametrization is therefore

that it allows us to replace the standard inverse Gamma prior on a variance parameter σ2 by

a Gaussian prior centered at zero on σ. Centering the prior distribution at zero makes sense,

since for both σ2 = 0 and σ2 > 0, σ is symmetric around zero. Frühwirth-Schnatter and Wagner

(2010) show that, compared to using an inverse Gamma prior for σ2, the posterior density of

σ is much less sensitive to the hyperparameters of the Gaussian distribution and is not pushed

away from zero when σ2 = 0.

As such, we choose a Gaussian prior distribution centered at zero for σκ and ση, which

are the standard deviations of the innovations to the time-varying factor loadings and to the

stochastic volatilities. Specifically, we choose N (0, 52) for both σκ and ση. Similarly, a flat prior

is used for the time-invariant components of the factor loadings, i.e., ζji,0 ∼ N (0.5, 102). For

each binary indicator in M, we choose a uniform prior distribution such that p0 = 0.5 is the

prior probability for each time-varying component to be included in the model.

For the variance parameters of the innovations to the idiosyncratic factors σ2ν , we use the

standard inverse Gamma prior IG(c0, C0), where c0 and C0 are the shape and scale parameters,

respectively. The calculation of c0 and C0 is explained in greater detail in Appendix B. Finally,

the priors for the autoregressive coefficients are assumed to be Gaussian with mean zero and

unit variance.

2.3 MCMC algorithm

The inclusion of time-varying factor loadings ζji,t, stochastic volatilities hDt , and the use of a

stochastic model specification search, confronts us with a highly non-linear estimation problem.

We estimate the model using a Gibbs sampler, which is a Markov chain Monte Carlo (MCMC)

method to simulate draws from the intractable joint and marginal posterior distributions of the

unknown parameters and the unobserved factors and states using only tractable conditional

distributions. Intuitively, this amounts to reducing the complex non-linear model to a sequence

of blocks for subsets of the parameters and states that are tractable, conditional on the other

blocks in the sequence.

For notational convenience, the parameters are collected into the vector Ψ = (θ, φ, ζ0, h0, σ
2
ν , σ),

where θ = {θD1 , θ
D
2 , θ

D
3 }, φ = {φj1,i, φ

j
2,i, φ

j
3,i}, ζ0 = {ζji,0}, and σ = (σζκ,i,j , σ

D
η ). In addi-

tion, all component indicator variables are collected into the vector ιt = {ιDt }. Further, let
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yi,t = (Yi,t, Ci,t, Ii,t) be the data vector. Stacking the observations over time and countries, we

write y = {yi,t}
T,N
t=1,i=1 and use a similar notation for D, ζ, ι and h.6 Given the initial values of

all factors and parameters, the sampling scheme is as follows:

1. Sample each factor from f(D |D−, ζ, h,Ψ,M, ι, y ), where D− denotes the remaining fac-

tors.

2. Sample the binary indicators from f(M|D, ζ, h, ι, y ), marginalizing over the relevant pa-

rameters in Ψ, and then sample the corresponding unrestricted parameters from f(Ψ |D, ζ, h,M, ι, y )

while setting the restricted parameters, i.e., the elements in σ for which the time-varying

component is not included in the model, equal to 0.

3. Sample the time-varying factor loadings in ζ from f(α |D,β, δ, h,Ψ,M, ι, y ),

f(β |D,α, δ, h,Ψ,M, ι, y ), and f(δ |D,α, β, h,Ψ,M, ι, y ), respectively. Sample the mix-

ture indicators ι from f(ι |D, ζ, h,Ψ,M, y ) and the stochastic volatilities h from f(h |D, ζ,Ψ,M, ι, y ).

4. Perform a random sign switch for σζκ,i,j and {ζ̃i,t}
T
t=1 and for σDη and {h̃Dt }

T
t=1, where, e.g.,

σζκ,i,j and {ζ̃i,t}
T
t=1 are left unchanged with probability 0.5, while with the same probability

they are replaced by −σζκ,i,j and {−ζ̃i,t}
T
t=1.

5. Sample the remaining hyperparameters in Ψ from f(Ψ |D, ζ, h,M, ι, y ).

Sampling from these blocks is iterated J = 20, 000 times and, after a sufficiently long burn-in

period of B = 10, 000, the sequence of draws (B + 1, ..., J) approximates a sample from the

desired posterior distribution f(D, ζ, h,M, ι,Ψ |y ). Details of the exact implementation of the

Gibbs sampler are given in Appendix B. In each iteration of the sampling process, we calculate

the (potentially time-varying) variance decomposition for output, consumption, and investment

growth in each country.

3 Estimation results

3.1 Data

The data set is drawn from Penn World Tables 9.0 and includes annual observations 1960–2014

for 106 countries. We use National Accounts data for real GDP, real private consumption, and

6Our MCMC scheme follows Del Negro and Otrok (2008) and Frühwirth-Schnatter and Wagner (2010) for the
model selection part.
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real investment at constant prices in local currencies, and compute the demeaned growth rate of

each series. Following KOP, countries are grouped according to their level of development. Each

country belongs either to the group of industrial countries (23 ICs), emerging market economies

(24 EMs), or developing countries (59 DCs). Appendix A provides a list of the countries and

their group affiliation.

3.2 Testing for time variation in the factor loadings and volatilities

3.2.1 Volatilities

This section presents the results of the stochastic model selection. Preliminary evidence for

potential time variation in the factor loadings and the volatilities is obtained by estimating the

model with all binary indicators set equal to one. The resulting posterior distributions for the

standard deviations ση in the volatility equation Eq. (14) of the international factors are shown

in Figure 1. The posterior distributions of these standard deviations show clear bi-modality with

Figure 1: Standard deviations of the stochastic volatilities of the global and group-specific factors
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Note: Reported are the posterior distributions of the standard deviations for the non-centered stochastic volatil-
ities in the unrestricted model, i.e., ση (all binary indicators set to 1).
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very little probability mass at zero.7 This is taken as preliminary evidence of time variation in

the volatilities of the global and the group-specific factors, i.e., it indicates that σ2η > 0.

Less clear cut results are obtained for the factor loadings, for which we find considerable

heterogeneity across countries. The upper panel of Figure 2 shows the posterior distributions

of the standard deviations of the non-centered factor loadings of output to the global factor for

some randomly selected countries from all three country groups. The distributions are bi-modal

for Finland, Chile, and Burundi, which suggests that the factor loadings of output to the global

factor are time-varying for these countries, i.e., σ2κ > 0, whereas the uni-modal distributions of

the standard deviations for the United States, China, and Congo Republic suggest that these

factor loadings did not change over time, i.e., σ2κ = 0. Similarly, the lower panel of Figure 2 shows

evidence for time-varying factor loadings of output to the group-specific factors for Australia,

Singapore, and Niger, but constant factor loadings for the group factors for Germany, India,

and Kenya.

Figure 2: Standard deviations of the factor loadings of output to the global (upper panel) and group-
specific (lower panel) factors
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Note: Reported are the posterior distributions of the standard deviations for the non-centered factor loadings of
output to the global and group-specific factors for selected countries in each group in the unrestricted model, i.e.,
σκ (all binary indicators set to 1).

