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Abstract

Social interactions are considered pivotal to urban agglomeration forces. This study

employs a unique dataset on mobile phone calls to examine how social interactions

differ across cities and peripheral areas. We first show that geographical distance

is highly detrimental to interpersonal exchange. We then reveal that individuals re-

siding in high-density locations do not benefit from larger social networks, but from

a more efficient structure in terms of higher matching quality and lower clustering.

These results are derived from two complementary approaches: Based on a link for-

mation model, we examine how geographical distance, network overlap, and socio-

demographic (dis)similarities impact the likelihood that two agents interact. We fur-

ther decompose the effects from individual, location, and time specific determinants

on micro-level network measures by exploiting information on mobile phone users who

change their place of residence.
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1 Introduction

Social interactions lie at the nexus of two key themes in economics: sustained aggregate

growth and the concentration of economic activity in cities. In a widely cited paper,

Robert Lucas (1988) models human capital accumulation as main driver behind economic

development. Interpersonal exchange is pivotal to the narrative of his framework, with

Lucas (1988, p. 19) defining “human capital accumulation [a]s a social activity, involving

groups of people”. Through this social learning process, human capital not only provides

an internal value to its owner but also exerts a positive externality on peers, which fosters

the creation of new ideas and with it sustained development. In reference to urban theorist

Jane Jacobs (1969), Lucas (1988) suggests that these externalities are especially prevalent

in cities, which consequentially act as engines of growth. This notion reflects one of the

classic agglomeration forces described by Alfred Marshall (1890), who argues that the

dense concentration in cities facilitates the flow of information and knowledge, since social

interactions diminish over space. Although social interactions are considered to play a

decisive role for the aggregate dynamic and spatial organisation of the economy, empirical

work uncovering the alleged micro-mechanisms has remained fragmentary at best.

This paper studies the relation between spatial structure and social interactions in

order to test fundamental assumptions underlying the agglomeration forces discussed in

the literature. The analysis builds on anonymised mobile phone calls between June 2015

and May 2016. This allows us to examine the interplay between local characteristics and

social interactions as we not only observe comprehensive communication patterns but also

location information derived from transmitting antennas and billing data. Based on this

rich dataset and concepts from the network literature (e.g. Jackson, 2008), we investigate

three main questions. First, how does geographical distance impact social interactions?

Second, what is the relation between population density and the size of an individual’s

social network? Third, does population density affect the quality / efficiency of social

interactions in terms of matching quality, clustering and network perimeter? To answer

these questions we employ link formation models in the spirit of Graham (2014) and

additionally estimate the impact of population density on various micro-level network

measures. The sorting of individuals with specific characteristics can distort the results of

both approaches. We therefore base our inference on individuals who change their place of

residence (i.e. “movers”) to back out time constant unobservables and correctly identify

the role of distance as well as density-related externalities.

We show that distance is highly detrimental to social interactions, despite epoch-

making progress in communication technologies. Contrary to the conventional view, this

does not translate into larger networks in cities compared to the periphery. Density-related

externalities rather arise in terms of network efficiency, namely better matching quality,

lower clustering, and smaller distance costs. We are not aware of any study that has

delivered comparable evidence on regional differences in both network size and network

efficiency. Below, we discuss the main findings with reference to the related literature.
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1.1 Related Literature

Social Interactions and Distance. Models that incorporate knowledge and learn-

ing spillovers as an agglomeration force typically assume that distance is costly to social

interactions (e.g. Glaeser, 1999). The widespread adoption of information and telecom-

munication technologies popularised the “death-of-distance” argument (e.g. Cairncross,

2001), which raises the intriguing question of whether these technologies will fundamen-

tally change the structure of cities (see Ioannides et al., 2008) or even make them obsolete

(see Gaspar and Glaeser, 1998). We demonstrate that the social interactions recorded by

mobile phones are surprisingly localised, with more than 60 percent of ties occurring be-

tween individuals that reside within less than 10 km distance of each other. Importantly,

we aim for a causal interpretation and therefore estimate a network formation model based

on movers. This novel analysis confirms that distance is highly detrimental to forming

and maintaining social ties. A recent study by Levy and Goldenberg (2014) uncovers

similar patterns for email traffic and online social media contacts. We interpret this as

solid evidence against the death-of-distance hypothesis in the social exchange context.

Quantity of Social Interactions. Building on the assumption that distance is costly

to social interactions, numerous micro-founded models of urban agglomeration economies

have been developed (cf. Duranton and Puga, 2004). One body of literature focuses on

the claim that the quantity of social interactions increases with local population density.

Glaeser (1999) formalises the classic idea of Marshall (1890) that individuals acquire skills

by interacting with each other. As cities are more densely populated than the hinterland,

they facilitate more meetings in his framework and thus accelerate the social learning

process. Another example is that of Sato and Zenou (2015), who model social interactions

and their impact on employment outcomes. They propose that city residents maintain

larger networks than rural dwellers, enabling them to acquire more information on the

labour market, which reduces job search frictions and unemployment. Two empirical

studies support the hypothesis that cities facilitate interpersonal exchange. Charlot and

Duranton (2004) use survey data on workplace communication in France, while Schläpfer

et al. (2014) examine mobile phone records for Portugal. Both studies find that the

average number of (unique) social interactions increases with population size. However,

neither can plausibly isolate the causal impact of density from non-random sorting, as

the first paper relies on cross-sectional data and the second paper narrows down to a

descriptive analysis. Burley (2015) studies the German Socio-Economic Panel and finds

that population density is only positively correlated with an index of social interactions,

as long as person specific characteristics are ignored.1 Our results reinforce this finding:

we also show that the positive effect of cities compared to the hinterland vanishes, once

targeted sorting of individuals is accounted for. Given the pattern emerging from these

1Based on US survey data, Brueckner and Largey (2008) also examine population density and social
interactions obtaining consistently negative correlations. These findings are at odds with the other studies,
as they suggest that cities are too dense from a social interaction point of view.
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four studies, the claim that cities produce more social contacts than the periphery seems

unfounded.2

Efficiency of Social Interactions – Matching Quality. Another strand of literature

argues that cities do not necessarily increase the quantity of social interactions but rather

improve their quality / efficiency. In the model of Berliant, Reed and Wang (2006), agents

possess differentiated types of knowledge. The effect of cities on the number of social

interactions then becomes twofold, as densely populated areas increase the number of

random meetings but also make agents more selective regarding matching quality. Hence,

while cities do not necessarily affect the number of social interactions, Berliant, Reed

and Wang (2006) show that their quality in terms of knowledge complementarity should

improve with increasing population density. With the aim of providing an empirical test

for the matching channel, Abel and Deitz (2015) study data on job searching of college

graduates. They find that larger and thicker labour markets indeed improve the matching

between job advertisements and applicants’ qualifications. To the best of our knowledge,

no study to date has assessed this hypothesis with respect to social interactions. We

formulate two tests, one relying on a network formation model, and the other analysing

the social adjustment process among movers. Both approaches indicate that urban dwellers

indeed benefit from higher quality matches compared to people living in the hinterland.

Efficiency of Social Interactions – Clustering. Borrowing from the network litera-

ture, the level of clustering / triangular relations is an additional dimension of efficiency

that is sometimes assumed to vary regionally. Granovetter (1973) famously argues that

weak ties are often more valuable in terms of information provision than strong ties. He

formally defines a weak tie as a social relation between two agents who have no overlap

in their personal networks. In contrast, strong ties involve triangular relations that bring

about redundancies in the process of information diffusion. Sato and Zenou (2015) claim

that cities not only increase the number of social interactions – as discussed above – but

also give rise to a disproportionally high number of weak tie relations that are more valu-

able in the job market. We calculate the clustering coefficient (i.e. the share of triangular

relations) of each agent in the data set and test whether the level of clustering systemati-

cally varies with population density. We find that personal networks in cities indeed tend

to be characterised by lower levels of clustering and thus have a higher fraction of weak

ties. This finding suggests that cities may facilitate the diffusion of information, although

the average number of social interactions is not necessarily larger than in more sparsely

populated areas.

The following section elaborates on the main concepts. Section 3 introduces the data

used in the empirical analysis. Section 4 explains the empirical strategy. Section 5 dis-

cusses the results. Section 6 concludes.

2Other factors that have been shown to impact the level of social interactions are homeownership (e.g.
Hilber, 2010) and racial fragmentation (e.g. Alesina and La Ferrara, 2000; Brueckner and Largey, 2008).
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2 Cities and Social Interactions: Main Concepts

We consider a directed network with N nodes each representing a unique phone customer

which we denote by i ∈ N = {1, ..., N}. Each customer has a place of residence, r, which

is assigned either on the municipality or postcode level. The number of nodes at location r

is Nr, and so with R denoting the total number of different residences, N =
∑

rNr holds.

Finally, Rr is the set of individuals living in location r.

A link between nodes i and j is denoted by gij = 1, while the absence of a link is marked

as gij = 0. The network can then be characterised by a pair (N ,G) where G = [gij ] is a

N ×N adjacency matrix. As in Graham (2014), we assume that rational agents i and j

establish a link if the net surplus from doing so is positive. This yields a random utility

model of the form

gij = 1
(
X ′ijη + νi + νj + Uij ≥ 0

)
, (1)

where Xij is a vector of dyad attributes (i.e. pair specific characteristics), νi and νj

denote agent specific characteristics, and Uij is a randomly distributed component of link

surplus. We are particularly interested in the role of dyad attributes, which we divide into

three groups: geographical distance or travel time (Tij), the number of friends i and j share

(Fij =
∑N

k=1 gikgjk), and matching (m(νi, νj , δ)). As defined in this study, higher levels of

m(·) increase link surplus, which is why we refer to it as matching quality. Importantly, it

absorbs the spread between Q individual characteristics of agent i and j, |νi − νj |, which

– depending on the specific attribute q ∈ Q – may be positively (i.e. δq > 0) or negatively

correlated (i.e. δq < 0) with matching quality. Based on these considerations we define

the vector Xij as

X ′ijη = η1 · Tij + η2 · Fij(G) + η3 ·m(νi, νj , δ). (2)

If link-surplus is indeed a function of these three dyad-specific factors, this may have

important consequences for the network topography across rural and urban areas. Pro-

vided that distance is costly for social interactions, regional differences in population

density may determine the size of an agent’s social network. This is of interest, because

social contacts can foster the diffusion of information, promote trust and thereby lower

transaction costs, and facilitate learning from peers (Granovetter, 2005; Gui and Sugden,

2005; Jackson, 2014) in addition to having intrinsic value for a person’s well-being (Burt,

1987). We further focus on matching and common friends (or clustering), as they have

implications for a network’s efficiency : Matching reflects the quality of a specific contact,

which incorporates various dimensions such as productivity enhancing skill complemen-

tarity, or shared interests (e.g. Berliant, Reed and Wang, 2006). Clustering governs the

informational value of a link, since contacts who share a common friend introduce redun-

dancies and are therefore less valuable in the information diffusion process (Granovetter,
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1973). In return, sharing mutual contacts fosters cooperative and pro-social behaviour,

because the triangular relation can act as a reputational control and retaliation device

(Jackson, 2014).