A more formal test for time variation in the volatilities and the factor loadings is provided

by estimating the binary indicators in Eqs. (16)-(17) together with the other parameters in the

model. Table 1 displays the posterior inclusion probabilities for the time-varying component in

the non-centered stochastic volatilities of each factor. The inclusion probabilities are calculated

as the average selection frequencies of all retained iterations of the Gibbs sampler. From Table

1, we conclude that the model clearly supports time-varying variances of the global and all

group-specific factors, as the corresponding inclusion probabilities all are equal to one.

Concerning the time variation in the country factors’ variances, the results are less clear,

7The volatilities of the country-specific factors present a more mixed picture. Graphs of the posterior distri-
butions of the country factors are not shown, due to space constraints, but are available upon request.
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Table 1: Posterior inclusion probabilities for the binary indicators for stochastic volatilities

Common factors Country factors

Global IC EM DC IC EM DC

1 1 1 1 0.88 0.52 0.44

Note: The reported probabilities are calculated as the
average of the binary indicators over the 10, 000 iterations
of the Gibbs sampler.

and differ considerably for different country groups. The average inclusion probabilities across

countries in each group suggest that the volatilities of the country-specific factors are time-

varying in industrial countries. The cross-country average of the inclusion probability is close to

0.5 for the remaining two groups. In particular, 21 out of the 23 industrial countries in the sample

exhibit an inclusion probability above 0.5, indeed, 19 countries even have an inclusion probability

larger than 0.9. In the group of emerging market economies, the fraction of countries with an

inclusion probability higher than 0.5 is still 50%, but only 26 out of 59 developing countries have

an inclusion probability for the binary indicator of above 0.5.

3.2.2 Factor loadings

Figure 3: Probability for time-varying loadings to the global factor
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average selection frequencies over the retained iterations of the Gibbs sampler.
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Figure 4: Probability for time-varying loadings to the group-specific factors
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Note: Reported are the inclusion probabilities of the time-varying part in the factor loadings computed as the
average selection frequencies over the retained iterations of the Gibbs sampler.

Turning to the tests for time variation in the factor loadings, Figure 3 displays the inclusion

probabilities for the time-varying component in the loadings to the global factor. In the group of

industrialized countries, only three out of 23 countries show very strong evidence of time-varying

loadings of output to the global factor, i.e., an inclusion probability higher than 95%: namely,

Finland, Germany, and Sweden. For Italy, the model detects time variation in about 80% of the

retained Gibbs iterations. Consumption growth is found to have time-varying loadings to the

global factor in nine industrialized countries. For investment growth, we find evidence that the

majority of industrialized countries exhibit time variation in the loadings to the global factor,

with most countries’ inclusion probability being above 90%. In the group of emerging markets,

evidence for time variation in the loadings to the global factor is even weaker. For output and

consumption, almost all emerging market economies in our sample have a probability below 50%

for including the time-varying part in their loadings to the global business cycle. For investment

growth, there is evidence for time variation in seven out of 24 countries.

The picture remains the same in the group of developing countries, i.e., the model selection

procedure rejects time variation in the loadings to the global factor for the vast majority of

countries.

Evidence for time-varying factor loadings to the group-specific factors is even weaker, as
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shown in Figure 4. In most countries across all country groups, the inclusion probability of

the binary indicator is well below 40% for output, consumption and investment.8 Overall, it is

striking that many of the estimated inclusion probabilities are below 50% but are still around

40%. As a robustness check, we changed the threshold for time variation to 10%, i.e., treated

all loadings with an inclusion probability above 10% as time-varying. As we discuss below,

the resulting variance decomposition, i.e., the shares attributed to the global, group, country

and idiosyncratic factors, changes only very little. The reason is that the loadings for which the

inclusion probability is below 50% hardly change in magnitude, even when we restrict the binary

indicators to one, i.e., force the loading to vary over time. In sum, we find strong evidence for

time-varying volatilities in the global and all three group factors. In contrast, the model selection

procedure rejects time variation in the loadings for the majority of countries. The first result is

therefore that the sensitivity to global and group-specific shocks has not changed over time in

most countries, but the size of the shocks has changed.

3.3 Estimated factor loadings and volatilities

The estimated time-varying standard deviations for the common factors are shown in Figure 5.

The volatility of all common shocks has decreased over time, whereas periods of economic

crisis are associated with a surge in volatility. For example, the volatility of the global factor

increased during the first oil price shock and more recently during the Great Recession in the late

2000s. Similarly, the volatilities of the emerging market economies and the developing countries

factor rose slightly during the Asian crisis in the late 1990s.

Figure 5: Stochastic volatilities of the global and group-specific factors
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Note: Reported are the median, the 5th and the 95th percentile of the posterior distribution of the time-varying
standard deviations of the global and the group-specific factors.

Figure 6 shows the factor loadings for some randomly selected countries of all groups where

the model selection procedure finds time variation. The upper panel displays the loadings of

8Inclusion probabilities for the country factors are not shown but are available upon request.
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Figure 6: Factor loadings of output to the global factor
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Note: Reported are the median, the 5th, and the 95th percentile of the posterior distribution of the time-varying
factor loadings for output and investment to the global factor for randomly selected countries. Time-varying
factor loadings are estimated given that posterior inclusion probabilities are above 0.5.

output to the global factor, which are clearly increasing over time for Finland, Germany, and

Sweden and to a lesser extend for Costa Rica and Botswana. The loading for Chile increased

until about 1980 but has been slightly decreasing since then. The lower panel of Figure 6 shows

the loadings of output to the respective group factor. These increase moderately for Ireland,

Luxembourg, Hong Kong, and Taiwan, but rather strongly for Singapore. For Niger, the loading

of output to its group factor increased substantially until about 1980, but has not changed much

since then. Overall, time variation in the factor loadings of output to the global and group

factors is detected in 32 countries, of which only eight countries exhibit decreasing loadings over

time. Thus, output growth has become more sensitive to the global and the group factor in

most of the countries.9 However, the loadings of consumption to the global factor have been

decreasing over time for ten industrialized countries.

3.4 Estimated global and group-specific factors

This section presents the estimates of the global and group-specific factors obtained from esti-

mating the model based on the results of the model selection procedure. More precisely, the

factor loadings and volatilities are modeled as time-varying if the inclusion probability of the

time-varying part in the stochastic model selection is above 50%. When the inclusion probabil-

ity is found to be below 50%, the standard deviation σκ or ση is set to zero, so that the factor

loading or the volatility is given by the time invariant part, i.e., ζ0 for the loadings and h0 for

the volatilities.

9Due to the large number of individual country results, we only report randomly selected results. All remaining
results not reported here are available upon request.
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Figure 7 displays the posterior median of the global and the group-specific factors along

with the 90% probability coverage intervals. The global business cycle factor captures some

major economic events of the last decades. The first global recession is found in the mid-1970s,

the time of the first oil crisis induced by a sharp increase in the price of oil in 1973/74. In

1979, the second surge in oil prices caused a global downturn in growth rates in the early 1980s,

captured by the global factor, as well as the 1990s recession following a collapse of the U.S. stock

market. The recent Great Recession is clearly visible in the sharp decline of the global factor in

2008/09.

The upper right panel in Figure 7 shows the evolution of the factor specific to the group

of industrial countries (ICs), which picks up both recessions associated with the oil crises. The

ICs group factor accounts for a different adjustment dynamics in response to oil price shocks.

In particular, the early 1980s recession is deeper and longer lasting than the perturbation of

the global factor. A similar characteristic can be seen in the Great Recession, where the ICs

factor shows a very slow recovery. In fact, our estimate of the ICs factor exhibits the pattern

of a double dip recession, as experienced particularly in industrialized countries in Europe and

North America. The estimates for the factors of the emerging market economies (EMs) and

the developing countries (DCs) capture relevant economic events specific to these groups. For

example, the EMs factor shown in the lower left panel picks up the Asian financial crisis in the

late 1990s and the quick recovery from the recent financial crisis.

The global and the three group-specific factors are orthogonal by construction, i.e., shocks

to these cycles are modeled as uncorrelated. However, specific events such as the recession in

the mid-1970s and the Great Recession are visible in the global as well as in the group factors

for the ICs and the EMs. When calculating the correlation of the estimated factors, we find

only a very moderate correlation between these factors.

3.5 Time-varying variance decompositions

This section examines the evolution of the time-varying variance decompositions as described

in Section 2. Changes over time in the variance shares attributed to each factor can be due

to changes in the loadings, the variances, or both. The model selection ensures that these

parameters are not forced to change, as they are in a standard time-varying parameter model

with IG priors. Based on the results presented in the previous section, the time variations in

the variance shares are predominantly driven by changes in the volatilities, since most of the
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Figure 7: Global and group-specific factors
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Note: Reported are the median, the 5th and the 95th percentile of the posterior distribution of the global and
the group-specific factors.

loadings are found to be constant.

Figure 8 shows the group-specific average of the time-varying variance decompositions for

the global and group-specific factors for all country groups and variables. Similar to previous

estimates in the literature, we find the global factor to be most important for the industrialized

countries and least important for the developing countries. International factors, as measured by

the joint contribution of the global and the group-specific factors, explain a substantial fraction

of the vast majority of variances of all three variables. In the group of industrialized countries,

the global and group factors together explain roughly 50% of the output growth variances. In

emerging market economies, international factors still have a share of more than 20% of the

output variances for most of the sample period. The average variance share of international

factors with respect to output growth in developing countries is between 10% and 12%.

Changes in the importance of the global and group-specific factors over time are shown in

Table 2, where the variance shares are averaged for each decade of the sample period.

Panel M1 displays the results from the baseline model, where the loadings and volatilities
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Figure 8: Time-varying variance decompositions in percent. Group-specific averages.

1970 1980 1990 2000 2010
0

10

20

30

40

50

ICs output
1970 1980 1990 2000 2010

0

5

10

15

20

25

30
Global
Group

EMs output
1970 1980 1990 2000 2010

0

2

4

6

8

10

12

14

16

DCs output

1970 1980 1990 2000 2010
0

10

20

30

40

ICs consumption
1970 1980 1990 2000 2010

0

5

10

15

20

EMs consumption
1970 1980 1990 2000 2010

0

2

4

6

8

10

DCs consumption

1970 1980 1990 2000 2010
0

10

20

30

40

ICs investment
1970 1980 1990 2000 2010

0

2

4

6

8

10

12

14

EMs investment
1970 1980 1990 2000 2010

0

1

2

3

4

DCs investment

are time-varying when the estimated binary indicators are above 0.5. Panel M2 restricts all

loadings to be constant and only allows the volatilities to vary over time. Not surprisingly,

the results do not differ considerably. There are some differences in the group of industrialized

countries, in particular for investment, for which time variation in the loadings is important, but

there are very little differences between the two models in the variance shares in the emerging

market economies and developing countries. This confirms that changes in the factor loadings

are of minor importance and the estimated changes in the variance shares are predominantly

attributed to changes in the size of the shocks, i.e, the volatilities.10 Consistent with KOP, we

find a decrease in the importance of the global factor for output and consumption in all country

groups. The group-specific factor is more important than the global factor. However, the changes

are smaller as compared to KOP. The largest increase in the importance of group-specific shocks

10A declining share of the global factor implies that the decline in the variance of the global factor multiplied
by the squared loading, i.e., α2

i,tvart(F
g
t ), is larger than the decline in the aggregated variance, vart(yi,t) (see

Eq. (10)).
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Table 2: Variance decompositions by decade.

Output Consumption Investment

’70 ’80 ’90 ’00 ’70 ’80 ’90 ’00 ’70 ’80 ’90 ’00

IC
global 20.4 19.2 17.1 18.7 9.8 7.8 5.9 5.9 23.6 26.6 26.9 27.4

group 27.2 25.4 25.3 24.9 30.6 28.9 27.3 25.9 7.1 5.5 5.4 6.8

M1 EM
global 9.4 7.2 5.6 6.3 7.6 5.7 4.3 4.5 4.2 4.8 4.0 4.3

group 12.7 11.3 11.8 14.6 10.3 8.4 7.7 7.8 3.4 3.2 3.9 5.8

DC
global 5.4 4.6 4.2 4.3 3.8 3.1 2.6 2.9 1.2 1.4 1.2 1.4

group 6.9 6.6 6.4 5.8 4.5 3.8 3.8 3.7 1.4 1.6 1.1 0.9

IC
global 16.9 14.4 11.5 11.1 18.2 15.1 11.8 11.1 3.1 2.5 1.8 1.6

group 25.8 23.8 23.9 24.4 15.1 13.6 13.7 14.0 8.9 7.4 7.0 6.8

M2 EM
global 9.1 6.9 5.2 5.2 6.5 4.8 3.6 3.6 1.1 0.8 0.6 0.5

group 12.8 10.7 10.7 11.9 9.3 7.6 7.6 8.4 1.8 1.4 1.4 1.4

DC
global 5.2 4.0 3.0 2.7 3.2 2.4 1.8 1.7 0.4 0.3 0.2 0.2

group 5.8 4.6 4.0 3.7 3.6 2.8 2.5 2.3 0.4 0.3 1.4 0.2

Note: Ten-year averages of the variance decompositions. M1: All binary indicators in the non-centered specification of factor
loadings and stochastic volatilities are set according to the estimated inclusion probabilities. M2: All indicators of the non-
centered factor loadings are equal to zero and restrict the loadings to be constant parameters.

are found for investment in emerging markets.

However, the results regarding the relative importance of the different factors are very het-

erogeneous across countries. Figure 9 plots the time-varying variance decompositions of output

growth for the global and group-specific factors for randomly selected countries from all country

groups. In the group of industrialized countries, a substantial decrease of the relative impor-

tance of international factors, as measured by the sum of the global and group factor, is found

for Australia, and a moderate decrease is found for the U.S. For Finland and Germany, inter-

national factors have become more important over time, whereas the exposure to global shocks

in particular has increased during the recent financial crisis. In the group of emerging market

economies, an increasing importance of the global factor is only found for Chile, especially during

the first oil crisis but also during the recent financial crisis. In China, India, and Singapore, the

group-specific factor accounts for a relatively high fraction of the variation in output growth as

compared to the global factor. Whereas international factors in all have become less important

for India, a strong increase is found for Singapore, driven by the importance of the group factor.

International factors are even less important in the group of developing countries, except for
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Niger, for which the group factor accounts for a large fraction of the fluctuations in the growth

of output. The global factor has become more important for Burundi, but less important for

the Congo Republic and Kenya.