Network Size and Degree Centrality. We first discuss the relation between popu-

lation density and the size of an individuals social network, which we measure based on

degree centrality, formally defined as

Di(G) = #{j : gij = 1}. (3)

The degree yields the number of distinct peers with whom agent i interacts socially and

therefore the number of sources that potentially forward valuable information. Typically,

urban economic theory (e.g. Glaeser, 1999; Sato and Zenou, 2015) presumes that cities

provide a favourable environment for social interactions and support larger network sizes,

as they are more densely populated than rural communities. The underlying argument

hinges on the assumption that the costs of social interactions increases with distance. Let

us abstract from the matching spread, m(νi, νj , δ), as well as triangular ties, Fij(G), and

focus on the relationship between distance and population density. A stylised argument

is as follows: On weekdays an agent i needs to keep her travelling costs low, and she

therefore has random encounters only with people in her municipality, j ∈ Rr. At the

weekend, however, the radius of the agent’s actions is unbounded, so that she might

form ties with people living outside her place of residence, k /∈ Rr. Since people spend

more time in their residence’s vicinity, the probability to acquire social contacts among

neighbours, Pr = P (gi,j∈Rr = 1), is larger than for the rest of the population, that is

Pr > P−r = P (gi,k/∈Rr
= 1). In the outlined example, the size of a person’s social

network positively depends on the population living in the neighbourhood, Nr, so that

cities support a larger degree than rural municipalities, i.e.

Di = Nr · Pr + (N −Nr) · P−r with
∂Di

∂Nr
> 0. (4)

While this intuitive rationale is appealing, it may be challenged from two angles,

namely from biological/anthropological and search strategic points of view.

In evolutionary biology, Dunbar (1992, 1998) has famously advocated and popularised

the social brain hypothesis. It challenges the field’s traditionally dominant view that

brains evolved to address ecological problem-solving tasks, such as foraging. Instead the

social brain hypothesis attributes the growth in primates’ brain sizes to the computational

demands of their increasingly complex social systems. Indeed, empirical analyses reveal a

close relation between neocortex volume and mean social group size among primates. This

has been interpreted as evidence that there is a species-specific upper limit to group size

that is set purely by cognitive constraints. For humans, Dunbar (1993) calculates the upper
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limit to lie between 100 and 230 social contacts, citing anthropological studies on modern

hunter-gatherer societies as evidence that support his prediction. Recent studies explore

this hypothesis by analysing patterns among adults’ prefrontal cortex volume, cognitive

ability, and the size of their social networks (Powell et al., 2012; Stiller and Dunbar,

2007) or by exploiting social media user statistics (Dunbar, 2015). In consideration of

the manifold results corroborating the social brain hypothesis, one may note that the

size of a person’s network is fundamentally restricted by congenital factors. Because the

population of practically all Swiss municipalities exceeds the limit for network size as

calculated by Dunbar (1993), the number of social interactions may be independent of

regional differences in population density.

In equation (4) a random encounter between two persons is equivalent to establishing

a link. We now add another layer: After meeting a potential contact, agents can either

accept or reject to form a link based on the other person’s characteristics. Since forming

a link consumes time and cognitive capacity, this introduces a quality-quantity trade-off.

Consequently, it may be optimal to reject some potential contacts to wait for a better

match (see Berliant, Reed and Wang, 2006). Hence, from a search strategic perspective,

higher population density may impact network size only marginally, but it may allow for

higher selectivity along dyad-specific characteristics. This has important consequences

for the analysis of social networks across different regions. Even if densely populated

areas improve social networks, the advantages may not be in terms of size but in terms

of efficiency. In this respect, matching quality between agents i and j, m(νi, νj , δ), is

of key interest, as it determines how well their interests correspond or how fruitful the

intellectual exchange between them is. Once we add the strategic component of weighing

between quality and quantity to the above mechanics, we would expect a positive effect

of population density on matching quality, or network size, or both.

Perimeter of Social Interactions and the Within-Degree. The previous line of

reasoning also has implications for the perimeter of a person’s network. Essentially, the

travel time between two agents can be considered one dimension of matching quality.

Assuming that distance is costly when maintaining a link, one would rather form a tie

with a neighbour than with an identical person living far away. Following Berliant, Reed

and Wang (2006) therefore implies that high-density locations allow people to be more

selective regarding the travel distance to their contacts, so that they can minimise travel

costs induced through social interactions. Put differently, one may expect that urban

dwellers can recruit their contacts within a narrower perimeter, since densely populated

cities make high quality matches in a small area possible. In contrast, people in rural

areas face a much tighter choice in their neighbourhood, thus they likely prefer to widen

the search radius with the objective of improving their network’s quality. To analyse these

claims, we examine the degree within an individual’s neighbourhood or within-degree,

formally defined as
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DW r
i (G) = #{i, j ∈ Rr : gij = 1}. (5)

Of course, negligible distance costs would wipe out any differences between cities and

rural areas. Costs related to distance may indeed be of secondary importance for a person

with naturally few social interactions, whereas highly sociable persons may benefit more

from densely populated areas, as recently formalised in a paper by Helsley and Zenou

(2014). Consequently, differences in network size may simply be observable due to the

sorting of highly sociable types into cities, because they gain disproportionally from low

distance costs per contact.

Clustering. In a last step, we discuss regional differences in population density and

their implications for clustering in social networks. Clustering is an important network

characteristic as it can provide insights into reciprocity and information diffusion. On the

one hand, high clustering strengthens reputational concerns and with it the enforcement of

social norms and cooperation (e.g. Ali and Miller, 2009), or risk-sharing (e.g. Ambrus, Mo-

bius and Szeidl, 2014). On the other hand, Granovetter (1973) highlights the importance

of local bridges for passing on information. An individual with high clustering introduces

redundancies in the network, which are inefficient in terms of information diffusion. The

clustering coefficient for node i is given by

Ci =

∑
j,k j 6=k gjk∑

j,k,j 6=k gijgik
, (6)

and measures whether an individual’s contacts form a tightly knit group (Ci → 1)

or are completely separate from each other (Ci → 0). How does population density

relate to clustering? There are two potential channels, one mechanical and the other as a

consequence of differing preferences. Figure 1 illustrates the mechanical rationale: Panel

(a) shows a city with 16 agents, eight blue and eight red. All agents socially interact

with three other agents, preferably of the same type. Panel (b) represents a peripheral

region with lower population density, therefore the 16 agents are equally split between

two municipalities. As in the city, all individuals have a degree of three. Importantly,

travelling between the two municipalities is costly, therefore agents prefer to form links

with their neighbours. Since every person has only three neighbours of the same type,

the network ends up tightly clustered. In contrast, the city makes clustering less likely,

because each urbanite can choose among seven agents of the same colour. In the way

the example is drawn, the average clustering in the city equals 0, while it amounts to 0.5

in the periphery. As a consequence, the average path length in the city (=2.73) is lower

than in the periphery (=3.2), which accelerates the diffusion of information. Thus, low

density locations should tend to display higher clustering, simply because residents of these

areas face a substantially smaller set of suitable contacts in their direct vicinity compared

to urban dwellers. In addition to this purely probabilistic relation between density and
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(a) City: Average Degree=3, Match-
ing Rate=0.833, Average Clustering=0,
Average Path Length=2.73

(b) Periphery: Average Degree=3, Match-
ing Rate=0.833, Average Clustering=0.5,
Average Path Length=3.2

Figure 1: Clustering in Cities and the Periphery – An Illustrative Example

clustering, preferences for forming links with friends of friends, Fij(G), could be different

in cities than in rural areas. Agents face a trade-off in terms of efficient information

exchange (i.e. low clustering) and benefits due to stronger reciprocity (i.e. high clustering).

The optimal balance may vary regionally due to factors that assign a higher weight to

reciprocity or information diffusion. For instance, high quality local institutions may

substitute for reciprocity or a dynamic labour market environment may support the value

of information diffusion. In addition, clusters may facilitate simultaneous interactions with

multiple persons, allowing for larger networks given a certain time constraint. If people

living in rural neighbourhoods have more geographically dispersed social networks, clusters

of friends could be a strategy to mitigate travel costs. Finally, it has been documented that

people living in peripheral areas have a higher proportion of kin ties than urban dwellers

(Fischer, 1982). A preference for spending time with relatives most likely increases the

clustering in an individual’s network as relatives inevitably have an overlap in their circle

of acquaintances.

3 Data

The main dataset used in this paper is provided by Switzerland’s largest telecommuni-

cations operator, Swisscom AG, whose market share is 55% for mobile phones and 60%

for landlines (ComCom, 2015). The data comprises comprehensive call detail records

(CDR) of all outgoing calls made by the operator’s customers between June 2015 and

May 2016. The CDRs include the anonymised phone number of caller and callee, a date

and time stamp, a binary indicator for private and business customers, a code for the type

of interaction recorded (e.g. call, SMS, MMS), the duration of calls in seconds, and the

x-y-coordinates of the caller’s main transmitting antenna. We observe finely grained infor-

mation on about 15 million calls and text messages per day, covering 7.2 million phones,
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Figure 2: Degree of Urbanisation – Cities, Hinterland and Periphery

of which 2.4 million are private mobile devices.3 Along with the anonymised CDRs, the

operator also provided monthly updated customer information including billing address,

language of correspondance (German, French, Italian, English), age, and gender. Table 1

summarises the socio-demographic characteristics of mobile phone customers in our sam-

ple, while Table A.3 shows correlations between census data and our customer statistics

for various subpopulations. This comparison suggests that the data at hand is highly

representative of the Swiss population.