Figure 9: Time-varying variance decompositions of output growth for selected countries in percent.
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Discussion

Similar to KOP and others, we find that global shocks have become less important for national

business cycles over time, although the magnitude of these changes is smaller. More importantly,

we find that changes in the size of the shocks are responsible for the decoupling of most countries,

rather than changes in the sensitivity of countries to global or group-specific shocks.

This distinction is important, as it allows to better understand the driving forces of global

business cycle decoupling. First, changes in the sensitivity to a factor as measured by the factor

loadings are the result of domestic policies targeting, for example, the external sector or the

financial sector of a particular country, and hence are country-specific. However, the effect of

reducing trade and financial barriers on the synchronization of business cycles is ambiguous

from a theoretical point of view. On the one hand, increasing trade flows should increase output
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comovements between countries, since both demand- and supply-side spillovers are generated.

On the other hand, output comovements might decrease if stronger trade linkages result in

increased specialization according to each country’s comparative advantage and if industry-

specific shocks are dominant (Baxter and Kouparitsas (2005)).

The effect of stronger financial linkages on output comovements could take both directions

as well. For example, output synchronization between countries could decrease if stronger fi-

nancial linkages facilitate the efficient reallocation of capital and hence result in an increased

specialization of production according to the countries’ comparative advantages. However, in-

creased financial linkages could also result in higher international business cycle comovement if

contagion effects, transmitted through financial markets, are present (Kose and Prasad (2010)).

Second, changes in the variances of the factors are affected by the magnitude of the shocks

to international and national business cycles. As widely discussed for the case of the U.S.

regarding the Great Moderation, there is no consensus on what has caused the reduction in the

volatility of output. Hence, this phenomenon could have been the outcome of better policies

(e.g., Blanchard and Simon (2001)), good luck in the sense of no major adverse shocks (e.g.,

Stock and Watson (2003)), or structural changes in the economy (e.g., Kahn et al. (2002)). Even

though this discussion has focused on the U.S. economy, these arguments can be applied to the

decreasing volatility of international business cycles as well.

Given these distinctions, we interpret global business cycle decoupling, as measured by a

decreasing relative importance of the global factor, as a reduction in the magnitude of interna-

tional shocks rather than in a reduction of countries’ sensitivity to international shocks.

4 Conclusion

During recent years, the empirical literature that reports a decrease in the importance of global

shocks to national business cycles has grown (e.g., Kose et al. (2003, 2012); Mumtaz et al. (2011)).

This result is, however, at odds with the fact that countries have become more interlinked, as

world trade and international capital flows have increased tremendously. At the same time,

shocks dedicated to smaller sub-groups of countries, e.g., industrialized countries, emerging

market economies, and developing countries, have been found to be more important in explaining

national business cycles.

In this paper, we have focused on whether the changes in the relative importance of global
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and group-specific shocks have been driven by changes in the sensitivity to common shocks or

by changes in the size of the shocks. To this end, a hierarchical DFM with time-varying loadings

and stochastic volatilities for output, consumption, and investment growth, for 106 countries

1961–2014 has been estimated. A Bayesian model selection procedure has been used to explicitly

test for time variation in the factor loadings and volatilities. As such, the model allows for time

variation in the parameters but does not force the parameters to change.

We have found strong evidence of changes in the size of the international shocks, both at

the global and the group-specific level. International shocks have become smaller over the past

decades. In contrast, the sensitivity of countries to international shocks has been constant for

the majority of countries. As a consequence, the finding of a decoupling of countries from the

global business cycle is driven by the global shocks’ having been smaller, and not by a reduction

in countries’ integration in the global economy.
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Appendix A List of Countries

Table A-1: List of Countries

Country Groups

Industrial Countries Emerging Economies Developing Countries

Belgium Peru Congo, Rep. Sri Lanka
Australia Argentina Burundi Lesotho
Austria Brazil Benin Madagascar
Canada Chile Burkina Faso Mali
Switzerland China Bangladesh Mozambique
Denmark Colombia Bolivia Mauritania
Spain Egypt Barbados Mauritius
Finland Hong Kong, China Botswana Malawi
France Indonesia Cote d’Ivoire Niger
United Kingdom India Cameroon Nigeria
Germany Israel Comoros Nicaragua
Greece Jordan Cape Verde Nepal
Ireland Korea, Rep. Costa Rica Panama
Iceland Morocco Dominican Republic Paraguay
Italy Mexico Algeria Rwanda
Japan Malaysia Ecuador Senegal
Luxembourg Pakistan Ethiopia El Salvador
Netherlands Philippines Gabon Seychelles
Norway Singapore Ghana Syrian Arab Republic
New Zealand Thailand Guinea Chad
Portugal Turkey Gambia, The Togo
Sweden Taiwan Guinea-Bissau Trinidad and Tobago
United States Venezuela, RB Equatorial Guinea Tunisia

South Africa Guatemala Tanzania
Guyana Uganda
Honduras Uruguay
Haiti Congo, Dem. Rep.
Iran, Islamic Rep. Zambia
Jamaica Zimbabwe
Kenya
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Appendix B Gibbs sampling algorithm

In this appendix we provide details on the Gibbs sampling algorithm used in subsection 2.3

to jointly sample the binary indicators M, the hyperparameters Ψ, the common and country-

specific factors F , the time-varying factor loadings α, β, and δ, the mixture indicators ι, and the

stochastic volatilities h. The structure of our Gibbs sampling approach is based on Frühwirth-

Schnatter and Wagner (2010).

Block 1: Filtering and sampling the state vectors F

In this block we use the general forward-filtering and backward-sampling approach for all com-

mon and country-specific factors F based on a state space model of the general form

y∗t = Ztst + et, et
iid
∼ N (0, H), (A-1)

st = Tst−1 +Ktvt, vt
iid
∼ N (0, Q), s1

iid
∼ N (a1, A1), (A-2)

where y∗t is a vector of observations and st an unobserved state vector. The matrices Zt, T ,

Kt, H, Q and the expected value a1 and variance A1 of the initial state vector s1 are assumed

to be known (conditioned upon) and the error terms et and νt are assumed to be serially

uncorrelated and independent of each other at all points in time. As Eqs. (A-1)–(A-2) constitute

a linear Gaussian state space model, the unknown state variables in st can be filtered using the

Kalman filter. In particular, we filter and draw the unobserved common and country-specific

factors D =
{
F g
t , F

IC
t , FEM

t , FDC
t , F c

i,t

}
conditionally on the time-varying factor loadings ζ =

{
αj
i,t, β

j
i,t, δ

j
i,t

}
, the stochastic volatility terms h =

{
hDt

}
and the hyperparameters collected in

Ψ.

Block 1(a): Sampling the global factor F g
t

In this step of the Gibbs sampler, we filter and sample the common global factor F g
t conditioning

on the group-specific factors F r
t = (F IC

t , FEM
t , FDC

t ), the country-specific factors F c
i,t, the time-

varying factor loadings ζ, the stochastic volatilities h, and the hyperparameters. As we treat

the country- and variable-specific idiosyncratic disturbances εji,t as autocorrelated processes of

order three, we transform the endogenous variables Yi,t, Ci,t and Ii,t and express these variables

as functions of the global factor F g
t . The state space representation for the conditional model

in this block is given by
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y∗t︷ ︸︸ ︷


Y ∗
1,t

...

Y ∗
N,t

C∗
1,t

...

C∗
N,t

I∗1,t
...

I∗N,t




=

Zt︷ ︸︸ ︷


αY
1,t −αY

1,tφ
Y
1,1 −αY

1,tφ
Y
2,1 −αY

1,tφ
Y
3,1

...
...

...
...

αY
N,t −αY

N,tφ
Y
1,N −αY

N,tφ
Y
2,N −αY

N,tφ
Y
3,N

αC
1,t −αC

1,tφ
C
1,1 −αC

1,tφ
C
2,1 −αC

1,tφ
C
3,1

...
...

...
...

αC
N,t −αC

N,tφ
C
1,N −αC

N,tφ
C
2,N −αC

N,tφ
C
3,N

αI
1,t −αI

1,tφ
I
1,1 −αI

1,tφ
I
2,1 −αI

1,tφ
I
3,1

...
...

...
...

αI
N,t −αI

N,tφ
I
1,N −αI

N,tφ
I
2,N −αI

N,tφ
I
3,N




st︷ ︸︸ ︷


F g
t

F g
t−1

F g
t−2

F g
t−3




+

et︷ ︸︸ ︷


νY1,t
...

νYN,t

νC1,t
...

νCN,t

νI1,t
...

νIN,t




, (A-3)

st︷ ︸︸ ︷


F g
t

F g
t−1

F g
t−2

F g
t−3




=

T︷ ︸︸ ︷


θg1 θg2 θg3 0

1 0 0 0

0 1 0 0

0 0 1 0




st−1︷ ︸︸ ︷


F g
t−1

F g
t−2

F g
t−3

F g
t−4




+

Kt︷ ︸︸ ︷


exp(hgt )

0

0

0




ψg
t , (A-4)

where H = diag(σ2ν,i,Y , σ
2
ν,i,C , σ

2
ν,i,I), Q = 1, and Y ∗

i,t = φYi (L)
[
Yi,t − βYi,tF

r
t − δYi,tF

c
i,t

]
, C∗

i,t =

φCi (L)
[
Ci,t − βCi,tF

r
t − δCi,tF

c
i,t

]
and I∗i,t = φIi (L)

[
Ii,t − βIi,tF

r
t − δIi,tF

c
i,t

]
with φji (L) = (1−φj1,iL−

φj2,iL
2 − φj3,iL

3) and r = IC,EM,DC depending on the group affiliation of country i. Pre-

multiplying each term in the observation equation by the lag polynomial φji (L) is necessary to

take into account the autoregressive structure of the variable specific idiosyncratic error terms

εji,t in Eq. (3).

The unobserved state vector st is extracted using standard forward filtering and backward

sampling. Instead of taking the entire observational vector y∗t as the item for analysis, we follow

the univariate treatment of the multivariate series approach of Durbin and Koopman (2012), in

which each of the elements y∗i,t in y
∗
t is brought into the analysis one at a time. This not only

offers significant computational gains, it also avoids the risk that the prediction error variance

matrix becomes nonsingular during the Kalman filter procedure.
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Block 1(b): Sampling the group-specific factors F r
t

In order to filter and sample the group-specific factors F r
t = (F IC

t , FEM
t , FDC

t ), we split our

entire sample into smaller sub-samples, each including the countries belonging to either the

group of industrial countries (IC), the emerging market economies (EM), or the developing

countries (DC). More specifically, the group of industrial countries includes those indexed from

i = 1, . . . , 23, the group of emerging market economies includes countries indexed from i =

24, . . . , 47, and the group of developing countries includes countries indexed from i = 48, . . . , 106.

For these smaller subgroups, we sample each group-specific factor separately, similarly to the

procedure outlined in Block 1(a), conditioning on the global factor F g
t , the country-specific

factors F c
i,t, the time-varying factor loadings α, β, and δ, the stochastic volatilities h, and the

corresponding hyperparameters in Ψ. We transform the endogenous variables and express them

as functions of the group-specific factor F r
t , which gives us Y ∗

i,t = φYi (L)
[
Yi,t − αY

i,tF
g
t − δYi,tF

c
i,t

]
,

C∗
i,t = φCi (L)

[
Ci,t − αC

i,tF
g
t − δCi,tF

c
i,t

]
and I∗i,t = φIi (L)

[
Ii,t − αI

i,tF
g
t − δIi,tF

c
i,t

]
.

Block 1(c): Sampling the country-specific factors F c
i,t

In this block of the Gibbs sampler, we filter and sample the country-specific factors F c
i,t sepa-

rately for each country i, conditioning on the global factor F g
t , the group-specific factors F r

t ,

the time-varying factor loadings α, β, and δ, the stochastic volatilities h, and the correspond-

ing hyperparameters in Ψ. Again, we transform each endogenous variable as in Block 1(a)

and (b), and express them as functions of the country-specific factor F c
i,t, which gives us Y ∗

i,t =

φYi (L)
[
Yi,t − αY

i,tF
g
t − βYi,tF

r
t

]
, C∗

i,t = φCi (L)
[
Ci,t − αC

i,tF
g
t − βCi,tF

r
t

]
and I∗i,t = φIi (L)

[
Ii,t − αI

i,tF
g
t − βIi,tF

r
t

]
.

Block 2: Sampling the binary indicators M and the parameters σ, ζ0 and h0

For notational convenience, let us define a general regression model,

w = zMbM + e, e ∼ N (0,Σ) , (A-5)

with w a vector including observations on a dependent variable wt, and z an unrestricted predic-

tor matrix with rows zt that contain the state processes from the vectors Dt, ζt and ht that are

relevant for explaining wt. The corresponding unrestricted parameter vector with the relevant

elements from Ψ is denoted by b. Then, zM and bM are the restricted predictor matrix and

restricted parameter vector excluding those elements in z and b for which the corresponding
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indicator in M is 0. Furthermore, Σ is a diagonal matrix with elements σ2e,t that may vary over

time to allow for heteroskedasticity of a known form.

A naive implementation of the Gibbs sampler would be to sample M from

f (M|D, ζ, h,Ψ, w ) and Ψ from f (Ψ |D, ζ, h,M, w ). However, this approach does not result in

an irreducible Markov chain, since whenever an indicator in M equals zero, the corresponding

coefficient in Ψ is also zero, which implies that the chain has absorbing states. Therefore, as

in Frühwirth-Schnatter and Wagner (2010), we marginalize over the parameters in Ψ for which

variable selection is carried out when sampling M, and then draw the respective parameters in

Ψ conditional on the indicators M. The posterior distribution f (M|D, ζ, h, w ) can be obtained

using Bayes’ Theorem as

f (M|D, ζ, h, w ) ∝ f (w |M, D, ζ, h) p (M) , (A-6)

with p (M) being the prior probability of M and f (w |M, D, ζ, h) being the marginal likelihood

of the regression model (A-5) where the effect of the parameters bM and σ2e has been integrated

out. The closed form solution of the marginal likelihood depends on whether the error term et

is homoskedastic or heteroskedastic. More specifically:

• In the homoskedastic case, Σ = σ2eIT , under the normal-inverse gamma conjugate prior

bM ∼ N
(
aM0 , AM

0 σ2e
)
, σ2e ∼ IG (c0, C0) , (A-7)

the closed form solution for f (w |M, D, ζ, h) is

f (w |M, D, ζ, h) ∝

∣∣AM
T

∣∣0.5
∣∣AM

0

∣∣0.5
Γ (cT )C

c0
0

Γ (c0)
(
CM
T

)cT , (A-8)

and the posterior moments aMT , AM
T , cT and CM

T of bM and σ2e can be calculated as

aMT = AM
T

((
zM

)′
w +

(
AM

0

)−1
aM0

)
, (A-9)

AM
T =

((
zM

)′
zM +

(
AM

0

)−1
)−1

, (A-10)

cT = c0 + T /2 , (A-11)

CM
T = C0 + 0.5

(
w′w +

(
aM0

)′ (
AM

0

)−1
aM0 −

(
aMT

)′ (
AM

T

)−1
aMT

)
. (A-12)
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• In the heteroskedastic case, Σ = diag
(
σ2e,1, ..., σ

2
e,T

)
, under the normal conjugate prior

bM ∼ N
(
aM0 , AM

0

)
, the closed form solution for the marginal likelihood f (w |M, D, ζ, h)

is

f (w |M, D, ζ, h) ∝
|Σ|−0.5

∣∣AM
T

∣∣0.5
∣∣AM

0

∣∣0.5 exp

(
−
1

2

(
w′Σ−1w +

(
aM0

)′ (
AM

0

)−1
aM0

−
(
aMT

)′ (
AM

T

)−1
aMT

))
, (A-13)

with

aMT = AM
T

((
zM

)′
Σ−1w +

(
AM

0

)−1
aM0

)
, (A-14)

AM
T =

((
zM

)′
Σ−1zM +

(
AM

0

)−1
)−1

. (A-15)

Following George and McCulloch (1993), instead of using a multi-move sampler in which

all the elements in M are sampled simultaneously, we use a single-move sampler in which each

of the binary indicators λ and ρ in M is sampled from f
(
λαi,j |λ

β
i,j , λ

δ
i,j , ρ

D, D, ζji , h, w
)
,

f
(
λβi,j |λ

α
i,j , λ

δ
i,j , ρ

D, D, ζji , h, w
)
, f

(
λδi,j |λ

α
i,j , λ

β
i,j , ρ

D, D, ζji , h, w
)
, and

f
(
ρk|ρ\k, λζ , D, ζ, h, w

)
respectively. Block 2 is therefore split up into the following subblocks:

Block 2(a): Sampling the binary indicators λ and the parameters ζ0 and σκ

In this block we sample the binary indicators λ =
{
λζi,j

}
and the parameters ζji,0, and σκ =

{
σζκ,i,j

}
conditional on the states D, ζ, and h.

In order to sample the binary indicators and parameters corresponding to the time-varying

loadings to the global factor, we use (16) and rewrite each equation in model (1) in the general

linear regression format of (A-5) as

wt︷︸︸︷
yj∗i,t =

zMt︷ ︸︸ ︷[
F g∗
t λαi,jα̃

j
i,tF

g∗
t

]

bM︷ ︸︸ ︷


αj
i,0

σακ,i,j


+

et︷︸︸︷
νji,t , (A-16)

with yj∗i,t = φji (L)
[
yji,t − βji,tF

r
t − δji,tF

c
i,t

]
and F g

t
∗
= φji (L)F

g
t for j = (Y,C, I), where r = IC,

EM, or DC depending on the corresponding group membership of country i.

Likewise, in order to sample the binary indicators and parameters corresponding to the

33



time-varying loadings to the group factors, we use (16) and rewrite each equation in (1) in the

general linear regression format of (A-5) as

wt︷︸︸︷
yj∗i,t =

zMt︷ ︸︸ ︷[
F r∗
t λβi,j β̃

j
i,tF

r∗
t

]

bM︷ ︸︸ ︷


βji,0

σβκ,i,j


+

et︷︸︸︷
νji,t , (A-17)

with yj∗i,t = φji (L)
[
yji,t − αj

i,tF
g
t − δji,tF

c
i,t

]
and F r

t
∗ = φji (L)F

r
t .

Lastly, in order to sample the binary indicators and parameters corresponding to the time-

varying loadings to the country-specific factors, we use (16) and rewrite each equation in (1) in

the general linear regression format of (A-5) as

wt︷︸︸︷
yj∗i,t =

zMt︷ ︸︸ ︷[
F c∗
i,t λδi,j δ̃

j
i,tF

c∗
i,t

]

bM︷ ︸︸ ︷


δji,0

σδκ,i,j


+

et︷︸︸︷
νji,t , (A-18)

with yj∗i,t = φji (L)
[
yji,t − αj

i,tF
g
t − βji,tF

r
t

]
and F c∗

i,t = φji (L)F
c
i,t.

In all three equations, Eqs. (A-16)–(A-18), the second term in both the restricted vector

zMt and the restricted parameter vector bM is excluded when λζi,j = 0. Note that next to the

parameters in bM and σ2e , each of the specifications (A-16), (A-17), and (A-18) depends only on

the transformed data yj∗i,t, on some of the transformed factors in D∗
t , on the time-varying loadings

ζji,t, and on the corresponding binary indicator λζi,j . Hence, we can simplify the specification

of the posterior from f
(
λζi,j

∣∣∣λ\ζ\i,\j , ρ
D, D, ζ, h, x

)
to f

(
λζi,j

∣∣∣D∗, ζji , y
j∗
i

)
, for which we have

f
(
λζi,j

∣∣∣D∗, ζji , y
j∗
i

)
∝ f

(
yj∗i

∣∣∣λζi,j , D∗, ζji

)
p
(
λζi,j

)
.

As the error terms νji,t in Eqs. (A-16)–(A-18) are homoskedastic, we have Σ = σ2eIT in

the general notation of Eq. (A-5), so that the marginal likelihood f
(
λζi,j

∣∣∣D∗, ζji , y
j∗
i

)
can be

calculated as in Eq. (A-8). The binary indicator λζi,j can then be sampled from the Bernoulli

distribution with probability

p
(
λζi,j = 1

∣∣∣D∗, ζji , y
j∗
i

)
=

f
(
λζi,j = 1

∣∣∣D∗, ζji , y
j∗
i

)

f
(
λζi,j = 0

∣∣∣D∗, ζji , y
j∗
i

)
+ f

(
λζi,j = 1

∣∣∣D∗, ζji , y
j∗
i

) , (A-19)

while bM can be sampled from N
(
aMT , AM

T σ2ν,i,j

)
with aMT and AM

T as defined in Eqs. (A-9)–

(A-15). Note that bM =
(
ζji,0, σ

ζ
κ,i,j

)′
when λζi,j = 1 and bM = ζji,0 when λζi,j = 0. In the former
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case, σζκ,i,j is sampled from the posterior, whereas in the latter case we set σζκ,i,j = 0.