The phone data are complemented by various municipal statistics for 2014 provided by

the Federal Statistical Office (FSO), including population figures and the degree of urban-

isation as classified by EUROSTAT.4 Figure 2 shows the regional variation in urbanisation

based on the aforementioned measure. We also compute geographical distances between

pairs of municipalities and pairs of postcodes using ArcGIS software and shape files for

administrative boundaries published by the Federal Office of Topography. Car driving

distances between centroids of municipalities and postcode areas were kindly provided by

the company search.ch. Descriptive statistics for municipalities and postcodes are shown

in Table A.1 in the appendix.

The anonymity of Swisscom customers was guaranteed at all steps of the analysis. We

never dealt with or had access to uncensored data. A data security specialist retrieved

the CDRs from the operator’s database and anonymised the telephone numbers using a

64-bit hash algorithm that preserved the international and local area codes. He further

removed columns with information on the transmitting antenna before making the data

3More specifically, the data set covers 2.4 million private mobile phones, 1.9 million private land lines,
1.1 million corporate mobile phones, and 1.8 million corporate landlines.

4See http://ec.europa.eu/eurostat/ramon/miscellaneous/index.cfm?TargetUrl=DSP_DEGURBA

(last access: 01.06.2016) for more information on the EUROSTAT DEGURBA measure.
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available. Once the anonymised data were copied to a fully sealed and encrypted Swisscom

workstation, we ran the analysis on site. To utilise information on the transmitting antenna

we passed location scripts to Swisscom personnel who executed them for us.

Our primary aim is to observe social networks, but not every instance of phone activity

reflects a social interaction in the narrower sense so that the dataset needs to be cleaned

beforehand (for a discussion see Blondel, Decuyper and Krings, 2015). In our benchmark

analysis, we filter the data as follows: First, we restrict the analysis to calls between mobile

phones. Mobile phones are personal objects and are thus representative of the social

network of a single person, while calls from fixed phones possibly resemble overlapping

social networks as they are usually shared by multiple users. For the same reason, all

results are based on customers who have registered only one active mobile phone number.

Customers with multiple active numbers typically include corporate customers, as well

as parents acting as invoice recipients for their children. Second, we limit the analysis

to outgoing calls in order to cover intra-operator and inter-operator activity equally well

and to filter out promotional calls by call centres. Third, calls with a duration of less

than 10 seconds are considered accidental and are therefore excluded from the analysis.

Fourth, we drop mobile phone numbers that display implausibly low or high monthly usage

statistics, with a minimum threshold of 1 minute and a maximum threshold of 56 hours per

month, respectively. This removes practically inactive numbers as well as phones used for

commercial purposes. Fifth, the analysis is limited to private mobile phones, so that daily

business calls between corporate customers do not create noise in our measures. Sixth,

some measures require address information for both caller and callee such that inter-

operator calls cannot be used in all steps of the analysis. Measures requiring location

information for the callee are therefore based on intra-operator calls only, which we weight

according to the operator’s market share at the callee’s billing address. Finally, we only

use the first 28 days of each month to make the data easily comparable across different

time periods.

These steps eliminate approximately 60 percent of the calls recorded for private cus-

tomers, leaving us with around 60 million calls per month that amount to a total duration

of 200 million minutes (for details see Table A.2 in the appendix). We have performed

sensitivity checks with regards to all above mentioned dimensions to ensure that our results

are robust.

3.1 Descriptive Statistics on Phone Usage and the Social Network

Table 1 shows summary statistics on the mobile phone usage of customers aged 15 to 64

for the filtered data set.5 The average private mobile-phone users makes about three calls

per day with a cumulative duration of nine minutes. Figures 3a and 3b further show that

the distributions are markedly right-skewed.

5Due to privacy concerns, we worked with decimal age-brackets. This means that a customer aged 24
was assigned to the 20-bracket, while a customer aged 25 belongs to the 30-bracket.
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Table 1: Descriptive Statistics, Private Mobile Phone Customers

Mean SD N Min Max

Phone Usage, June 2015 – May 2016 (pooled)
Number of Calls 111.781 109.599 10 399 549 1 10 113
Duration (Minutes) 254.970 295.609 10 399 549 2 3359

Network Characteristics, June 2015 – May 2016 (pooled)
Degree Centrality 9.202 7.910 10 399 549 1 470
Within-Degree (15 Min. Radius) 7.067 7.231 10 399 549 0 221
Clustering Coefficient 0.092 0.132 10 248 923 0 1

Sociodemographics
Age 34.964 13.561 866 646 20 60
Female 0.522 – 866 646 0 1
Language: German 0.681 – 866 646 0 1
Language: French 0.270 – 866 646 0 1
Language: Italian 0.043 – 866 646 0 1
Language: English 0.006 – 866 646 0 1
Notes: The table is based on the subsample of customers with phone activity in all 12 months, which we also use
in the main analysis. Further filters as described in section 3. Phone usage statistics include in- and outgoing calls.
The within-degree measures network size within a radius of 15 minutes around an agent’s residence.

The network of private mobile phone interactions uncovered by the data exhibits char-

acteristic features of other socially generated networks documented in the literature (Jack-

son and Rogers, 2007; Watts, 1999): Small diameter and short average path length between

pairs, “fat tails” in the degree distribution, and substantial clustering.

To gain insights into the diameter and the average path length, we randomly select

100 individuals and calculate the length of the shortest paths connecting every other

private mobile phone users in the data. The mean path length in the sample is 5.6,

with the longest path having a length of 12 (1 out of 246 mio.); the histogram plot-

ted in Figure 3f reveals that 88 percent of dyads are separated by 6 or fewer links.

This fits strikingly well with the “small-world”-hypothesis first formulated by Milgram

(1967) and the early empirical evidence based on a chain letter experiment conducted by

Travers and Milgram (1969).

As Figure 3c illustrates, the degree distribution in our social network exhibits “fat

tails”, so that there are more nodes with relatively high and low degrees, and fewer nodes

with medium degrees, than one would find in a network where links are formed uniformly.

The average degree in our monthly data is approximately 9, with the vast majority having

a degree below 20 and some hub-agents reaching network sizes of 100 links or more.

As reported in other studies on social networks, the probability distribution is well fitted

(R2 = 0.92) by a power-distribution, P (D) = cD−ϕ, with parameter estimates of ϕ̂ = 3.86

and ĉ = 5.96.

The clustering coefficient, which measures the tendency of linked nodes to have com-

mon neighbours, is, on average, 0.092, with more than 75 percent of the individuals in

the dataset having a non-zero clustering coefficient (see Figure 3e). Considering the low
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Figure 3: Histograms of Phone Usage Statistics & Network Characteristics for June 2015.

density of our network (≈ 0.00002), the observed clustering is evidently larger than in a

benchmark network where links would have been generated by an independent random

process.

4 Identification

In order to analyse the impact of geography and location characteristics on the structure of

social interactions we conduct two complementary identification strategies. The first aims

to identify factors that predict the likelihood of individuals i and j forming a link and is

referred to as network formation. In particular, this approach allows us to study the effects

of distance between i’s and j’s place of residence on the probability that they form a link.
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It further enables inference on the preference for triadic relations. The presence of network

overlap may influence the likelihood that i and j establish a link as the returns may be

higher or lower if it involves mutual contacts. Moreover, we study whether homophily –

the process of matching on common characteristics – is prevalent in the data.

The second approach, to which we refer as network topography, estimates the effect of

local characteristics on individual-level network measures. This relates to the equilibrium

outcome of network formation at different places and allows us to examine the impact of

location specific attributes on social networks.

Sorting of individuals with specific characteristics can affect the results of both ap-

proaches. As we observe the full social network for one year we can exploit changes in the

address of mobile phone customers; this enables us to isolate the role of systematic sorting

and to obtain causal estimates of geography and population density on network formation

and network topography.

4.1 Network Formation

We observe the social network’s adjacency matrix Gt = [gij,t] in each month t ∈ {1, ..., 12}.
Following Graham (2014), we specify the probability that two nodes i and j form a link

as

gij,t = 1(βgij,t−1 + T ′ij,tη1 + F ′ij,t−1η2 + Z ′ijρ+ φ1Di + φ2Dj +m(ξi, ξj , δ) + Uij,t ≥ 0) (7)

where vector Tij,t measures the distance between agent i and j based on their residence

and workplace, Fij,t−1 is a vector of dummies to discretise the number of contacts agents

i and j share in common, Zij is a vector of dyad-specific time invariant covariates, Di

and Dj capture static differences in sociability based on both parties’ logarithmised long-

term degree, and m(ξi, ξj , δ) is a symmetric matching function of unobserved node specific

heterogeneity.6 We assume that Uij,t is independent and identically distributed and has

mean zero such that we can estimate a linear probability model of the form:

gij,t = βgij,t−1 + T ′ij,tη1 + F ′ij,t−1η2 + Z ′ijρ+ φ1Di + φ2Dj +m(ξi, ξj , δ) + Uij,t. (8)

In particular, the distance measures represented by vector Tij,t comprise the log travel

time between agents i’s and j’s residence as well as a dummy for same workplace. The

latter equals one if they predominantly use antennas within the same 5 km radius during

business hours. We discretise the number of common friends, such that we obtain two

dummy variables contained in Fij,t−1: The first indicator equals one, if agents i and j

share at least one common social contact, while the second indicators equals one if agents

6Note that the number of mutual contacts, Fij,t−1, enters with a lag. This implies that agents
form/maintain/dissolve links myopically, as if all features of the previous period’s network remain fixed.
Assuming this structure, eliminates contemporaneous feedback, which can problematic for inference (see
Graham, 2014).
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i and j share at least two common contacts.7 The dyad-specific covariates in vector Zij

include three dummy variables indicating same age, same gender and same language.