Block 2(b): Sampling the binary indicators ρ and the parameters h0 and ση

In this block we sample the binary indicators ρD =
{
ρg, ρIC , ρEM , ρDC , ρci

}
and the parameters

h0 =
{
hg0, h

IC
0 , hEM

0 , hDC
0 , hci,0

}
and ση =

{
σgη , σICη , σEM

η , σDC
η , σcη,i

}
conditional on the states D

and h. Using Eq. (17), Eq. (7) can be rewritten in the general linear regression format of (A-5)

as

wt︷ ︸︸ ︷
gDt −

(
mιDt

− 1.2704
)
=

zMt︷ ︸︸ ︷
2

[
1 ρDh̃Dt

]

bM︷ ︸︸ ︷


hD0

ση,D


+

et︷︸︸︷
ǫ̃Dt , (A-20)

with ǫ̃Dt = ǫDt −
(
mιDt

− 1.2704
)
is ǫDt recentered around zero, and where using Eq. (2), gDt =

ln
((

exp{hDt }ψ
D
t

)2
+ .001

)
can be calculated as

gDt = ln
((
Dt − θD1 Dt−1 − θD2 Dt−2 − θD3 Dt−3

)2
+ .001

)
, (A-21)

As specification (A-20) depends only on the data wt, on the stochastic volatility term

hDt , and on ρD, we can simplify the specification of the posterior from f
(
ρD|ρ\D, λ, ζ, h, w

)
to

f
(
ρD

∣∣hD, w
)
. Using Bayes’ Theorem, we have f

(
ρD

∣∣hD, w
)
∝ f

(
w
∣∣ρD, hD

)
p
(
ρD

)
. Given

the mixture distribution of ǫDt defined in Eq. (9), the error term ǫ̃Dt in Eq. (A-20) has a

heteroskedastic variance v2
ιDt

such that Σ = diag
(
v2
ιD
1

, ..., v2
ιD
T

)
in the general notation of Eq.

(A-5). In this case, the marginal likelihood f
(
w
∣∣ρD, hD

)
can be calculated as in Eq. (A-13).

The binary indicator ρD can then be sampled from the Bernoulli distribution with probability

p
(
ρD = 1

∣∣hD, w
)
calculated from an equation similar to Eq. (A-19). Next, bM can be sampled

from N
(
aMT , AM

T

)
with aMT and AM

T as defined in Eqs. (A-14) and (A-15). Note that bM =
(
hD0 , ση,D

)′
when ρD = 1 and bM = hD0 when ρD = 0. In the latter case, we set ση,D = 0.

Block 3: Sampling the state vectors ζ and h, and the mixture indicators ι

In this block we use the forward-filtering and backward-sampling approach of Carter and Kohn

(1994) and De Jong and Shephard (1995) to sample the states ζ and h based on a general state
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space model of the form

wt = Ztst + et, et
iid
∼ N (0, Ht) , (A-22)

st = R1st−1 +Ktµt, µt
iid
∼ N (0, Qt) , s1

iid
∼ N (a1, A1) , (A-23)

where wt is now a vector of observations and st an unobserved state vector. The matrices Zt, R1,

Kt, Ht, Qt and the expected value a1 and variance A1 of the initial state vector s1 are assumed to

be known (conditioned upon). The error terms et and µt are assumed to be serially uncorrelated

and independent of each other at all points in time. As Eqs. (A-22)–(A-23) constitute a linear

Gaussian state space model, the unknown state variables in st can be filtered using the standard

Kalman filter. Sampling s = [s1, . . . , sT ] from its conditional distribution can then be done using

the multimove Gibbs sampler of Carter and Kohn (1994) and De Jong and Shephard (1995).

Block 3(a): Sampling the time-varying parameters ζ

We first filter and draw the time-varying parameters ζt = (αj
i,t, β

j
i,t, δ

j
i,t) conditionally on all

factors D, the stochastic volatility terms h, the hyperparameters Ψ, and the binary indicators

M. More specifically, using Eq. (16) for each equation in (1), the unrestricted (i.e., λ = 1)

conditional state space representations for the time-varying factor loadings ζ̃ji,t are given by

wt︷ ︸︸ ︷[
yj∗i,t − αj

i,0F
g∗
t

]
=

ZM
t︷ ︸︸ ︷[

σακ,i,jF
g∗
t

]
sMt︷ ︸︸ ︷[
α̃j
i,t

]
+

et︷ ︸︸ ︷[
νji,t

]
, (A-24)

[
α̃j
i,t

]

︸ ︷︷ ︸
st

=

[
1

]

︸ ︷︷ ︸
R1

[
α̃j
i,t−1

]

︸ ︷︷ ︸
st−1

+

[
1

]

︸ ︷︷ ︸
Kt

[
κ̃j,αi,t

]

︸ ︷︷ ︸
µt

, (A-25)

with Ht = σ2ν,i,j and Qt = 1, yj∗i,t = φji (L)
[
yji,t − βji,tF

r
t − δji,tF

c
i,t

]
and F g∗

t = φji (L)F
g
t and

wt︷ ︸︸ ︷[
yj∗i,t − βji,0F

r∗
t

]
=

ZM
t︷ ︸︸ ︷[

σβκ,i,jF
r∗
t

]
sMt︷ ︸︸ ︷[
β̃ji,t

]
+

et︷ ︸︸ ︷[
νji,t

]
, (A-26)

[
β̃ji,t

]

︸ ︷︷ ︸
st

=

[
1

]

︸ ︷︷ ︸
R1

[
β̃ji,t−1

]

︸ ︷︷ ︸
st−1

+

[
1

]

︸ ︷︷ ︸
Kt

[
κ̃j,βi,t

]

︸ ︷︷ ︸
µt

, (A-27)
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with Ht = σ2ν,i,j and Qt = 1, yj∗i,t = φji (L)
[
yji,t − αj

i,tF
g
t − δji,tF

c
i,t

]
and F r∗

t = φji (L)F
r
t and

wt︷ ︸︸ ︷[
yj∗i,t − δji,0F

c∗
i,t

]
=

ZM
t︷ ︸︸ ︷[

σδκ,i,jF
c∗
i,t

]
sMt︷ ︸︸ ︷[
δ̃ji,t

]
+

et︷ ︸︸ ︷[
νji,t

]
, (A-28)

[
δ̃ji,t

]

︸ ︷︷ ︸
st

=

[
1

]

︸ ︷︷ ︸
R1

[
δ̃ji,t−1

]

︸ ︷︷ ︸
st−1

+

[
1

]

︸ ︷︷ ︸
Kt

[
κ̃j,δi,t

]

︸ ︷︷ ︸
µt

, (A-29)

with Ht = σ2ν,i,j and Qt = 1, yj∗i,t = φji (L)
[
yji,t − αj

i,tF
g
t − βji,tF

r
t

]
and F c∗

i,t = φji (L)F
c
i,t. All

random walk components α̃j
i,t, β̃

j
i,t and δ̃

j
i,t are initialized by setting a1 = 0 and A1 = 1000.

In the restricted model (i.e., λ = 0), ZM and sM are empty. In this case, no forward-

filtering and backward-sampling is needed, and ζ̃ji,t can be sampled directly from the prior using

Eq. (13). Note that the sampling of the common and country-specific factors in block 1 depends

on ζ rather than on ζ̃. We therefore reconstruct ζji,t from Eqs. (12) by using the corresponding

parameters from ζ0 and σκ.