The model in (8) also accounts for matching based on unobservables as reflected by

m(ξi, ξj , δ). Those that favourably match in terms of unobservable characteristics ξ feature

a higher likelihood to form a link. These unobservables may bias our estimates of the cross

sectional model in (8). If individuals with common unobservable attributes are more likely

to cluster regionally and thus live closer together, our distance measure will be negatively

correlated with the error term. A within-transformation will take out time invariant factors

that affect the matching quality, i.e.

gij,t − ḡij =β(gij,t−1 − ḡij) + (Tij,t − T̄ij,t)′η1 + (Fij,t−1 − F̄ij)
′η2 + Uij,t − Ūij , or

g̈ij,t =βg̈ij,t−1 + T̈ij,tη1 + F̈ ′ij,t−1η2 + Üij,t.
(9)

In equation (9) the transformed residual, Üij,t, is necessarily correlated with the lagged

dependent variable, g̈ij,t−1, because both are a function of Ūij . Therefore, OLS estimates

of equation (9) are not consistent for the parameters of interest. We therefore follow

Angrist and Pischke (2009) and estimate models including the lagged dependent variable

but not the fixed effects, as in equation (10a.), and then compare the results to estimates

obtained from a fixed effect regression without the dynamic component, as in equation

(10b.):

a. gij,t =βgij,t−1 + T ′ij,tη1 + F ′ij,t−1η2 + Z ′ijρ+ φ1Di + φ2Dj + Uij,t

b. g̈ij,t =T̈ij,tη1 + F̈ ′ij,t−1η2 + Üij,t.
(10)

These two models have a useful bracketing property, that bounds the causal effect of

interest. With respect to the geographical distance between two agents, we expect that

the fixed effect estimates are upwardly biased, while the lagged dependent model yields a

downwardly biased estimate (see Angrist and Pischke, 2009, p.245–247). We also estimate

equation (10a.) within a Logit framework in order to account for the dichotomous nature

of the data.

A practical issue that arises with estimating the outlined network formation models is

the size of the adjacency matrix that potentially includes (2 · 106)2 unique pairs of agents.

It is neither computationally feasible to estimate the models based on all these pairs nor

necessary for obtaining consistent estimates of the parameters of interest as is shown by

Manski and Lerman (1977), and Cosslett (1981). Since we have complete information on

the network we can use a stratified sample and adjust the estimates with the respective

sampling weights. Our choice-based sample results from an endogenous stratified sampling

scheme where each stratum is defined according to the individual responses, that is the

7We discretise the number of mutual friends, because the continuous measure yields imprecise (yet
significant) estimates. We also tried specifications with three or more common friends dummies, which
turned out insignificant.
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binary values taken by the response variable gij,t.
8 This sampling structure requires the

availability of prior information on the marginal response probabilities which is in our

setting available due to the full observation of Gt.

4.2 Network Topography

We estimate the effect of location characteristics on the individual-level network measures

formally defined in section 2: degree, within-degree, and clustering coefficient. Below, we

lay out the estimation strategy for degree centrality noting that specifications for all other

network measures follow analogously.

Following the earlier notation, the econometric models involve measures of degree cen-

trality, Dit, as dependent variable and location specific covariates at the place of residence

denoted by Lr. Hence, we specify the benchmark model as

Dir,t = α+ L′r,tβ +X ′ir,tγ + λt + λlr + εir,t, (11)

where Xir,t is a vector of individual characteristics (i.e. commuting distance, language,

dummy for belonging to language minority, gender, and age), λt stands for month fixed

effects, and λlr denotes language region fixed effects. The location vector Lr,t includes indi-

cators for EUROSTAT’s harmonised definition of functional urban areas which distinguish

between the urban core, the hinterland and peripheral regions. Alternatively, we measure

local density using the number of private mobile phone customers within 15 minutes travel

time from the respective place. Unlike municipal population statistics this measure has

the advantage that it is independent from administrative boundaries.

In a next step, we address the issue of individual sorting on unobservables across

locations. If the most sociable individuals systematically sort into high-density places,

equation (11) would yield upwardly biased estimates of the density externality. Compared

to the pooled OLS specification, we add an individual fixed effect in order to disentangle

the density externality and the sorting effect, i.e.

Dir,t = µi + L′r,tβ +X ′ir,tγ + λt + λlr + εir,t. (12)

Note that this model identifies the effects on the basis of movers i.e. those who changed

their place of residence between July 2015 and April 2016. These are about 147’000

individuals in the unfiltered data or 6% of the operator’s private customers (see Table A.4).

One concern in introducing fixed effects is that movers may differ systematically from the

population. Like reported in other studies that adopt a similar identification strategy

(e.g. D’Costa and Overman, 2014), movers in our data are on average younger than non-

8The main motivation behind this approach is usually the possibility of oversampling rare alternatives,
which can improve the accuracy of the econometric analysis but also reduce survey costs. However, in
our case we undersample those dyads with gij,t = 0 in order to enhance computational efficiency. One
disadvantage is that most specification tests for non-linear models are not computable with sample weights.
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movers. Apart from age, Table A.5 shows that differences in both individual characteristics

as well as phone usage behaviour and network properties are sufficiently small between

both groups.

5 Results

The results section is structured as follows: We begin by discussing the main results

for the network formation model. Our focus is on the question of whether distance is

costly to social interactions (section 5.1). In a second step, we analyse differences in

network size across regions, to test the hypothesis that cities promote social interactions

(section 5.2). We then proceed to investigate, whether population density affects the

efficiency of networks. To draw conclusions regarding network efficiency, we analyse the

perimeter of social networks (section 5.3), examine regional differences in matching quality

(section 5.4), and finally aim to gain insights regarding clustering (section 5.5).

5.1 The Role of Distance and Other Determinants in Tie Formation

It is instructive to begin by looking at plain descriptives. Figure 4 plots the share of

ties along the share of potential contacts by radius. Considering that almost 50 percent

of bilateral ties are formed within a 5 km perimeter that covers on average less than 1

percent of the population, this illustrates the rapid decline of social interactions across

space.

Figure 4: Share of Social Ties and Population by Radius

Of course, this approach does not account for biases due to spatial sorting of similar

types. We therefore proceed to the network formation models, outlined in the previous

section. Table 2 presents the result for the linear probability model. All coefficients were

multiplied by 10’000 and therefore can be interpreted as basis points. This means that a
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Table 2: LPMs of Network Formation, Monthly Data for June 2015–May 2016.

Pooled OLS Panel FE Lagged Dependent Var.

(1) (2) (3) (4) (5) (6)

Ln(Travel Timeij,t) -0.112∗∗∗ -0.942∗∗∗ -0.024∗∗∗ -0.094∗∗∗ -0.053∗∗∗ -0.479∗∗∗

(0.000) (0.053) (0.000) (0.019) (0.000) (0.024)
Ln(Travel Timeij,t)

2 0.104∗∗∗ 0.010∗∗∗ 0.053∗∗∗

(0.006) (0.002) (0.003)
Same Workplaceij,t 0.166∗∗∗ 0.071∗∗∗ 0.100∗∗∗

(0.030) (0.002) (0.014)
Same Languageij,t 0.017∗∗∗ 0.009∗∗∗

(0.001) (0.001)
> 0 Common Contactsij,t−1 213.822∗∗∗ 11.840∗∗∗ 100.943∗∗∗

(10.101) (0.928) (4.866)
> 1 Common Contactsij,t−1 2257.176∗∗∗ 145.633∗∗∗ 1024.429∗∗∗

(331.296) (35.656) (159.448)
gij,t−1 5231.433∗∗∗ 4973.641∗∗∗

(2.929) (34.689)
Const. 0.545∗∗∗ 2.079∗∗∗ 0.135∗∗∗ 0.224∗∗∗ 0.256∗∗∗ 1.060∗∗∗

(0.001) (0.114) (0.002) (0.038) (0.000) (0.052)

R2 0.001 0.054 0.001 0.001 0.275 0.288
Further Controls No Yes No No No Yes
Pair FE No No Yes Yes No No
Month FE Yes Yes Yes Yes Yes Yes
Groups – – 2,584,869 2,582,702 – –
Observations 30,996,082 27,238,673 30,996,082 27,238,673 28,411,817 27,238,673

Notes: The sample covers movers who used their phone every month at least once. All coefficients of the
linear probability models are multiplied by 10000, and therefore can be interpreted as basis points. Further
controls include the degree for both agents (log), dummies for same gender and same age, as well as the ab-
solute age difference between agents i and j. Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.

coefficient equalling one translates to a marginal increase in P (gij,t = 1) of a hundredth

percentage point. The first two columns display pooled OLS estimations, the middle

columns report pair fixed effects models, and the last two columns show lagged dependent

variable specifications. In all models estimated, the travel time between two agents enters

negatively, implying that distance is indeed costly when forming and maintaining a link.

Columns (2), (4) and (6) reveal that tie formation is actually a convex function in dis-

tance; the log of travel time enters strongly negative, while the squared term is positive.

Their relative magnitudes suggest that the negative effect of distance completely fades at

approximately 90 minutes driving distance.

In addition to being neighbours, working in the same area also increases the likelihood

that two persons form a link. The coefficient for the dummy variable “Same Workplace”,

which equals one if agents i and j predominantly use antennas within the same 5 km

radius during business hours, ranges between 0.07 and 0.1. Hence, working in close prox-

imity increases the probability of forming a tie by about 0.1 basis point, which is roughly

ten times the estimated effect of speaking the same principal language. Taken together,

distance in terms of both residence and workplace are costly to social interactions.

In order to analyse preferences for triadic closure or clustering, we discretise the number

of common friends, such that we obtain two dummy variables: one indicating that agents

i and j share at least one common social contact, and the other indicating that they share
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Table 3: Logit Models of Network Formation, Monthly Data for June 2015–May 2016.

Pooled Logit Lagged Dependent Var.

(1) (2) (3) (4)

Ln(Travel Timeij,t) -1.410∗∗∗ -0.877∗∗∗ -1.131∗∗∗ -0.976∗∗∗

(0.002) (0.049) (0.001) (0.005)
Same Workplaceij,t 0.893∗∗∗ 1.085∗∗∗

(0.161) (0.013)
Same Languageij,t 1.813∗∗∗ 1.685∗∗∗

(0.057) (0.005)
> 0 Common Contactsij,t−1 7.363∗∗∗ 4.786∗∗∗

(0.122) (0.070)
> 1 Common Contactsij,t−1 2.323∗∗∗ -0.018

(0.352) (0.071)
gij,t−1 12.218∗∗∗ 9.868∗∗∗

(0.003) (0.029)
Const. -7.357∗∗∗ -12.951∗∗∗ -8.958∗∗∗ -11.170∗∗∗

(0.010) (0.249) (0.007) (0.026)

Pseudo R2 0.138 0.376 0.492 0.527
Further Controls No Yes No Yes
Pair FE No No No No
Month FE Yes Yes Yes Yes
Observations 30,996,082 27,238,673 28,411,817 28,411,817

Notes: The sample covers movers who used their phone every month at least once. Further controls include the
degree of both agents (log), dummies for same gender and same age, as well as the absolute age difference between
agents i and j. Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.

at least two common contacts. The coefficients for both “Common Contact” variables

are highly significant. Column (2) shows that the probability of forming a link with

another person increases by up to 22 percentage points, if one shares at least two common

contacts. As one would expect, the estimates are considerably smaller in column (4), which

controls for matching quality by employing dyad-specific fixed effects. Nonetheless, the

additional link-surplus of 1.5 percentage points due to triangular relations – as obtained

in the most conservative specification – is quantitatively substantial. Agents clearly value

triadic relations, which explains the evidently non-random clustering in this network, as

discussed in section 3.1.

Overall matching quality between two agents is not observable, but the regressions in

column (2) and column (6) account for socio-demographic (dis)similarities that are incor-

porated in the matching concept, namely dummies for same language, same gender and

same age, as well as the absolute age difference between customers i and j. If we abstract

from potential omitted variable bias and assume that m(·) is a linear and additive func-

tion, the interpretation of the estimated coefficients in terms of matching is as follows:

By definition
∂E[gij |m(·)]

∂m(·) > 0, therefore sign(ρ̂q) = sign(δq) holds. Accordingly, a positive

(negative) sign not only implies an increase in the probability that two agents socially

interact, but also a positive (negative) relation in terms of matching quality. Our results

unambiguously point toward homophily, which is the well documented tendency of indi-

viduals to bond with similar others (e.g. Currarini, Jackson and Pin, 2009; McPherson,

Smith-Lovin and Cook, 2001). For instance, individuals who share the same principal

language are on average more likely to form a tie than individuals with different language

19



(a) Level (b) Ratio, Base Distance = 15 min.

Figure 5: Probability to Form a Tie: Prediction Based on OLS and Logit Models
Notes: Same Workplace=0, Common Contacts=0, Degree=mean, Same Gender=1, Same Age=1, Age Diff=0,
gij,t−1=0, FE=0.

preferences. The same holds true regarding age and gender (results not shown).

The OLS results suggest that spatial proximity, the presence of common friends, and

demographic similarity increase the likelihood that two individuals interact. We also

estimate Logit models to accommodate for the binary dependent variable and check the

robustness of these results. Since the incidental parameter problem can induce severe

bias in the Logit fixed effects estimates (e.g Lancaster, 2000), we only show results for

the pooled Logit model and the lagged dependent variable model. Moreover, the squared

distance term is excluded due to convergence issues, which should be a minor problem

given the Logit estimator’s inherent non-linearity. The results in Table 3 are qualitatively

almost identical to the OLS results in Table 2, except for one of the common friends

dummies, which turns out insignificant in column (4). Hence, in terms of qualitative

interpretation the main results are very robust with respect to modelling choice.

We now inspect the functional relation between distance and tie formation in more

detail. Figure 5a displays the predicted probability for gij = 1 based on various specifica-

tions. Figure 5b plots the relative probability for gij = 1 compared to the base probability

at a distance of 15 minutes travel time. Although the models differ somewhat regarding

the level prediction, they consistently reveal a convexly decreasing relation between link

formation and distance. Overall, the graphs illustrate that the effect of distance on social

interactions is highly localised; the probability of forming a link is about twice as large

for neighbours than for people living 10 minutes apart. This probability continues to fall

quickly up to a distance of 30 minutes, beyond which the negative effect of travel time

flattens out.

Summarising this comprehensive evidence, we have been able to demonstrate that

distance is highly detrimental to social interactions. If distance between two individuals
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did not impose costs on their social exchange, it would be difficult to argue that regional

differences in population density should impact the topography of social networks. In such

a – with respect to distance – frictionless world, cities and rural villages would offer an

identical environment for social interactions as all people could choose from the same pool

of potential contacts without there being any costs due to remoteness.

In what follows, we examine whether distance costs indeed lead to significant differences

in the topography of social networks across urban and rural areas. First, we examine the

consequences regarding network size, and then we turn our attention to network efficiency.

5.2 Cities and Network Size

A number of urban economic theories argue that cities are favourable to social interac-

tions and support larger networks. As discussed in section 2, the underlying idea is that

people living in densely populated areas encounter more potential contacts, and accord-

ingly establish a larger number of valuable social ties. So far, we have presented evidence

suggesting that distance is indeed costly to forming and maintaining a tie, which is a

necessary condition for the hypothesis of larger networks in cities.

In order to directly test the hypothesis, we estimate a series of pooled OLS models,

which are reported in Table 4. We use two sets of key explanatory variables, including the

trichotomous classification for urbanisation by EUROSTAT (i.e. urban core, hinterland,

periphery) as well as a continuous measure for population density. The latter is defined

as the log of the population living within a 15-minute radius of an individual’s postcode

area. Network size is measured on a monthly basis as degree centrality, i.e. the number

of unique contacts an individual calls during one month.

Columns (1) and (4) contain the results for the discretised measure of urbanisation,

the former excluding and the latter accounting for individual controls in the regression.

Agents who live in the hinterland or periphery have on average a smaller network than city

residents. The correlations are statistically highly significant, with an average difference

of -1.1 to -1.7 percent when comparing the urban core to the periphery, and -2.4 to -2.5

percent when comparing the urban core to the hinterland.

The continuous population density measure in columns (2) and (5) is negatively cor-

related with network size. This unexpected result is due to non-linearities, as the results

in columns (1) and (4) already indicate; although the hinterland has a higher population

density than peripheral municipalities, the hinterland coefficient is significantly smaller

than the periphery coefficient. When a squared-term is included, the results indeed reveal

a convex relation between population density and network size, with the marginal effect

of population density turning positive around its mean value.

Overall, these findings lend support to the hypothesis that dense urban areas facilitate

social interactions, backing earlier studies that report a positive correlation between the

level of urbanisation, the volume of phone calls, and network size (e.g. Charlot and Du-
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Table 4: Regional Differences in Network Size, Monthly Data for June 2015–May 2016.

Pooled OLS

(1) (2) (3) (4) (5) (6)

Hinterland (vs. Cities) -0.024∗∗∗ -0.025∗∗∗

(0.001) (0.001)
Periphery (vs. Cities) -0.011∗∗∗ -0.017∗∗∗

(0.001) (0.001)
Ln(Pop. Density) -0.012∗∗∗ -0.223∗∗∗ -0.008∗∗∗ -0.222∗∗∗

(0.000) (0.002) (0.000) (0.002)
Ln(Pop. Density)2 0.012∗∗∗ 0.012∗∗∗

(0.000) (0.000)

R2 0.011 0.012 0.013 0.067 0.067 0.068
Further Controls No No No Yes Yes Yes
Language Region FE Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes
Observations 10,117,645 10,117,522 10,117,522 9,353,794 9,353,679 9,353,679

Notes: The sample covers customers who used their phone every month at least once. Further controls include
commuting distance, language, dummy for belonging to language minority, gender, and age. Standard errors in
parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.

ranton, 2004; Schläpfer et al., 2014). So far it is unclear, however, whether the effect has a

causal interpretation or is driven by the sorting of high sociability types to urban centres.

In a next step, the regressions include individual fixed effects to back out any person

specific characteristics and thereby eliminate the sorting channel. Consequently, inference

is now based on customers who changed their billing address during the 12 months period

covered. Columns (1) to (3) of Table 5 display results for the baseline fixed effects regres-

sion, while columns (4) to (6) show a robustness check based on people who changed their

residence by at least 30 minutes driving time. The results stand in stark contrast to the

plain OLS regressions and clearly reject the hypothesis that cities have a causal impact

on network size. All coefficients related to regional differences in population density are

practically zero and statistically insignificant.

Figure B.1 in the appendix plots the degree of movers over time. It shows that agents

expand their social network in the three months prior to moving, and then revert to

their initial level within two months. To test the robustness of our results with respect

to this dynamic, we re-estimate the fixed effects models for movers who changed their

residence by at least 30 minutes driving time and successively exclude periods around the

moving month. Table B.1 in the appendix shows that only 2 out of 20 coefficients turn

out statistically significant at the 10 percent level. Hence, these additional results do not

alter the conclusion from the benchmark analysis in Table 5.9

9One further concern may be that urban dwellers use messenger apps more frequently than people
in rural areas, which could lead to a downward bias in the population density / city dummy estimates.
Although we can not rebut such concerns with absolute certainty, they seem unsubstantiated for two
reasons. First, messenger apps and mobile phone calls are most likely complements not substitutes. We
decompose messenger usage along gender and language region, based on a survey conducted by com-
paris.ch in 2014. It shows that messenger apps are more often used among men than women and are more
widespread in French-speaking than German-speaking regions. The same ranking unfolds for network size.
If anything, this indicates that the two media are complements not substitutes. Additionally, a paper on
workplace communication by Charlot and Duranton (2006) shows that telephone usage is complementary
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Table 5: Regional Differences in Network Size, Monthly Data for June 2015–May 2016.

FE: Full Sample FE: Moving Distance > 30min.

(1) (2) (3) (4) (5) (6)

Hinterland (vs. Cities) 0.000 -0.006
(0.003) (0.006)

Periphery (vs. Cities) 0.000 -0.001
(0.004) (0.007)

Pop. Density -0.002 -0.001 -0.002 -0.006
(0.001) (0.012) (0.002) (0.017)

Pop. Density2 -0.000 0.000
(0.001) (0.001)

R2 0.011 0.011 0.011 0.011 0.011 0.011
Further Controls Yes Yes Yes Yes Yes Yes
Language Region FE Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes
Groups 60,514 60,514 60,514 16,874 16,874 16,874
Observations 669,825 669,825 669,825 185,676 185,663 185,663

Notes: The sample covers movers who used their phone every month at least once. Further controls include
commuting distance and a dummy for belonging to language minority. Standard errors in parentheses. + p<0.10, *
p<0.05, ** p<0.01 *** p<0.001.

It seems, then, that the correlation between population density / urbanisation and

network size is fully driven by the sorting of above-average sociable people to the urban

core and cannot be attributed to the positive externalities of people living close together.

A variance decomposition, which computes the contributions of individual fixed effects,

local fixed effects, and time specific factors to the total variance of Di,t, also supports the

conclusion that regional differences play a small role in explaining differences in network

size. Individual components contribute 73.0 percent to the overall variance of degree

centrality, while local factors only explain 2.3 percent. The remaining variation can be

attributed to time specific factors (0.3%) and to the residual (24.4%), i.e. individual and

time variant components.

This analysis provides evidence that the correlation between population density and

network size is primarily driven by the sorting of highly sociable people to urban centres.