Block 3(b): Sampling the mixture indicators ι and the stochastic volatilities h

In this block we draw the mixture indicators ι = (ιg, ιIC , ιEM , ιDC , ιci ) and the stochastic volatil-

ities h =
(
hg, hIC , hEM , hDC , hci

)
conditionally on the state vector D, the time-varying parame-

ters ζ, the hyperparameters Ψ, and the binary indicators M. Following Del Negro and Primiceri

(2014), in this block we first sample the mixture indicator ιDt from its conditional probability

mass

p
(
ιDt = n|hDt , ǫ

D
t

)
∝ qnfN

(
ǫDt |2h

D
t +mn − 1.2704, ν2n

)
, (A-30)

with values for {qn,mn, ν
2
n} taken from Table 1 in Omori et al. (2007).

Next, we filter and sample the stochastic volatility terms h̃Dt conditioning on the trans-

formed states gDt defined in Eq. (A-21), on the mixture indicators ιDt , and on the parameters Ψ.

More specifically, the unrestricted (i.e., ρD = 1) conditional state space representation is given
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by

wt︷ ︸︸ ︷[
gDt −

(
mιDt

− 1.2704
)
− 2hD0

]
=

ZM
t︷ ︸︸ ︷[

2ρDση,D

]
sMt︷ ︸︸ ︷[
h̃Dt

]
+

et︷ ︸︸ ︷[
ǫ̃Dt

]
, (A-31)

[
h̃Dt

]

︸ ︷︷ ︸
st

=

[
1

]

︸ ︷︷ ︸
R1

[
h̃Dt−1

]

︸ ︷︷ ︸
st−1

+

[
1

]

︸ ︷︷ ︸
Kt

[
η̃Dt

]

︸ ︷︷ ︸
µt

, (A-32)

with Ht = v2
ιDt
, Qt = 1 and where ǫ̃Dt = ǫDt −

(
mιDt

− 1.2704
)
is ǫDt recentered around zero. The

random walk components h̃Dt are initialized by setting a1 = 0 and A1 = 1000.

In the restricted model (i.e., ρD = 0), ZM and sM are empty. In this case, no forward-

filtering and backward-sampling is needed and h̃Dt can be sampled directly from its prior using

Eq. (15). Note that the sampling of the common and country-specific factors Ft in block 1

depends on hDt rather than on h̃Dt . Using h
D
0 , ση,D and h̃Dt , h

D
t can easily be reconstructed from

Eq. (14).

Block 4: Estimating and sampling the parameters θ, φ, and σ2
ν

In the final block of the Gibbs sampler we estimate and draw the autoregressive parameters θ

and φ and the variances of the idiosyncratic error terms σ2ν conditioning on the factors D, the

time-varying factor loadings ζ and the stochastic volatilities h, and the binary indicators M.

We estimate and draw the variances and the AR parameters separately. Therefore, block 4 is

split up in the following subblocks:

Block 4(a): Estimating and sampling the variances σ2ν

First we estimate and draw the variances σ2ν,i,j of the iid shocks to the idiosyncratic error terms

in Eq. (3) for each country i and variable j separately. We follow the approach of Kim and

Nelson (1999) (pp. 175–177) and draw the variance of the shocks to idiosyncratic errors from an

inverted-gamma distribution with prior information

σ2|β ∼ IG (c0, C0) , (A-33)

where β is a vector of known parameters and is conditioned on. We obtain prior information

c0 = T ∗str0/2 on the shape parameter, where T (observations) is the prior number of degrees of

freedom and str0 is the strength of the belief about the value of the variance σ2. Prior information
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on the scale parameter is given by C0 = bel0∗c0, where bel0 denotes the corresponding prior belief

about the value of the variance parameter σ2. The posterior distribution can be represented by

σ2|β ∼ IG (c1, C1) , (A-34)

where c1 = c0 + T/2 and C1 = C0 + (w′ ∗ w)/2, and w′ ∗ w are the residual sum of squares

yielding an estimate of the variance based on the data. Therefore, the posterior parameters of

the inverse gamma distribution consist of prior information and the information in the data.

We sample the variances σ2ν,i,j of the shocks to the idiosyncratic errors conditioning on the

factors D, the time-varying loadings α, β, and δ, and the AR coefficients φ from the posterior

given in (A-34) for each country i and variable j separately. Therefore, we first compute the

residuals for each equation in (1) as εji,t = yji,t − αj
i,tF

g
t − βji,tF

r
t − δji,tF

c
i,t and set wj

i,t = εji,t −

φj1,iε
j
i,t−1 − φj2,iε

j
i,t−2 − φj3,iε

j
i,t−3 to take into account the autoregressive structure of the error

terms.

Block 4(b): Estimating and sampling the AR parameters φ and θ

Next we estimate and draw the autoregressive parameters φji of the idiosyncratic error terms εji,t.

Conditioning on the factors D, the time-varying loadings α, β, and δ, and the error variance of

the idiosyncratic error terms σ2ν known from the previous step, these are all unknown parameters

in the standard linear regression model

y = Xβ + e, e ∼ N (0, σ2IT ), (A-35)

where y and e are T × 1 vectors, and X is a T × K matrix containing the fixed regressors

X1, ..., XK . β is the unknown vector of coefficients and the error variance σ2 is assumed to be

known. We follow the approach outlined in Kim and Nelson (1999) (pp. 173–174). The prior

information of β follows a normal distribution

β|σ2 ∼ N (β0,Σ0), (A-36)

where β0 is the prior belief of β and Σ0 is the prior variance regarding this belief indicating

the degree of uncertainty on β0. The parameters β can then be sampled from the posterior
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distribution

β|σ2 ∼ N (β1,Σ1), (A-37)

with hyperparameters defined by

Σ1 =

(
X ′X

σ2
+Σ−1

0

)−1

(A-38)

β1 =

(
X ′y

σ2
+Σ−1

0 β0

)
Σ1, (A-39)

where the prior information is combined with the information in the data given by the sample

estimate.11

The autoregressive parameters can now be sampled as follows:

• We obtain the posterior distribution of φjp,i for each country i and each variable j separately

(for p = 1, 2, 3 lags). First we compute the variable specific idiosyncratic error terms for

each country i:

εji,t = yji,t − αj
i,tF

g
t − βji,tF

r
t − δji,tF

c
i,t. (A-40)

We then set y = εji,t, X1 = εji,t−1, X2 = εji,t−2, and X3 = εji,t−3 for each country i and

variable j in (A-35) and sample the AR coefficients φjp,i from (A-37) correspondingly.

We accept the draw if
∣∣∣Σ3

p=1

(
φjp,i

)∣∣∣ < 1, ensuring the stationarity of the autoregressive

processes.

• We obtain the posterior distribution of the AR coefficients θp,D for each factor sepa-

rately, conditioning on Dt and hDt by using (A-37) and setting y = Dt/ exp(h
D
t ), X1 =

Dt−1/ exp(h
D
t−1), X2 = Dt−2/ exp(h

D
t−2), and X3 = Dt−3/ exp(h

D
t−3), so that (A-35) be-

comes a GLS-type regression model since the errors in (2) are heteroskedastic due to the

stochastic volatilities. Again, we then sample the AR coefficients θDp from (A-37). We ac-

cept the draw if
∣∣Σ3

p=1

(
θDp

)∣∣ < 1, ensuring the stationarity of the autoregressive processes.

11We refer to Kim and Nelson (1999) for a more detailed explanation.
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