Sociability may thereby refer to the mental capability of maintaining social ties, as sug-

gested by the social brain hypothesis (e.g. Dunbar, 1998), and/or to personality traits,

as advocated by Asendorpf and Wilpers (1998). This raises the question of why people

with an above-average sociable predisposition move to cities. One evident explanation

could be that cities provide a favourable environment for social interactions, which does

not manifest itself in terms of network size but rather with respect to network efficiency.

If this were the case, individuals with a preference for and capability of maintaining large

networks would disproportionally benefit from moving to cities, which could explain the

sorting pattern uncovered in the above analysis.

to all other modes of communication studied, including face-to-face communication, letter correspondence,
email traffic, and internet usage. Second, we conduct a series of robustness checks, in which we control
for an individual’s communication preference based on his monthly text message–call volume ratio. These
robustness checks do not alter the results.
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5.3 Cities and the Perimeter of Social Networks

We begin the discussion of network efficiency by examining variations in network perime-

ters across regions. Everything else being equal, an agent is better off the less distant his

social contacts live, simply because he will incur lower travel costs. Since people residing

in cities have a larger pool of potential contacts within close proximity, one would expect

them to recruit their social contacts within a narrower perimeter to minimise travel costs.

We analyse the impact of population density on the perimeter of an individual’s net-

work in three steps. First, we discuss descriptive evidence based on a density plot for social

ties by radius and location type (i.e. cities versus hinterland/periphery). Second, we use

the network formation model to test whether urban dwellers value distance differently

than people living in less densely populated areas. Third, we calculate the within-degree,

which measures network size within a radius of 15 minutes around an agent’s residence,

to analyse whether it varies systematically with population density.

Figure 6: City versus Hinterland / Periphery – Density
Plot for Social Ties by Radius.
Notes: The density plot starts at 1 km; links spanning shorter distances
(mostly links within the same postcode) were assigned a value of 1 km.

Figure 6 plots the density of social ties by radius and location type. In comparison to

individuals living in the hinterland or periphery, urban dwellers evidently have a larger

mass of social contacts within a 7 km radius, and fewer contacts beyond. This supports

the hypothesis that living in a city can lower the costs incurred from social interactions

with distant contacts.

In order to examine this claim further we use the network formation model and interact

the log of distance with either population density or the city dummy. The top panel of

Table 6 reports the output of the augmented network formation model, with columns (1)

and (2) displaying the OLS results and columns (3) and (4) showing the pair fixed effect
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Table 6: Regional Differences in the Perimeter of Social Networks, Monthly Data for
June 2015–May 2016.

a. Network Formation Pooled OLS Panel FE

Cities & Distance (1) (2) (3) (4)

Ln(Distanceij,t) -0.068∗∗∗ -0.069∗∗∗ -0.016∗∗∗ -0.016∗∗∗

(0.003) (0.003) (0.001) (0.001)
Ln(Distanceij,t) × Cityi,t -0.001∗∗∗ -0.001∗∗

(0.000) (0.000)
Ln(Distanceij,t) × Pop. Densityi,t -0.001∗∗∗ -0.001∗∗∗

(0.000) (0.000)

R2 0.054 0.054 0.001 0.001
Further Controls Yes Yes Yes Yes
Pair FE No No Yes Yes
Month FE Yes Yes Yes Yes
Groups – – 2,582,702 2,582,702
Observations 27,238,673 27,238,673 27,238,673 27,238,673

b. Network Topography Pooled OLS Panel FE

Cities & Within-Degree (15 min.) (1) (2) (3) (4)

Hinterland (vs. Cities) -0.111∗∗∗ -0.123∗∗∗

(0.001) (0.010)
Periphery (vs. Cities) -0.208∗∗∗ -0.231∗∗∗

(0.001) (0.012)
Population Density 0.086∗∗∗ 0.143∗∗∗

(0.000) (0.004)

R2 0.049 0.056 0.010 0.018
Further Controls Yes Yes Yes Yes
Individual FE No No Yes Yes
Language Region FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Groups – – 60,514 60,514
Observations 9,353,794 9,353679 669,825 669,812

Notes: The sample covers movers who used their phone every month at least once. a. Controls in network
formation models: Dummies for same workplace, same language, common contacts, degree of both agents (pooled
OLS), same gender (pooled OLS), same age (pooled OLS), and the absolute age difference between agents i and
j (pooled OLS). b. Controls in network topography models: Commuting distance, language minority dummy,
gender (pooled OLS) and age (pooled OLS). Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.

estimates. All specifications suggest that urban dwellers incorporate distance costs more

strongly in their valuation than people living in peripheral areas. The interaction terms

yield statistically significant negative effects, but are quantitatively relatively small.

Finally, we resort to our network topography model using the within-degree, DW r
i , as

dependent variable. The bottom panel of Table 6 reports the outputs of this approach,

with columns (1) and (2) displaying the OLS results and columns (3) and (4) showing

the individual fixed effect estimates that account for the sorting of highly sociable indi-

viduals to urban areas. As hypothesised, the within-degree is largest in urban areas and

positively correlated with population density. This holds true for both the plain OLS

estimates, as well as the individual fixed effects results. According to our causal estimates

from the individual fixed effects specification, urban dwellers have on average a 10 percent

larger within-degree than individuals residing in the hinterland, and a 23 percent larger

within-degree than people living in peripheral areas. The results also show that doubling
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population density leads, on average, to a 6.8 percent higher within-degree.10 While pop-

ulation density is hardly relevant for overall network size, it has considerable explanatory

power regarding the number of close-range contacts. The variance decomposition also re-

veals that regional factors explain more than twice as much of the within-degree variance

(4.9%) than the variance in network size (2.3%).

Densely populated areas evidently shrink the perimeter of an individual’s social net-

work, in the sense that a larger fraction of her social contacts are likely to live in close

proximity. Considering that distant social contacts are costly, this consequently suggests

that urban dwellers bear fewer costs from social interactions than people living in sparsely

populated areas. This could – at least partly – explain why sociable people sort into cities,

as they disproportionally benefit from this channel and therefore have a higher willingness

to pay for housing in cities than less sociable types. This result may also be interpreted

as better matching in cities, because geographical distance is essentially one dimension

of matching quality. We further explore matching quality across regions in the following

section.

5.4 Cities and Matching

Since matching quality cannot be directly observed, we propose two indirect tests for the

hypothesis that matching quality improves with population density. In one test we resort

to the network formation model, while the second test is based on the network topography

approach.

We begin with the network formation model, or more specifically with the fixed effect

specification given in equation (10b.): The pair fixed effect absorbs any dyad-specific

constant factors that either raise or lower the surplus of interaction for the involved agents.

Hence, it primarily captures matching quality, m(·), which governs the value obtained from

forming a link with another person. If agents living in cities indeed benefit from better

matching quality, we would expect that fixed effects associated with their actually formed

links are higher than the equivalent fixed effects calculated for agents living in rural areas.

To test this claim, we first estimate equation (10b.), and then regress the predicted pair

fixed effects for the subsample of active links (i.e. gij = 1) on population density at

agent i’s place of residence. Because we focus on movers to back out any distance-related

effects, the estimates yield the impact of population density weighted by duration of stay.11

We obtain strong positive and significant effects for population density in column (2), and

negative effects for residents of peripheral municipalities in column (1). Restricting the

sample to customers with a minimum driving distance of 30 minutes between their old and

new addresses does not affect the results. This backs the claim that densely populated

10As for the degree, we re-estimate the fixed effects models and successively exclude periods around the
moving month. Table B.2 in the appendix shows that this does not affect the results.

11As a robustness check, we also restrict the sample to movers who change their residence but stay within
the same class of municipalities, i.e. moving from city to city or from hinterland to hinterland. As Table
B.4 in the appendix reveals, this does not alter the results.
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Table 7: Regional Differences in the Matching Quality

a. Network Formation Full Sample Moving Distance > 30min.

Cities and Matching (Predicted FE) (1) (2) (3) (4)

Hinterlandi,t -55.595∗∗∗ -59.265∗∗∗

(5.928) (11.127)
Peripheryi,t -145.315∗∗∗ -117.816∗∗∗

(6.451) (11.832)
Pop. Densityi,t 34.954∗∗∗ 17.834∗∗∗

(1.856) (2.815)
Constant 2492.994∗∗∗ 2085.201∗∗∗ 2466.674∗∗∗ 2232.319∗∗∗

(492.036) (115.281) (250.231) (84.219)

R2 0.001 0.001 0.001 0.001
Observations 11,616,147 11,692,984 3,089,595 3,116,907

b. Network Topography Full Sample Moving Distance > 30min.

Cities and Matching (Social Adaption) (1) (2) (3) (4)

Citypost 0.327∗∗∗ 0.090
(0.046) (0.056)

Citypre -0.449∗∗∗ -0.275∗∗∗

(0.033) (0.044)
Pop. Densitypost 0.227∗∗∗ 0.076∗∗∗

(0.011) (0.013)
Pop. Densitypre -0.326∗∗∗ -0.138∗∗∗

(0.014) (0.020)
Constant 1.009∗∗∗ 1.801∗∗∗ 0.685∗∗∗ 1.256∗∗∗

(0.097) (0.176) (0.037) (0.194)

R2 0.047 0.078 0.259 0.263
Further Controls Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Language Region FE Yes Yes Yes Yes
Observations 28,871 28,871 7,887 7,801

Notes: Dependent Variable in Panel a.: Predicted dyad specific fixed effect from network formation model outlined
in equation (10b). Dependent Variable in Panel b.: The number of post-move contacts at the post-move place of
residence over the number of post-move contacts at the pre-move place of residence. Controls in Panel b.: Number
of contacts at new address prior to moving, commuting distance, dummy for belonging to language minority,
gender and age . Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.

areas lead to favourable matching outcomes.

In the next step, we reassess the hypothesis by returning to the network topography

approach. If people change their residence, we would expect them to keep up with some

of their previous contacts and replace others with individuals living in their new neigh-

bourhood. Since distance makes social interactions costly, only highly valuable contacts

at the old place of residence are worthwhile to maintain. Furthermore, if one encounters

very good matches at the new place of residence, the replacement of pre-existing ties with

new contacts should advance more quickly. We therefore examine whether this social ad-

justment process systematically varies with population density at the pre- and post-move

residence. Specifically, we estimate

DW
rpost
i,post

DW
rpre
i,post

= α+ βrpost · L
rpost
i + βrpre · L

rpre
i +X ′iγ + %DW

rpost
i,pre + εi, (13)

where the ratio DW
rpost
i,post/DW

rpre
i,post reflects the number of post-move contacts at the
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post-move place of residence over the number of post-move contacts at the pre-move place

of residence. The main explanatory variables are population density and the trichotomous

classification for urbanisation at mover i’s new address (L
rpost
i ) and old address (L

rpre
i ),

complemented with a measure for the number of pre-move contacts at the new address

(DW
rpost
i,pre ), and individual level characteristics Xi.

12 The results reported in the bottom

panel of Table 7 are based on address changes between October 2015 and January 2016,

a pre-move window covering June 2015 to August 2015, and a post-move window cover-

ing March 2016 to May 2016. As hypothesised, the fastest social adjustment process is

observed for people who move from the periphery to the city, while movers who lived in ur-

ban areas before changing their address keep comparatively large shares of their pre-move

contacts. Since maintaining spatially distant contacts is costly, this suggests that contacts

formed in cities generate on average a higher surplus and are therefore more likely to be

maintained. Hence, this test further supports the hypothesis that densely populated areas

improve matching quality.

So far, our results suggest that high population density in cities does not lead to larger

social networks, but rather improves their efficiency in terms of narrower perimeters and

matching quality. We are not aware of any paper providing evidence on regional differences

in social matching quality, which is a key factor underlying the main agglomeration forces

as formally discussed in Duranton and Puga (2004).

5.5 Cities and Clustering

The final network property that we examine is clustering. Agents face a trade-off in terms

of efficient information exchange (i.e. low clustering) and benefits related to reciprocity

(i.e. high clustering). The optimal balance may vary regionally due to factors that alter

this trade-off. Additionally, one would expect that more populous neighbourhoods display

lower average clustering, simply because randomly established links are less likely to form

triadic structures when the pool of potential contacts grows larger. To test the first

claim, we resort to the network formation model. Even if there is no evidence that urban

dwellers value triadic relations differently than people living in rural communities, the

mechanical relation between population density and clustering may lead to measurable

regional differences. If this is the case, the network topography approach should be able

to uncover them.

We begin with the network formation model and interact the dummy for common

contacts with either population density or the city dummy. In order to back out spu-

rious clustering due to the grouping of similar types, we focus on the pair fixed effects

specification. The top panel of Table 8 reports the results for these regressions. In both

specifications, the interaction terms are negative and statistically significant at the 10

12Instead of controlling for the pre-move contacts at the new address, we also re-estimate the model for
a subsample of customers that move to a location where they have no prior contacts, i.e. DW

rpost
i,pre = 0.

This does not alter the conclusion, as the results in Table B.4 (Panel b.) in the appendix show.
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Table 8: Regional Differences in the Transitivity of Social Networks, Monthly Data for
June 2015–May 2016.

a. Network Formation Panel FE

Cities & Common Friends (3) (4)

> 0 Common Contactsij,t−1 17.337∗∗∗ 16.477∗∗∗

(1.268) (1.058)
> 0 Common Contactsij,t−1 × Cityi,t -3.681+

(2.009)
> 0 Common Contactsij,t−1 × Pop. Densityi,t -1.745+

(0.957)

R2 0.001 0.001
Further Controls Yes Yes
Pair FE Yes Yes
Month FE Yes Yes
Groups 2,582,702 2,582,702
Observations 27,238,673 27,238,138

b. Network Topography Pooled OLS Panel FE

Cities & Clustering (1) (2) (3) (4)

Hinterland (vs. Cities) 0.010∗∗∗ 0.002∗

(0.001) (0.001)
Periphery (vs. Cities) 0.014∗∗∗ 0.002∗∗

(0.001) (0.001)
Population Density -0.004∗∗∗ -0.001∗∗

(0.001) (0.000)

R2 0.022 0.022 0.001 0.001
Further Controls Yes Yes Yes Yes
Individual FE No No Yes Yes
Language Region FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Groups – – 60,507 60,507
Observations 9,252,183 9,252,183 664,343 664,330

Notes: The sample covers movers who used their phone every month at least once. a. Controls in network forma-
tion models: Dummies for same workplace, same language, common contacts, degree of both agents (pooled OLS),
same gender (pooled OLS), same age (pooled OLS), and the absolute age difference between agents i and j (pooled
OLS). b. Controls in network topography models: Commuting distance, dummy for belonging to language minority,
gender (pooled OLS) and age (pooled OLS). Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.

percent level. Hence, this analysis suggests that sharing a common link is valued less

by urban dwellers than by residents of peripheral areas. Magnitude wise the impact is

fairly substantial, as it amounts to approximately 20 percent of the effect attributed to

the common contact dummy. While sharing a common contact increases the probability

of forming and maintaining a link by 17.3 basis points, the effect is only 13.7 basis points

among city residents.

Given the results of the network formation analysis, we expect lower clustering in cities

than in peripheral areas. First, city residents seem to value triadic relations less than

people living in peripheral areas. Second, the larger pool of potential contacts lowers the

likelihood of triadic relations, at least if there is some randomness in the link formation

process. The bottom panel of Table 8 displays the results of the network topography

analysis with clustering as the dependent variable. Both the pooled OLS regressions in

columns (1) and (2), as well as the fixed effects specifications in columns (3) and (4)
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suggest that cities attenuate network clustering. The effect ranges between -0.010 and

-0.014 in the pooled OLS regressions, which is roughly 11 to 15 percent of the sample

mean. The difference between city and hinterland / periphery drops by 80 percent in the

fixed effects specifications, but remains significant at the 5 percent level or higher.13

Despite the evidence that population density has no impact on the number of social

interactions, cities may facilitate the diffusion of information due to below-average clus-

tering. This can have important consequences for local labour markets, as discussed in

Sato and Zenou (2015), for example. In conjunction with the findings on network size,

matching quality and distance costs, this suggests that cities may encourage not a larger

number but rather more valuable social interactions.

6 Conclusion

The results of this study suggest that that cities provide a superior environment for social

interactions, which is fundamentally important to the mechanics of classic agglomeration

forces. Contrary to many theoretical models, the advantages of densely populated areas do

not translate into larger social networks but rather into improvements in terms of matching

quality, smaller distance costs, and a favourable structure for information diffusion (i.e.

lower clustering).

Evidently, modern communication technologies do not render cities obsolete. Our

analysis has illustrated that they remain important as catalyst of valuable social exchange

and, consequently, as potential engines of growth. From a policy perspective, this result

provides micro-level evidence for the positive externalities of densely populated areas,

which should be taken into account, for example, in the design of zoning policies, or the

pricing of mobility.

There are many potential extensions of the work described in this paper. First and

foremost, a quantification of the effects in monetary terms would be insightful, and – in our

opinion – would be the first attempt to plausibly identify the causal link between density,

social interactions, and a measure of productivity / output. Second, we focused exclusively

on private social interactions, thus it would be fruitful to examine whether the same

conclusions apply to networks from business communication. Third, we barely scratched

the surface of the information available in the mobility data recorded from transmitting

antennas. Such data would allow, for instance, to thoroughly test the influential claim by

social scientist Robert Putnam (2000) that commuting causes an erosion of social capital.

13Successively excluding periods around the moving month, as done in Table B.3, yields occasionally
insignificant results for the Hinterland dummy, but overall the same pattern as in the benchmark model
emerges.
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A Appendix: Data

A.1 Descriptive Statistics – Municipalities and Postcode Areas

Table A.1: Main Descriptives for Municipalities and Postcode Areas

Mean SD Min Max

Municipal Level (N=2322)
Area in km2 17.412 31.434 0.327 438.562
Population (from 2010 Census) 2396 3397.175 12 384786
Market Share of Swisscom 0.577 0.096 0.090 0.997
Degree of Urbanization

Core 0.035 – 0 1
Periphery 0.336 – 0 1
Hinterland 0.629 – 0 1

Main Language
German 0.628 – 0 1
French 0.295 – 0 1
Italian 0.065 – 0 1
Rhaeto-Romanic 0.012 – 0 1

Distance: Municipality i to j (km) 107.611 58.955 0.581 348.644
Travel Time: Municipality i to j (min.) 134.004 66.897 0.692 433.696

Postcode Level (N=3201)
Area in km2 12.927 19.215 0.014 242.904
# Customers within 15 min. Radius 14683 16818.31 50 107549
Distance: Postcode i to j (km) 111.931 59.501 0.336 353.852
Travel Time: Postcode i to j (min.) 142.804 69.033 0.283 453.508

Sources: Municipal and postcode areas from Swisstopo; municipal population, language shares, and degree of
urbanisation from Federal Statistical Office; car travel times from search.ch; number of private mobile phone
customers from Swisscom. Data from postcodes and municipalities with less than 50 customers were deleted
due to privacy concerns.

A.2 Phone Usage Statstics

Table A.2: Call Duration (in Mio. Minutes) between June 2015 to May 2016

Phone Activity (in Mio.) Call Duration (in Mio. Minutes)

MP-Calls SMS Landline Total Filtered MP-Calls Landline Total Filtered

Jun. 2015 166.3 90.9 64.3 321.6 66.0 351.2 296.2 647.4 222.4
Jul. 2015 157.3 91.9 57.8 307.0 62.0 324.8 271.1 595.9 202.2
Aug. 2015 153.6 89.0 59.7 302.3 60.3 337.0 283.6 620.6 211.3
Sep. 2015 153.8 85.2 61.9 300.9 61.6 343.0 294.2 637.2 216.9
Oct. 2015 133.6 76.3 59.9 269.8 53.7 307.5 284.8 592.3 192.6
Nov. 2015 138.1 77.7 62.1 277.9 56.5 333.1 298.5 631.6 208.7
Dec. 2015 154.1 79.1 61.6 294.8 62.0 347.4 298.1 645.5 218.5
Jan. 2016 155.7 78.5 62.0 296.2 61.0 376.0 312.4 688.4 235.5
Feb. 2016 167.6 77.5 60.6 305.7 66.3 393.3 299.6 692.9 246.7
Mar. 2016 163.3 74.9 58.6 296.8 65.4 378.1 286.8 664.9 240.3
Apr. 2016 164.2 70.7 59.9 294.8 65.7 378.8 286.1 664.9 241.1
Mai 2016 161.1 68.6 55.9 285.7 64.9 353.5 264.6 618.1 228.3

Notes: These figures base on phone usage statistics of 2.4 million private mobile phones.

35



A.3 Descriptive Statistics – Individual Level

Table A.3: Share of Variance in Census Population Explained by Number of Customers

All Male Female German French Italian

Age All 0.987 0.984 0.988 0.992 0.990 0.893
Age 20 0.945 0.946 0.944 0.960 0.946 0.916
Age 30 0.953 0.955 0.951 0.953 0.973 0.765
Age 40 0.968 0.963 0.971 0.983 0.993 0.875
Age 50 0.985 0.982 0.984 0.993 0.988 0.914
Age 60 0.990 0.988 0.987 0.994 0.984 0.922

Notes: These figures base on customer information of active phones during June 2015 and the most recent census
conducted by the Federal Statistical Office in 2010.

Table A.4: Number of Private Mobile Phone Customers with a Change in Residence

DEGURBA Classification of Movers
Distance City to Hint./Peri. Within

Month All > 30min Hint./Peri. to City Hint./Peri. No Change

July 13880 4461 1468 1858 2864 7690
August 14212 4572 1431 1930 2923 7928
September 15636 4842 1584 2044 3160 8848
October 15673 4795 1572 2052 3229 8820
November 14820 4612 1537 1977 3070 8236
December 14053 4202 1396 1836 3229 7592
January 13292 4432 1194 2207 2708 7183
February 13705 4333 1275 2033 2807 7590
March 15171 4671 1501 2060 3181 8429
April 15838 4873 1529 2111 3234 8964

Notes: Movers are identified based on address changes in the customer database. Columns 3 to 6 document the
moving pattern along the DEGURBA classification.

Table A.5: Comparing Non-movers to Movers, Main Descriptive Statistics

Non-Movers Movers
Mean SD N Mean SD N Difference

Phone Usage Statistics, June 2015 – May 2016 (pooled)
Number of Calls 110.525 109.039 9 564 636 126.170 114.84 834 913 -15.646
Duration (Minutes) 250.840 293.322 9 564 636 302.285 316.835 834 913 -51.445

Network Characteristics, June 2015 – May 2016 (pooled)
Degree Centrality 9.164 7.912 9 564 636 9.633 7.875 834 913 -0.468
Within-Degree 7.163 7.266 9 564 636 5.971 6.721 834 913 1.192
Clustering Coefficient 0.092 0.134 9 423 136 0.081 0.114 825 787 0.011

Sociodemographics - Private Mobile Phones
Age 35.307 13.734 797 053 31.038 10.624 69 593 4.269
Female 0.522 – 797 053 0.527 – 69 593 -0.005
Language: German 0.680 – 797 053 0.703 – 69 593 -0.023
Language: French 0.271 – 797 053 0.251 – 69 593 0.020
Language: Italian 0.043 – 797 053 0.039 – 69 593 0.004
Language: English 0.006 – 797 053 0.007 – 69 593 -0.001

Notes: The table is based on the subsample of customers with phone activity in all 12 months, which we also use
in the main analysis. Further filters as described in section 3. Phone usage statistics include in- and outgoing calls.
The within-degree measures network size within a radius of 15 minutes around an agent’s residence.
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B Appendix: Analysis
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Figure B.1: The Degree prior and after Moving

B.1 Robustness Checks: Degree

Table B.1: Robustness – Cities and Network Size, June 2015–May 2016.

Excluding Months around Change of Residence, i.e. t = 0

Moving Distance All Months t 6= 0 -2 ≤ t ≥ 2 -3 ≤ t ≥ 3 -4 ≤ t ≥ 4 -5 ≤ t ≥ 5
at least 30 min. (0) (1) (2) (3) (4) (5)

Hinterland (vs. Cities) -0.006 -0.007 -0.008 -0.017+ -0.012 -0.015
(0.006) (0.006) (0.007) (0.009) (0.012) (0.020)

Periphery (vs. Cities) -0.001 0.001 0.002 -0.001 -0.005 -0.027
(0.007) (0.007) (0.009) (0.011) (0.015) (0.024)

R2 0.011 0.011 0.011 0.010 0.009 0.011
Groups 16,874 16,868 16,808 16,743 16,681 16,535
Observations 185,644 167,761 138,883 113,106 90,018 69,675

Population Density -0.006 -0.008 -0.011 -0.048+ -0.030 -0.094
(0.017) (0.019) (0.023) (0.027) (0.038) (0.061)

Population Density2 0.000 0.000 0.000 0.002 0.002 0.005
(0.001) (0.001) (0.001) (0.002) (0.002) (0.003)

R2 0.011 0.011 0.011 0.010 0.009 0.008
Groups 16,874 16,868 16,808 16,743 16,680 16,534
Observations 185,644 167,749 138,872 113,097 90,011 69,670

Further Controls Yes Yes Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes Yes Yes
Language Region FE Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes

Notes: The sample covers movers (minimum moving distance 30min) who used their phone every month at least
once. Column (1) excludes the moving month; column (2) excludes the moving month and the first month prior
and after moving; and so on. Further controls include commuting distance and a dummy for belonging to language
minority. Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.
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B.2 Robustness Checks: Within-Degree

Table B.2: Robustness – Cities and the Within-Degree, June 2015–May 2016.

Excluding Months around Change of Residence, i.e. t = 0

Moving Distance All Months t 6= 0 -2 ≤ t ≥ 2 -3 ≤ t ≥ 3 -4 ≤ t ≥ 4 -5 ≤ t ≥ 5
at least 30 min. (0) (1) (2) (3) (4) (5)

Hinterland (vs. Cities) -0.038∗ -0.039∗ -0.049∗ -0.058∗ -0.049 -0.084+

(0.018) (0.018) (0.021) (0.025) (0.032) (0.046)
Periphery (vs. Cities) -0.132∗∗∗ -0.133∗∗∗ -0.149∗∗∗ -0.148∗∗∗ -0.148∗∗∗ -0.194∗∗∗

(0.020) (0.021) (0.024) (0.028) (0.036) (0.053)
R2 0.012 0.015 0.017 0.016 0.015 0.012
Groups 16,874 16,868 16,808 16,743 16,681 16,535
Observations 185,676 167,761 138,883 113,106 90,018 69,675

Population Density 0.076∗∗∗ 0.077∗∗∗ 0.082∗∗∗ 0.085∗∗∗ 0.087∗∗∗ 0.087∗∗∗

(0.006) (0.006) (0.007) (0.008) (0.010) (0.015)
R2 0.016 0.019 0.021 0.020 0.018 0.013
Groups 16,874 16,868 16,808 16,743 16,680 16,534
Observations 185,663 167,749 138,872 113,097 90,011 69,670

Further Controls Yes Yes Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes Yes Yes
Language Region FE Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes

Notes: The sample covers movers (minimum moving distance 30min) who used their phone every month at least
once. Column (1) excludes the moving month; column (2) excludes the moving month and the first month prior
and after moving; and so on. Further controls include commuting distance and a dummy for belonging to language
minority. Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.

B.3 Robustness Checks: Clustering

Table B.3: Robustness – Cities and Clustering, June 2015–May 2016.

Excluding Months around Change of Residence, i.e. t = 0

All Months t 6= 0 -2 ≤ t ≥ 2 -3 ≤ t ≥ 3 -4 ≤ t ≥ 4 -5 ≤ t ≥ 5
(0) (1) (2) (3) (4) (5)

Hinterland (vs. Cities) 0.002+ 0.002+ 0.002 0.004∗ 0.003 0.002
(0.001) (0.001) (0.001) (0.002) (0.003) (0.004)

Periphery (vs. Cities) 0.002+ 0.003∗ 0.003∗ 0.006∗∗ 0.006∗ 0.008+

(0.001) (0.001) (0.002) (0.002) (0.003) (0.004)
R2 0.001 0.001 0.001 0.001 0.001 0.01
Groups 16,870 16,863 16,802 16,735 16,670 16,518
Observations 183,896 166,130 137,489 111,965 89,099 68,953

Population Density -0.001+ -0.001+ -0.001+ -0.001+ -0.001+ -0.003∗

(0.000) (0.000) (0.000) (0.001) (0.001) (0.001)
R2 0.001 0.001 0.001 0.001 0.001 0.001
Groups 16,870 16,863 16,802 16,735 16,669 16,517
Observations 183,896 166,118 137,478 111,956 89,092 68,948

Further Controls Yes Yes Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes Yes Yes
Language Region FE Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes

Notes: The sample covers movers (minimum moving distance 30min) who used their phone every month at least
once. Column (1) excludes the moving month; column (2) excludes the moving month and the first month prior
and after moving; and so on. Further controls include commuting distance and a dummy for belonging to language
minority. Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.
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B.4 Robustness Checks: Matching

Table B.4: Robustness – Regional Differences in the Matching Quality, Robustness

a. Network Formation Full Sample Moving Distance > 30min.

Cities and Matching (Predicted FE) (1) (2) (3) (4)

Hinterlandi,t -101.581∗∗∗ -44.090
(-6.316) (-0.905)

Peripheryi,t -381.461∗∗∗ -252.426∗∗∗

(-20.221) (-4.952)
Pop. Densityi,t 88.509∗∗∗ 56.085∗∗∗

(17.412) (6.019)
Constant 5447.207∗∗∗ 4439.930∗∗∗ 5346.683∗∗∗ 4718.905∗∗∗

(414.239) (88.771) (121.435) (54.765)

R2 0.002 0.001 0.001 0.001
Observations 1,631,708 1,646,566 30,6798 313,072

b. Network Topography Full Sample Moving Distance > 30min.

Cities and Matching (Social Adaption) (1) (2) (3) (4)

Citypost 0.308∗∗∗ 0.202∗∗∗

(0.046) (0.056)
Citypre -0.231∗∗∗ -0.275∗∗∗

(0.033) (0.045)
Pop. Densitypost 0.184∗∗∗ 0.099∗∗∗

(0.013) (0.013)
Pop. Densitypre -0.145∗∗∗ -0.103∗∗

(0.016) (0.031)
Constant 0.738∗∗∗ 0.304+ 0.754∗∗ 0.670∗∗∗

(0.124) (0.176) (0.282) (0.033)

R2 0.017 0.041 0.018 0.005
Further Controls Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Language Region FE Yes Yes Yes Yes
Observations 5,718 5,718 3,108 3,194

Notes: Dependent Variable in Panel a.: Predicted dyad specific fixed effect from network formation model outlined
in equation (10b). Dependent Variable in Panel b.: The number of post-move contacts at the post-move place of
residence over the number of post-move contacts at the pre-move place of residence. Controls in Panel b.: Number
of contacts at new address prior to moving, commuting distance, dummy for belonging to language minority, and
Romansh region), gender and age . Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.
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